1
|
Alonso-Fernández JR, Montoro-García S, Cruz AF, Ponce-Valencia A, Carmena-Bargueño M, Pérez-Sánchez H. Discovery and Functional Validation of EP3 Receptor Ligands with Therapeutic Potential in Cardiovascular Disease. Int J Mol Sci 2025; 26:4879. [PMID: 40430020 PMCID: PMC12112076 DOI: 10.3390/ijms26104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
The prostaglandin E2 receptor EP3 is emerging as a promising therapeutic target in cardiovascular diseases because of its involvement in vascular inflammation, platelet aggregation, and vasoconstriction. However, selective EP3 ligands with validated biological activities are scarce. In this study, we combined computational and experimental strategies to identify and validate novel EP3 receptor ligands with therapeutic potential. We implemented a high-throughput, structure- and ligand-based virtual screening pipeline, enabling efficient exploration of approved drugs and natural compounds from DrugBank and FooDB libraries. Top-scoring candidates were prioritised based on binding energy and pharmacophoric similarity. Selected hits were subjected to in silico ADME/Tox profiling using QikProp to identify molecules with favourable pharmacokinetic and safety parameters. TUCA, masoprocol, and pravastatin sodium have emerged as lead candidates and were validated in vitro using endothelial migration and platelet aggregation assays. TUCA exhibited the most consistent inhibitory effect on endothelial migration, whereas masoprocol and hydrocortisone significantly reduced platelet aggregation. These findings establish a multidimensional workflow for the rational identification of EP3 ligands and support their potential use in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Jorge-Ricardo Alonso-Fernández
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
- Health Sciences PhD Program, UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| | - Silvia Montoro-García
- Preclinical Research of Bioactive Compounds and Drugs (PREBIOF), Izpisúa Lab, HiTech, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| | - Andreia-Filipa Cruz
- Health Sciences PhD Program, UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
- Preclinical Research of Bioactive Compounds and Drugs (PREBIOF), Izpisúa Lab, HiTech, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| | - Alicia Ponce-Valencia
- Faculty of Nursing, UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), UCAM—Universidad Católica San Antonio de Murcia, Campus de Murcia, Av. de los Jerónimos, 135, 30107 Murcia, Guadalupe, Spain
| |
Collapse
|
2
|
Chen D, Le SB, Manektalia H, Liu T, Hutchinson TE, O'Dell A, Salhia B, Tran DD. The EP3-ZNF488 Axis Promotes Self-Renewal of Glioma Stem-Like Cells to Induce Resistance to Tumor Treating Fields. Cancer Res 2025; 85:360-377. [PMID: 39412953 DOI: 10.1158/0008-5472.can-23-3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/02/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Tumor treating fields (TTFields) use low-intensity, alternating electric fields to exert antitumor activity and have demonstrated efficacy against multiple cancers, including glioblastoma (GBM). Unfortunately, cancer cells inevitably develop resistance to TTFields, highlighting the need to elucidate the underlying mechanisms to develop approaches to induce durable responses. Using a gene network-based machine learning algorithm, we interrogated TTFields-resistant GBM cells and uncovered a regulatory axis anchored by the prostaglandin E2 receptor 3 (EP3) and the transcription factor zinc finger 488 (ZNF488). Mechanistically, TTFields induced EP3 upregulation and nuclear envelope localization, where it formed a complex with ZNF488 to induce resistance to TTFields by promoting self-renewal of glioma stem-like cells (GSC). Overexpression of EP3 and/or ZNF488 in TTFields-sensitive GSC conferred resistance and enhanced self-renewal, whereas expression of noninteracting mutants of these proteins abrogated the formation of the nuclear complex and prevented resistance. Inhibition of either partner in this protein complex in resistant GSC, including those freshly isolated from TTFields-resistant GBM tumors, resensitized cells to the cytotoxic effects of TTFields, concomitant with reduced self-renewal and in vivo tumorigenicity. Importantly, inhibition of EP3 in TTFields-sensitive GSC preemptively halted the development of resistance. The EP3-ZNF488 axis was significantly upregulated in TTFields-resistant GBM tumors, and coexpression of EP3 and ZNF488 in other cancers correlated with lower survival rates. Collectively, these results indicate that the nuclear EP3-ZNF488 axis is necessary and sufficient to establish TTFields resistance, underscoring the potential to target this axis to prevent or reverse resistance in GBM and possibly other cancers. Significance: The EP3-ZNF488 master regulatory axis in cancer stem-like cells drives resistance to treatments like tumor treating fields, opening avenues for developing strategies to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Dongjiang Chen
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Son B Le
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Harshit Manektalia
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Tianyi Liu
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Tarun E Hutchinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida
| | - Adam O'Dell
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck Medicine of USC, Los Angeles, California
| | - David D Tran
- Division of Neuro-Oncology, Brain Tumor Center, Keck School of Medicine of University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck Medicine of USC, Los Angeles, California
| |
Collapse
|
3
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
4
|
