1
|
Inami N. Safety assessment of multiple systemic administration of human mesenchymal stem cell-conditioned medium for various chronic diseases. PLoS One 2025; 20:e0322497. [PMID: 40327651 PMCID: PMC12054860 DOI: 10.1371/journal.pone.0322497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Conditioned medium (CM) derived from human mesenchymal stem cells (MSCs) has shown potential as a therapeutic agent. However, the safety of its administration in human remains largely unexplored. This study evaluated the safety of multiple systemic administrations of MSC-CM, specifically adipose-derived and umbilical cord-derived MSC-CM, in 55 patients with various chronic diseases. Symptom assessments and blood tests were conducted before and after administration to monitor adverse events and measure the inflammatory marker C-reactive protein (CRP), respectively. The results demonstrated no serious adverse events attributed to MSC-CM administration. Although minor adverse events were observed, their causal relationship with MSC-CM remained unclear. Additionally, MSC-CM administration slightly reduced CRP levels, regardless of the administration route (intraarterial, intravenous, or inhalation). Additionally, a significant reduction in CRP levels was observed in patients with elevated CRP levels (CRP > 0.3) following MSC-CM administration. These findings suggest that repeated systemic administration of MSC-CM is likely safe and may have anti-inflammatory effects.
Collapse
Affiliation(s)
- Norihito Inami
- Seihoku Clinic, 775 Takawa, Oshibedani, Nishi-ku, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Dabravolski SA, Popov MA, Utkina AS, Babayeva GA, Maksaeva AO, Sukhorukov VN, Orekhov AN. Preclinical and mechanistic perspectives on adipose-derived stem cells for atherosclerotic cardiovascular disease treatment. Mol Cell Biochem 2025:10.1007/s11010-025-05285-0. [PMID: 40234340 DOI: 10.1007/s11010-025-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Adipose-derived mesenchymal stem cells (AD-MSCs) are a promising therapeutic modality for cardiovascular diseases due to their immunomodulatory, anti-inflammatory, and pro-angiogenic properties. This manuscript explores the current status, challenges, and future directions of AD-MSC therapies, focusing on their application in atherosclerosis (AS), myocardial infarction (MI), and heart failure (HF). Preclinical studies highlight AD-MSC's ability to stabilise atherosclerotic plaques, reduce inflammation, and enhance myocardial repair through mechanisms such as macrophage polarisation, endothelial protection, and angiogenesis. Genetically and pharmacologically modified AD-MSCs, including those overexpressing SIRT1, IGF-1, and PD-L1 or primed with bioactive compounds, exhibit superior efficacy compared to unmodified cells. These modifications enhance cell survival, immunopotency, and reparative capacity, showcasing the potential for tailored therapies. However, clinical translation faces significant hurdles. While recent clinical trials have confirmed the safety of AD-MSC therapy, their efficacy remains inconsistent, necessitating further optimisation of patient selection, dosing strategies, and delivery methods. Donor variability, particularly in patients with co-morbidities like type 2 diabetes (T2D) or obesity, impairs AD-MSC efficacy. Emerging research on extracellular vesicles (EVs) derived from AD-MSC offers a promising cell-free alternative, retaining the therapeutic benefits while mitigating risks. Future perspectives emphasise the need for multidisciplinary approaches to overcome these limitations. Strategies include refining genetic modifications, exploring EV-based therapies, and integrating personalised medicine and advanced diagnostic tools. By addressing these challenges, AD-MSC therapies hold the potential to revolutionise the treatment of cardiovascular diseases, providing innovative solutions to improve patient outcomes.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51P.O. Box 78, 2161002, Karmiel, Israel.
| | - Mikhail A Popov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
| | - Aleksandra S Utkina
- Department of Commodity Expertise and Customs Business, Plekhanov Russian University of Economics, 36, Stremyanny Lane, 115054, Moscow, Russia
| | - Gulalek A Babayeva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552, Moscow, Russia
| | - Anastasia O Maksaeva
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
- Sechenov First Moscow State Medical University, 8, Trubetskaya Street Building 2, 119991, Moscow, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
- Institute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street Building 4, 117418, Moscow, Russia
| |
Collapse
|
3
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Liu L, An Z, Zhang H, Wan X, Zhao X, Yang X, Tian J, Song X. Bone marrow mesenchymal stem cell-derived extracellular vesicles alleviate diabetes-exacerbated atherosclerosis via AMPK/mTOR pathway-mediated autophagy-related macrophage polarization. Cardiovasc Diabetol 2025; 24:48. [PMID: 39881287 PMCID: PMC11780875 DOI: 10.1186/s12933-025-02603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization. METHODS EVs were isolated from the supernatant of cultured BMSCs and characterized with transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. A diabetes-related atherosclerotic ApoE-/- mouse model was established through feeding with a high-fat diet (HFD) and streptozotocin (STZ). Histopathological analyses were carried out using Oil Red O, H&E, and Masson staining of the aorta. TEM and immunohistochemistry (IHC) were applied to evaluate autophagy, and immunofluorescence (IF) was used to identify macrophage polarization. RAW264.7 macrophages were induced with oxidized low-density lipoprotein (ox-LDL) and high glucose (HG), co-cultured with BMSC-EVs, and analyzed for macrophage proliferation, migration, and foam cell formation. RAW264.7 cells were transduced with autophagy marker mRFP-GFP-LC3 lentivirus and analyzed with IF and western blotting. RESULTS Diabetic mice (DA group) had larger aortic plaque areas and lower collagen content than the HFD mice. BMSC-EV treatment significantly reduced blood glucose, LDL levels, and aortic plaque areas while increasing collagen content. BMSC-EV-treated aortas contained a higher number of autophagosomes/autolysosomes, with increased expression of LC3BII correlating with decreased P62 levels and a lower proportion of M1 macrophages. In vitro, BMSC-EVs inhibited proliferation, migration, and foam cell formation in ox-LDL and HG-induced activated RAW264.7 cells. These effects were reversed by the autophagy blocker bafilomycin A1. Consistent with the in vivo findings, BMSC-EVs elevated levels of the autophagy-related protein LC3BII/I and decreased P62 in ox-LDL and HG-induced RAW264.7 cells. These cells also expressed the M1 macrophage markers CD86 and iNOS, but showed reduced expression of the M2 marker Arg-1. Further, BMSC-EVs decreased AMPKα and mTOR phosphorylation levels, which were blocked by the AMPK inhibitor compound C. CONCLUSIONS BMSC-EVs attenuate diabetes-exacerbated atherosclerosis by inhibiting vascular macrophage proliferation, migration, and foam cell formation via AMPK/mTOR signaling-regulated autophagy and macrophage polarization. BMSC-EVs thus hold promise as therapeutic agents for atherosclerosis.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taishan District, 271000, Tai'an, China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
5
|
You N, Liu G, Yu M, Chen W, Fei X, Sun T, Han M, Qin Z, Wei Z, Wang D. Reconceptualizing Endothelial-to-mesenchymal transition in atherosclerosis: Signaling pathways and prospective targeting strategies. J Adv Res 2025:S2090-1232(24)00627-1. [PMID: 39756576 DOI: 10.1016/j.jare.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The modification of endothelial cells (ECs) biological function under pathogenic conditions leads to the expression of mesenchymal stromal cells (MSCs) markers, defined as endothelial-to-mesenchymal transition (EndMT). Invisible in onset and slow in progression, atherosclerosis (AS) is a potential contributor to various atherosclerotic cardiovascular diseases (ASCVD). By triggering AS, EndMT, the "initiator" of AS, induces the progression of ASCVD such as coronary atherosclerotic heart disease (CHD) and ischemic cerebrovascular disease (ICD), with serious clinical complications such as myocardial infarction (MI) and stroke. In-depth research of the pathomechanisms of EndMT and identification of potential targeted therapeutic strategies hold considerable research value for the prevention and treatment of ASCVD-associated with delayed EndMT. Although previous studies have progressively unraveled the complexity of EndMT and its pathogenicity triggered by alterations in vascular microenvironmental factors, systematic descriptions of the most recent pathogenic roles of EndMT in the progression of AS, targeted therapeutic strategies, and their future research directions are scarce. AIM OF REVIEW We aim to provide new researchers with comprehensive knowledge of EndMT in AS. We exhaustively review the latest research advancements in the field and provide a theoretical basis for investigating EndMT, a biological process with sophisticated mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarized that altered hemodynamics with microenvironmental crosstalk consisting of inflammatory responses or glycolysis, oxidative stress, lactate or acetyl-CoA (Ac-CoA), fatty acid oxidation (FAO), intracellular iron overload, and transcription factors, including ELK1 and STAT3, modulate the EndMT and affect AS progression. In addition, we provide new paradigms for the development of promising therapeutic agents against these disease-causing processes and indicate promising directions and challenges that need to be addressed to elucidate the EndMT process.
Collapse
Affiliation(s)
- Nanlin You
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengchen Yu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyao Fei
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaosheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253032, China.
| |
Collapse
|
6
|
Cheng X, Li YL, Wang H, Zhang RJ, Fan KY, Qi XT, Zheng GP, Dong HL. Mesenchymal stem cell therapy in atherosclerosis: A bibliometric and visual analysis. World J Stem Cells 2024; 16:1062-1085. [PMID: 39734478 PMCID: PMC11669984 DOI: 10.4252/wjsc.v16.i12.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation, and extensive studies have demonstrated their therapeutic potential in atherosclerosis (AS). AIM To conduct a bibliometric analysis of studies on the use of MSC therapy for AS over the past two decades, assess key trends and provide insights for future research directions. METHODS We systematically searched the Web of Science Core Collection database for articles published between 1999 and 2023, yielding a total of 556 articles. Visual representation and bibliometric analysis of information and trends were facilitated using CiteSpace, the R package 'bibliometrix' and VOSviewer. RESULTS The analyzed articles were predominantly from 52 countries/regions, with prominent contributions from China and the United States. A cohort of 3057 authors contributed to these publications, with the works of Libby P distinguished by their influence and citation count. Int J Mol Sci has emerged as the journal with the highest publication volume, prominently disseminating influential papers and identifying citation outbreaks. Furthermore, our analysis identified current research hotspots within the field, focusing on vascular progenitor cells, inflammatory mechanisms, and extracellular vesicles. Emerging research frontiers, such as extracellular vesicles and oxidative stress, have been highlighted as areas of burgeoning interest. Finally, we offer perspectives on the status of research and future directions of MSC therapy in AS. CONCLUSION This comprehensive analysis provides valuable insights for advancing scientific research on MSC therapy for AS. By elucidating pivotal trends and research directions, this study aimed to foster innovation and promote the progress of disciplines in this field, thereby contributing to advancing scientific knowledge and clinical practice.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ya-Ling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Rui-Jing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ke-Yi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Xiao-Tong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Guo-Ping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Hong-Lin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China.
| |
Collapse
|
7
|
Zhang C, Lv P, Liang Q, Zhou J, Wu B, Xu W. Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis. Stem Cells Int 2024; 2024:5514771. [PMID: 39650749 PMCID: PMC11623994 DOI: 10.1155/sci/5514771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 12/11/2024] Open
Abstract
The regulation of macrophage polarization by mesenchymal stem cells (MSCs) is a prominent area of research but faces challenges due to limited MSC sources and incomplete understanding of underlying mechanisms. We sought to identify an accessible MSC source and investigate how MSCs regulate macrophage polarization using high-throughput sequencing. We isolated dental follicle MSCs from discarded human third molar dental follicles and cocultured them with THP-1-derived macrophages in the conditioned medium. Transcriptome sequencing identified differentially expressed genes (DEGs) in macrophages, integrating with multiomics database analysis to uncover polarization mechanisms. Our findings demonstrated successful MSC extraction from dental follicles, with the conditioned medium suppressing proinflammatory macrophage functions and influencing macrophage subtyping. MSCs, through paracrine signaling, activated the mitogen-activated protein kinase (MAPK) pathway, leading to extracellular regulated protein kinases (ERK)1/2 phosphorylation and upregulation of early growth response 1 (EGR1) protein. Elevated EGR1 levels inhibited inflammatory gene expression, inhibiting the pro-inflammatory immunoregulatory function of macrophages in inflammatory states. This study provides an efficient method for in vitro macrophage polarization identification. It offers insights into MSC-regulated polarization mechanisms, with potential clinical implications for anti-inflammatory therapy and immune regulation.
Collapse
Affiliation(s)
- Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Buling Wu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| |
Collapse
|
8
|
Ma W, Zhou T, Tang S, Gan L, Cao Y. Advantages and disadvantages of targeting senescent endothelial cells in cardiovascular and cerebrovascular diseases based on small extracellular vesicles. Expert Opin Ther Targets 2024; 28:1001-1015. [PMID: 39475108 DOI: 10.1080/14728222.2024.2421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION With the growth of the aging population, age-related diseases have become a heavy global burden, particularly cardiovascular and cerebrovascular diseases (CVDs). Endothelial cell (EC) senescence constitutes an essential factor in the development of CVDs, prompting increased focus on strategies to alleviate or reverse EC senescence. AREAS COVERED Small extracellular vesicles (sEVs) are cell-derived membrane structures, that contain proteins, lipids, RNAs, metabolites, growth factors and cytokines. They are widely used in treating CVDs, and show remarkable therapeutic potential in alleviating age-related CVDs by inhibiting or reversing EC senescence. However, unclear anti-senescence mechanism poses challenges for clinical application of sEVs, and a systematic review is lacking. EXPERT OPINION Targeting senescent ECs with sEVs in age-related CVDs treatment represents a promising therapeutic strategy, with modifying sEVs and their contents emerging as a prevalent approach. Nevertheless, challenges remain, such as identifying and selectively targeting senescent cells, understanding the consequences of removing senescent ECs and senescence-associated secretory phenotype (SASP), and assessing the side effects of therapeutic sEVs on CVDs. More substantial experimental and clinical data are needed to advance clinical practice.
Collapse
Affiliation(s)
- Wen Ma
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
10
|
Duan H, Tao N, Lv L, Yan KX, You YG, Mao Z, Wang CY, Li X, Jin JY, Wu CT, Wang H. Hepatocyte growth factor enhances the ability of dental pulp stem cells to ameliorate atherosclerosis in apolipoprotein E-knockout mice. World J Stem Cells 2024; 16:575-590. [PMID: 38817328 PMCID: PMC11135256 DOI: 10.4252/wjsc.v16.i5.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), a chronic inflammatory disease of blood vessels, is a major contributor to cardiovascular disease. Dental pulp stem cells (DPSCs) are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflammation-related diseases. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases. AIM To modify DPSCs with HGF (DPSC-HGF) and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout (ApoE-/-) mouse model and an in vitro cellular model. METHODS ApoE-/- mice were fed with a high-fat diet (HFD) for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs (DPSC-Null) through tail vein at weeks 4, 7, and 11, respectively, and the therapeutic efficacy and mechanisms were analyzed by histopathology, flow cytometry, lipid and glucose measurements, real-time reverse transcription polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay at the different time points of the experiment. An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells (HAOECs), and indirect co-cultured with supernatant of DPSC-Null (DPSC-Null-CM) or DPSC-HGF-CM, and the effect and mechanisms were analyzed by flow cytometry, RT-PCR and western blot. Nuclear factor-κB (NF-κB) activators and inhibitors were also used to validate the related signaling pathways. RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors, and the percentage of macrophages in the aorta, and DPSC-HGF treatment had more pronounced effects. DPSCs treatment had no effect on serum lipoprotein levels. The FACS results showed that DPSCs treatment reduced the percentages of monocytes, neutrophils, and M1 macrophages in the peripheral blood and spleen. DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-α stimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway. CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/- mice on a HFD, and could be of greater value in stem cell-based treatments for AS.
Collapse
Affiliation(s)
- Han Duan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Ning Tao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kai-Xin Yan
- Department of Cardiology, The Sixth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100037, China
| | - Yong-Gang You
- Department of Orthopaedics, The Fourth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang-Yao Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Yan Jin
- Third Cadet Regiment, School of Basic Medical Science, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
11
|
Bingyu W, Xi Y, Jiangfang L, Jianqing Z. Key chromatin regulator-related genes associated with the risk of coronary artery disease regulate the expression of HCFC1, RNF8, TNP1 and SET. Heliyon 2024; 10:e28685. [PMID: 38596069 PMCID: PMC11002600 DOI: 10.1016/j.heliyon.2024.e28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Chromatin regulators are indispensable upstream epigenetic regulators.The emergence and progression of atherosclerosis has been demonstrated to be influenced by smooth muscle-related chromatin regulators, such as ZEB2 and MAFF. However, specific chromatin regulators and their possible roles have not been clarified. Information was gathered from 51 patients diagnosed with coronary artery disease (CAD) and 50 individuals in good health from the GEO database. 440 genes were identified as having differential expression across the two datasets, and these genes were linked to cellular reactions. Enrichment of pathways related to histone modification and transcriptional regulatory factors was observed in GO and KEGG analyses. Four machine learning models (RF, SVM, GLM, and XGB) were developed using the expression profiles of 440 chromatin-associated genes in the CAD cohort to pinpoint genes with significant diagnostic potential. After evaluating residuals, root mean square errors, receiver operating characteristic curves, and immune-infiltration, four key genes (HCFC1, RNF8, TNP1, and SET) were identified. Gene expression in different blood vessel levels in atherosclerotic plaques in a mouse model of coronary artery disease showed significant variations. The gene expression levels in macrophages aligned with clinical data from the GEO database as expected. This discovery is crucial for future analysis and the prediction of drug and miRNA targets. In conclusion, we found that the four hub genes are important in the mechanism of CAD. These findings provide new ideas for the study of potential epigenetic predictive markers and therapeutic targets to be used in determining a treatment strategy for CAD.
Collapse
Affiliation(s)
- Wang Bingyu
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yang Xi
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Zhou Jianqing
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
12
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
14
|
Ma X, Xia J, Gong D, Zeng Z, Chen H, Li X. Cow's Milk Allergy May Induce Lipid Metabolism Disorder in BALB/c Mice via Exosomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2612-2623. [PMID: 38261277 DOI: 10.1021/acs.jafc.3c07154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Allergic diseases and lipid-metabolism-disorder-derived diseases are both significant public health issues. Recent studies have shown that exosomes are associated with the course of allergic diseases and are involved in lipid metabolism. In this study, exosomes derived from cow's milk allergic (CMA) mice medially loaded lesser proteins favoring cholesterol metabolism. The levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) in the serum were increased in the CMA mice, and hepatic lipid deposition was observed in the liver, but these phenomena were improved by inhibiting the exosome release. Specifically, the higher expression of the sterol regulatory element binding factor 2 (SREBP2) protein and HMGCR gene in the liver of CMA mice indicated an increase in cholesterol synthesis. NPC1L1 was also highly expressed in the small intestine of CMA mice, and fecal TC level was decreased, suggesting that the reabsorption of cholesterol was elevated. The biosynthesis of cholesterol, the reverse cholesterol transport (RCT) process, and the synthesis of bile acid in the liver were improved by inhibiting exosome release, as well as the reabsorption of cholesterol in the small intestine. This study has for the first time demonstrated the lipid metabolism disorder caused by CMA, especially the important role of exosomes in food allergies and lipid metabolism.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
16
|
Hu HJ, Xiao XR, Li T, Liu DM, Geng X, Han M, Cui W. Integrin beta 3-overexpressing mesenchymal stromal cells display enhanced homing and can reduce atherosclerotic plaque. World J Stem Cells 2023; 15:931-946. [PMID: 37900938 PMCID: PMC10600744 DOI: 10.4252/wjsc.v15.i9.931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Umbilical cord (UC) mesenchymal stem cell (MSC) transplantation is a potential therapeutic intervention for atherosclerotic vascular disease. Integrin beta 3 (ITGB3) promotes cell migration in several cell types. However, whether ITGB-modified MSCs can migrate to plaque sites in vivo and play an anti-atherosclerotic role remains unclear. AIM To investigate whether ITGB3-overexpressing MSCs (MSCsITGB3) would exhibit improved homing efficacy in atherosclerosis. METHODS UC MSCs were isolated and expanded. Lentiviral vectors encoding ITGB3 or green fluorescent protein (GFP) as control were transfected into MSCs. Sixty male apolipoprotein E-/- mice were acquired from Beijing Vital River Lab Animal Technology Co., Ltd and fed with a high-fat diet (HFD) for 12 wk to induce the formation of atherosclerotic lesions. These HFD-fed mice were randomly separated into three clusters. GFP-labeled MSCs (MSCsGFP) or MSCsITGB3 were transplanted into the mice intravenously via the tail vein. Immunofluorescence staining, Oil red O staining, histological analyses, western blotting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction were used for the analyses. RESULTS ITGB3 modified MSCs successfully differentiated into the "osteocyte" and "adipocyte" phenotypes and were characterized by positive expression (> 91.3%) of CD29, CD73, and CD105 and negative expression (< 1.35%) of CD34 and Human Leukocyte Antigen-DR. In a transwell assay, MSCsITGB3 showed significantly faster migration than MSCsGFP. ITGB3 overexpression had no effects on MSC viability, differentiation, and secretion. Immunofluorescence staining revealed that ITGB3 overexpression substantially enhanced the homing of MSCs to plaque sites. Oil red O staining and histological analyses further confirmed the therapeutic effects of MSCsITGB3, significantly reducing the plaque area. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction revealed that MSCITGB3 transplantation considerably decreased the inflammatory response in pathological tissues by improving the dynamic equilibrium of pro- and anti-inflammatory cytokines. CONCLUSION These results showed that ITGB3 overexpression enhanced the MSC homing ability, providing a potential approach for MSC delivery to plaque sites, thereby optimizing their therapeutic effects.
Collapse
Affiliation(s)
- Hai-Juan Hu
- First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China
| | - Xue-Ru Xiao
- Department of Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang 050030, Hebei Province, China
| | - Tong Li
- First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China
| | - De-Min Liu
- First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China
| | - Xue Geng
- First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Wei Cui
- First Division, Department of Cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
17
|
Zhu Y, Liao ZF, Mo MH, Xiong XD. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization. Biomolecules 2023; 13:1109. [PMID: 37509145 PMCID: PMC10377109 DOI: 10.3390/biom13071109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs), as part of the cellular secretome, have emerged as essential cell-cell communication regulators in multiple physiological and pathological processes. Previous studies have widely reported that mesenchymal stromal cell-derived EVs (MSC-EVs) have potential therapeutic applications in ischemic diseases or regenerative medicine by accelerating angiogenesis. MSC-EVs also exert beneficial effects on other vasculopathies, including atherosclerosis, aneurysm, vascular restenosis, vascular calcification, vascular leakage, pulmonary hypertension, and diabetic retinopathy. Consequently, the potential of MSC-EVs in regulating vascular homeostasis is attracting increasing interest. In addition to native or naked MSC-EVs, modified MSC-EVs and appropriate biomaterials for delivering MSC-EVs can be introduced to this area to further promote their therapeutic applications. Herein, we outline the functional roles of MSC-EVs in different vasculopathies and angiogenesis to elucidate how MSC-EVs contribute to maintaining vascular system homeostasis. We also discuss the current strategies to optimize their therapeutic effects, which depend on the superior bioactivity, high yield, efficient delivery, and controlled release of MSC-EVs to the desired regions, as well as the challenges that need to be overcome to allow their broad clinical translation.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Miao-Hua Mo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
18
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
19
|
Wang H, Ye X, Spanos M, Wang H, Yang Z, Li G, Xiao J, Zhou L. Exosomal Non-Coding RNA Mediates Macrophage Polarization: Roles in Cardiovascular Diseases. BIOLOGY 2023; 12:745. [PMID: 37237557 PMCID: PMC10215119 DOI: 10.3390/biology12050745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Extracellular vesicles (EVs) or exosomes are nanosized extracellular particles that contain proteins, DNA, non-coding RNA (ncRNA) and other molecules, which are widely present in biofluids throughout the body. As a key mediator of intercellular communication, EVs transfer their cargoes to target cells and activate signaling transduction. Increasing evidence shows that ncRNA is involved in a variety of pathological and physiological processes through various pathways, particularly the inflammatory response. Macrophage, one of the body's "gatekeepers", plays a crucial role in inflammatory reactions. Generally, macrophages can be classified as pro-inflammatory type (M1) or anti-inflammatory type (M2) upon their phenotypes, a phenomenon termed macrophage polarization. Increasing evidence indicates that the polarization of macrophages plays important roles in the progression of cardiovascular diseases (CVD). However, the role of exosomal ncRNA in regulating macrophage polarization and the role of polarized macrophages as an important source of EV in CVD remains to be elucidated. In this review, we summarize the role and molecular mechanisms of exosomal-ncRNA in regulating macrophage polarization during CVD development, focusing on their cellular origins, functional cargo, and their detailed effects on macrophage polarization. We also discuss the role of polarized macrophages and their derived EV in CVD as well as the therapeutic prospects of exosomal ncRNA in the treatment of CVD.
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Xuan Ye
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Michail Spanos
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huanxin Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Zijiang Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Guoping Li
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Lei Zhou
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
20
|
Li J, Huang Y, Sun H, Yang L. Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Front Immunol 2023; 14:1181308. [PMID: 37275920 PMCID: PMC10232739 DOI: 10.3389/fimmu.2023.1181308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) from multiple tissues have the capability of multidirectional differentiation and self-renewal. Many reports indicated that MSCs exert curative effects on a variety of age-related diseases through regeneration and repair of aging cells and organs. However, as research has progressed, it has become clear that it is the MSCs derived exosomes (MSC-Exos) that may have a real role to play, and that they can be modified to achieve better therapeutic results, making them even more advantageous than MSCs for treating disease. This review generalizes the biological characteristics of MSCs and exosomes and their mechanisms in treating age-related diseases, for example, MSCs and their exosomes can treat age-related diseases through mechanisms such as oxidative stress (OS), Wnt/β-catenin signaling pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and so on. In addition, current in vivo and in vitro trials are described, and ongoing clinical trials are discussed, as well as the prospects and challenges for the future use of exosomes in disease treatment. This review will provide references for using exosomes to treat age-related diseases.
Collapse
Affiliation(s)
- Jia Li
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang Z, Xie Z, Lin J, Sun Z, Li Z, Yu W, Zeng Y, Ye G, Li J, Ye F, Su Z, Che Y, Xu P, Zeng C, Wang P, Wu Y, Shen H. The m6A methyltransferase METTL16 negatively regulates MCP1 expression in mesenchymal stem cells during monocyte recruitment. JCI Insight 2023; 8:162436. [PMID: 36795489 PMCID: PMC10070103 DOI: 10.1172/jci.insight.162436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess strong immunoregulatory functions, one aspect of which is recruiting monocytes from peripheral vessels to local tissue by secreting monocyte chemoattractant protein 1 (MCP1). However, the regulatory mechanisms of MCP1 secretion in MSCs are still unclear. Recently, the N6-methyladenosine (m6A) modification was reported to be involved in the functional regulation of MSCs. In this study, we demonstrated that methyltransferase-like 16 (METTL16) negatively regulated MCP1 expression in MSCs through the m6A modification. Specifically, the expression of METTL16 in MSCs decreased gradually and was negatively correlated with the expression of MCP1 after coculture with monocytes. Knocking down METTL16 markedly enhanced MCP1 expression and the ability to recruit monocytes. Mechanistically, knocking down METTL16 decreased MCP1 mRNA degradation, which was mediated by the m6A reader YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2). We further revealed that YTHDF2 specifically recognized m6A sites on MCP1 mRNA in the CDS region and thus negatively regulated MCP1 expression. Moreover, an in vivo assay showed that MSCs transfected with METTL16 siRNA showed greater ability to recruit monocytes. These findings reveal a potential mechanism by which the m6A methylase METTL16 regulates MCP1 expression through YTHDF2-mediated mRNA degradation and suggest a potential strategy to manipulate MCP1 expression in MSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Feng Ye
- Department of Orthopedics, and
| | | | | | | | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | |
Collapse
|
22
|
Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, Brisson A, Buzas E, Emanueli C, Jansen F, Katsur M, Lacroix R, Lim SK, Mackman N, Mayr M, Menasché P, Nieuwland R, Sahoo S, Takov K, Thum T, Vader P, Wauben MHM, Witwer K, Sluijter JPG. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res 2023; 119:45-63. [PMID: 35325061 PMCID: PMC10233250 DOI: 10.1093/cvr/cvac031] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Chantal M Boulanger
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
| | - Elena Aikawa
- Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu i Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, 6900 Lugano, Switzerland
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alain Brisson
- Molecular Imaging and NanoBioTechnology, UMR-5248-CBMN, CNRS-University of Bordeaux-IPB, Bat. B14, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, HCEMM-SU and ELKH-SE Immune Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center, University Hospital Bonn, Bonn, Germany
| | - Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Romaric Lacroix
- Aix Marseille University, INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Haematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Pieter Vader
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 2, Utrecht, The Netherlands
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Takada Y, Takafuji Y, Mizukami Y, Ohira T, Kawao N, Okada K, Kaji H. Tumor Necrosis Factor-α Blunts the Osteogenic Effects of Muscle Cell-Derived Extracellular Vesicles by Affecting Muscle Cells. Calcif Tissue Int 2023; 112:377-388. [PMID: 36576505 PMCID: PMC9795943 DOI: 10.1007/s00223-022-01056-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs) play crucial roles in physiological and pathophysiological processes. Although studies have described muscle-bone interactions via humoral factors, we reported that EVs from C2C12 muscle cells (Myo-EVs) suppress osteoclast formation. Current clinical evidence suggests that inflammation induces both sarcopenia and osteoporosis. Although tumor necrosis factor-α (TNF-α) is a critical proinflammatory factor, the influences of TNF-α on muscle-bone interactions and Myo-EVs are still unclear. In the present study, we investigated the effects of TNF-α stimulation of C2C12 cells on osteoclast formation and osteoblastic differentiation modulated by Myo-EVs in mouse cells. TNF-α significantly decreased the protein amount in Myo-EVs, but did not affect the Myo-EV size distribution. TNF-α treatment of C2C12 myoblasts significantly decreased the suppression of osteoclast formation induced by Myo-EVs from C2C12 myoblasts in mouse bone marrow cells. Moreover, TNF-α treatment of C2C12 myoblasts in mouse preosteoclastic Raw 264.7 cells significantly limited the Myo-EV-induced suppression of osteoclast formation and decreased the Myo-EV-induced increase in mRNA levels of osteoclast formation-related genes. On the other hand, TNF-α treatment of C2C12 muscle cells significantly decreased the degree of Myo-EV-promoted mRNA levels of Osterix and osteocalcin, as well as ALP activity in mouse mesenchymal ST-2 cells. TNF-α also significantly decreased miR196-5p level in Myo-EVs from C2C12 myoblasts in quantitative real-time PCR. In conclusion, TNF-α stimulation of C2C12 muscle cells blunts both the osteoclast formation suppression and the osteoblastic differentiation promotion that occurs due to Myo-EVs in mouse cells. Thus, TNF-α may disrupt the muscle-bone interactions by direct Myo-EV modulation.
Collapse
Affiliation(s)
- Yuto Takada
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 5898511, Japan.
| |
Collapse
|
24
|
Takafuji Y, Kawao N, Ohira T, Mizukami Y, Okada K, Jo JI, Tabata Y, Kaji H. Extracellular vesicles secreted from mouse muscle cells improve delayed bone repair in diabetic mice. Endocr J 2023; 70:161-171. [PMID: 36198617 DOI: 10.1507/endocrj.ej22-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humoral factors that are secreted from skeletal muscles can regulate bone metabolism and contribute to muscle-bone relationships. Although extracellular vesicles (EVs) play important roles in physiological and pathophysiological processes, the roles of EVs that are secreted from skeletal muscles in bone repair have remained unclear. In the present study, we investigated the effects of the local administration of muscle cell-derived EVs on bone repair in control and streptozotocin-treated diabetic female mice. Muscle cell-derived EVs (Myo-EVs) were isolated from the conditioned medium from mouse muscle C2C12 cells by ultracentrifugation, after which Myo-EVs and gelatin hydrogel sheets were transplanted on femoral bone defect sites. The local administration of Myo-EVs significantly improved delayed bone repair that was induced by the diabetic state in mice 9 days after surgery. Moreover, this administration significantly enhanced the ratio of bone volume to tissue volume at the damaged sites 9 days after surgery in the control mice. Moreover, the local administration of Myo-EVs significantly blunted the number of Osterix-positive cells that were suppressed by the diabetic state at the damage sites after bone injury in mice. Additionally, Myo-EVs significantly blunted the mRNA levels of Osterix and alkaline phosphatase (ALP), and ALP activity was suppressed by advanced glycation end product 3 in ST2 cells that were treated with bone morphogenetic protein-2. In conclusion, we have shown for the first time that the local administration of Myo-EVs improves delayed bone repair that is induced by the diabetic state through an enhancement of osteoblastic differentiation in female mice.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Biomaterials, Osaka Dental University, Osaka 573-1121, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
25
|
Yang S, Xiao X, Huang Z, Chen Q, Li C, Niu C, Yang Y, Yang L, Feng L. Human adipose-derived mesenchymal stem cells-based microspheres ameliorate atherosclerosis progression in vitro. Stem Cells Dev 2023. [PMID: 36762935 DOI: 10.1089/scd.2022.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease associated with lipids deposition which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cells (ADSCs) encapsulated repair units could be an effective cure for the treatment of AS patients. Here, we encapsulate human ADSCs in collagen microspheres to fabricate stem cell repair units. Besides, we show that encapsulation in collagen microspheres and cultured in vitro for 14 days maintain the viability and stemness of human ADSCs. Moreover, we generate AS progression model and niche in vitro by combining hyperlipemia serum of AS patients with AS cell models. We further systematically demonstrate that human ADSCs-based microspheres could ameliorate AS progression by inhibiting oxidative stress injure, cell apoptosis, endothelial dysfunction, inflammation, and lipid accumulation. In addition, we perform transcriptomic analysis and functional studies to demonstrate how human ADSCs (3D cultured in microspheres) respond to AS niche compared with healthy microenvironment. These findings reveal a role for ADSCs-based microspheres in the treatment of AS and provide new ideas for stem cell therapy in cardiovascular disease. The results may have implications for improving the efficiency of human ADSC therapies by illuminating the mechanisms of human ADSCs exposed in special pathological niche.
Collapse
Affiliation(s)
- Shaojie Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Xiong Xiao
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Ziwei Huang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Qingyun Chen
- the Sixth People's Hospital of Chengdu, Department of Clinical Laboratory, China;
| | - Chenxi Li
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Chuan Niu
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Yuchu Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Liping Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Li Feng
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| |
Collapse
|
26
|
Karnas E, Dudek P, Zuba-Surma EK. Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Front Immunol 2023; 14:1120175. [PMID: 36761725 PMCID: PMC9902918 DOI: 10.3389/fimmu.2023.1120175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.
Collapse
|
27
|
Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Theofilis P, Sagris M, Tsioufis K, Androulakis E, Tousoulis D. Stem Cell-based Therapies in Cardiovascular Diseases: From Pathophysiology to Clinical Outcomes. Curr Pharm Des 2023; 29:2795-2801. [PMID: 37641986 DOI: 10.2174/1381612829666230828102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Over 20 years of intensified research in the field of stem cells brought about unprecedented possibilities in treating heart diseases. The investigators were initially fascinated by the idea of regenerating the lost myocardium and replacing it with new functional cardiomyocytes, but this was extremely challenging. However, the multifactorial effects of stem cell-based therapies beyond mere cardiomyocyte generation, caused by paracrine signaling, would open up new possibilities in treating cardiovascular diseases. To date, there is a strong body of evidence that the anti-inflammatory, anti-apoptotic, and immunomodulatory effects of stem cell therapy may alleviate atherosclerosis progression. In the present review, our objective is to provide a brief overview of the stem cell-based therapeutic options. We aim to delineate the pathophysiological mechanisms of their beneficial effects in cardiovascular diseases especially in coronary artery disease and to highlight some conclusions from important clinical studies in the field of regenerative medicine in cardiovascular diseases and how we could further move onwards.
Collapse
Affiliation(s)
- Charalampos Papastamos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Simantiris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Koumallos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Goh WX, Kok YY, Wong CY. Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis. Curr Pharm Des 2023; 29:2827-2840. [PMID: 37936453 DOI: 10.2174/0113816128272185231024115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen Xi Goh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Cai H, Wang Z, Tang W, Ke X, Zhao E. Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells. Front Genet 2022; 13:970699. [PMID: 36110206 PMCID: PMC9468880 DOI: 10.3389/fgene.2022.970699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular functions, such as cell proliferation, metabolism, autophagy, survival and cytoskeletal organization. Furthermore, mTOR is made up of three multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative mTOR complex 3. In recent years, increasing evidence has suggested that mTOR plays important roles in the differentiation and immune responses of mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal cellular and physiological functions, such as cell metabolism, survival and ageing, where it has emerged as a novel therapeutic target for ageing-related diseases. Therefore, the mTOR signaling may develop a large impact on the treatment of ageing-related diseases with MSCs. In this review, we discuss prospects for future research in this field.
Collapse
Affiliation(s)
- Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhan Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| |
Collapse
|
30
|
Li T, Zhou L, Fan M, Chen Z, Yan L, Lu H, Jia M, Wu H, Shan L. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Skin Aging of Nude Mice Through Autophagy-Mediated Anti-Senescent Mechanism. Stem Cell Rev Rep 2022; 18:2088-2103. [PMID: 35864432 DOI: 10.1007/s12015-022-10418-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Skin aging is a currently irreversible process, affected by increased oxidative stress, activated cellular senescence, and lacked regeneration of the dermal layer. Mesenchymal stem cells (MSCs), such as human umbilical cord-derived MSCs (hucMSCs), have pro-regeneration and anti-aging potencies. To explore whether hucMSCs can be used to treat skin aging, this study employed skin-aging model of nude mice to conduct in vivo assays, including biochemical analysis of superoxide dismutase (SOD) and malondialdehyde (MDA), gross observation, histopathological observation, and immunohistochemical analysis. To clarify how hucMSCs work on skin aging, this study employed skin-aging model of human dermal fibroblasts (HDFs) to conduct in vitro assays by applying conditional medium of hucMSCs (CMM), including wound healing assay, senescence staining, flow cytometric oxidative detection, real time PCR, and western blot analysis. The in vivo data demonstrated that hucMSCs dose-dependently removed wrinkles, smoothed skin texture, and increased dermal thickness and collagen production of aged skin by reversing SOD and MDA levels and up-regulating Col-1 and VEGF expressions, indicating anti-oxidative and pro-regenerative effects against skin aging. The in vitro data revealed that hucMSCs significantly reversed the senescence of HDFs by promoting cell migration, inhibiting ROS production, and restoring the overexpressions of oxidative and senescent markers through paracrine mode of action, and the paracrine mechanism was mediated by the inhibition of autophagy. This study provided novel knowledge regarding the anti-aging efficacy and paracrine mechanism of hucMSCs on skin, making hucMSCs-based therapy a promising regime for skin aging treatment.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Haishan Lu
- Department of Dermatology, PLA 903 Hospital, Hangzhou, China
| | - Ming Jia
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China. .,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| |
Collapse
|
31
|
Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022; 349:32-50. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/21/2022]
Abstract
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease. This review is focused on why EVs are such compelling drug carriers and how to release their fullest potentiality in renal therapeutics. We discuss the unique features of EVs compared to artificial nanoparticles and outline the engineering technologies and steps in developing EV-based therapeutics, with an emphasis on the emerging approaches to target renal cells and prolong kidney retention. We also explore the applications of EVs as natural therapeutics or as drug carriers in the treatment of renal disorders and present our views on the critical challenges in manufacturing EVs as next-generation renal therapeutics.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China; Department of Pathology and Pathophysiology, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| |
Collapse
|
32
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
33
|
Mikłosz A, Nikitiuk BE, Chabowski A. Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand? Obes Rev 2022; 23:e13413. [PMID: 34985174 PMCID: PMC9285813 DOI: 10.1111/obr.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases, and its prevalence is increasing worldwide. Stem cell-based therapies have become a promising tool for therapeutic intervention. Among them are adipose-derived mesenchymal stem cells (ADMSCs), secreting numerous bioactive molecules, like growth factors, cytokines, and chemokines. Their unique features, including immunosuppressive and immunomodulatory properties, make them an ideal candidates for clinical applications. Numerous experimental studies have shown that ADMSCs can improve pancreatic islet cell viability and function, ameliorate hyperglycemia, improve insulin sensitivity, restore liver function, counteract dyslipidemia, lower pro-inflammatory cytokines, and reduce oxidative stress in the animal models. These results prompted scientists to use ADMSCs clinically. However, up to date, there have been few clinical studies or ongoing trails using ADMSCs to treat metabolic disorders such as type 2 diabetes mellitus (T2DM) or liver cirrhosis. Most human studies have implemented autologous ADMSCs with minimal risk of cellular rejection. Because the functionality of ADMSCs is significantly reduced in subjects with obesity and/or metabolic syndrome, their efficacy is questioned. ADMSCs transplantation may offer a potential therapeutic approach for the treatment of metabolic complications of obesity, but randomized controlled trials are required to establish their safety and efficacy in humans prior to routine clinical use.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
34
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
35
|
Jin QH, Kim HK, Na JY, Jin C, Seon JK. Anti-inflammatory effects of mesenchymal stem cell-conditioned media inhibited macrophages activation in vitro. Sci Rep 2022; 12:4754. [PMID: 35306509 PMCID: PMC8934344 DOI: 10.1038/s41598-022-08398-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) on macrophages have been reported, however, the underlying mechanism remains unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of MSCs on lipopolysaccharide (LPS)-stimulated macrophages and the subsequent downregulation of their inflammatory mediators. Macrophages were treated with conditioned media from MSCs, without a subsequent change of MSCs responding to the inflammation state. This study also evaluated whether the interleukin (IL) 4 stimulation of MSCs can improve their anti-inflammatory effects. Results demonstrated that the MSC-conditioned medium (MSC-CM) stimulated with IL4 significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression of LPS-activated macrophages. MSC-CM treatment inhibited the mRNA transcription of the cytokines IL1β and IL6, the chemokines C–C motif ligand (CCL) 2, CCL3, CCL4, and CCL5, and the chemokine receptors CCR2 and CCR5, in LPS-stimulated macrophages. As revealed through western blot and immunofluorescence analyses, the phosphorylation of p38, JNK, and ERK MAPKs, as well as phosphorylation of NF-κB in stimulated macrophages, were also inhibited by the MSC-CM. Further, more potent anti-inflammatory effects were observed with the IL4-stimulated cells, compared with those observed with the non-stimulated cells. The MSC-CM demonstrated a potent anti-inflammatory effect on LPS-activated macrophages, while the IL4 stimulation improved this effect. These findings indicate that MSCs could exert anti-inflammatory effects on macrophages, and may be considered as a therapeutic agent in inflammation treatment.
Collapse
|
36
|
Zhilong Huoxue Tongyu Capsule Alleviated the Pyroptosis of Vascular Endothelial Cells Induced by ox-LDL through miR-30b-5p/NLRP3. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3981350. [PMID: 35126599 PMCID: PMC8813228 DOI: 10.1155/2022/3981350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Background Our previous studies have demonstrated a protective role of Zhilong Huoxue Tongyu capsule in atherosclerosis (AS); however, the molecular mechanisms are unclear. Methods Human coronary artery endothelial cells (HCAECs) were induced with oxidized low-density lipoprotein (ox-LDL) to obtain cellular AS models. Then, the medicated serum of Zhilong Huoxue Tongyu capsule was obtained and used for treatment with ox-LDL-induced HCAECs. The cell viability was detected by CCK-8 assay. Besides, the binding between miR-30b-5p and NLRP3 was determined by the dual-luciferase reporter gene system assay. Furthermore, ox-LDL-induced HCAECs were transfected with miR-30b-5p mimic or miR-30b-5p inhibitor. The pyroptosis of HCAECs was assessed by flow cytometry, LDH content detection, and qRT-PCR assays. Results 10% medicated serum of Zhilong Huoxue Tongyu capsule was the maximum nontoxic concentration and it was used in subsequent assays. The rate of pyroptosis, LDH content, and the mRNA expression level of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were prominently enhanced after HCAECs were induced by ox-LDL, which were markedly rescued with medicated serum of Zhilong Huoxue Tongyu capsule. In addition, the medicated serum of Zhilong Huoxue Tongyu capsule significantly enhanced the ox-LDL-induced reduction of miR-30b-5p level. NLRP3 could bind to miR-30b-5p and was negatively corrected with miR-30b-5p. Moreover, all the rates of pyroptosis, LDH content, and the mRNA expression levels of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were further observably decreased after ox-LDL-induced HCAECs treated with medicated serum were transfected with miR-30b-5p mimic, while these were significantly rescued with transfection of miR-30b-5p inhibitor. Conclusion Zhilong Huoxue Tongyu capsule alleviated the pyroptosis of vascular endothelial cells induced by ox-LDL through miR-30b-5p/NLRP3.
Collapse
|
37
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Exosomes in cardiovascular diseases: a blessing or a sin for the mankind. Mol Cell Biochem 2022; 477:833-847. [PMID: 35064412 DOI: 10.1007/s11010-021-04328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) comprises disorders of blood vessels and heart. Multiple cells in the heart suggests that hetero-cellular communication, which is an important aspect in heart functioning and there is a need to elucidate the way in which this inter-cellular communication occurs. Now a days, exosomal research has gained much attention. Exosomes, nano-shuttles, are EVs with diameters ranging from 40 to 160 nm (average 100 nm), secreted by body cells. These vesicles act as cell-to-cell communicators and are carriers of important biomolecules such as RNAs, miRNAs, Proteins and lipids. Exosomes can change the gene expression of the recipient cells, thereby, changes the cellular characteristics. Exosomes have known to play an essential role in protection as well as progression of various cardiovascular diseases. In the present review, role of exosomes in various CVDs have been discussed.
Collapse
|
39
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
40
|
Chang YJ, Wang KC. Therapeutic perspectives of extracellular vesicles and extracellular microRNAs in atherosclerosis. CURRENT TOPICS IN MEMBRANES 2021; 87:255-277. [PMID: 34696887 DOI: 10.1016/bs.ctm.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular signaling molecules, such as growth factors, cytokines, and hormones, regulate cell behaviors and fate through endocrine, paracrine, and autocrine actions and play essential roles in maintaining tissue homeostasis. MicroRNAs, an important class of posttranscriptional modulators, could stably present in extracellular space and body fluids and participate in intercellular communication in health and diseases. Indeed, recent studies demonstrated that microRNAs could be secreted through vesicular and non-vesicular routes, transported in body fluids, and then transmitted to recipient cells to regulate target gene expression and signaling events. Over the past decade, a great deal of effort has been made to investigate the functional roles of extracellular vesicles and extracellular microRNAs in pathological conditions. Emerging evidence suggests that altered levels of extracellular vesicles and extracellular microRNAs in body fluids, as part of the cellular responses to atherogenic factors, are associated with the development of atherosclerosis. This review article provides a brief overview of extracellular vesicles and perspectives of their applications as therapeutic tools for cardiovascular pathologies. In addition, we highlight the role of extracellular microRNAs in atherogenesis and offer a summary of circulating microRNAs in liquid biopsies associated with atherosclerosis.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
41
|
Patel N, Chin DD, Chung EJ. Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS JOURNAL 2021; 23:95. [PMID: 34312734 DOI: 10.1208/s12248-021-00621-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CAD) due to atherosclerosis is a major cause of death worldwide. The development of atherosclerosis involves intercellular communication facilitated by exosomes secreted from vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), immune cells, and platelets. In this review, we summarize the current understanding of exosome biogenesis and uptake, and discuss atherogenic and atheroprotective functions of exosomes secreted from these cell types. In addition, we examine the potential of enhancing the therapeutic and targeting ability of exosomes exhibiting atheroprotective function by drug loading and surface modification with targeting ligands. We conclude with current challenges associated with exosome engineering for therapeutic use.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA. .,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA. .,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, California, Los Angeles, 90089, USA. .,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA.
| |
Collapse
|
42
|
Takafuji Y, Tatsumi K, Kawao N, Okada K, Muratani M, Kaji H. Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicless. PLoS One 2021; 16:e0250741. [PMID: 33961664 PMCID: PMC8104413 DOI: 10.1371/journal.pone.0250741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The interactions between skeletal muscle and bone have been recently noted, and muscle-derived humoral factors related to bone metabolism play crucial roles in the muscle/bone relationships. We previously reported that extracellular vesicles from mouse muscle C2C12 cells (Myo-EVs) suppress osteoclast formation in mice. Although mechanical stress is included in extrinsic factors which are important for both muscle and bone, the detailed roles of mechanical stress in the muscle/bone interactions have still remained unknown. In present study, we examined the effects of fluid flow shear stress (FFSS) to C2C12 cells on the physiological actions of muscle cell-derived EV. Applying FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in mouse bone marrow cells in the presence of receptor activator nuclear factor κB ligand (RANKL). Moreover, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed mitochondria biogenesis genes during osteoclast formation with RANKL treatment. In addition, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in Raw264.7 cells in the presence of RANKL. Small RNA-seq-analysis showed that FFSS elevated the expression of miR196a-5p and miR155-5p with the suppressive actions of osteoclast formation and low expression in mouse bone cells. On the other hand, muscle cell-derived EVs with or without FFSS to C2C12 cells did not affect the expression of osteogenic genes, alkaline phosphatase activity and mineralization in mouse osteoblasts. In conclusion, we first showed that FFSS to C2C12 cells enhances the suppressive effects of muscle cell-derived EVs on osteoclast formation in mouse cells. Muscle cell-derived EVs might be partly involved in the effects of mechanical stress on the muscle/bone relationships.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masafumi Muratani
- Faculty of Medicine, Department of Genome Biology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
43
|
Takafuji Y, Tatsumi K, Kawao N, Okada K, Muratani M, Kaji H. MicroRNA-196a-5p in Extracellular Vesicles Secreted from Myoblasts Suppresses Osteoclast-like Cell Formation in Mouse Cells. Calcif Tissue Int 2021; 108:364-376. [PMID: 33090325 DOI: 10.1007/s00223-020-00772-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Muscle/bone interaction has been recently noted. Extracellular vesicles (EVs) play a vital role in physiological and pathophysiological processes by transferring microRNA (miRNA) to distant tissues. We previously reported that EVs secreted from C2C12 myoblasts (Myo-EVs) suppress osteoclast differentiation. In the present study, we identified 4 miRNAs in Myo-EVs that suppressed osteoclast-like cell formation in Raw264.7 cells using small RNA sequencing analysis. Among them, miR-196a-5p expression was higher in C2C12 cells compared to mouse osteoblasts and bone marrow cells. Transfection of miR-196a-5p mimic suppressed the mRNA levels of osteoclast-related genes and mitochondrial energy metabolism induced by receptor activator of nuclear factor-κB ligand in Raw264.7 cells. In contrast, miR-196a-5p mimic enhanced osteoblastic differentiation in ST-2 cells and MC3T3-E1 cells. In conclusion, we demonstrated that miR-196-5p suppresses osteoclast-like cell formation and mitochondrial energy metabolism in mouse cells, suggesting that it might be a crucial factor for muscle/bone interaction via EVs.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Faculty of Medicine, Department of Physiology and Regenerative Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Kohei Tatsumi
- Faculty of Medicine, Department of Physiology and Regenerative Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Naoyuki Kawao
- Faculty of Medicine, Department of Physiology and Regenerative Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Kiyotaka Okada
- Faculty of Medicine, Department of Physiology and Regenerative Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Masafumi Muratani
- Faculty of Medicine, Department of Genome Biology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaji
- Faculty of Medicine, Department of Physiology and Regenerative Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan.
| |
Collapse
|
44
|
Kizilay Mancini O, Huynh DN, Menard L, