1
|
Yunes-Leites PS, Sun Y, Martínez-Martínez S, Alfayate Á, Toral M, Méndez-Olivares MJ, Colmenar Á, Torralbo AI, López-Maderuelo D, Mateos-García S, Cornfield DN, Vázquez J, Redondo JM, Campanero MR. Phosphatase-independent activity of smooth-muscle calcineurin orchestrates a gene expression program leading to hypertension. PLoS Biol 2025; 23:e3003163. [PMID: 40367288 DOI: 10.1371/journal.pbio.3003163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Angiotensin-II (Ang-II) drives pathological vascular wall remodeling in hypertension and abdominal aortic aneurysm (AAA) through mechanisms that are not completely understood. Previous studies showed that the phosphatase activity of calcineurin (Cn) mediates Ang-II-induced AAA, but the cell type involved in the action of Cn in AAA formation remained unknown. Here, by employing newly created smooth muscle cell (SMC)-specific and endothelial cell (EC)-specific Cn-deficient mice (SM-Cn-/- and EC-Cn-/- mice), we show that Cn expressed in SMCs, but not ECs, was required for Ang-II-induced AAA. Unexpectedly, SMC Cn also played a structural role in the early onset and maintenance of Ang-II-induced hypertension, independently of its known phosphatase activity. Among the signaling pathways activated by Ang-II, Cn signaling is essential in SMCs, as nearly 90% of the genes regulated by Ang-II in the aorta required Cn expression in SMCs. Cn orchestrated, independently of its enzymatic activity, the induction by Ang-II of a transcriptional program closely related to SMC contractility and hypertension. Cn deletion in SMCs, but not its pharmacological inhibition, impaired the regulation of arterial contractility. Among the genes whose regulation by Ang-II required Cn expression but not its phosphatase activity, we discovered that Serpine1 was critical for Ang-II-induced hypertension. Indeed, pharmacological inhibition of PAI-1, the protein encoded by Serpine1, impaired SMCs contractility and readily regressed hypertension. Mechanistically, Serpine1 induction was mediated by Smad2 activation via the structural role of Cn. These findings uncover an unexpected role for Cn in vascular pathophysiology and highlight PAI-1 as a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Paula Sofía Yunes-Leites
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Yilin Sun
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Álvaro Alfayate
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Cardiovascular Proteomics Laboratoy, CNIC, Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana Isabel Torralbo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Sergio Mateos-García
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - David N Cornfield
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Cardiovascular Proteomics Laboratoy, CNIC, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Wan J, Xu F, Yin C, Jiang Y, Chen C, Wang Y, Zuo H, Cheng J, Li H. Predictive value of HIF-1α for left ventricular remodeling following an anterior ST-segment elevation myocardial infarction. Am J Med Sci 2025; 369:479-484. [PMID: 39608641 DOI: 10.1016/j.amjms.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) has an essential role in ventricular remodeling processes involving myocardial fibrosis and hypertrophy, but the clinical significance of HIF-1α levels in the early period after ST-segment elevation myocardial infarction (STEMI) for the prediction of left ventricular remodeling (LVR) has yet to be fully elucidated. OBJECTIVE To investigate the predictive value of HIF-1α for LVR after STEMI based on the echocardiographic parameters. METHODS In this prospective observational study, plasma samples were collected within 12 hours of onset from 183 patients with a first reperfused anterior ST-segment elevation myocardial infarction (STEMI), and HIF-1α levels were measured using enzyme-linked immunosorbent assay (ELISA). At baseline and 12 months after discharge, all patients underwent repeat echocardiography. The changes of echocardiography parameters from baseline to 12 months were used to reflect the changes of ventricular structure and function. An increase in end-diastolic volume of ≥20 % was defined as LVR. RESULTS The levels of HIF-1α were highly correlated with the changes of echocardiography parameters (ΔLVEF, ΔLVEDD, as well as ΔLVEDV). During the follow-up period, patients with higher HIF-1α concentrations had higher incidence of LVR, poorer ventricular function, and a lower MACE-free survival. Multivariate analysis showed the single-point HIF-1α was an independent predictor of LVR (odds ratio[OR]: 4.813; 95 % CI: 1.553 to 14.918; P = 0.006). The HIF-1α levels predicted LVR with an AUC of 0.7905 (95 % CI: 0.7067 to 0.8744; P < 0.0001). The combination of HIF-1α and N-terminal probrain natriuretic peptide (NT-proBNP) yielded a favorable increase in AUC to 0.8121 (95 % CI: 0.7345 to 0.8896; P < 0.0001). CONCLUSION These results demonstrate that serum HIF-1α levels can predict LVR after STEMI independently.
Collapse
Affiliation(s)
- Jun Wan
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Feng Xu
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Chunlin Yin
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Yang Jiang
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Cai Chen
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Yulin Wang
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Heping Zuo
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Jinglin Cheng
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - He Li
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China.
| |
Collapse
|
3
|
Fan Y, Jialiken D, Zheng Z, Zhang W, Zhang S, Zheng Y, Sun Z, Zhang H, Yan X, Liu M, Fang Z. Qianyang Yuyin granules alleviate hypertension-induced vascular remodeling by inhibiting the phenotypic switch of vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118896. [PMID: 39393558 DOI: 10.1016/j.jep.2024.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qianyang Yuyin granules (QYYY) have been used clinically to treat hypertension for over two decades. Previous clinical trials have shown that QYYY can improve vascular elastic function in hypertensive patients. However, the underlying pharmacological mechanism is unclear. AIM OF THE STUDY To elucidate the effects and mechanisms of QYYY on vascular remodeling using a multidisciplinary approach that includes network pharmacology, proteomics, and both in vitro and in vivo experiments. MATERIALS AND METHODS The main components of QYYY were identified using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Network pharmacology and molecular docking were employed to predict QYYY's primary active ingredients, potential therapeutic targets and intervention pathways in hypertensive vascular remodeling. We induced hypertension in male C57BL/6 mice by infusing angiotensin II (Ang II) via osmotic minipumps, and performed pre-treatment with QYYY or Sacubitril/valsartan (Entresto). Blood pressure was monitored in vivo, followed by the extraction of aortas to examine pathological structural changes and alterations in protein expression patterns. The expression and location of proteins involved in the HIF-1α/TWIST1/P-p65 signaling pathway were investigated, as well as markers of vascular smooth muscle cells (VSMCs) phenotypic switch. In vitro, we studied the effects of QYYY water extract on Ang II-stimulated human aortic VSMCs. We investigated whether QYYY could affect the HIF-1α/TWIST1/P-p65 signaling pathway, thereby ameliorating apoptosis, autophagy, and phenotype switch in VSMCs. RESULTS We identified 62 main compounds in QYYY, combined with network pharmacology, speculated 827 potentially active substances, and explored 1021 therapeutic targets. The KEGG pathway analysis revealed that the mechanisms of action associated with QYYY therapy potentially encompass various biological processes, including metabolic pathways, TNF signaling pathways, apoptosis, Ras signaling pathways, HIF-1 signaling pathways, autophagy-animal pathways. In hypertensive mice, QYYY restored abnormally elevated blood pressure, vascular remodeling, and inflammation with a dose-response relationship while altering abnormal protein patterns. In vitro, QYYY could inhibit abnormal proliferation, migration, intracellular Ca2+ accumulation and cytoskeletal changes of VSMCs. It improved mitochondrial function, reduced ROS levels, stabilized membrane potential, prevented cell death, and reduced overproduction of TGF-β1, TNF-a, and IL-1β. CONCLUSION QYYY may be able to inhibit the overactivation of the HIF-1α/TWIST1/P-p65 signaling pathway, improve the phenotypic switch, and balance apoptosis and autophagy in VSMCs, thereby effectively improving vascular remodeling caused by hypertension.