Li Z, Zhang J, Ma Z, Zhao G, He X, Yu X, Fu Q, Wu N, Ding Z, Sun H, Zhang X, Zhu Y, Chen L, He J. Endothelial YAP Mediates Hyperglycemia-Induced Platelet Hyperactivity and Arterial Thrombosis. Arterioscler Thromb Vasc Biol 2024; 44:254-270. [PMID: 37916416 DOI: 10.1161/atvbaha.123.319835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Hyperglycemia-a symptom that characterizes diabetes-is highly associated with atherothrombotic complications. However, the underlying mechanism by which hyperglycemia fuels platelet activation and arterial thrombus formation is still not fully understood. METHODS The profiles of polyunsaturated fatty acid metabolites in the plasma of patients with diabetes and healthy controls were determined with targeted metabolomics. FeCl3-induced carotid injury model was used to assess arterial thrombus formation in mice with endothelial cell (EC)-specific YAP (yes-associated protein) deletion or overexpression. Flow cytometry and clot retraction assay were used to evaluate platelet activation. RNA sequencing and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS The plasma PGE2 (prostaglandin E2) concentration was elevated in patients with diabetes with thrombotic complications and positively correlated with platelet activation. The PGE2 synthetases COX-2 (cyclooxygenase-2) and mPGES-1 (microsomal prostaglandin E synthase-1) were found to be highly expressed in ECs but not in other type of vessel cells in arteries from both patients with diabetes and hyperglycemic mice, compared with nondiabetic individuals and control mice, respectively. A combination of RNA sequencing and ingenuity pathway analyses indicated the involvement of YAP signaling. EC-specific deletion of YAP limited platelet activation and arterial thrombosis in hyperglycemic mice, whereas EC-specific overexpression of YAP in mice mimicked the prothrombotic state of diabetes, without affecting hemostasis. Mechanistically, we found that hyperglycemia/high glucose-induced endothelial YAP nuclear translocation and subsequently transcriptional expression of COX-2 and mPGES-1 contributed to the elevation of PGE2 and platelet activation. Blockade of EP3 (prostaglandin E receptor 3) activation by oral administration of DG-041 reversed the hyperactivity of platelets and delayed thrombus formation in both EC-specific YAP-overexpressing and hyperglycemic mice. CONCLUSIONS Collectively, our data suggest that hyperglycemia-induced endothelial YAP activation aggravates platelet activation and arterial thrombus formation via PGE2/EP3 signaling. Targeting EP3 with DG-041 might be therapeutic for diabetes-related thrombosis.
Collapse
Affiliation(s)
- Zhiyu Li
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Jiachen Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Zejun Ma
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology (Z.M., H.S., L.C.), Tianjin Medical University, China
| | - Guobing Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Xuefang Yu
- Departments of Cardiology (X.Y.), Tianjin Medical University General Hospital, China
| | - Qiang Fu
- Cardiovascular Surgery (Q.F., N.W.), Tianjin Medical University General Hospital, China
| | - Naishi Wu
- Cardiovascular Surgery (Q.F., N.W.), Tianjin Medical University General Hospital, China
| | - Zhongren Ding
- School of Pharmacy (Z.D.), Tianjin Medical University, China
| | - Haipeng Sun
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology (Z.M., H.S., L.C.), Tianjin Medical University, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| | - Liming Chen
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology (Z.M., H.S., L.C.), Tianjin Medical University, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology (Z.L., J.Z., G.Z., X.H., X.Z., Y.Z., J.H.), Tianjin Medical University, China
| |
Collapse
|
5
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
6
|
Varghese N, Morrison B. Inhibition of cyclooxygenase and EP3 receptor improved long term potentiation in a rat organotypic hippocampal model of repeated blast traumatic brain injury. Neurochem Int 2023; 163:105472. [PMID: 36599378 DOI: 10.1016/j.neuint.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a health concern in military service members who are exposed to multiple blasts throughout their training and deployment. Our group has previously reported decreased long term potentiation (LTP) following repeated bTBI in a rat organotypic hippocampal slice culture (OHSC) model. In this study, we investigated changes in inflammatory markers like cyclooxygenase (COX) and tested the efficacy of COX or prostaglandin EP3 receptor (EP3R) inhibitors in attenuating LTP deficits. Expression of COX-2 was increased 48 h following repeated injury, whereas COX-1 expression was unchanged. EP3R expression was upregulated, and cyclic adenosine monophosphate (cAMP) concentration was decreased after repeated blast exposure. Post-traumatic LTP deficits improved after treatment with a COX-1 specific inhibitor, SC-560, a COX-2 specific inhibitor, rofecoxib, a pan-COX inhibitor, ibuprofen, or an EP3R inhibitor, L-798,106. Delayed treatment with ibuprofen and L-798,106 also prevented LTP deficits. These findings suggest that bTBI induced neuroinflammation may be responsible for some functional deficits that we have observed in injured OHSCs. Additionally, COX and EP3R inhibition may be viable therapeutic strategies to reduce neurophysiological deficits after repeated bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Normand C, Breton B, Salze M, Barbeau E, Mancini A, Audet M. A systematic analysis of prostaglandin E2 type 3 receptor isoform signaling reveals isoform- and species-dependent L798106 Gαz-biased agonist responses. Eur J Pharmacol 2022; 927:175043. [DOI: 10.1016/j.ejphar.2022.175043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
|
8
|
Zhang Z, Shen C, Fang M, Han Y, Long C, Liu W, Yang M, Liu M, Zhang D, Cao Q, Chen X, Fang Y, Lu Q, Hou Z, Li Y, Liu Z, Lei X, Ni H, Lai R. Novel contact-kinin inhibitor sylvestin targets thromboinflammation and ameliorates ischemic stroke. Cell Mol Life Sci 2022; 79:240. [PMID: 35416530 PMCID: PMC11071929 DOI: 10.1007/s00018-022-04257-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Weihui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiqi Cao
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Zongliu Hou
- Central Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, 430074, Hubei, China.
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
9
|
Meng Q, Li B, Huang N, Wei S, Ren Q, Wu S, Li X, Chen R. Folic acid targets splenic extramedullary hemopoiesis to attenuate carbon black-induced coagulation-thrombosis potential. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127354. [PMID: 34634699 DOI: 10.1016/j.jhazmat.2021.127354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Due to its wide applications in tire and rubber products, carbon black (CB) implicates concerns on its safety during production, collection, and handling. Here we report that exposure CB, increases coagulation-thrombosis potential in a splenic extramedullary hemopoiesis (EMH)-dependent manner. Adult C57BL/6 mice are kept in whole-body inhalation chambers, and exposed to filtered room air (FRA) or CB for 28 consecutive days. CB exposure resulted in splenic EMH characterized with platelet precursor cells, megakaryocytes (MKs), hyperplasia and enhanced in vivo blood coagulation ability. Metabolomics analysis suggests significant enhance in PGE2 production but reduction in folic acid (FA) levels in murine serum following CB exposure. Mechanistically, activation of COX-dependent PGE2 production promotes IL-6 expression in splenic macrophages, which subsequently results in splenic EMH and increased platelet counts in circulation. Administration of FA protects the mice against CB-induced splenic EMH through inhibiting prostaglandin-endoperoxide synthase 2 (Ptgs2 or Cox2) and prostaglandin E synthase (Ptges) expression in splenic macrophages, eventually recover the coagulation capacity to normal level. The results strongly suggest the involvement of splenic EMH in response to CB exposure and subsequently increased coagulation-thrombosis potential. Supplementation with FA may be a candidate to prevent thrombosis potential attributable to CB exposure.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Bin Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Nannan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shengnan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Quanzhong Ren
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
10
|
In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules 2022; 12:biom12010099. [PMID: 35053247 PMCID: PMC8774285 DOI: 10.3390/biom12010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
Collapse
|
11
|
Liu N, Tang J, Xue Y, Mok V, Zhang M, Ren X, Wang Y, Fu J. EP3 Receptor Deficiency Improves Vascular Remodeling and Cognitive Impairment in Cerebral Small Vessel Disease. Aging Dis 2022; 13:313-328. [PMID: 35111376 PMCID: PMC8782563 DOI: 10.14336/ad.2021.0627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/27/2021] [Indexed: 11/21/2022] Open
Abstract
Aging and hypertension are major risk factors for cerebral small vessel disease (CSVD). Anti-hypertensive therapy has achieved effective; however, incomplete results in treating CSVD, suggesting the need for additional treatments. Targeting abnormal inflammatory responses has become a topic of research interest. Small artery remodeling is the main pathological feature of CSVD. Inhibition of the E-prostanoid 3 (EP3) receptor has been shown to attenuate vascular remodeling in peripheral organs; however, little is known about its role in CSVD. Therefore, we investigated whether the deletion of EP3 attenuates the development of CSVD in an animal model-- stroke-prone renovascular hypertensive rat (RHRsp). We found that the cerebral small arteries of RHRsp exhibited increased EP3 expression. Despite no alleviation of hypertension, the deletion of EP3 still attenuated the cerebral small artery remodeling of RHRsp, as evidenced by reduced overexpression of extracellular matrix (ECM) in the vessel. In vitro experiments indicated that EP3 deletion regulated the expression of ECM by downregulating TGF-β1/Smad signaling. Furthermore, the Morris water maze test and magnetic resonance test demonstrated that EP3 knockout attenuated cognitive impairment of the RHRsp, possibly through increased cerebral blood flow. Together, our results indicate that the deletion of EP3 attenuates vascular remodeling and vascular cognitive impairment induced by hypertension, and blockade of the EP3 receptor may be a promising strategy for the treatment of CSVD.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Miaoyi Zhang
- Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai, China.
