1
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
2
|
Caldwell JL, Clarke JD, Smith CER, Pinali C, Quinn CJ, Pearman CM, Adomaviciene A, Radcliffe EJ, Watkins A, Horn MA, Bode EF, Madders GWP, Eisner M, Eisner DA, Trafford AW, Dibb KM. Restoring Atrial T-Tubules Augments Systolic Ca Upon Recovery From Heart Failure. Circ Res 2024; 135:739-754. [PMID: 39140440 PMCID: PMC11392124 DOI: 10.1161/circresaha.124.324601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+. METHODS HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patch clamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure. RESULTS Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and sarcoendoplasmic reticulum Ca2+ ATPase function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria. CONCLUSIONS We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Jessica L Caldwell
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Jessica D Clarke
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charlotte E R Smith
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Callum J Quinn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charles M Pearman
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Aiste Adomaviciene
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Emma J Radcliffe
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Amy Watkins
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Margaux A Horn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Elizabeth F Bode
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - George W P Madders
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Mark Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| |
Collapse
|
3
|
Fakuade FE, Hubricht D, Möller V, Sobitov I, Liutkute A, Döring Y, Seibertz F, Gerloff M, Pronto JRD, Haghighi F, Brandenburg S, Alhussini K, Ignatyeva N, Bonhoff Y, Kestel S, El-Essawi A, Jebran AF, Großmann M, Danner BC, Baraki H, Schmidt C, Sossalla S, Kutschka I, Bening C, Maack C, Linke WA, Heijman J, Lehnart SE, Kensah G, Ebert A, Mason FE, Voigt N. Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation. Circulation 2024; 150:544-559. [PMID: 38910563 PMCID: PMC11319087 DOI: 10.1161/circulationaha.123.066577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aimed to investigate the intracellular buffering of Ca2+ and its potential arrhythmogenic role in persAF. METHODS Transmembrane Ca2+ fluxes (patch-clamp) and intracellular Ca2+ signaling (fluo-3-acetoxymethyl ester) were recorded simultaneously in myocytes from right atrial biopsies of sinus rhythm (Ctrl) and patients with persAF, alongside human atrial subtype induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Protein levels were quantified by immunoblotting of human atrial tissue and induced pluripotent stem cell-derived cardiac myocytes. Mouse whole heart and atrial electrophysiology were measured on a Langendorff system. RESULTS Cytosolic Ca2+ buffering was decreased in atrial myocytes of patients with persAF because of a depleted amount of Ca2+ buffers. In agreement, protein levels of selected Ca2+ binding myofilament proteins, including cTnC (cardiac troponin C), a major cytosolic Ca2+ buffer, were significantly lower in patients with persAF. Small interfering RNA (siRNA)-mediated knockdown of cTnC (si-cTNC) in atrial iPSC-CM phenocopied the reduced cytosolic Ca2+ buffering observed in persAF. Si-cTnC treated atrial iPSC-CM exhibited a higher predisposition to spontaneous Ca2+ release events and developed action potential alternans at low stimulation frequencies. Last, indirect reduction of cytosolic Ca2+ buffering using blebbistatin in an ex vivo mouse whole heart model increased vulnerability to tachypacing-induced atrial arrhythmia, validating the direct mechanistic link between impaired cytosolic Ca2+ buffering and atrial arrhythmogenesis. CONCLUSIONS Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and atrial fibrillation susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in persAF management.
Collapse
Affiliation(s)
- Funsho E. Fakuade
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Dominik Hubricht
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Vanessa Möller
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Izzatullo Sobitov
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aiste Liutkute
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Yannic Döring
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fitzwilliam Seibertz
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Marcus Gerloff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Julius Ryan D. Pronto
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fereshteh Haghighi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Sören Brandenburg
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Nadezda Ignatyeva
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Yara Bonhoff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Stefanie Kestel
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aschraf El-Essawi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
- Department of Thoracic and Cardiovascular Surgery, Klinikum Braunschweig, Germany (A.E.-E.)
| | - Ahmad Fawad Jebran
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Marius Großmann
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Bernhard C. Danner
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Hassina Baraki
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Germany (C.S.)
- German Center for Cardiovascular Research Partner Site Heidelberg/Mannheim, Heidelberg University (C.S.)
| | - Samuel Sossalla
- Department of Cardiology, University Hospital Giessen & Kerckhoff Clinic, Germany (S.S.)
- Department of Cardiology, Bad Nauheim & German Center for Cardiovascular Research Partner Site Rhine-Main, Germany (S.S.)
| | - Ingo Kutschka
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Wolfgang A. Linke
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
- Institute of Physiology II, University of Münster, Germany (W.A.L.)
| | - Jordi Heijman
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria (J.H.)
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (J.H.)
| | - Stephan E. Lehnart
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - George Kensah
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Antje Ebert
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Fleur E. Mason
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Niels Voigt
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| |
Collapse
|
4
|
Westhoff M, Del Villar SG, Voelker TL, Thai PN, Spooner HC, Costa AD, Sirish P, Chiamvimonvat N, Dickson EJ, Dixon RE. BIN1 knockdown rescues systolic dysfunction in aging male mouse hearts. Nat Commun 2024; 15:3528. [PMID: 38664444 PMCID: PMC11045846 DOI: 10.1038/s41467-024-47847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.
Collapse
Affiliation(s)
- Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Silvia G Del Villar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Alexandre D Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Tolstik E, Lehnart SE, Soeller C, Lorenz K, Sacconi L. Cardiac multiscale bioimaging: from nano- through micro- to mesoscales. Trends Biotechnol 2024; 42:212-227. [PMID: 37806897 DOI: 10.1016/j.tibtech.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.
Collapse
Affiliation(s)
- Elen Tolstik
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany.
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Strasse 42a, 37075 Göttingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC2067), University of Göttingen, 37073 Göttingen, Germany; Collaborative Research Center SFB1190 Compartmental Gates and Contact Sites in Cells, University of Göttingen, 37073 Göttingen, Germany
| | - Christian Soeller
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kristina Lorenz
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, Rome, Italy; Institute for Experimental Cardiovascular Medicine, University Freiburg, Elsässer Strasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
6
|
Waddell HMM, Mereacre V, Alvarado FJ, Munro ML. Clustering properties of the cardiac ryanodine receptor in health and heart failure. J Mol Cell Cardiol 2023; 185:38-49. [PMID: 37890552 PMCID: PMC10717225 DOI: 10.1016/j.yjmcc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The cardiac ryanodine receptor (RyR2) is an intracellular Ca2+ release channel vital for the function of the heart. Physiologically, RyR2 is triggered to release Ca2+ from the sarcoplasmic reticulum (SR) which enables cardiac contraction; however, spontaneous Ca2+ leak from RyR2 has been implicated in the pathophysiology of heart failure (HF). RyR2 channels have been well documented to assemble into clusters within the SR membrane, with the organisation of RyR2 clusters recently gaining interest as a mechanism by which the occurrence of pathological Ca2+ leak is regulated, including in HF. In this review, we explain the terminology relating to key nanoscale RyR2 clustering properties as both single clusters and functionally grouped Ca2+ release units, with a focus on the advancements in super-resolution imaging approaches which have enabled the detailed study of cluster organisation. Further, we discuss proposed mechanisms for modulating RyR2 channel organisation and the debate regarding the potential impact of cluster organisation on Ca2+ leak activity. Finally, recent experimental evidence investigating the nanoscale remodelling and functional alterations of RyR2 clusters in HF is discussed with consideration of the clinical implications.
Collapse
Affiliation(s)
- Helen M M Waddell
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valeria Mereacre
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Scriven DR, Johnsen AB, Asghari P, Chou KC, Moore ED. Cardiomyocyte ryanodine receptor clusters expand and coalesce after application of isoproterenol. J Gen Physiol 2023; 155:e202213109. [PMID: 37728575 PMCID: PMC10513110 DOI: 10.1085/jgp.202213109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/23/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Earlier work has shown that ventricular ryanodine receptors (RyR2) within a cluster rearrange on phosphorylation as well as with a number of other stimuli. Using dSTORM, we investigated the effects of 300 nmol/liter isoproterenol on RyR2 clusters. In rat ventricular cardiomyocytes, there was a symmetrical enlargement of RyR2 cluster areas, a decrease in the edge-to-edge nearest neighbor distance, and distribution changes that suggested movement to increase the cluster areas by coalescence. The surface area covered by the phosphorylated clusters was significantly greater than in the control cells, as was the cluster density. This latter change was accompanied by a decreased cluster fragmentation, implying that new tetramers were brought into the sarcoplasmic reticulum. We propose a possible mechanism to explain these changes. We also visualized individual RyR2 tetramers and confirmed our earlier electron-tomographic finding that the tetramers are in a disorganized but non-random array occupying about half of the cluster area. Multiclusters, cluster groups defined by the maximum distance between their members, were analyzed for various distances. At 100 nm, the areas occupied by the multiclusters just exceeded those of the single clusters, and more than half of the multiclusters had only a single subcluster that could initiate a spark. Phosphorylation increased the size of the multiclusters, markedly so for distances >100 nm. There was no relationship between the number of subclusters in a group and the area covered by it. We conclude that isoproterenol induces rapid, significant, changes in the molecular architecture of excitation-contraction coupling.
Collapse
Affiliation(s)
- David R.L. Scriven
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Anne Berit Johnsen
- Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, Norway
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Keng C. Chou
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Edwin D.W. Moore
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Smith CER, Grandi E. Unveiling the intricacies of intracellular Ca 2+ regulation in the heart. Biophys J 2023; 122:3019-3021. [PMID: 37478843 PMCID: PMC10432241 DOI: 10.1016/j.bpj.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Recent studies have provided valuable insight into the key mechanisms contributing to the spatiotemporal regulation of intracellular Ca2+ release and Ca2+ signaling in the heart. In this research highlight, we focus on the latest findings published in Biophysical Journal examining the structural organization of Ca2+ handling proteins and assessing the functional aspects of intracellular Ca2+ regulation in health and the detrimental consequences of Ca2+ dysregulation in disease. These important studies pave the way for future mechanistic investigations and multiscale understanding of Ca2+ signaling in the heart.
Collapse
Affiliation(s)
- Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California.
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California.
| |
Collapse
|
11
|
Zhang X, Smith CER, Morotti S, Edwards AG, Sato D, Louch WE, Ni H, Grandi E. Mechanisms of spontaneous Ca 2+ release-mediated arrhythmia in a novel 3D human atrial myocyte model: II. Ca 2+ -handling protein variation. J Physiol 2023; 601:2685-2710. [PMID: 36114707 PMCID: PMC10017376 DOI: 10.1113/jp283602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Disruption of the transverse-axial tubule system (TATS) in diseases such as heart failure and atrial fibrillation occurs in combination with changes in the expression and distribution of key Ca2+ -handling proteins. Together this ultrastructural and ionic remodelling is associated with aberrant Ca2+ cycling and electrophysiological instabilities that underlie arrhythmic activity. However, due to the concurrent changes in TATs and Ca2+ -handling protein expression and localization that occur in disease it is difficult to distinguish their individual contributions to the arrhythmogenic state. To investigate this, we applied our novel 3D human atrial myocyte model with spatially detailed Ca2+ diffusion and TATS to investigate the isolated and interactive effects of changes in expression and localization of key Ca2+ -handling proteins and variable TATS density on Ca2+ -handling abnormality driven membrane instabilities. We show that modulating the expression and distribution of the sodium-calcium exchanger, ryanodine receptors and the sarcoplasmic reticulum (SR) Ca2+ buffer calsequestrin have varying pro- and anti-arrhythmic effects depending on the balance of opposing influences on SR Ca2+ leak-load and Ca2+ -voltage relationships. Interestingly, the impact of protein remodelling on Ca2+ -driven proarrhythmic behaviour varied dramatically depending on TATS density, with intermediately tubulated cells being more severely affected compared to detubulated and densely tubulated myocytes. This work provides novel mechanistic insight into the distinct and interactive consequences of TATS and Ca2+ -handling protein remodelling that underlies dysfunctional Ca2+ cycling and electrophysiological instability in disease. KEY POINTS: In our companion paper we developed a 3D human atrial myocyte model, coupling electrophysiology and Ca2+ handling with subcellular spatial details governed by the transverse-axial tubule system (TATS). Here we utilize this model to mechanistically examine the impact of TATS loss and changes in the expression and distribution of key Ca2+ -handling proteins known to be remodelled in disease on Ca2+ homeostasis and electrophysiological stability. We demonstrate that varying the expression and localization of these proteins has variable pro- and anti-arrhythmic effects with outcomes displaying dependence on TATS density. Whereas detubulated myocytes typically appear unaffected and densely tubulated cells seem protected, the arrhythmogenic effects of Ca2+ handling protein remodelling are profound in intermediately tubulated cells. Our work shows the interaction between TATS and Ca2+ -handling protein remodelling that underlies the Ca2+ -driven proarrhythmic behaviour observed in atrial fibrillation and may help to predict the effects of antiarrhythmic strategies at varying stages of ultrastructural remodelling.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
13
|
Hurley ME, White E, Sheard TMD, Steele D, Jayasinghe I. Correlative super-resolution analysis of cardiac calcium sparks and their molecular origins in health and disease. Open Biol 2023; 13:230045. [PMID: 37220792 PMCID: PMC10205181 DOI: 10.1098/rsob.230045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Rapid release of calcium from internal stores via ryanodine receptors (RyRs) is one of the fastest types of cytoplasmic second messenger signalling in excitable cells. In the heart, rapid summation of the elementary events of calcium release, 'calcium sparks', determine the contraction of the myocardium. We adapted a correlative super-resolution microscopy protocol to correlate sub-plasmalemmal spontaneous calcium sparks in rat right ventricular myocytes with the local nanoscale RyR2 positions. This revealed a steep relationship between the integral of a calcium spark and the sum of the local RyR2s. Segmentation of recurring spark sites showed evidence of repeated and triggered saltatory activation of multiple local RyR2 clusters. In myocytes taken from failing right ventricles, RyR2 clusters themselves showed a dissipated morphology and fragmented (smaller) clusters. They also featured greater heterogeneity in both the spark properties and the relationship between the integral of the calcium spark and the local ensemble of RyR2s. While fragmented (smaller) RyR2 clusters were rarely observed directly underlying the larger sparks or the recurring spark sites, local interrogation of the channel-to-channel distances confirmed a clear link between the positions of each calcium spark and the tight, non-random clustering of the local RyR2 in both healthy and failing ventricles.
Collapse
Affiliation(s)
- Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ed White
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas M. D. Sheard
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Hou Y, Laasmaa M, Li J, Shen X, Manfra O, Norden ES, Le C, Zhang L, Sjaastad I, Jones PP, Soeller C, Louch WE. Live-cell photo-activated localization microscopy correlates nanoscale ryanodine receptor configuration to calcium sparks in cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:251-267. [PMID: 38803363 PMCID: PMC7616007 DOI: 10.1038/s44161-022-00199-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/24/2022] [Indexed: 05/29/2024]
Abstract
Ca2+ sparks constitute the fundamental units of Ca2+ release in cardiomyocytes. Here we investigate how ryanodine receptors (RyRs) collectively generate these events by employing a transgenic mouse with a photo-activated label on RyR2. This allowed correlative imaging of RyR localization, by super-resolution Photo-Activated Localization Microscopy, and Ca2+ sparks, by high-speed imaging. Two populations of Ca2+ sparks were observed: stationary events and "travelling" events that spread between neighbouring RyR clusters. Travelling sparks exhibited up to 8 distinct releases, sourced from local or distal junctional sarcoplasmic reticulum. Quantitative analyses showed that sparks may be triggered by any number of RyRs within a cluster, and that acute β-adrenergic stimulation augments intra-cluster RyR recruitment to generate larger events. In contrast, RyR "dispersion" during heart failure facilitates the generation of travelling sparks. Thus, RyRs cooperatively generate Ca2+ sparks in a complex, malleable fashion, and channel organization regulates the propensity for local propagation of Ca2+ release.
Collapse
Affiliation(s)
- Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Einar S. Norden
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Peter P. Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | | | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| |
Collapse
|
16
|
Regional Differences in Ca 2+ Signaling and Transverse-Tubules across Left Atrium from Adult Sheep. Int J Mol Sci 2023; 24:ijms24032347. [PMID: 36768669 PMCID: PMC9916916 DOI: 10.3390/ijms24032347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Cardiac excitation-contraction coupling can be different between regions of the heart. Little is known at the atria level, specifically in different regions of the left atrium. This is important given the role of cardiac myocytes from the pulmonary vein sleeves, which are responsible for ectopic activity during atrial fibrillation. In this study, we present a new method to isolate atrial cardiac myocytes from four different regions of the left atrium of a large animal model, sheep, highly relevant to humans. Using collagenase/protease we obtained calcium-tolerant atrial cardiac myocytes from the epicardium, endocardium, free wall and pulmonary vein regions. Calcium transients were slower (time to peak and time to decay) in free wall and pulmonary vein myocytes compared to the epicardium and endocardium. This is associated with lower t-tubule density. Overall, these results suggest regional differences in calcium transient and t-tubule density across left atria, which may play a major role in the genesis of atrial fibrillation.
Collapse
|
17
|
Chung J, Tilūnaitė A, Ladd D, Hunt H, Soeller C, Crampin EJ, Johnston ST, Roderick HL, Rajagopal V. IP 3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca 2+]. Math Biosci 2023; 355:108923. [PMID: 36395827 DOI: 10.1016/j.mbs.2022.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a critical role in the excitation contraction coupling (ECC) process that mediates the contraction of cardiomyocytes during each heartbeat. While ryanodine receptors (RyRs) are the primary Ca2+ channels responsible for generating the cell-wide Ca2+ transients during ECC, Ca2+ release, via inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are also reported in cardiomyocytes to elicit ECC-modulating effects. Recent studies suggest that the localization of IP3Rs at dyads grant their ability to modify the occurrence of Ca2+ sparks (elementary Ca2+ release events that constitute cell wide Ca2+ releases associated with ECC) which may underlie their modulatory influence on ECC. Here, we aim to uncover the mechanism by which dyad-localized IP3Rs influence Ca2+ spark dynamics. To this end, we developed a mathematical model of the dyad that incorporates the behaviour of IP3Rs, in addition to RyRs, to reveal the impact of their activity on local Ca2+ handling and consequent Ca2+ spark occurrence and its properties. Consistent with published experimental data, our model predicts that the propensity for Ca2+ spark formation increases in the presence of IP3R activity. Our simulations support the hypothesis that IP3Rs elevate Ca2+ in the dyad, sensitizing proximal RyRs towards activation and hence Ca2+ spark formation. The stochasticity of IP3R gating is an important aspect of this mechanism. However, dyadic IP3R activity lowers the Ca2+ available in the junctional sarcoplasmic reticulum (JSR) for release, thus resulting in Ca2+ sparks with similar durations but lower amplitudes.
Collapse
Affiliation(s)
- Joshua Chung
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Agnė Tilūnaitė
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David Ladd
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hilary Hunt
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Edmund J Crampin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
18
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
19
|
Brandenburg S, Drews L, Schönberger HL, Jacob CF, Paulke NJ, Beuthner BE, Topci R, Kohl T, Neuenroth L, Kutschka I, Urlaub H, Kück F, Leha A, Friede T, Seidler T, Jacobshagen C, Toischer K, Puls M, Hasenfuß G, Lenz C, Lehnart SE. Direct proteomic and high-resolution microscopy biopsy analysis identifies distinct ventricular fates in severe aortic stenosis. J Mol Cell Cardiol 2022; 173:1-15. [PMID: 36084744 DOI: 10.1016/j.yjmcc.2022.08.363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.
Collapse
Affiliation(s)
- Sören Brandenburg
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany.
| | - Lena Drews
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Hanne-Lea Schönberger
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Christoph F Jacob
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Nora Josefine Paulke
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Bo E Beuthner
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Rodi Topci
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Lisa Neuenroth
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany
| | - Ingo Kutschka
- Clinic of Cardiothoracic & Vascular Surgery, University Medical Center Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Andreas Leha
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Friede
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Seidler
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Claudius Jacobshagen
- Department of Cardiology, Intensive Care & Angiology, Vincentius-Diakonissen-Hospital Karlsruhe, Germany
| | - Karl Toischer
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Miriam Puls
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Christof Lenz
- Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Stephan E Lehnart
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany.
| |
Collapse
|
20
|
Louch WE, Ullrich ND, Navedo MF, Macquaide N. Editorial: Nanodomain regulation of muscle physiology and alterations in disease. Front Physiol 2022; 13:1092304. [PMID: 36523550 PMCID: PMC9745436 DOI: 10.3389/fphys.2022.1092304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 09/23/2023] Open
Affiliation(s)
- William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States
| | - Niall Macquaide
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
21
|
Sheard TMD, Hurley ME, Smith AJ, Colyer J, White E, Jayasinghe I. Three-dimensional visualization of the cardiac ryanodine receptor clusters and the molecular-scale fraying of dyads. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210316. [PMID: 36189802 PMCID: PMC9527906 DOI: 10.1098/rstb.2021.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Clusters of ryanodine receptor calcium channels (RyRs) form the primary molecular machinery of intracellular calcium signalling in cardiomyocytes. While a range of optical super-resolution microscopy techniques have revealed the nanoscale structure of these clusters, the three-dimensional (3D) nanoscale topologies of the clusters have remained mostly unresolved. In this paper, we demonstrate the exploitation of molecular-scale resolution in enhanced expansion microscopy (EExM) along with various 2D and 3D visualization strategies to observe the topological complexities, geometries and molecular sub-domains within the RyR clusters. Notably, we observed sub-domains containing RyR-binding protein junctophilin-2 (JPH2) occupying the central regions of RyR clusters in the deeper interior of the myocytes (including dyads), while the poles were typically devoid of JPH2, lending to a looser RyR arrangement. By contrast, peripheral RyR clusters exhibited variable co-clustering patterns and ratios between RyR and JPH2. EExM images of dyadic RyR clusters in right ventricular (RV) myocytes isolated from rats with monocrotaline-induced RV failure revealed hallmarks of RyR cluster fragmentation accompanied by breaches in the JPH2 sub-domains. Frayed RyR patterns observed adjacent to these constitute new evidence that the destabilization of the RyR arrays inside the JPH2 sub-domains may seed the primordial foci of dyad remodelling observed in heart failure. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Thomas M. D. Sheard
- School of Biosciences, Faculty of Science, University of Sheffield, Sheffield S10 2TN, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew J. Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John Colyer
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ed White
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, University of Sheffield, Sheffield S10 2TN, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Shen X, van den Brink J, Bergan-Dahl A, Kolstad TR, Norden ES, Hou Y, Laasmaa M, Aguilar-Sanchez Y, Quick AP, Espe EKS, Sjaastad I, Wehrens XHT, Edwards AG, Soeller C, Louch WE. Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes. eLife 2022; 11:77725. [PMID: 35913125 PMCID: PMC9410709 DOI: 10.7554/elife.77725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Ryanodine receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that ‘dispersion’ of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hr triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA, which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.
Collapse
Affiliation(s)
- Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Terje R Kolstad
- Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Yufeng Hou
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Yuriana Aguilar-Sanchez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Ann Pepper Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | | | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
24
|
Hernández Mesa M, van den Brink J, Louch WE, McCabe KJ, Rangamani P. Nanoscale organization of ryanodine receptor distribution and phosphorylation pattern determines the dynamics of calcium sparks. PLoS Comput Biol 2022; 18:e1010126. [PMID: 35666763 PMCID: PMC9203011 DOI: 10.1371/journal.pcbi.1010126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/16/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Super-resolution imaging techniques have provided a better understanding of the relationship between the nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Recent data have indicated that this relationship is disrupted in heart failure (HF), as RyRs are dispersed into smaller and more numerous clusters. However, RyRs are also hyperphosphorylated in this condition, and this is reported to occur preferentially within the cluster centre. Thus, the combined impact of RyR relocalization and sensitization on Ca2+ spark generation in failing cardiomyocytes is likely complex and these observations suggest that both the nanoscale organization of RyRs and the pattern of phosphorylated RyRs within clusters could be critical determinants of Ca2+ spark dynamics. To test this hypothesis, we used computational modeling to quantify the relationships between RyR cluster geometry, phosphorylation patterns, and sarcoplasmic reticulum (SR) Ca2+ release. We found that RyR cluster disruption results in a decrease in spark fidelity and longer sparks with a lower amplitude. Phosphorylation of some RyRs within the cluster can play a compensatory role, recovering healthy spark dynamics. Interestingly, our model predicts that such compensation is critically dependent on the phosphorylation pattern, as phosphorylation localized within the cluster center resulted in longer Ca2+ sparks and higher spark fidelity compared to a uniformly distributed phosphorylation pattern. Our results strongly suggest that both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in HF.
Collapse
Affiliation(s)
- María Hernández Mesa
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jonas van den Brink
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
25
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
26
|
Lu F, Ma Q, Xie W, Liou CL, Zhang D, Sweat ME, Jardin BD, Naya FJ, Guo Y, Cheng H, Pu WT. CMYA5 establishes cardiac dyad architecture and positioning. Nat Commun 2022; 13:2185. [PMID: 35449169 PMCID: PMC9023524 DOI: 10.1038/s41467-022-29902-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiac excitation-contraction coupling requires dyads, the nanoscopic microdomains formed adjacent to Z-lines by apposition of transverse tubules and junctional sarcoplasmic reticulum. Disruption of dyad architecture and function are common features of diseased cardiomyocytes. However, little is known about the mechanisms that modulate dyad organization during cardiac development, homeostasis, and disease. Here, we use proximity proteomics in intact, living hearts to identify proteins enriched near dyads. Among these proteins is CMYA5, an under-studied striated muscle protein that co-localizes with Z-lines, junctional sarcoplasmic reticulum proteins, and transverse tubules in mature cardiomyocytes. During cardiac development, CMYA5 positioning adjacent to Z-lines precedes junctional sarcoplasmic reticulum positioning or transverse tubule formation. CMYA5 ablation disrupts dyad architecture, dyad positioning at Z-lines, and junctional sarcoplasmic reticulum Ca2+ release, leading to cardiac dysfunction and inability to tolerate pressure overload. These data provide mechanistic insights into cardiomyopathy pathogenesis by demonstrating that CMYA5 anchors junctional sarcoplasmic reticulum to Z-lines, establishes dyad architecture, and regulates dyad Ca2+ release.
Collapse
Affiliation(s)
- Fujian Lu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, Shanxi, China
| | - Carter L Liou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 430062, Wuhan, Hubei, China
| | - Mason E Sweat
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, 100191, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
27
|
Nolla‐Colomer C, Casabella‐Ramon S, Jimenez‐Sabado V, Vallmitjana A, Tarifa C, Herraiz‐Martínez A, Llach A, Tauron M, Montiel J, Cinca J, Chen SRW, Benitez R, Hove‐Madsen L. β2-adrenergic stimulation potentiates spontaneous calcium release by increasing signal mass and co-activation of ryanodine receptor clusters. Acta Physiol (Oxf) 2022; 234:e13736. [PMID: 34709723 DOI: 10.1111/apha.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
AIMS It is unknown how β-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). β2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS Most sparks are caused by activation of a single RyR2 cluster at baseline while β-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.
Collapse
Affiliation(s)
| | - Sergi Casabella‐Ramon
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | | | | | - Carmen Tarifa
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | - Adela Herraiz‐Martínez
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | | | - Manel Tauron
- Department of Cardiac Surgery Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Jose Montiel
- Department of Cardiac Surgery Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Juan Cinca
- IIB Sant Pau Barcelona Spain
- Universitat Autònoma de Barcelona Barcelona Spain
| | - S. R. Wayne Chen
- Department of Physiology and Pharmacology University of Calgary Alberta Canada
| | - Raul Benitez
- Department Automatic Control Univ. Politècnica de Catalunya Barcelona Spain
| | - Leif Hove‐Madsen
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| |
Collapse
|
28
|
Demydenko K, Roderick HL. The cardiomyocyte firestarter-RyR clusters ignite their neighbours after augmentation of Ca 2+ release by β-stimulation. Acta Physiol (Oxf) 2022; 234:e13798. [PMID: 35147280 DOI: 10.1111/apha.13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| |
Collapse
|
29
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Louch WE, Perdreau-Dahl H, Edwards AG. Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going? Front Physiol 2022; 13:834211. [PMID: 35356084 PMCID: PMC8959215 DOI: 10.3389/fphys.2022.834211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Complementary developments in microscopy and mathematical modeling have been critical to our understanding of cardiac excitation-contraction coupling. Historically, limitations imposed by the spatial or temporal resolution of imaging methods have been addressed through careful mathematical interrogation. Similarly, limitations imposed by computational power have been addressed by imaging macroscopic function in large subcellular domains or in whole myocytes. As both imaging resolution and computational tractability have improved, the two approaches have nearly merged in terms of the scales that they can each be used to interrogate. With this review we will provide an overview of these advances and their contribution to understanding ventricular myocyte function, including exciting developments over the last decade. We specifically focus on experimental methods that have pushed back limits of either spatial or temporal resolution of nanoscale imaging (e.g., DNA-PAINT), or have permitted high resolution imaging on large cellular volumes (e.g., serial scanning electron microscopy). We also review the progression of computational approaches used to integrate and interrogate these new experimental data sources, and comment on near-term advances that may unify understanding of the underlying biology. Finally, we comment on several outstanding questions in cardiac physiology that stand to benefit from a concerted and complementary application of these new experimental and computational methods.
Collapse
Affiliation(s)
- William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Harmonie Perdreau-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | | |
Collapse
|
31
|
Iaparov B, Baglaeva I, Zahradník I, Zahradníková A. Magnesium Ions Moderate Calcium-Induced Calcium Release in Cardiac Calcium Release Sites by Binding to Ryanodine Receptor Activation and Inhibition Sites. Front Physiol 2022; 12:805956. [PMID: 35145426 PMCID: PMC8821920 DOI: 10.3389/fphys.2021.805956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Ryanodine receptor channels at calcium release sites of cardiac myocytes operate on the principle of calcium-induced calcium release. In vitro experiments revealed competition of Ca2+ and Mg2+ in the activation of ryanodine receptors (RyRs) as well as inhibition of RyRs by Mg2+. The impact of RyR modulation by Mg2+ on calcium release is not well understood due to the technical limitations of in situ experiments. We turned instead to an in silico model of a calcium release site (CRS), based on a homotetrameric model of RyR gating with kinetic parameters determined from in vitro measurements. We inspected changes in the activity of the CRS model in response to a random opening of one of 20 realistically distributed RyRs, arising from Ca2+/Mg2+ interactions at RyR channels. Calcium release events (CREs) were simulated at a range of Mg2+-binding parameters at near-physiological Mg2+ and ATP concentrations. Facilitation of Mg2+ binding to the RyR activation site inhibited the formation of sparks and slowed down their activation. Impeding Mg-binding to the RyR activation site enhanced spark formation and speeded up their activation. Varying Mg2+ binding to the RyR inhibition site also dramatically affected calcium release events. Facilitation of Mg2+ binding to the RyR inhibition site reduced the amplitude, relative occurrence, and the time-to-end of sparks, and vice versa. The characteristics of CREs correlated dose-dependently with the effective coupling strength between RyRs, defined as a function of RyR vicinity, single-channel calcium current, and Mg-binding parameters of the RyR channels. These findings postulate the role of Mg2+ in calcium release as a negative modulator of the coupling strength among RyRs in a CRS, translating to damping of the positive feedback of the calcium-induced calcium-release mechanism.
Collapse
Affiliation(s)
| | | | | | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
32
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Hoang-Trong TM, Ullah A, Lederer WJ, Jafri MS. A Stochastic Spatiotemporal Model of Rat Ventricular Myocyte Calcium Dynamics Demonstrated Necessary Features for Calcium Wave Propagation. MEMBRANES 2021; 11:989. [PMID: 34940490 PMCID: PMC8706945 DOI: 10.3390/membranes11120989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a central role in the excitation and contraction of cardiac myocytes. Experiments have indicated that calcium release is stochastic and regulated locally suggesting the possibility of spatially heterogeneous calcium levels in the cells. This spatial heterogeneity might be important in mediating different signaling pathways. During more than 50 years of computational cell biology, the computational models have been advanced to incorporate more ionic currents, going from deterministic models to stochastic models. While periodic increases in cytoplasmic Ca2+ concentration drive cardiac contraction, aberrant Ca2+ release can underly cardiac arrhythmia. However, the study of the spatial role of calcium ions has been limited due to the computational expense of using a three-dimensional stochastic computational model. In this paper, we introduce a three-dimensional stochastic computational model for rat ventricular myocytes at the whole-cell level that incorporate detailed calcium dynamics, with (1) non-uniform release site placement, (2) non-uniform membrane ionic currents and membrane buffers, (3) stochastic calcium-leak dynamics and (4) non-junctional or rogue ryanodine receptors. The model simulates spark-induced spark activation and spark-induced Ca2+ wave initiation and propagation that occur under conditions of calcium overload at the closed-cell condition, but not when Ca2+ levels are normal. This is considered important since the presence of Ca2+ waves contribute to the activation of arrhythmogenic currents.
Collapse
Affiliation(s)
- Tuan Minh Hoang-Trong
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - Aman Ullah
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - William Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Mohsin Saleet Jafri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
34
|
Hou Y, Bai J, Shen X, de Langen O, Li A, Lal S, Dos Remedios CG, Baddeley D, Ruygrok PN, Soeller C, Crossman DJ. Nanoscale Organisation of Ryanodine Receptors and Junctophilin-2 in the Failing Human Heart. Front Physiol 2021; 12:724372. [PMID: 34690801 PMCID: PMC8531480 DOI: 10.3389/fphys.2021.724372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The disrupted organisation of the ryanodine receptors (RyR) and junctophilin (JPH) is thought to underpin the transverse tubule (t-tubule) remodelling in a failing heart. Here, we assessed the nanoscale organisation of these two key proteins in the failing human heart. Recently, an advanced feature of the t-tubule remodelling identified large flattened t-tubules called t-sheets, that were several microns wide. Previously, we reported that in the failing heart, the dilated t-tubules up to ~1 μm wide had increased collagen, and we hypothesised that the t-sheets would also be associated with collagen deposits. Direct stochastic optical reconstruction microscopy (dSTORM), confocal microscopy, and western blotting were used to evaluate the cellular distribution of excitation-contraction structures in the cardiac myocytes from patients with idiopathic dilated cardiomyopathy (IDCM) compared to myocytes from the non-failing (NF) human heart. The dSTORM imaging of RyR and JPH found no difference in the colocalisation between IDCM and NF myocytes, but there was a higher colocalisation at the t-tubule and sarcolemma compared to the corbular regions. Western blots revealed no change in the JPH expression but did identify a ~50% downregulation of RyR (p = 0.02). The dSTORM imaging revealed a trend for the smaller t-tubular RyR clusters (~24%) and reduced the t-tubular RyR cluster density (~35%) that resulted in a 50% reduction of t-tubular RyR tetramers in the IDCM myocytes (p < 0.01). Confocal microscopy identified the t-sheets in all the IDCM hearts examined and found that they are associated with the reticular collagen fibres within the lumen. However, the size and density of the RyR clusters were similar in the myocyte regions associated with t-sheets and t-tubules. T-tubule remodelling is associated with a reduced RyR expression that may contribute to the reduced excitation-contraction coupling in the failing human heart.
Collapse
Affiliation(s)
- Yufeng Hou
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jizhong Bai
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Xin Shen
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Oscar de Langen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Amy Li
- Department of Pharmacy and Biomedical Science, Health and Engineering, La Trobe University, Bendigo, VIC, Australia
| | - Sean Lal
- Faculty of Medicine and Science, University of Sydney, Sydney, NSW, Australia
| | | | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter N Ruygrok
- Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | | | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Fong SPT, Agrawal S, Gong M, Zhao J. Modulated Calcium Homeostasis and Release Events Under Atrial Fibrillation and Its Risk Factors: A Meta-Analysis. Front Cardiovasc Med 2021; 8:662914. [PMID: 34355025 PMCID: PMC8329373 DOI: 10.3389/fcvm.2021.662914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Atrial fibrillation (AF) is associated with calcium (Ca2+) handling remodeling and increased spontaneous calcium release events (SCaEs). Nevertheless, its exact mechanism remains unclear, resulting in suboptimal primary and secondary preventative strategies. Methods: We searched the PubMed database for studies that investigated the relationship between SCaEs and AF and/or its risk factors. Meta-analysis was used to examine the Ca2+ mechanisms involved in the primary and secondary AF preventative groups. Results: We included a total of 74 studies, out of the identified 446 publications from inception (1982) until March 31, 2020. Forty-five were primary and 29 were secondary prevention studies for AF. The main Ca2+ release events, calcium transient (standardized mean difference (SMD) = 0.49; I2 = 35%; confidence interval (CI) = 0.33–0.66; p < 0.0001), and spark amplitude (SMD = 0.48; I2 = 0%; CI = −0.98–1.93; p = 0.054) were enhanced in the primary diseased group, while calcium transient frequency was increased in the secondary group. Calcium spark frequency was elevated in both the primary diseased and secondary AF groups. One of the key cardiac currents, the L-type calcium current (ICaL) was significantly downregulated in primary diseased (SMD = −1.07; I2 = 88%; CI = −1.94 to −0.20; p < 0.0001) and secondary AF groups (SMD = −1.28; I2 = 91%; CI = −2.04 to −0.52; p < 0.0001). Furthermore, the sodium–calcium exchanger (INCX) and NCX1 protein expression were significantly enhanced in the primary diseased group, while only NCX1 protein expression was shown to increase in the secondary AF studies. The phosphorylation of the ryanodine receptor at S2808 (pRyR-S2808) was significantly elevated in both the primary and secondary groups. It was increased in the primary diseased and proarrhythmic subgroups (SMD = 0.95; I2 = 64%; CI = 0.12–1.79; p = 0.074) and secondary AF group (SMD = 0.66; I2 = 63%; CI = 0.01–1.31; p < 0.0001). Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression was elevated in the primary diseased and proarrhythmic drug subgroups but substantially reduced in the secondary paroxysmal AF subgroup. Conclusions: Our study identified that ICaL is reduced in both the primary and secondary diseased groups. Furthermore, pRyR-S2808 and NCX1 protein expression are enhanced. The remodeling leads to elevated Ca2+ functional activities, such as increased frequencies or amplitude of Ca2+ spark and Ca2+ transient. The main difference identified between the primary and secondary diseased groups is SERCA expression, which is elevated in the primary diseased group and substantially reduced in the secondary paroxysmal AF subgroup. We believe our study will add new evidence to AF mechanisms and treatment targets.
Collapse
Affiliation(s)
- Sarah Pei Ting Fong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shaleka Agrawal
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mengqi Gong
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Denham NC, Pearman CM, Madders GWP, Smith CER, Trafford AW, Dibb KM. Optimising Large Animal Models of Sustained Atrial Fibrillation: Relevance of the Critical Mass Hypothesis. Front Physiol 2021; 12:690897. [PMID: 34211405 PMCID: PMC8239221 DOI: 10.3389/fphys.2021.690897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Large animal models play an important role in our understanding of the pathophysiology of atrial fibrillation (AF). Our aim was to determine whether prospectively collected baseline variables could predict the development of sustained AF in sheep, thereby reducing the number of animals required in future studies. Our hypothesis was that the relationship between atrial dimensions, refractory periods and conduction velocity (otherwise known as the critical mass hypothesis) could be used for the first time to predict the development of sustained AF. METHODS Healthy adult Welsh mountain sheep underwent a baseline electrophysiology study followed by implantation of a neurostimulator connected via an endocardial pacing lead to the right atrial appendage. The device was programmed to deliver intermittent 50 Hz bursts of 30 s duration over an 8-week period whilst sheep were monitored for AF. RESULTS Eighteen sheep completed the protocol, of which 28% developed sustained AF. Logistic regression analysis showed only fibrillation number (calculated using the critical mass hypothesis as the left atrial diameter divided by the product of atrial conduction velocity and effective refractory period) was associated with an increased likelihood of developing sustained AF (Ln Odds Ratio 26.1 [95% confidence intervals 0.2-52.0] p = 0.048). A receiver-operator characteristic curve showed this could be used to predict which sheep developed sustained AF (C-statistic 0.82 [95% confidence intervals 0.59-1.04] p = 0.04). CONCLUSION The critical mass hypothesis can be used to predict sustained AF in a tachypaced ovine model. These findings can be used to optimise the design of future studies involving large animals.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Yin L, Zahradnikova A, Rizzetto R, Boncompagni S, Rabesahala de Meritens C, Zhang Y, Joanne P, Marqués-Sulé E, Aguilar-Sánchez Y, Fernández-Tenorio M, Villejoubert O, Li L, Wang YY, Mateo P, Nicolas V, Gerbaud P, Lai FA, Perrier R, Álvarez JL, Niggli E, Valdivia HH, Valdivia CR, Ramos-Franco J, Zorio E, Zissimopoulos S, Protasi F, Benitah JP, Gómez AM. Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circ Res 2021; 129:e35-e52. [PMID: 34111951 DOI: 10.1161/circresaha.121.319094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liheng Yin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Alexandra Zahradnikova
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Riccardo Rizzetto
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Simona Boncompagni
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | | | - Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Pierre Joanne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Elena Marqués-Sulé
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Physiotherapy, University of Valencia, Valencia, Spain (E.M.-S.)
| | - Yuriana Aguilar-Sánchez
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | | | - Olivier Villejoubert
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Linwei Li
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Yue Yi Wang
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Philippe Mateo
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | | | - Pascale Gerbaud
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - F Anthony Lai
- College of Medicine, Biomedical & Pharmaceutical Research Unit, QU Health, & Biomedical Research Centre, Qatar University, Doha, Qatar (F.A.L.)
| | | | - Julio L Álvarez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Institute of Cardiology, Havana, Cuba (J.L.A.)
| | - Ernst Niggli
- Physiology, University of Bern, Bern, Switzerland (M.F.-T., E.N.)
| | - Héctor H Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Carmen R Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Josefina Ramos-Franco
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | - Esther Zorio
- Cardiology Department and Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain (E.Z.).,Center for Biomedical Network Research on Cardiovascular diseases (CIBERCV), Madrid, Spain (E.Z.)
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Feliciano Protasi
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Ana M Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| |
Collapse
|
38
|
De Smet MA, Lissoni A, Nezlobinsky T, Wang N, Dries E, Pérez-Hernández M, Lin X, Amoni M, Vervliet T, Witschas K, Rothenberg E, Bultynck G, Schulz R, Panfilov AV, Delmar M, Sipido KR, Leybaert L. Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. J Clin Invest 2021; 131:137752. [PMID: 33621213 DOI: 10.1172/jci137752] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.
Collapse
Affiliation(s)
- Maarten Aj De Smet
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium.,Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Internal Medicine and
| | - Alessio Lissoni
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Timur Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Nan Wang
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marta Pérez-Hernández
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katja Witschas
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, New York University, New York, New York, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia.,Arrhythmia Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Iaparov BI, Zahradnik I, Moskvin AS, Zahradníková A. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J Gen Physiol 2021; 153:211900. [PMID: 33735373 PMCID: PMC7980188 DOI: 10.1085/jgp.202012685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
The dyads of cardiac myocytes contain ryanodine receptors (RYRs) that generate calcium sparks upon activation. To test how geometric factors of RYR distribution contribute to the formation of calcium sparks, which cannot be addressed experimentally, we performed in silico simulations on a large set of models of calcium release sites (CRSs). Our models covered the observed range of RYR number, density, and spatial arrangement. The calcium release function of CRSs was modeled by RYR openings, with an open probability dependent on concentrations of free Ca2+ and Mg2+ ions, in a rapidly buffered system, with a constant open RYR calcium current. We found that simulations of spontaneous sparks by repeatedly opening one of the RYRs in a CRS produced three different types of calcium release events (CREs) in any of the models. Transformation of simulated CREs into fluorescence signals yielded calcium sparks with characteristics close to the observed ones. CRE occurrence varied broadly with the spatial distribution of RYRs in the CRS but did not consistently correlate with RYR number, surface density, or calcium current. However, it correlated with RYR coupling strength, defined as the weighted product of RYR vicinity and calcium current, so that CRE characteristics of all models followed the same state-response function. This finding revealed the synergy between structure and function of CRSs in shaping dyad function. Lastly, rearrangements of RYRs simulating hypothetical experiments on splitting and compaction of a dyad revealed an increased propensity to generate spontaneous sparks and an overall increase in calcium release in smaller and more compact dyads, thus underlying the importance and physiological role of RYR arrangement in cardiac myocytes.
Collapse
Affiliation(s)
- Bogdan I Iaparov
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Ivan Zahradnik
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander S Moskvin
- Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
40
|
Munro ML, van Hout I, Aitken-Buck HM, Sugunesegran R, Bhagwat K, Davis PJ, Lamberts RR, Coffey S, Soeller C, Jones PP. Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters. Front Cell Dev Biol 2021; 9:633704. [PMID: 33718369 PMCID: PMC7947344 DOI: 10.3389/fcell.2021.633704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2 have been suggested to alter the activity of the channel, with remodeling of RyR2 clusters identified in pre-clinical models of AF and heart failure. Whether such remodeling occurs in human cardiac disease remains unclear. This study aimed to investigate the nanoscale organization of RyR2 clusters in AF patients – the first known study to examine this potential remodeling in diseased human cardiomyocytes. Right atrial appendage from cardiac surgery patients with paroxysmal or persistent AF, or without AF (non-AF) were examined using super-resolution (dSTORM) imaging. Significant atrial dilation and cardiomyocyte hypertrophy was observed in persistent AF patients compared to non-AF, with these two parameters significantly correlated. Interestingly, the clustering properties of RyR2 were remarkably unaltered in the AF patients. No significant differences were identified in cluster size (mean ∼18 RyR2 channels), density or channel packing within clusters between patient groups. The spatial organization of clusters throughout the cardiomyocyte was also unchanged across the groups. RyR2 clustering properties did not significantly correlate with patient characteristics. In this first study to examine nanoscale RyR2 organization in human cardiac disease, these findings indicate that RyR2 cluster remodeling is not an underlying mechanism contributing to altered channel function and subsequent arrhythmogenesis in human AF.
Collapse
Affiliation(s)
- Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hamish M Aitken-Buck
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Krishna Bhagwat
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
Fill M, Gillespie D. Simulating cardiac Ca 2+ release units: effects of RyR cluster size and Ca 2+ buffers on diastolic Ca 2+ leak. Pflugers Arch 2021; 473:435-446. [PMID: 33608799 DOI: 10.1007/s00424-021-02539-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Leak of Ca2+ out of the cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) during diastole is vital to regulate SR Ca2+ levels. This leak can become deleterious when large spontaneous RyR-mediated Ca2+ release events evoke proarrhythmic Ca2+ waves that can lead to delayed after-depolarizations. Here, we model diastolic SR Ca2+ leak at individual SR Ca2+ release sites using computer simulations of RyR arrays like those in the dyadic cleft. The results show that RyR arrays size has a significant effect on SR Ca2+ leak, with bigger arrays producing larger and more frequent Ca2+ release events. Moreover, big RyR arrays are more susceptible to small changes in the levels of dyadic Ca2+ buffers. Such changes in buffering shift Ca2+ leak from small Ca2+ release events (involving few open RyRs) to larger events (with many open RyRs). Moreover, by analyzing a large parameter space of possible buffering and SR Ca2+ loads, we find further evidence for the hypothesis that SR Ca2+ leak by RyR arrays can undergo a sudden phase transition.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
42
|
Capel RA, Bose SJ, Collins TP, Rajasundaram S, Ayagama T, Zaccolo M, Burton RAB, Terrar DA. IP 3-mediated Ca 2+ release regulates atrial Ca 2+ transients and pacemaker function by stimulation of adenylyl cyclases. Am J Physiol Heart Circ Physiol 2020; 320:H95-H107. [PMID: 33064562 PMCID: PMC7864251 DOI: 10.1152/ajpheart.00380.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias. NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.
Collapse
Affiliation(s)
- Rebecca A Capel
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thomas P Collins
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Skanda Rajasundaram
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca-Ann Beatrice Burton
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Derek A Terrar
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Phadumdeo VM, Weinberg SH. Dual regulation by subcellular calcium heterogeneity and heart rate variability on cardiac electromechanical dynamics. CHAOS (WOODBURY, N.Y.) 2020; 30:093129. [PMID: 33003911 PMCID: PMC7502019 DOI: 10.1063/5.0019313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heart rate constantly varies under physiological conditions, termed heart rate variability (HRV), and in clinical studies, low HRV is associated with a greater risk of cardiac arrhythmias. Prior work has shown that HRV influences the temporal patterns of electrical activity, specifically the formation of pro-arrhythmic alternans, a beat-to-beat alternation in the action potential duration (APD), or intracellular calcium (Ca) levels. We previously showed that HRV may be anti-arrhythmic by disrupting APD and Ca alternations in a homogeneous cardiac myocyte. Here, we expand on our previous work, incorporating variation in subcellular Ca handling (also known to influence alternans) into a nonlinear map model of a cardiac myocyte composed of diffusively coupled Ca release units (CRUs). Ca-related parameters and initial conditions of each CRU are varied to mimic subcellular Ca heterogeneity, and a stochastic pacing sequence reproduces HRV. We find that subcellular Ca heterogeneity promotes the formation of spatially discordant subcellular alternans patterns, which decreases whole cell Ca and APD alternation for low and moderate HRV, while high subcellular Ca heterogeneity and HRV both promote electromechanical desynchronization. Finally, we find that for low and moderate HRV, both the specific subcellular Ca-related parameters and the pacing sequences influence measures of electromechanical dynamics, while for high HRV, these measures depend predominantly on the pacing sequence. Our results suggest that pro-arrhythmic subcellular discordant alternans tend to form for low levels of HRV, while high HRV may be anti-arrhythmic due to mitigated influence from subcellular Ca heterogeneity and desynchronization of APD from Ca instabilities.
Collapse
Affiliation(s)
- Vrishti M. Phadumdeo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
44
|
Enhanced expansion microscopy to measure nanoscale structural and biochemical remodeling in single cells. Methods Cell Biol 2020; 161:147-180. [PMID: 33478687 DOI: 10.1016/bs.mcb.2020.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resolution is a key feature in microscopy which allows the visualization of the fine structure of cells. Much of the life processes within these cells depend on the three-dimensional (3D) complexity of these structures. Optical super-resolution microscopies are currently the preferred choice of molecular and cell biologists who seek to visualize the organization of specific protein species at the nanometer scale. Traditional super-resolution microscopy techniques have often been limited by sample thickness, axial resolution, specialist optical instrumentation and computationally-demanding software for assembling the images. In this chapter we detail the protocol, "enhanced expansion microscopy" (EExM), which combines X10 expansion microscopy with Airyscan confocal microscopy. EExM enables 15nm lateral (and 35nm axial) resolution, and is a relatively cheap, accessible option allowing single protein resolution for the non-specialist optical microscopists. We illustrate how EExM has been utilized for mapping the 3D topology of intracellular protein arrays at sample depths which are not always compatible with some of the traditional super-resolution techniques. We demonstrate that antibody markers can recognize and map post-translational modifications of individual proteins in addition to their 3D positions. Finally, we discuss the current uncertainties and validations in EExM which include the isotropy in gel expansion and assessment of the expansion factor (of resolution improvement).
Collapse
|
45
|
Two-variable nullcline analysis of ionic general equilibrium predicts calcium homeostasis in ventricular myocytes. PLoS Comput Biol 2020; 16:e1007572. [PMID: 32502205 PMCID: PMC7316341 DOI: 10.1371/journal.pcbi.1007572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/25/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
Ventricular contraction is roughly proportional to the amount of calcium released from the Sarcoplasmic Reticulum (SR) during systole. While it is rather straightforward to measure calcium levels and contractibility under different physiological conditions, the complexity of calcium handling during systole and diastole has made the prediction of its release at steady state impossible. Here we approach the problem analyzing the evolution of intracellular and extracellular calcium fluxes during a single beat which is away from homeostatic balance. Using an in-silico subcellular model of rabbit ventricular myocyte, we show that the high dimensional nonlinear problem of finding the steady state can be reduced to a two-variable general equilibrium condition where pre-systolic calcium level in the cytosol and in the SR must fulfill simultaneously two different equalities. This renders calcium homeostasis as a problem that can be studied in terms of its equilibrium structure, leading to precise predictions of steady state from single-beat measurements. We show how changes in ion channels modify the general equilibrium, as shocks would do in general equilibrium macroeconomic models. This allows us to predict when an enhanced entrance of calcium in the cell reduces its contractibility and explain why SERCA gene therapy, a change in calcium handling to treat heart failure, might fail to improve contraction even when it successfully increases SERCA expression. Cardiomyocytes, upon voltage excitation, release calcium, which leads to cell contraction. However, under some pathological conditions, calcium handling is impaired. Recently, SERCA gene therapy, whose aim is to improve Ca2+ sequestration by the Sarcoplasmic Reticulum (SR), has failed to improve the prognosis of patients with Heart Failure. This, together with recent counterintuitive results in calcium handling, has highlighted the need for a framework to understand calcium homeostasis across species and pathologies. We show here that the proper framework is a general equilibrium approach of two independent variables. The development of this framework allows us to find a possible mechanism for the failure of SERCA gene therapy even when it manages to increase Ca SERCA expression.
Collapse
|
46
|
Conditional Up-Regulation of SERCA2a Exacerbates RyR2-Dependent Ventricular and Atrial Arrhythmias. Int J Mol Sci 2020; 21:ijms21072535. [PMID: 32260593 PMCID: PMC7178036 DOI: 10.3390/ijms21072535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ryanodine receptor 2 (RyR2) and SERCA2a are two major players in myocyte calcium (Ca) cycling that are modulated physiologically, affected by disease and thus considered to be potential targets for cardiac disease therapy. However, how RyR2 and SERCA2a influence each others’ activities, as well as the primary and secondary consequences of their combined manipulations remain controversial. In this study, we examined the effect of acute upregulation of SERCA2a on arrhythmogenesis by conditionally overexpressing SERCA2a in a mouse model featuring hyperactive RyR2s due to ablation of calsequestrin 2 (CASQ2). CASQ2 knock-out (KO) mice were crossbred with doxycycline (DOX)-inducible SERCA2a transgenic mice to generate KO-TG mice. In-vivo ECG studies have shown that induction of SERCA2a (DOX+) overexpression markedly exacerbated both ventricular and atrial arrhythmias in vivo, compared with uninduced KO-TG mice (DOX-). Consistent with that, confocal microscopy in both atrial and ventricular myocytes demonstrated that conditional upregulation of SERCA2a enhanced the rate of occurrence of diastolic Ca release events. Additionally, deep RNA sequencing identified 17 downregulated genes and 5 upregulated genes in DOX+ mice, among which Ppp1r13l, Clcn1, and Agt have previously been linked to arrhythmias. Our results suggest that conditional upregulation of SERCA2a exacerbates hyperactive RyR2-mediated arrhythmias by further elevating diastolic Ca release.
Collapse
|
47
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
48
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
49
|
Abstract
Changes of intracellular Ca2+ concentration regulate many aspects of cardiac myocyte function. About 99% of the cytoplasmic calcium in cardiac myocytes is bound to buffers, and their properties will therefore have a major influence on Ca2+ signaling. This article considers the fundamental properties and identities of the buffers and how to measure them. It reviews the effects of buffering on the systolic Ca2+ transient and how this may change physiologically, and in heart failure and both atrial and ventricular arrhythmias, as well. It is concluded that the consequences of this strong buffering may be more significant than currently appreciated, and a fuller understanding is needed for proper understanding of cardiac calcium cycling and contractility.
Collapse
Affiliation(s)
- Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK (G.L.S.)
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, UK (D.A.E.)
| |
Collapse
|
50
|
Shiferaw Y, Aistrup GL, Louch WE, Wasserstrom JA. Remodeling Promotes Proarrhythmic Disruption of Calcium Homeostasis in Failing Atrial Myocytes. Biophys J 2019; 118:476-491. [PMID: 31889516 DOI: 10.1016/j.bpj.2019.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 01/31/2023] Open
Abstract
It is well known that heart failure (HF) typically coexists with atrial fibrillation (AF). However, until now, no clear mechanism has been established that relates HF to AF. In this study, we apply a multiscale computational framework to establish a mechanistic link between atrial myocyte structural remodeling in HF and AF. Using a spatially distributed model of calcium (Ca) signaling, we show that disruption of the spatial relationship between L-type Ca channels (LCCs) and ryanodine receptors results in markedly increased Ca content of the sarcoplasmic reticulum (SR). This increase in SR load is due to changes in the balance between Ca entry via LCCs and Ca extrusion due to the sodium-calcium exchanger after an altered spatial relationship between these signaling proteins. Next, we show that the increased SR load in atrial myocytes predisposes these cells to subcellular Ca waves that occur during the action potential (AP) and are triggered by LCC openings. These waves are common in atrial cells because of the absence of a well-developed t-tubule system in most of these cells. This distinct spatial architecture allows for the presence of a large pool of orphaned ryanodine receptors, which can fire and sustain Ca waves during the AP. Finally, we incorporate our atrial cell model in two-dimensional tissue simulations and demonstrate that triggered wave generation in cells leads to electrical waves in tissue that tend to fractionate to form wavelets of excitation. This fractionation is driven by the underlying stochasticity of subcellular Ca waves, which perturbs AP repolarization and consequently induces localized conduction block in tissue. We outline the mechanism for this effect and argue that it may explain the propensity for atrial arrhythmias in HF.
Collapse
Affiliation(s)
- Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California.
| | - Gary L Aistrup
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - J A Wasserstrom
- Department of Medicine (Cardiology) and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|