Collapse
Affiliation(s)
- Yadong Fan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Dinala Jialiken
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziwen Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiting Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Siqi Zhang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Yawei Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zeqi Sun
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiwu Yan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Ming Liu
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhuyuan Fang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Wang S, Hu Y, Wang Y, Song Y, Liang D, Yin J, Li Y, Yang W, Zhang D. Joint Analysis of Multiple Omics to Describe the Biological Characteristics of Resistant Hypertension. J Clin Hypertens (Greenwich) 2025; 27:e14961. [PMID: 39716980 PMCID: PMC11774085 DOI: 10.1111/jch.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Resistant hypertension (RH) may cause severe target organ damage and poses significant challenges in the field of hypertension prevention and treatment. Mining biological characteristics is crucial for exploring the pathogenesis of RH and for early diagnosis and treatment. Although several single-omics studies have been conducted on RH, its complex pathogenesis has only been partially elucidated. In this study, metabolomics, proteomics, and transcriptomics were jointly analyzed in healthy subjects and patients with hypertension and RH. The multi-omics analysis found that differential substances of RH were enriched in the HIF-1 signaling pathway and that differential substances such as ascorbic acid, reduced glutathione (GSH), choline, citric acid, transferrin receptor (TfR), Egl-9 family hypoxia-inducible factor 2 (EGLN2), and glutathione peroxidase 1 (GPX1) were screened out. The results of intergroup comparisons were as follows: RH versus N: ascorbic acid (Fold Change (FC):0.42, p < 0.01), GSH (FC:0.65, p < 0.05), choline (FC:1.32, p < 0.05), citric acid (FC:0.48, p < 0.001), TfR (FC2.32, p < 0.001), GPX1 (FC:16.02, p < 0.001), EGLN2 (FC:0.76, p < 0.001); RH versus EH: ascorbic acid (FC:0.52, p < 0.05), GSH (FC:0.55, p < 0.05), choline (FC:1.28, p < 0.05), citric acid (FC:0.59, p < 0.001), TfR (FC:1.71, p < 0.001), GPX1 (FC:2.11, p < 0.05), EGLN2 (FC:0.76, p < 0.05). These differential substances may reflect the biology of RH. This study provides multi-omics analysis for a deeper understanding of the complex molecular characteristics of RH, providing new insights into the pathogenesis, early diagnosis, and precise treatment of the disease.
Collapse
Affiliation(s)
- Shanshan Wang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Department of CardiologyThe Fifth People's Hospital of JinanJinanChina
| | - Yuanlong Hu
- First Faculty of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yuqi Wang
- First Faculty of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yueyue Song
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Dan Liang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Jiufeng Yin
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Shandong Engineering Laboratory of Traditional Chinese Medicine Precise Therapy for Cardiovascular DiseasesJinanChina
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Wenqing Yang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Shandong Engineering Laboratory of Traditional Chinese Medicine Precise Therapy for Cardiovascular DiseasesJinanChina
| | - Dan Zhang
- Experimental CenterShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of EducationShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
5
|
da Silva Feltran G, Augusto da Silva R, da Costa Fernandes CJ, Ferreira MR, Dos Santos SAA, Justulin Junior LA, Del Valle Sosa L, Zambuzzi WF. Vascular smooth muscle cells exhibit elevated hypoxia-inducible Factor-1α expression in human blood vessel organoids, influencing osteogenic performance. Exp Cell Res 2024; 440:114136. [PMID: 38909881 DOI: 10.1016/j.yexcr.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.
Collapse
Affiliation(s)
- Geórgia da Silva Feltran
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Rodrigo Augusto da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Marcel Rodrigues Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | | | - Luis Antônio Justulin Junior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Liliana Del Valle Sosa
- Electron Microscopy Center, Faculty of Medical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil.
| |
Collapse
|
6
|
Liu D, Jing Y, Peng G, Wei L, Zheng L, Chang G, Wang M. MiR-199a-5p Deficiency Promotes Artery Restenosis in Peripheral Artery Disease by Regulating ASMCs Function via Targeting HIF-1α and E2F3. Curr Vasc Pharmacol 2024; 22:342-354. [PMID: 38910413 DOI: 10.2174/0115701611280634240616062413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS. OBJECTIVE This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS. METHODS Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia. RESULTS MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3. CONCLUSION MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Cell Proliferation
- Peripheral Arterial Disease/genetics
- Peripheral Arterial Disease/pathology
- Peripheral Arterial Disease/metabolism
- Peripheral Arterial Disease/therapy
- Disease Models, Animal
- Male
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats, Sprague-Dawley
- Cells, Cultured
- E2F3 Transcription Factor/genetics
- E2F3 Transcription Factor/metabolism
- Middle Aged
- Signal Transduction
- Case-Control Studies
- Femoral Artery/pathology
- Femoral Artery/metabolism
- Femoral Artery/surgery
- Femoral Artery/physiopathology
- Neointima
- Female
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Aged
- Angioplasty, Balloon/adverse effects
- Apoptosis/genetics
Collapse
Affiliation(s)
- Duan Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Division of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing, 100053, China
| | - Yexiang Jing
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guiyan Peng
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Litai Wei
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Zheng
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mian Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
7
|
Imanishi M, Inoue T, Fukushima K, Yamashita R, Nakayama R, Nojima M, Kondo K, Gomi Y, Tsunematsu H, Goto K, Miyamoto L, Funamoto M, Denda M, Ishizawa K, Otaka A, Fujino H, Ikeda Y, Tsuchiya K. CA9 and PRELID2; hypoxia-responsive potential therapeutic targets for pancreatic ductal adenocarcinoma as per bioinformatics analyses. J Pharmacol Sci 2023; 153:232-242. [PMID: 37973221 DOI: 10.1016/j.jphs.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Takahisa Inoue
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Ryosuke Yamashita
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Ryo Nakayama
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masataka Nojima
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kosuke Kondo
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yoshiki Gomi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Honoka Tsunematsu
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kohei Goto
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Licht Miyamoto
- Laboratory of Pharmacology and Food Science, Department of Nutrition and Life Science, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masaya Denda
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Japan
| | - Akira Otaka
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
8
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Sánchez-Gloria JL, Martínez-Olivares CE, Del Valle-Mondragón L, Cortés-Camacho F, Zambrano-Vásquez OR, Hernández-Pando R, Sánchez-Muñoz F, Sánchez-Lozada LG, Osorio-Alonso H. Allicin, an Emerging Treatment for Pulmonary Arterial Hypertension: An Experimental Study. Int J Mol Sci 2023; 24:12959. [PMID: 37629140 PMCID: PMC10454707 DOI: 10.3390/ijms241612959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We assessed whether allicin, through its antihypertensive and antioxidant effects, relieves vascular remodeling, endothelial function, and oxidative stress (OS), thereby improving experimental pulmonary arterial hypertension (PAH). Allicin (16 mg/kg) was administered to rats with PAH (monocrotaline 60 mg/kg). Allicin encouraged body weight gain and survival rate, and medial wall thickness and the right ventricle (RV) hypertrophy were prevented. Also, angiotensin II concentrations in the lung (0.37 ± 0.01 vs. 0.47 ± 0.06 pmoles/mL, allicin and control, respectively) and plasma (0.57 ± 0.05 vs. 0.75 ± 0.064, allicin and control respectively) and the expressions of angiotensin-converting enzyme II and angiotensin II type 1 receptor in lung tissue were maintained at normal control levels with allicin. In PAH rats treated with allicin, nitric oxide (NO) (31.72 ± 1.22 and 51.4 ± 3.45 pmoles/mL), tetrahydrobiopterin (8.43 ± 0.33 and 10.14 ± 0.70 pmoles/mL), cyclic guanosine monophosphate (5.54 ± 0.42 and 5.64 ± 0.73 pmoles/mL), and Ang-(1-7) (0.88 ± 0.23 and 0.83 ± 0.056 pmoles/mL) concentrations increased in lung tissue and plasma, respectively. In contrast, dihydrobiopterin increase was prevented in both lung tissue and plasma (5.75 ± 0.3 and 5.64 ± 0.73 pmoles/mL); meanwhile, phosphodiesterase-5 was maintained at normal levels in lung tissue. OS in PAH was prevented with allicin through the increased expression of Nrf2 in the lung. Allicin prevented the lung response to hypoxia, preventing the overexpression of HIF-1α and VEGF. Allicin attenuated the vascular remodeling and RV hypertrophy in PAH through its effects on NO-dependent vasodilation, modulation of RAS, and amelioration of OS. Also, these effects could be associated with the modulation of HIF-1α and improved lung oxygenation. The global effects of allicin contribute to preventing endothelial dysfunction, remodeling of the pulmonary arteries, and RV hypertrophy, preventing heart failure, thus favoring survival. Although human studies are needed, the data suggest that, alone or in combination therapy, allicin may be an alternative in treating PAH if we consider that, similarly to current treatments, it improves lung vasodilation and increase survival. Allicin may be considered an option when there is a lack of efficacy, and where drug intolerance is observed, to enhance the efficacy of drugs, or when more than one pathogenic mechanism must be addressed.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Constanza E. Martínez-Olivares
- Experimental Pathology Department, Experimental Pathology Laboratory, Instituto Nacional de Ciencia Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fernando Cortés-Camacho
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Oscar R. Zambrano-Vásquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, Experimental Pathology Laboratory, Instituto Nacional de Ciencia Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura G. Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| |
Collapse
|
10
|
Troise D, Infante B, Mercuri S, Netti GS, Ranieri E, Gesualdo L, Stallone G, Pontrelli P. Hypoxic State of Cells and Immunosenescence: A Focus on the Role of the HIF Signaling Pathway. Biomedicines 2023; 11:2163. [PMID: 37626660 PMCID: PMC10452839 DOI: 10.3390/biomedicines11082163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration. Activation of HIF signaling pathways is involved in improving the oxygen supply, promoting cell survival through anaerobic ATP generation, and adapting energy metabolism to meet cell demands. Hypoxia can also contribute to the development of the aging process, leading to aging-related degenerative diseases; among these, the aging of the immune system under hypoxic conditions can play a role in many different immune-mediated diseases. Thus, in this review we aim to discuss the role of HIF signaling pathways following cellular hypoxia and their effects on the mechanisms driving immune system senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
11
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
12
|
Afsar B, Afsar RE. Hypoxia-inducible factors and essential hypertension: narrative review of experimental and clinical data. Pharmacol Rep 2023:10.1007/s43440-023-00497-x. [PMID: 37210694 DOI: 10.1007/s43440-023-00497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Hypoxia-inducible factor (HIFs) is a new class of drug developed for the management of anemia in chronic kidney disease (CKD) patients. HIFs increase the production of erythropoietin in the kidney and liver, enhance the absorption and utilization of iron, and stimulate the maturation and proliferation of erythroid progenitor cells. Besides, HIFs regulate many physiologic processes by orchestrating the transcription of hundreds of genes. Essential hypertension (HT) is an epidemic worldwide. HIFs play a role in many biological processes involved in the regulation of blood pressure (BP). In the current review, we summarize pre-clinical and clinical studies investigating the relationship between HIFs and BP regulation in patients with CKD, conflicting issues, and discuss future potential strategies.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
13
|
Paredes F, Williams HC, Suster I, Tejos M, Fuentealba R, Bogan B, Holden CM, San Martin A. Metabolic regulation of the proteasome under hypoxia by Poldip2 controls fibrotic signaling in vascular smooth muscle cells. Free Radic Biol Med 2023; 195:283-297. [PMID: 36596387 PMCID: PMC10268434 DOI: 10.1016/j.freeradbiomed.2022.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The polymerase delta interacting protein 2 (Poldip2) is a nuclear-encoded mitochondrial protein required for oxidative metabolism. Under hypoxia, Poldip2 expression is repressed by an unknown mechanism. Therefore, low levels of Poldip2 are required to maintain glycolytic metabolism. The Cellular Communication Network Factor 2 (CCN2, Connective tissue growth factor, CTGF) is a profibrogenic molecule highly expressed in cancer and vascular inflammation in advanced atherosclerosis. Because CCN2 is upregulated under hypoxia and is associated with glycolytic metabolism, we hypothesize that Poldip2 downregulation is responsible for the upregulation of profibrotic signaling under hypoxia. Here, we report that Poldip2 is repressed under hypoxia by a mechanism that requires the activation of the enhancer of zeste homolog 2 repressive complex (EZH2) downstream from the Cyclin-Dependent Kinase 2 (CDK2). Importantly, we found that Poldip2 repression is required for CCN2 expression downstream of metabolic inhibition of the ubiquitin-proteasome system (UPS)-dependent stabilization of the serum response factor. Pharmacological or gene expression inhibition of CDK2 under hypoxia reverses Poldip2 downregulation, the inhibition of the UPS, and the expression of CCN2, collagen, and fibronectin. Thus, our findings connect cell cycle regulation and proteasome activity to mitochondrial function and fibrotic responses under hypoxia.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Izabela Suster
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Macarena Tejos
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Roberto Fuentealba
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, 3460000, Chile
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Claire M Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
15
|
Jadaun V, Singh NR, Singh S, Shankar R. Impact of solitons on the progression of initial lesion in aortic dissection. INT J BIOMATH 2021. [DOI: 10.1142/s1793524521500960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aortic dissection (AD) is the most common catastrophic disease reported at cardiovascular emergency in hospitals. Herein, a tear in the tunica intima results into separation of layers of aortic wall leading to rupture and torrential bleed. Hypoxia and oxidative stress are associated with AD. The release of hypoxia inducible factor (HIF)-1[Formula: see text] from the initial flap lesion in the tunica intima is the basis for aneurysmal prone factors. We framed a boundary value problem (BVP) to evaluate homeostatic saturation for oxygen dynamics using steady-state analysis. We prove uniqueness and existence of the solution of the BVP for gas exchange at capillary–tissue interface as a normal physiological function. Failure of homeostatic mechanism establishes hypoxia, a new quasi-steady-state in AD. We model permeation of two-layer fluid comprised of blood and HIF-1[Formula: see text] through tunica media as a generalized [Formula: see text]-dimensional nonlinear evolution equation and solve it using Lie group of transformations method. We note that the two-layer fluid permeates the tunica media as solitary wave including solitons such as bright soliton, dark soliton, peregrine soliton, topological soliton, kink soliton, breather soliton and multi-soliton complex. Also, we introduce the main result and discuss the implications of soliton solution, using graphic interpretation, to describe the early stage of progression of AD.
Collapse
Affiliation(s)
- Vishakha Jadaun
- Department of Management Studies, Indian Institute of Technology Delhi, IV Floor, Vishwakarma Bhavan, Saheed Jeet Singh Marg, Hauz Khas, New Delhi 110016, India
| | - Nitin Raja Singh
- Department of Management Studies, Indian Institute of Technology Delhi, IV Floor, Vishwakarma Bhavan, Saheed Jeet Singh Marg, Hauz Khas, New Delhi 110016, India
| | - Shveta Singh
- Department of Management Studies, Indian Institute of Technology Delhi, IV Floor, Vishwakarma Bhavan, Saheed Jeet Singh Marg, Hauz Khas, New Delhi 110016, India
| | - Ravi Shankar
- Department of Management Studies, Indian Institute of Technology Delhi, IV Floor, Vishwakarma Bhavan, Saheed Jeet Singh Marg, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Wang R, Xu J, Wu J, Gao S, Wang Z. Angiotensin-converting enzyme 2 alleviates pulmonary artery hypertension through inhibition of focal adhesion kinase expression. Exp Ther Med 2021; 22:1165. [PMID: 34504610 PMCID: PMC8393266 DOI: 10.3892/etm.2021.10599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) is an important therapeutic target in pulmonary artery hypertension (PAH); however, the mechanism of its activation remains unknown. The present study aimed to investigate whether angiotensin-converting enzyme 2 (ACE2) could regulate FAK and alleviate PAH in a rat model of PAH established with a single administration of monocrotaline followed by continuous hypoxia treatment. In the current study, right ventricular pressure, body weight and the right ventricular hypertrophy index were measured, and hematoxylin-eosin staining was performed on lung tissues to determine whether the modeling was successful. Changes in the serum levels of FAK were measured using an ELISA kit to evaluate the association between ACE2 and FAK. The mRNA expression levels of ACE2, FAK, caspase-3 and survivin were determined using reverse transcription-quantitative PCR (RT-qPCR). The protein expression levels of ACE2, phosphorylated FAK/FAK, cleaved caspase-3/pro-caspase-3 and survivin were determined via western blotting. Immunohistochemistry was applied to detect the expression of FAK around the pulmonary arterioles. Apoptosis of smooth muscle cells around pulmonary arterioles was observed by TUNEL staining. After treatment with the ACE2 activator DIZE or inhibitor DX-600, the results demonstrated that ACE2 reduced PAH-induced changes in arteriole morphology compared with the control. It also inhibited FAK expression in serum. WB and RT-qPCR results suggested that ACE2 inhibited the expression of FAK and pathway-related proteins, and promoted caspase-3 expression. Additionally, ACE2 reduced FAK expression around the pulmonary arterioles and promoted smooth muscle cell apoptosis. The results indicated that ACE2 activation inhibited FAK expression, leading to alleviation of the symptoms of PAH.
Collapse
Affiliation(s)
- Rui Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China.,Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jingjing Xu
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jinbo Wu
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Shunheng Gao
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China.,Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
17
|
Yang YY, Yu HH, Jiao XL, Li LY, Du YH, Li J, Lv QW, Zhang HN, Zhang J, Hu CW, Zhang XP, Wei YX, Qin YW. Angiopoietin-like proteins 8 knockout reduces intermittent hypoxia-induced vascular remodeling in a murine model of obstructive sleep apnea. Biochem Pharmacol 2021; 186:114502. [PMID: 33684391 DOI: 10.1016/j.bcp.2021.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular mortality. Apnea-induced chronic intermittent hypoxia (CIH) is a primary pathophysiological manifestation of OSA that promotes various cardiovascular alterations, such as aortic vascular remodeling. In this study, we investigated the association between angiopoietin-like proteins 8 (ANGPTL8) and CIH-induced aortic vascular remodeling in mice. METHODS C57BL/6J male mice were divided into four groups: Normoxia group, ANGPTL8-/- group, CIH group, CIH + ANGPTL8-/- group. Mice in the normoxia group and ANGPTL8-/- group received no treatment, while mice in the CIH and CIH + ANGPTL8-/- group were subjected to CIH (21%-5% O2, 180 s/cycle, 10 h/day) for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization, and aortic wall collagen abundance were assessed in vivo. Immunohistochemistry and Western-blot were used to detect endoplasmic reticulum stress (ERS) and aortic vascular smooth muscle cell proliferation. ANGPTL8 shRNA and ANGPL8 overexpression were used in aortic vascular smooth muscle cells to investigate the mechanism of ANGPTL8 in CIH. RESULTS Compared to the control group, CIH exposure significantly increased intima-media thickness (IMT), elastic fibers disorganization, and aortic wall collagen abundance. CIH also significantly increased blood pressure, induced hyperlipidemia, as well as the expression of ERS protein activating transcription factor-6 (ATF6) and aortic vascular smooth muscle cell proliferation. Contrary, ANGPTL8-/- significantly mitigated the CIH-induced vascular remodeling; ANGPTL8-/- decreased CIH-induced hypertension and hyperlipidemia, inhibited the protein expression of ATF6, and aortic vascular smooth muscle cell proliferation. Moreover, our in vitro study suggested that CIH could induce ANGPTL8 expression via hypoxia-inducible factor (HIF-1α); ANGPTL8 induced proliferation of aortic vascular smooth muscle cells via the ERS pathway. CONCLUSION ANGPTL8-/- can prevent CIH-induced aortic vascular remodeling, probably through the inhibition of the ERS pathway. Therefore, ANGPTL8 might be a potential target in CIH-induced aortic vascular remodeling.
Collapse
Affiliation(s)
- Yun-Yun Yang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hua-Hui Yu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Lu Jiao
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Lin-Yi Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yun-Hui Du
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Qian-Wen Lv
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hui-Na Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chao-Wei Hu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Ping Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yong-Xiang Wei
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan-Wen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
18
|
Arjmand MH. Elucidating the Association Between the Upregulation of Angiotensin Type 1-Receptors and the Development of Gastrointestinal Malignancies. J Gastrointest Cancer 2020; 52:399-406. [PMID: 33174118 DOI: 10.1007/s12029-020-00547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system (RAS) is a major regulator of body fluid hemostasis and blood pressure. Angiotensin type 1 receptors (AT1R) are one of the major components of this system and are widely expressed in different organs, including the gastrointestinal (GI) system. Very little known about the physiological roles of AT1R in GI tract but evidence has reported that local AT1Rs are upregulated in pathological conditions like GI malignancies and play role in stimulation of signaling pathways associated with GI cancers progression. AT1Rs axes signaling in tumor microenvironments stimulate inflammation and facilitate vascularization around the tumor cell to display invasive behavior. AT1Rs in stroma cells promote tumor-associated angiogenesis by upregulated of vessel endothelial growth factor (VEGF). Also, AT1Rs by the activation of molecular mechanisms such as PI3/Akt/NF-κB pathways increase the invasion of tumor cells. Experimental and clinical studies have reported that AT1R antagonists have beneficial influences by increasing the survival of patients with GI malignancies and reduction in the proliferation of GI cancer cell lines in vitro, and the growth and metastasis of tumors in vivo, therefore, AT1Rs antagonist have the potential for future anticancer strategies. This review focuses on the pathological roles of AT1Rs in GI malignancies.
Collapse
Affiliation(s)
- Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Battistoni A, Michielon A, Marino G, Savoia C. Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment. High Blood Press Cardiovasc Prev 2020; 27:299-308. [PMID: 32572706 DOI: 10.1007/s40292-020-00395-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
Large conductive arteries undergo to structural modifications by aging, eventually leading to increased vascular stiffness. As consequence, cardiovascular hemodynamic changes by increasing central blood pressure which may be also associated to the remodelling of peripheral resistance arteries that contribute to increase further the central vascular stiffness and blood pressure. These modifications resemble the ones that has been shown in essential hypertension, thus a condition of "early vascular aging" has been described in hypertensive patients. Since hypertension related target organs, particularly the heart, face aortic blood pressure rather than brachial blood pressure, it has been recently suggested that central blood pressure and other parameters of large arteries' stiffness, including pulse wave velocity (PWV), may better correlate with subclinical organ damage and might be useful to assess the cardiovascular risk of patients beyond the traditional risk factors. Different devices have been validated to measure central blood pressure and PWV, and are currently available for clinical use. The increasing application of these tools in clinical practice could improve the management of hypertensive patients by better defining the cardiovascular risk and address the antihypertensive therapy.
Collapse
Affiliation(s)
- Allegra Battistoni
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Division of Cardiology, Cardiology Unit and Chair Sant Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, 1035-37 00189, Rome, Italy
| | - Alberto Michielon
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Division of Cardiology, Cardiology Unit and Chair Sant Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, 1035-37 00189, Rome, Italy
| | - Gaetano Marino
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Division of Cardiology, Cardiology Unit and Chair Sant Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, 1035-37 00189, Rome, Italy
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Division of Cardiology, Cardiology Unit and Chair Sant Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, 1035-37 00189, Rome, Italy.
| |
Collapse
|
20
|
Imanishi M, Yamakawa Y, Fukushima K, Ikuto R, Maegawa A, Izawa-Ishizawa Y, Horinouchi Y, Kondo M, Kishuku M, Goda M, Zamami Y, Takechi K, Chuma M, Ikeda Y, Tsuchiya K, Fujino H, Tsuneyama K, Ishizawa K. Fibroblast-specific ERK5 deficiency changes tumor vasculature and exacerbates tumor progression in a mouse model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1239-1250. [PMID: 32307577 DOI: 10.1007/s00210-020-01859-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
The roles of cancer-associated fibroblasts (CAFs) have been studied in the tumor progression, and CAFs are expected to become the new targets for cancer pharmacotherapies. CAFs contribute to tumor cell survival and proliferation, tumor angiogenesis, immune suppression, tumor inflammation, tumor cell invasion and metastasis, and extracellular matrix remodeling. However, detailed mechanisms of how CAFs function in the living system remain unclear. CAFs include α-smooth muscle actin, expressing activated fibroblasts similar to myofibroblasts, and are highly capable of producing collagen. Several reports have demonstrated the contributions of extracellular-signal-regulated kinase 5 (ERK5) in fibroblasts to the fibrotic processes; however, the roles of CAF-derived ERK5 remain unclear. To investigate the roles of CAF-derived ERK5 in the tumor progression, we created mice lacking the ERK5 gene specifically in fibroblasts. Colon-26 mouse colon cancer cells were implanted into the mice subcutaneously, and the histological analyses of the tumor tissue were performed after 2 weeks. Immunofluorescence analyses showed that recipient-derived fibroblasts existed within the tumor tissue. The present study demonstrated that fibroblast-specific ERK5 deficiency exacerbated tumor progression and it was accompanied with thicker tumor vessel formation and the increase in the number of activated fibroblasts. We combined the results of The Cancer Genome Atlas (TCGA) database analysis with our animal studies, and indicated that regulating ERK5 activity in CAFs or CAF invasion into the tumor tissue can be important strategies for the development of new targets in cancer pharmacotherapies.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Yusuke Yamakawa
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Raiki Ikuto
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akiko Maegawa
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masateru Kondo
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masatoshi Kishuku
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
- AWA Support Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
21
|
Prolyl-hydroxylase inhibitors for the treatment of anemia in chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 28:600-606. [PMID: 31567284 DOI: 10.1097/mnh.0000000000000554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Prolyl-hydroxylase inhibitors are a novel class of orally administered drugs that are under development for the treatment of anemia in patients with chronic kidney disease. This review discusses the biology of these drugs and their target - hypoxia-inducible factor and potential advantages and disadvantages of these therapies. Finally, we will discuss current trials in patients with both chronic kidney disease and end-stage renal disease. RECENT FINDINGS Recent smaller studies have found that prolyl-hydroxylase are as effective as erythropoietin in treating anemia of chronic kidney disease. We do not yet know if they have the same cardiovascular and cancer-related risk profile and these questions will be answered by large phase III trials that are ongoing. SUMMARY Although prolyl hydroxylase inhibitors have much potential, questions remain regarding their efficacy and safety. Should these concerns prove to be unfounded, the treatment of anemia in chronic kidney disease will likely be transformed over the next decade.
Collapse
|
22
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
23
|
Alruwaili N, Kandhi S, Sun D, Wolin MS. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology. Antioxid Redox Signal 2019; 31:752-769. [PMID: 30403147 PMCID: PMC6708269 DOI: 10.1089/ars.2018.7657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Recent Advances and Critical Issues: Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. Future Directions: The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
24
|
Hypoxia inducible factor 1α in vascular smooth muscle cells promotes angiotensin II-induced vascular remodeling via activation of CCL7-mediated macrophage recruitment. Cell Death Dis 2019; 10:544. [PMID: 31320613 PMCID: PMC6639417 DOI: 10.1038/s41419-019-1757-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
The process of vascular remodeling is associated with increased hypoxia. However, the contribution of hypoxia-inducible factor 1α (HIF1α), the key transcription factor mediating cellular hypoxic responses, to vascular remodeling is established, but not completely understood. In the angiotensin II (Ang II)-induced vascular remodeling model, HIF1α was increased and activated in vascular smooth muscle cells (VSMCs). Selective genetic disruption of Hif1a in VSMCs markedly ameliorated Ang II-induced vascular remodeling, as revealed by decreased blood pressure, aortic thickness, collagen deposition, inflammation, and aortic stiffness. VSMC Hif1a deficiency also specifically suppressed Ang II-induced infiltration of CD45+CD11b+F4/80+CD206− M1 macrophages into the vessel. Mechanistically, HIF1α deficiency in VSMCs dramatically suppressed the expression of CCL7, a chemokine critical for macrophage recruitment. Bioinformatic analysis and chromatin immunoprecipitation assays revealed three functional hypoxia-response elements in the Ccl7 promoter, indicating that Ccl7 is a direct HIF1α target gene. Blocking CCL7 with antibody in vivo alleviated Ang II-induced hypertension and vascular remodeling, coincident with decreased macrophage infiltration. This study provides direct evidence that HIF1α activation in VSMCs exacerbates Ang II-induced macrophage infiltration and resultant vascular remodeling via its target gene Ccl7, and thus may serve as a potential therapeutic target for remodeling-related vascular disease.
Collapse
|
25
|
Kondo M, Imanishi M, Fukushima K, Ikuto R, Murai Y, Horinouchi Y, Izawa-Ishizawa Y, Goda M, Zamami Y, Takechi K, Chuma M, Ikeda Y, Fujino H, Tsuchiya K, Ishizawa K. Xanthine Oxidase Inhibition by Febuxostat in Macrophages Suppresses Angiotensin II-Induced Aortic Fibrosis. Am J Hypertens 2019; 32:249-256. [PMID: 30351343 PMCID: PMC7110082 DOI: 10.1093/ajh/hpy157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several reports from basic researches and clinical studies have suggested that xanthine oxidase (XO) inhibitors have suppressive effects on cardiovascular diseases. However, the roles of a XO inhibitor, febuxostat (FEB), in the pathogenesis of vascular remodeling and hypertension independent of the serum uric acid level remain unclear. METHODS To induce vascular remodeling in mice, angiotensin II (Ang II) was infused for 2 weeks with a subcutaneously implanted osmotic minipump. FEB was administered every day during Ang II infusion. Aortic fibrosis was assessed by elastica van Gieson staining. Mouse macrophage RAW264.7 cells (RAW) and mouse embryonic fibroblasts were used for in vitro studies. RESULTS FEB suppressed Ang II-induced blood pressure elevation and aortic fibrosis. Immunostaining showed that Ang II-induced macrophage infiltration in the aorta tended to be suppressed by FEB, and XO was mainly colocalized in macrophages, not in fibroblasts. Transforming growth factor-β1 (TGF-β1) mRNA expression was induced in the aorta in the Ang II alone group, but not in the Ang II + FEB group. Ang II induced α-smooth muscle actin-positive fibroblasts in the aortic wall, but FEB suppressed them. XO expression and activity were induced by Ang II stimulation alone but not by Ang II + FEB in RAW. FEB suppressed Ang II-induced TGF-β1 mRNA expression in RAW. CONCLUSIONS Our results suggested that FEB ameliorates Ang II-induced aortic fibrosis via suppressing macrophage-derived TGF-β1 expression.
Collapse
Affiliation(s)
- Masateru Kondo
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Raiki Ikuto
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoichi Murai
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
26
|
Potential Medication Treatment According to Pathological Mechanisms in Abdominal Aortic Aneurysm. J Cardiovasc Pharmacol 2019; 71:46-57. [PMID: 28953105 DOI: 10.1097/fjc.0000000000000540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease with high mortality. Because of the lack of effective medications to stop or reverse the progression of AAA, surgical operation has become the most predominant recommendation of treatment for patients. There are many potential mechanisms, including inflammation, smooth muscle cell apoptosis, extracellular matrix degradation, oxidative stress, and so on, involving in AAA pathogenesis. According to those mechanisms, some potential therapeutic drugs have been proposed and tested in animal models and even in clinical trials. This review focuses on recent advances in both pathogenic mechanisms and potential pharmacologic therapies of AAA.
Collapse
|
27
|
Li Y, Wang S, Zhang D, Xu X, Yu B, Zhang Y. The association of functional polymorphisms in genes expressed in endothelial cells and smooth muscle cells with the myocardial infarction. Hum Genomics 2019; 13:5. [PMID: 30678728 PMCID: PMC6345039 DOI: 10.1186/s40246-018-0189-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2024] Open
Abstract
Background The association of platelet endothelial cell adhesion molecule 1 (PECAM1), hypoxia-inducible factor 1 subunit alpha (HIF1A), and KIAA1462 in myocardial infarction (MI) was investigated. The study included 401 Han Chinese MI patients and 409 controls. Three tag single-nucleotide polymorphisms (SNPs)—PECAM1 rs1867624, HIF1A rs2057482, and KIAA1462 rs3739998—were selected. SNP genotyping was performed by an improved multiplex ligation detection reaction assay. A systematic review and meta-analysis of studies including 3314 cases and 2687 controls on the association of 5 HIF1A SNPs and the overall risk of MI or coronary artery disease (CAD) was performed. Results The rs1867624 variants were associated with high TG concentrations (p = 0.040) and the rs2057482 variants were associated with decreased HDL-C in MI patients compared with the control group (p = 0.003). Rs2057482 SNP interacted with age to influence TC levels. The SNP of rs3739998 interacted with sex and hypertension to modulate CRE and TG levels, respectively (p < 3.04E-5-0.002). No association between the three SNPs and susceptibility to MI was found (p > 0.05 for all). In the meta-analysis of HIF1A, the rs11549465 C > T and rs10873142 T > C polymorphisms, but not rs2057482, rs11549467, and rs41508050, were correlated with overall MI or CAD risk. Conclusions Taken together, this study provides additional evidence that genetic variation of the PECAM1 rs1867624 and HIF1A rs2057482 can mediate lipid levels in MI patients. Electronic supplementary material The online version of this article (10.1186/s40246-018-0189-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Shipeng Wang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Dandan Zhang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xueming Xu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bo Yu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Yao Zhang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
28
|
Wang T, Zeng LN, Zhu Z, Wang YH, Ding L, Luo WB, Zhang XM, He ZW, Wu HF. Effect of lentiviral vector-mediated overexpression of hypoxia-inducible factor 1 alpha delivered by pluronic F-127 hydrogel on brachial plexus avulsion in rats. Neural Regen Res 2019; 14:1069-1078. [PMID: 30762021 PMCID: PMC6404506 DOI: 10.4103/1673-5374.250629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brachial plexus avulsion often results in massive motor neuron death and severe functional deficits of target muscles. However, no satisfactory treatment is currently available. Hypoxia-inducible factor 1α is a critical molecule targeting several genes associated with ischemia-hypoxia damage and angiogenesis. In this study, a rat model of brachial plexus avulsion-reimplantation was established, in which C5–7 ventral nerve roots were avulsed and only the C6 root reimplanted. Different implants were immediately injected using a microsyringe into the avulsion-reimplantation site of the C6 root post-brachial plexus avulsion. Rats were randomly divided into five groups: phosphate-buffered saline, negative control of lentivirus, hypoxia-inducible factor 1α (hypoxia-inducible factor 1α overexpression lentivirus), gel (pluronic F-127 hydrogel), and gel + hypoxia-inducible factor 1α (pluronic F-127 hydrogel + hypoxia-inducible factor 1α overexpression lentivirus). The Terzis grooming test was performed to assess recovery of motor function. Scores were higher in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups (in particular the gel + hypoxia-inducible factor 1α group) compared with the phosphate-buffered saline group. Electrophysiology, fluorogold retrograde tracing, and immunofluorescent staining were further performed to investigate neural pathway reconstruction and changes of neurons, motor endplates, and angiogenesis. Compared with the phosphate-buffered saline group, action potential latency of musculocutaneous nerves was markedly shortened in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Meanwhile, the number of fluorogold-positive cells and ChAT-positive neurons, neovascular area (labeled by CD31 around avulsed sites in ipsilateral spinal cord segments), and the number of motor endplates in biceps brachii (identified by α-bungarotoxin) were all visibly increased, as well as the morphology of motor endplate in biceps brachil was clear in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Taken together, delivery of hypoxia-inducible factor 1α overexpression lentiviral vectors mediated by pluronic F-127 effectively promotes spinal root regeneration and functional recovery post-brachial plexus avulsion. All animal procedures were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Li-Ni Zeng
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Zhe Zhu
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu-Hui Wang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Lu Ding
- Department of Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Wei-Bin Luo
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan; Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Xiao-Min Zhang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Zhi-Wei He
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Hong-Fu Wu
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
29
|
Liu M, Liu Q, Pei Y, Gong M, Cui X, Pan J, Zhang Y, Liu Y, Liu Y, Yuan X, Zhou H, Chen Y, Sun J, Wang L, Zhang X, Wang R, Li S, Cheng J, Ding Y, Ma T, Yuan Y. Aqp-1
Gene Knockout Attenuates Hypoxic Pulmonary Hypertension of Mice. Arterioscler Thromb Vasc Biol 2019; 39:48-62. [PMID: 30580569 DOI: 10.1161/atvbaha.118.311714] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective—
Hypoxic pulmonary hypertension (HPH) is characterized by proliferative vascular remodeling. Abnormal pulmonary artery smooth muscle cells proliferation and endothelial dysfunction are the primary cellular bases of vascular remodeling. AQP1 (aquaporin-1) is regulated by oxygen level and has been observed to play a role in the proliferation and migration of pulmonary artery smooth muscle cells. The role of AQP1 in HPH pathogenesis has not been directly determined to date. To determine the possible roles of AQP1 in the pathogenesis of HPH and explore its possible mechanisms.
Approach and Results—
Aqp1
knockout mice were used, and HPH model was established in this study. Primary pulmonary artery smooth muscle cells, primary mouse lung endothelial cells, and lung tissue sections from HPH model were used. Immunohistochemistry, immunofluorescence and Western blot, cell cycle, apoptosis, and migration analysis were performed in this study. AQP1 expression was upregulated by chronic hypoxia exposure, both in pulmonary artery endothelia and medial smooth muscle layer of mice.
Aqp1
deficiency attenuated the elevation of right ventricular systolic pressures and mitigated pulmonary vascular structure remodeling. AQP1 deletion reduced abnormal cell proliferation in pulmonary artery and accompanied with accumulation of HIF (hypoxia-inducible factor). In vitro,
Aqp1
deletion reduced hypoxia-induced proliferation, apoptosis resistance, and migration ability of primary cultured pulmonary artery smooth muscle cells and repressed HIF-1α protein stability. Furthermore,
Aqp1
deficiency protected lung endothelial cells from apoptosis in response to hypoxic injury.
Conclusions—
Our data showed that
Aqp1
deficiency could attenuate hypoxia-induced vascular remodeling in the development of HPH. AQP1 may be a potential target for pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mingcheng Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Qiwang Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yandong Pei
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Miaomiao Gong
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jinjin Pan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yunlong Zhang
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yang Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Xiaocheng Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Haoran Zhou
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yiying Chen
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Jian Sun
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Lin Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiya Zhang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Rui Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jizhong Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX (J.C.)
| | - Yanchun Ding
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Tonghui Ma
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yuhui Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| |
Collapse
|
30
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
31
|
Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 2018; 6:88. [PMID: 30208943 PMCID: PMC6134794 DOI: 10.1186/s40425-018-0401-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Current checkpoint immunotherapy has shown potential to control cancer by restoring or activating the immune system. Nevertheless, multiple mechanisms are involved in immunotherapy resistance which limits the clinical benefit of checkpoint inhibitors. An immunosuppressive microenvironment is an important factor mediating the original resistance of tumors to immunotherapy. A previous report by our group has demonstrated that local angiotensin II (AngII) predominantly exists in a tumor hypoxic microenvironment where hypoxic tumour cells produced AngII by a hypoxia-lactate-chymase-dependent mechanism. Results Here, using 4T1 and CT26 syngeneic mouse tumor models, we found that local AngII in the tumor microenvironment was involved in immune escape of tumour cells and an AngII signaling blockage sensitized tumours to checkpoint immunotherapy. Furthermore, an AngII signaling blockage reversed the tumor immunosuppressive microenvironment, and inhibition of angiotensinogen (AGT, a precursor of AngII) expression strongly triggered an immune-activating cytokine profile in hypoxic mouse cancer cells. More importantly, AGT silencing combined with a checkpoint blockage generated an abscopal effect in resistant tumors. Conclusion Our study demonstrated an important role of local AngII in the formation of a tumor immunosuppressive microenvironment and its blockage may enhance tumor sensitivity to checkpoint immunotherapy. The combination of an AngII signaling blocker and an immune-checkpoint blockage could be a promising strategy to improve tumors responses to current checkpoint immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0401-3) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Kim HW, Weintraub NL. Aortic Aneurysm: In Defense of the Vascular Smooth Muscle Cell. Arterioscler Thromb Vasc Biol 2018; 36:2138-2140. [PMID: 27784700 DOI: 10.1161/atvbaha.116.308356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ha Won Kim
- From the Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University.
| |
Collapse
|
33
|
Borton AH, Benson BL, Neilson LE, Saunders A, Alaiti MA, Huang AY, Jain MK, Proweller A, Ramirez-Bergeron DL. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. J Am Heart Assoc 2018; 7:e009205. [PMID: 29858371 PMCID: PMC6015385 DOI: 10.1161/jaha.118.009205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Immunohistochemistry
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Lower Extremity/blood supply
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Peripheral Vascular Diseases/genetics
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/pathology
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Anna Henry Borton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lee E Neilson
- Neurological Institute, University Hospitals, Cleveland, OH
| | - Ashley Saunders
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - M Amer Alaiti
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Angie Fowler Adolescent and Young Adult Cancer Institute and University Hospitals Rainbow Babies and Children's Hospital University Hospitals, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Aaron Proweller
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| |
Collapse
|
34
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [PMID: 28814529 DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 02/14/2025] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key gene regulator for cellular adaptation to low oxygen. In addition to hypoxia, several nonhypoxic stimuli, including hormones and growth factors, are essential for cell-specific HIF-1 regulation. Our studies have highlighted angiotensin II (AngII), a vasoactive hormone, as a potent HIF-1 activator in vascular smooth muscle cells (VSMC). AngII increases HIF-1 transcriptional activity by modulating specific signaling pathways. In VSMC, p42/p44 mitogen-activated protein kinase (MAPK) pathway activation is essential for HIF-1-mediated transcription during AngII treatment. The present study shows that PD184161, a potent MEK1/2 inhibitor, is an HIF-1 blocker in Ang II-treated VSMC. Unlike PD98059, a widely-used MEK1/2 inhibitor, we found that PD184161 blocked AngII-driven HIF-1α protein induction in a dose-dependent manner. Interestingly, the effect of PD184161 was specific to nonhypoxic activators, since HIF-1α induction by hypoxia (1% O2) was unaffected under similar conditions. VSMC treatment with MG132, a proteasome inhibitor, indicated that PD184161 influenced HIF-1α protein stability. PD184161 also increased HIF-1α binding to von Hippel-Lindau tumor suppressor protein, an E3 ligase component and an indication of HIF-1α hydroxylation. Finally, we show that PD184161 blocked mitochondrial ROS (mtROS) production and cellular ATP levels, at the same time enhancing ascorbate availability in AngII-treated VSMC. Taken together, our study indicates that, independently of p42/p44 MAPK activation, PD184161 blocks mtROS generation by AngII, leading to re-establishment of cellular ascorbate levels, increased VHL binding, and decreased HIF-1α stability. Therefore, this study reveals a previously unsuspected role for PD184161 as an HIF-1 inhibitor in VSMC under nonhypoxic conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Sophie Mokas
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Catherine A Turgeon
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Laurent Lamalice
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
35
|
Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017; 8:752. [PMID: 29046642 PMCID: PMC5632678 DOI: 10.3389/fphys.2017.00752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.
Collapse
Affiliation(s)
- Daniela Patinha
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Wioletta Pijacka
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
36
|
Wang JC, Chien WC, Chung CH, Liao WI, Tsao CH, Wu YF, Tsai SH. Increased risk of malignancy in patients with an aortic aneurysm: a nationwide population-based retrospective study. Oncotarget 2017; 9:2829-2837. [PMID: 29416815 PMCID: PMC5788683 DOI: 10.18632/oncotarget.20181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/06/2017] [Indexed: 12/01/2022] Open
Abstract
Background Cardiovascular disease and malignancy have numerous similarities and possible interactions, as these diseases share several risk factors, epidemiological features and biological signaling pathways. Data regarding the risk of malignancy in patients with aortic aneurysm (AA) are scarce. We aimed to determine whether patients with AA have an increased risk of malignancy. Materials and Methods The data for the nationwide population-based retrospective cohort study described herein were obtained from the Taiwan National Health Insurance Research Database (NHIRD). We selected adult patients who had been newly diagnosed with AA and were followed up between 2000 and 2010. We excluded patients who had been diagnosed with AA and malignancy prior to the date of the AA diagnosis. The control cohort was selected from individuals who had no history of AA and was selected with 1:4 matching according to co-morbidities and medication history. The outcome was a diagnosis of malignancy and the cumulative incidence of AA. Results A total of 10,933 patients diagnosed with AA were identified. The patients with an AA had a significantly higher cumulative risk of developing malignancies in subsequent years than the patients without an AA (log rank test < 0.001). Similarly, patients with malignancies had a significantly higher cumulative risk of developing an AA in subsequent years than patients without malignancies (log rank test < 0.001). Conclusions Patients with an AA were shown to have a substantially increased risk of developing a variety of malignancies compared with patients without AAs. Healthcare professionals should be aware of this increased risk when treating patients with AAs.
Collapse
Affiliation(s)
- Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Huei Tsao
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
38
|
Xie G, Liu Y, Yao Q, Zheng R, Zhang L, Lin J, Guo Z, Du S, Ren C, Yuan Q, Yuan Y. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci Rep 2017; 7:42396. [PMID: 28205588 PMCID: PMC5311966 DOI: 10.1038/srep42396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/09/2017] [Indexed: 01/12/2023] Open
Abstract
The renin-angiotensin system (RAS) is a principal determinant of arterial blood pressure and fluid and electrolyte balance. RAS component dysregulation was recently found in some malignancies and correlated with poor patient outcomes. However, the exact mechanism of local RAS activation in tumors is still unclear. Here, we find that the local angiotensin II predominantly exists in the hypoxic regions of tumor formed by nasopharyngeal carcinoma CNE2 cells and breast cancer MDA-MB-231 cells, where these tumor cells autocrinely produce angiotensin II by a chymase-dependent rather than an angiotensin converting enzyme-dependent mechanism. We further demonstrate in nasopharyngeal carcinoma CNE2 and 5–8F cells that this chymase-dependent effect is mediated by increased levels of lactate, a by-product of glycolytic metabolism. Finally, we show that the enhanced angiotensin II plays an important role in the intracellular accumulation of HIF-1α of hypoxic nasopharyngeal carcinoma cells and mediates the radiation-resistant phenotype of these nasopharyngeal carcinoma cells. Thus, our findings reveal the critical role of hypoxia in producing local angiotensin II by a lactate-chymase-dependent mechanism and highlight the importance of local angiotensin II in regulating radioresistance of hypoxic tumor cells.
Collapse
Affiliation(s)
- Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiwei Yao
- Department of Radiation Oncology, Teaching Hospital of Fujian Provincial Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Rong Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lanfang Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoze Guo
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quan Yuan
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
39
|
Forrester SJ, Elliott KJ, Kawai T, Obama T, Boyer MJ, Preston KJ, Yan Z, Eguchi S, Rizzo V. Caveolin-1 Deletion Prevents Hypertensive Vascular Remodeling Induced by Angiotensin II. Hypertension 2016; 69:79-86. [PMID: 27895190 DOI: 10.1161/hypertensionaha.116.08278] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/14/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1-/- and control Cav+/+ mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension. On AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of aorta and coronary and renal arteries in Cav1+/+ mice compared with sham-operated Cav1+/+ mice. AngII-infused Cav1+/+ mice also showed a phenotype of cardiac hypertrophy with increased heart weight to body weight ratio compared with control Cav1+/+ mice. In contrast, Cav1-/- mice infused with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy. Similar levels of AngII-induced hypertension were found in both Cav1+/+ and Cav1-/- mice as assessed by telemetry. In Cav1+/+ mice, AngII enhanced tyrosine-phosphorylated epidermal growth factor receptor staining in the aorta, which was attenuated in Cav1-/- mice infused with AngII. Enhanced Cav1 and vascular endothelial adhesion molecule-1 expression was also observed in aorta from AngII-infused Cav1+/+ mice but not in Cav1-/- aorta. Experiments with vascular cells further provided a potential mechanism for our in vivo findings. These data suggest that Cav1, and presumably caveolae, in vascular smooth muscle and the endothelium plays a critical role in vascular remodeling and inflammation independent of blood pressure or cardiac hypertrophy regulation.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Katherine J Elliott
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Tatsuo Kawai
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Takashi Obama
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Michael J Boyer
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Kyle J Preston
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Zhen Yan
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Satoru Eguchi
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Victor Rizzo
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| |
Collapse
|
40
|
Li Y, Shi B, Huang L, Wang X, Yu X, Guo B, Ren W. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats. Int J Mol Med 2016; 38:1786-1794. [PMID: 27748831 PMCID: PMC5117750 DOI: 10.3892/ijmm.2016.2773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.
Collapse
Affiliation(s)
- Ying Li
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Shi
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liping Huang
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Wang
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaona Yu
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Baosheng Guo
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Weidong Ren
- Department of Ultrasound Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
41
|
Imanishi M, Chiba Y, Tomita N, Matsunaga S, Nakagawa T, Ueno M, Yamamoto K, Tamaki T, Tomita S. Hypoxia-Inducible Factor-1α in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report. Arterioscler Thromb Vasc Biol 2016; 36:2158-2162. [PMID: 27562915 DOI: 10.1161/atvbaha.116.307784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the role of smooth muscle cell-derived hypoxia-inducible factor-1α (Hif-1α) in the pathogenesis of aortic aneurysms. APPROACH AND RESULTS Control mice and smooth muscle cell-specific hypoxia-inducible factor-1α-deficient mice were infused with β-aminopropionitrile for 2 weeks and angiotensin II for 6 weeks to induce aortic aneurysm formation. Mutant mice experienced increased levels of aneurysm formation of the thoracic or abdominal aorta with more severe elastin disruption, compared with control mice. Smooth muscle cell-specific hypoxia-inducible factor-1α deficiency did not affect matrix metalloproteinase-2 activity; however, the activity of lysyl oxidase and the levels of tropoelastin mRNA in the angiotensin II- and β-aminopropionitrile-treated aortae, associated with elastin fiber formation, were suppressed. Furthermore, we observed reduced volumes of mature cross-linked elastin in the thoracoabdominal aorta after treatment with angiotensin II and β-aminopropionitrile. CONCLUSIONS Deficiency of smooth muscle cell-derived hypoxia-inducible factor-1α augments aortic aneurysms, accompanied by disruption of elastin fiber formation, but not changes of elastin fiber degradation.
Collapse
Affiliation(s)
- Masaki Imanishi
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Yoichi Chiba
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Noriko Tomita
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Shinji Matsunaga
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Toshitaka Nakagawa
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Masaki Ueno
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Kazuhiro Yamamoto
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Toshiaki Tamaki
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.)
| | - Shuhei Tomita
- From the Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Japan (M.I., S.M., S.T.); Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Japan (Y.C., M.U.); Division of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Japan (N.T., K.Y.); Life Science Research Center, Kagawa University, Japan (T.N.); Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (T.T.); and Department of Pharmacology, Faculty of Medicine, Osaka City University, Japan (S.T.).
| |
Collapse
|
42
|
Takayanagi T, Forrester SJ, Kawai T, Obama T, Tsuji T, Elliott KJ, Nuti E, Rossello A, Kwok HF, Scalia R, Rizzo V, Eguchi S. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II. Hypertension 2016; 68:949-955. [PMID: 27480833 DOI: 10.1161/hypertensionaha.116.07620] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022]
Abstract
Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.
Collapse
Affiliation(s)
- Takehiko Takayanagi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Takashi Obama
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Toshiyuki Tsuji
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Elisa Nuti
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Armando Rossello
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Hang Fai Kwok
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| |
Collapse
|
43
|
Yang L, Shen L, Li G, Yuan H, Jin X, Wu X. Silencing of hypoxia inducible factor-1α gene attenuated angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice. Atherosclerosis 2016; 252:40-49. [PMID: 27497884 DOI: 10.1016/j.atherosclerosis.2016.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS We aimed to determine the effect of HIF-1α, the main regulatory subunit of the hypoxia inducible factor 1 (HIF-1), on the development of the abdominal aortic aneurysm (AAA). METHODS AAA was induced in ApoE(-/-) mice by angiotensinⅡ (AngⅡ) infusion. In vivo silencing of HIF-1α was achieved by transfection of lentivirus expressing HIF-1α shRNA. RESULTS Time course analysis of the AngⅡ infusion model revealed that HIF-1α was persistently upregulated during a 28-day period of AAA development. Silencing of the HIF-1α gene reduced the aneurysm size (2.84 ± 1.96 mm vs. 1.41 ± 0.85 mm respectively at day 28, p = 0.0002). Silencing of HIF-1α also alleviated infiltration of macrophages (38.8 ± 14.7 vs. 11.4 ± 4.4 macrophages/0.1 mm(2), p = 0.0006) and neovascularity (5.56 ± 2.14 vs. 1.27 ± 1.05 microvessels/0.1 mm(2), p = 0.0008) in the AngⅡ infusion model, at day 28. The activity of MMP-2 and MMP-9 was also decreased by knockdown of HIF-1α. The early increased expression of pro-inflammatory factors, angiogenic factors, and MMPs during AAA induction was alleviated by HIF-1α silencing. CONCLUSIONS Activation of HIF-1 signaling pathway participates in the Ang Ⅱ-induced AAA formation in mice.
Collapse
Affiliation(s)
- Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lin Shen
- Department of Ophthalmology, QiLu Hospital to Shandong University, Jinan, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
44
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep 2016; 6:28612. [PMID: 27363580 PMCID: PMC4929442 DOI: 10.1038/srep28612] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens.
Collapse
|
46
|
Hohl M, Linz D, Fries P, Müller A, Stroeder J, Urban D, Speer T, Geisel J, Hummel B, Laufs U, Schirmer SH, Böhm M, Mahfoud F. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med 2016; 14:167. [PMID: 27277003 PMCID: PMC4898354 DOI: 10.1186/s12967-016-0914-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Apolipoprotein E-deficient (ApoE(-/-)) rodents spontaneously develop severe hypercholesterolemia and increased aortic stiffness, both accepted risk factors for cardiovascular morbidity and mortality in humans. In patients with resistant hypertension renal denervation (RDN) may improve arterial stiffness, however the underlying mechanisms are incompletely understood. This study investigates the impact of RDN on aortic compliance in a novel atherosclerosis prone ApoE(-/-)-rat model. METHODS Normotensive, 8 weeks old ApoE(-/-) and Sprague-Dawley (SD) rats were subjected to bilateral surgical RDN (n = 6 per group) or sham operation (n = 5 per group) and fed with normal chow for 8 weeks. Compliance of the ascending aorta was assessed by magnetic resonance imaging. Vasomotor function was measured by aortic ring tension recordings. Aortic collagen content was quantified histologically and plasma aldosterone levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS After 8 weeks, ApoE(-/-)-sham demonstrated a 58 % decrease in aortic distensibility when compared with SD-sham (0.0051 ± 0.0011 vs. 0.0126 ± 0.0023 1/mmHg; p = 0.02). This was accompanied by an impaired endothelium-dependent relaxation of aortic rings and an increase in aortic medial fibrosis (17.87 ± 1.4 vs. 12.27 ± 1.1 %; p = 0.006). In ApoE(-/-)-rats, RDN prevented the reduction of aortic distensibility (0.0128 ± 0.002 vs. 0.0051 ± 0.0011 1/mmHg; p = 0.01), attenuated endothelial dysfunction, and decreased aortic medial collagen content (12.71 ± 1.3 vs. 17.87 ± 1.4 %; p = 0.01) as well as plasma aldosterone levels (136.33 ± 6.6 vs. 75.52 ± 8.4 pg/ml; p = 0.0003). Cardiac function and metabolic parameters such as hypercholesterolemia were not influenced by RDN. CONCLUSION ApoE(-/-)-rats spontaneously develop impaired vascular compliance. RDN improves aortic distensibility and attenuated endothelial dysfunction in ApoE(-/-)-rats. This was associated with a reduction in aortic fibrosis formation, and plasma aldosterone levels.
Collapse
Affiliation(s)
- Mathias Hohl
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Dominik Linz
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Peter Fries
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Andreas Müller
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jonas Stroeder
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Daniel Urban
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Thimoteus Speer
- />Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jürgen Geisel
- />Zentrallabor, Klinische Chemie und Laboratorium Medizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Björn Hummel
- />Institut für Klinische Hämostaseologie und Transfusionsmedizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Laufs
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Stephan H. Schirmer
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Michael Böhm
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Felix Mahfoud
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
47
|
Does hypoxia play a role in infantile hemangioma? Arch Dermatol Res 2016; 308:219-27. [PMID: 26940670 DOI: 10.1007/s00403-016-1635-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/13/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Infantile hemangioma (IH), the most common tumor of infancy, is characterized by rapid growth during infancy, followed by spontaneous involution over 5-10 years. Certain clinical observations have led to the suggestion that IH is triggered and maintained by hypoxia. We review the literature on the possible role of hypoxia in the etiology of IH, in particular, (1) the role of hypoxia inducible factor-1α (HIF-1α) and its downstream targets including GLUT-1 and VEGF; (2) the pathophysiological link between IH and retinopathy of prematurity; (3) hypoxic events in the early life including placental insufficiency, pre-eclampsia and low birthweight that have the potential to promote hypoxic stress; and (4) the evidence supporting the development of IH independent of HIF-1α. We also discuss these observations in the context of recent evidence of the crucial role of stem cells and the cytokines niche that governs their proliferation and inevitable differentiation, offering novel insights into the biology of IH. We propose that various triggers may simultaneously up-regulate HIF-1α, which is downstream of the renin-angiotensin system, specifically angiotensin II, which promotes production of HIF-1α. These developments shed light to the understanding of this enigmatic condition.
Collapse
|
48
|
“Angiotensin II memory” contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci 2016; 149:18-24. [DOI: 10.1016/j.lfs.2016.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
|
49
|
Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 2015; 12:157-68. [DOI: 10.1038/nrneph.2015.193] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83:112-21. [PMID: 25896391 PMCID: PMC4534766 DOI: 10.1016/j.yjmcc.2015.04.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
Abstract
Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing.
Collapse
|