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Jianhui Fu, Huashan Hospital, Fudan University, Shanghai, China. ; Dr. Yilong Wang, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
- Correspondence should be addressed to: Dr. Jianhui Fu, Huashan Hospital, Fudan University, Shanghai, China. ; Dr. Yilong Wang, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
12
|
Zhang X, Zhu B, Guo L, Bakaj I, Rankin M, Ho G, Kauffman J, Lee SP, Norquay L, Macielag M. Optimization of physicochemical properties of pyridone-based EP3 receptor antagonists. Bioorg Med Chem Lett 2021; 47:128172. [PMID: 34091043 DOI: 10.1016/j.bmcl.2021.128172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
A novel series of pyridone-based EP3 receptor antagonists was optimized for good physical properties and oral bioavailability in rodents. The lead compounds 3h, 3l and 4d displayed good in vitro profiles, moderate to good metabolic stability and good rodent PK profiles with low clearance, high oral exposure and acceptable half-life.
Collapse
Affiliation(s)
- Xuqing Zhang
- Discovery Sciences, Discovery Chemistry, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States.
| | - Bin Zhu
- Discovery Sciences, Discovery Chemistry, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Lili Guo
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Matthew Rankin
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - George Ho
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Jack Kauffman
- Discovery Sciences, Lead Discovery, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Seunghun P Lee
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| | - Mark Macielag
- Discovery Sciences, Discovery Chemistry, Janssen Research & Development, LLC, 1400 McKean Road, Box 776, Spring House, PA 19477, United States
| |
Collapse
|
13
|
The 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood 2021; 136:974-988. [PMID: 32584951 DOI: 10.1182/blood.2019002314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Several adaptor molecules bind to cytoplasmic tails of β-integrins and facilitate bidirectional signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an attractive strategy for the development of safe antithrombotic drugs. We show for the first time that the 14-3-3ζ-c-Src-integrin-β3 complex is formed during platelet activation. 14-3-3ζ-c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-3ζ and SH2-domain on c-Src, whereas the 14-3-3ζ-integrin-β3 interaction is mediated by the -ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3ζ and -KEATSTF- fragment (KF7) on the β3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interferes with the formation of the 14-3-3ζ-c-Src-integrin-β3 complex and selectively inhibits β3 outside-in signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis without causing significant bleeding. This study characterized a previously unidentified 14-3-3ζ-c-Src-integrin-β3 complex in platelets and provided a novel strategy for the development of safe and effective antithrombotic treatments.
Collapse
|
14
|
Zhang X, Zhu B, Guo L, Bakaj I, Rankin M, Ho G, Kauffman J, Lee SP, Norquay L, Macielag MJ. Discovery of a Novel Series of Pyridone-Based EP3 Antagonists for the Treatment of Type 2 Diabetes. ACS Med Chem Lett 2021; 12:451-458. [PMID: 33738072 DOI: 10.1021/acsmedchemlett.0c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
A novel series of pyridones were discovered as potent EP3 antagonists. Optimization guided by EP3 binding and functional assays as well as by eADME and PK profiling led to multiple compounds with good physical properties, excellent oral bioavailability, and a clean in vitro safety profile. Compound 13 was identified as a lead compound as evidenced by the reversal of sulprostone-induced suppression of glucose-stimulated insulin secretion in INS 1E β-cells in vitro and in a rat ivGTT model in vivo. A glutathione adduction liability was eliminated by replacing the naphthalene of structure 13 with the indazole ring of structure 43.
Collapse
|
15
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
16
|
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117:2001-2015. [PMID: 33484117 DOI: 10.1093/cvr/cvab003] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid is one of the most abundant and ubiquitous ω-6 polyunsaturated fatty acid, present in esterified form in the membrane phospholipids of all mammalian cells and released from phospholipids by several phospholipases in response to various activating or inhibitory stimuli. Arachidonic acid is the precursor of a large number of enzymatically and non-enzymatically derived, biologically active autacoids, including prostaglandins (PGs), thromboxane (TX) A2, leukotrienes, and epoxyeicosatetraenoic acids (collectively called eicosanoids), endocannabinoids and isoprostanes, respectively. Eicosanoids are local modulators of the physiological functions and pathophysiological roles of blood vessels and platelets. For example, the importance of cyclooxygenase (COX)-1-derived TXA2 from activated platelets in contributing to primary haemostasis and atherothrombosis is demonstrated in animal and human models by the bleeding complications and cardioprotective effects associated with low-dose aspirin, a selective inhibitor of platelet COX-1. The relevance of vascular COX-2-derived prostacyclin (PGI2) in endothelial thromboresistance and atheroprotection is clearly shown by animal and human models and by the adverse cardiovascular effects exerted by COX-2 inhibitors in humans. A vast array of arachidonic acid-transforming enzymes, downstream synthases and isomerases, transmembrane receptors, and specificity in their tissue expression make arachidonic acid metabolism a fine-tuning system of vascular health and disease. Its pharmacological regulation is central in human cardiovascular diseases, as demonstrated by biochemical measurements and intervention trials.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Bianca Rocca
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| | - Carlo Patrono
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
18
|
Li P, Zhang Z, Liao Q, Meng E, Mwangi J, Lai R, Rong M. LCTX-F2, a Novel Potentiator of Coagulation Factors From the Spider Venom of Lycosa singoriensis. Front Pharmacol 2020; 11:896. [PMID: 32612531 PMCID: PMC7308506 DOI: 10.3389/fphar.2020.00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Spider venoms contain many functional proteins/peptides such as proteinases, serine/cysteine proteinase inhibitors, insecticidal toxins, and ion channel toxins. However, to date, no peptide toxin with procoagulant activities has been identified from spider venom. In this study, a novel toxin LCTX-F2 with coagulation-promoting activity was identified and characterized in the venom of the spider Lycosa singoriensis (L. singoriensis). LCTX-F2 significantly shortened activated partial thromboplastin time (APTT), clotting time, and plasma recalcification time. This toxin directly interacted with several coagulation factors such as FXIIa, kallikrein, thrombin, and FXa and increased their protease activities. In liver bleeding and tail bleeding mouse models, LCTX-F2 significantly decreased the number of blood cells and bleeding time in a dose-dependent manner. At the same dosage, LCTX-F2 exhibited a more significant procoagulant effect than epsilon aminocaproic acid (EACA). Moreover, LCTX-F2 showed no cytotoxic or hemolytic activity against either normal cells or red blood cells. Our results suggested that LCTX-F2 is a potentiator of coagulation factors with the potential for use in the development of procoagulant drugs.
Collapse
Affiliation(s)
- Pengpeng Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Er Meng
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
20
|
Karel MFA, Hechler B, Kuijpers MJE, Cosemans JMEM. Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations. Platelets 2020; 31:439-446. [DOI: 10.1080/09537104.2019.1708884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- MFA Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - B. Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - MJE Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - JMEM Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|
22
|
Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y. Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol Ther 2019; 203:107393. [PMID: 31356909 DOI: 10.1016/j.pharmthera.2019.107393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Antiplatelet drugs serve as a first-line antithrombotic therapy for the management of acute ischemic events and the prevention of secondary complications in vascular diseases. Numerous antiplatelet therapies have been developed; however, currently available agents are still associated with inadequate efficacy, risk of bleeding, and variability in individual response. Understanding the mechanisms of platelet involvement in thrombosis and the clinical development process of antiplatelet agents is critical for the discovery of novel agents. The functions of platelets in thrombosis are regulated by two major mechanisms: the interaction between surface receptors and their ligands, and the downstream intracellular signaling pathways. Recently, most of the progress made in antiplatelet drug development has been achieved with P2Y receptor antagonists. Additionally, the usage of GP IIb/IIIa receptor antagonists has decreased, because it is associated with a higher risk of bleeding and thrombocytopenia. Agents targeting other platelet surface receptors such as PARs, TP receptor, EP3 receptor, GPIb-IX-V receptor, P-selectin, as well as intracellular signaling factors, such as PI3Kβ, have been evaluated in an attempt to develop the next generation of antiplatelet drugs, reduce or eliminate interpatient variability of drug efficacy and significantly lower the risk of drug-induced bleeding. The aim of this review is to describe the pathways of platelet activation in thrombosis, and summarize the development process of antiplatelet agents, as well as the preclinical and clinical evaluations performed on these agents.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Weikang Tao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Qi Pei
- Shanghai Hengrui Pharmaceuticals Co., 279 Wenjing Road, Shanghai, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
23
|
Developments in inhibiting platelet aggregation based on different design strategies. Future Med Chem 2019; 11:1757-1775. [PMID: 31288579 DOI: 10.4155/fmc-2018-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet aggregation is the central event in hemostasis and thrombosis. Up to now, many agents inhibiting platelet aggregation have been approved for the treatment of thrombotic disorders. In this review, we mainly summarized the progress in the research of platelet aggregation inhibitors based on different design strategies. The advantage and challenge of corresponding targets are also discussed in this article. We hope more platelet aggregation inhibitors with efficacy and safety will be discovered in the future.
Collapse
|
24
|
Goharian TS, Fagerberg CR, Jensen BL, Graakjaer J, Brasch-Andersen C, Nybo M. Prostaglandin E 2
-EP 3
receptor subtype gene deletion in mother and son impairs platelet aggregation. Br J Haematol 2019. [DOI: 10.1111/bjh.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina S. Goharian
- Department of Clinical Biochemistry and Pharmacology; Odense University Hospital; Odense Denmark
| | | | - Boye L. Jensen
- Institute of Physiology; University of Southern Denmark; Odense Denmark
| | - Jesper Graakjaer
- Department of Clinical Genetics; Lillebaelt Hospital Vejle; Vejle Denmark
| | | | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology; Odense University Hospital; Odense Denmark
| |
Collapse
|
25
|
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158:161-173. [DOI: 10.1016/j.bcp.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
26
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
27
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
28
|
Schaid MD, Wisinski JA, Kimple ME. The EP3 Receptor/G z Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease. AAPS J 2017; 19:1276-1283. [PMID: 28584908 PMCID: PMC7934137 DOI: 10.1208/s12248-017-0097-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Michael D Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jaclyn A Wisinski
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA.
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
29
|
Abstract
Antiplatelet therapy displays a critical role in the treatment and prevention of antithrombotic disorders. Many new antiplatelet agents have been developed following the emergence of various clinical limitations of classical antiplatelet drugs. This review covers mainly the recent advances in the development of P2Y12 antagonists and GPIIb/IIIa antagonists. Meanwhile, it summarizes promising approaches to new platelet surface receptors such as prostanoid EP3 receptor, thromboxane A2 prostanoid receptor, protease-activated receptors, GPIb-IX-V receptor and P-selectin. In addition, PI3Kβ, a critical protein at the inside signaling pathway of platelet activation is also mentioned as an important antiplatelet target. Moreover, the development of respective drug candidates is discussed in detail.
Collapse
|
30
|
Yan S, Tang J, Zhang Y, Wang Y, Zuo S, Shen Y, Zhang Q, Chen D, Yu Y, Wang K, Duan SZ, Yu Y. Prostaglandin E 2 promotes hepatic bile acid synthesis by an E prostanoid receptor 3-mediated hepatocyte nuclear receptor 4α/cholesterol 7α-hydroxylase pathway in mice. Hepatology 2017; 65:999-1014. [PMID: 28039934 DOI: 10.1002/hep.28928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/09/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Prostaglandin E2 (PGE2 ) is an important lipid mediator of inflammation. However, whether and how PGE2 regulates hepatic cholesterol metabolism remains unknown. We found that expression of the PGE2 receptor, E prostanoid receptor 3 (EP3) expression is remarkably increased in hepatocytes in response to hyperlipidemic stress. Hepatocyte-specific deletion of EP3 receptor (EP3hep-/- ) results in hypercholesterolemia and augments diet-induced atherosclerosis in low-density lipoprotein receptor knockout (Ldlr-/- ) mice. Cholesterol 7α-hydroxylase (CYP7A1) is down-regulated in livers of EP3hep-/- Ldlr-/- mice, leading to suppressed hepatic bile acid (BA) biosynthesis. Mechanistically, hepatic-EP3 deficiency suppresses CYP7A1 expression by elevating protein kinase A (PKA)-dependent Ser143 phosphorylation of hepatocyte nuclear receptor 4α (HNF4α). Disruption of the PKA-HNF4α interaction and BA sequestration rescue impaired BA excretion and ameliorated atherosclerosis in EP3hep-/- Ldlr-/- mice. CONCLUSION Our results demonstrated an unexpected role of proinflammatory mediator PGE2 in improving hepatic cholesterol metabolism through activation of the EP3-mediated PKA/HNF4α/CYP7A1 pathway, indicating that inhibition of this pathway may be a novel therapeutic strategy for dyslipidemia and atherosclerosis. (Hepatology 2017;65:999-1014).
Collapse
Affiliation(s)
- Shuai Yan
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuyao Zhang
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujun Shen
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Di Chen
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sheng-Zhong Duan
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Gal D, Sipido KR, Vandevelde W. 'A picture is worth a thousand words': image highlights from Cardiovascular Research. Cardiovasc Res 2016; 112:622-625. [PMID: 27979810 DOI: 10.1093/cvr/cvw226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diane Gal
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| | - Karin R Sipido
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
32
|
Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2016; 1463:128-35. [DOI: 10.1016/j.chroma.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
|
33
|
An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5249086. [PMID: 27594972 PMCID: PMC4993943 DOI: 10.1155/2016/5249086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options.
Collapse
|
34
|
Twarock S, Bagheri S, Bagheri S, Hohlfeld T. Platelet-vessel wall interactions and drug effects. Pharmacol Ther 2016; 167:74-84. [PMID: 27492900 DOI: 10.1016/j.pharmthera.2016.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Saghar Bagheri
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sayeh Bagheri
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Thomas Hohlfeld
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Lee ECY, Futatsugi K, Arcari JT, Bahnck K, Coffey SB, Derksen DR, Kalgutkar AS, Loria PM, Sharma R. Optimization of amide-based EP3 receptor antagonists. Bioorg Med Chem Lett 2016; 26:2670-5. [PMID: 27107947 DOI: 10.1016/j.bmcl.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Prostaglandin E receptor subtype 3 (EP3) antagonism may treat a variety of symptoms from inflammation to cardiovascular and metabolic diseases. Previously, most EP3 antagonists were large acidic ligands that mimic the substrate, prostaglandin E2 (PGE2). This manuscript describes the optimization of a neutral small molecule amide series with improved lipophilic efficiency (LipE) also known as lipophilic ligand efficiency (LLE) ((a) Nat. Rev. Drug Disc.2007, 6, 881; (b) Annu. Rep. Med. Chem.2010, 45, 380).
Collapse
Affiliation(s)
- Esther C Y Lee
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, MA 02139, United States.
| | - Kentaro Futatsugi
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, MA 02139, United States
| | - Joel T Arcari
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| | - Kevin Bahnck
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| | - Steven B Coffey
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| | - David R Derksen
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| | - Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, MA 02139, United States
| | - Paula M Loria
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| | - Raman Sharma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, CT 06340, United States
| |
Collapse
|
36
|
Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Sci Rep 2016; 6:23824. [PMID: 27032536 PMCID: PMC4817121 DOI: 10.1038/srep23824] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/23/2022] Open
Abstract
Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4+CD25− T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors.
Collapse
|
37
|
Mawhin MA, Tilly P, Fabre JE. The receptor EP3 to PGE2: A rational target to prevent atherothrombosis without inducing bleeding. Prostaglandins Other Lipid Mediat 2015; 121:4-16. [PMID: 26463849 DOI: 10.1016/j.prostaglandins.2015.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 09/23/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The prostanoid E2 (PGE2) is known to modulate the aggregative response of platelets to their conventional agonists such as ADP, TXA2, thrombin or collagen. Through the activation of its receptor EP3, PGE2 sensitizes platelets to their agonists but also inhibits them through its two other receptors, EP2 and EP4. In mice, the net result of these opposed actions is the EP3-mediated potentiation of platelet aggregation and the in vivo aggravation of murine atherothrombosis. Since the pathway PGE2/EP3 is not involved in murine hemostasis, we propose a "platelet EP3 paradigm" to describe this apparently paradoxical association between the facilitating impact on atherothrombosis and the unaltered hemostasis. Consistent with this paradigm, a drug blocking EP3 dramatically decreased atherothrombosis without inducing bleeding in mice. In humans, several studies did not agree on the effect of PGE2 on platelets. Reinterpreting these data with the notion of "potentiation window" and taking the platelet initial cAMP level into account reconciled these inconsistent results. Thereby, the in vitro potentiating effect of PGE2 on human platelets becomes clear. In addition, the EP3 blocking drug DG-041 abrogated the potentiating effect of PGE2 in whole human blood but did not prolong bleeding times in volunteers. Thus, the murine "platelet EP3 paradigm" would apply to humans if the aggravating role of PGE2 on atherothrombosis is shown in patients. Therefore, testing an EP3 blocker in a phase III trial would be of high interest to fulfill the unmet medical need which is to control atherothrombosis without impacting hemostasis and thus to improve the prevention of myocardial infarction.
Collapse
Affiliation(s)
- Marie-Anne Mawhin
- LVTS, Institut National de la santé et de la recherche Médicale U1148, Hôpital Bichat, Paris, 18ième, France
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Jean-Etienne Fabre
- LVTS, Institut National de la santé et de la recherche Médicale U1148, Hôpital Bichat, Paris, 18ième, France.
| |
Collapse
|
38
|
Wang JW, Woodward DF, Martos JL, Cornell CL, Carling RW, Kingsley PJ, Marnett LJ. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages. FASEB J 2015; 30:394-404. [PMID: 26420849 DOI: 10.1096/fj.15-275610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing those with anti-inflammatory activity.
Collapse
Affiliation(s)
- Jenny W Wang
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David F Woodward
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jose L Martos
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Clive L Cornell
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Robert W Carling
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip J Kingsley
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J Marnett
- *Department of Biological Sciences, Allergan, Incorporated, Irvine, California, USA; Department of Bioengineering, Imperial College London, London, United Kingdom; Drug Discovery Department, Selcia Limited, Ongar, United Kingdom; and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
39
|
|
40
|
Mastenbroek TG, van Geffen JP, Heemskerk JWM, Cosemans JMEM. Acute and persistent platelet and coagulant activities in atherothrombosis. J Thromb Haemost 2015; 13 Suppl 1:S272-80. [PMID: 26149036 DOI: 10.1111/jth.12972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential relevance of murine atherothrombosis models for understanding human disease has been debated in the past. Despite this, in the last decade, many thrombosis studies with atherogenic Apoe(-/-) mice have been performed, which provide novel insight into the molecular mechanisms by which platelet and coagulation processes accomplish acute thrombus formation after plaque disruption in vivo. Support for these mechanisms has come from whole blood flow perfusion studies over plaque material in vitro, which are also reviewed in this study. The main plaque-derived triggers for thrombus formation appear to be collagen and tissue factor, next to bioactive mediators such as prostaglandin E2. The atherothrombotic process relies on collagen- and ADP-receptor-induced platelet activation as well as on thrombin/fibrin generation via the extrinsic and intrinsic coagulation pathways. Less is known of the persistent effects of a thrombus on atherosclerosis progression, but evidence suggests roles herein of activated platelets and ongoing thrombin generation.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
41
|
Friedman EA, Ogletree ML, Haddad EV, Boutaud O. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb Res 2015; 136:493-503. [PMID: 26077962 DOI: 10.1016/j.thromres.2015.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 05/25/2015] [Indexed: 01/14/2023]
Abstract
The platelet thrombus is the major pathologic entity in acute coronary syndromes, and antiplatelet agents are a mainstay of therapy. However, individual patient responsiveness to current antiplatelet drugs is variable, and all drugs carry a risk of bleeding. An understanding of the complex role of Prostaglandin E2 (PGE2) in regulating thrombosis offers opportunities for the development of novel individualized antiplatelet treatment. However, deciphering the platelet regulatory function of PGE2 has long been confounded by non-standardized experimental conditions, extrapolation of murine data to humans, and phenotypic differences in PGE2 response. This review synthesizes past and current knowledge about PGE2 effects on platelet biology, presents a rationale for standardization of experimental protocols, and provides insight into a molecular mechanism by which PGE2-activated pathways could be targeted for new personalized antiplatelet therapy to inhibit pathologic thrombosis without affecting hemostasis.
Collapse
Affiliation(s)
- Eitan A Friedman
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Martin L Ogletree
- PO Box 559, Bala Cynwyd, PA 19004; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Elias V Haddad
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232.
| |
Collapse
|
42
|
Leclerc JL, Lampert AS, Diller MA, Doré S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J Neurosci 2015; 41:1381-91. [PMID: 25847406 PMCID: PMC4696550 DOI: 10.1111/ejn.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype associated with high mortality and morbidity. Following ICH, excitotoxicity and inflammation significantly contribute to secondary brain injury and poor outcomes. Prostaglandin E2 (PGE2 ) levels rise locally with insult to the nervous system, and PGE2 is known to modulate these processes mainly through its E prostanoid (EP) receptors, EP1-4. EP receptor subtype 3 (EP3) is the most abundant EP receptor in the brain and we have previously shown that signaling through the PGE2 -EP3 axis exacerbates excitotoxicity and ischemic stroke outcomes. This study aimed to investigate the contribution of this pathway in modulating anatomical outcomes and functional recovery following ICH. Genetic deletion of EP3 resulted in 48.2 ± 7.3% less ICH-induced brain injury (P < 0.005) and improved functional recovery (P < 0.05), as identified by neurological deficit scoring. To start investigating the mechanisms involved in neuroprotection with impaired PGE2 -EP3 signaling, histological staining was performed to evaluate blood and ferric iron accumulation, neuroinflammation, blood-brain barrier dysfunction, and peripheral neutrophil infiltration. After ICH, EP3 knockout mice demonstrated 49.5 ± 8.8% and 42.8 ± 13.1% less blood (P < 0.01) and ferric iron (P < 0.05), respectively. Furthermore, EP3 knockout mice had significantly reduced astrogliosis, microglial activation, blood-brain barrier breakdown, and neutrophil infiltration. Collectively, these results suggest an injurious role for the PGE2 -EP3 signaling axis in modulating brain injury, inflammation, and neurological functional recovery after ICH. Modulation of the PGE2 -EP3 signaling axis may represent a putative therapeutic avenue for the treatment of ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Departments of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med 2014; 46:e102. [PMID: 24946790 PMCID: PMC4081554 DOI: 10.1038/emm.2014.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K Linnemann
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick J Casey
- Duke University Medical Center Department of Pharmacology and Cancer Biology, Durham, NC, USA
| |
Collapse
|
44
|
De Caterina R. Inhibiting thrombosis without causing bleeding: can EP3 blockers fulfil the dream? Cardiovasc Res 2014; 101:335-8. [DOI: 10.1093/cvr/cvu020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|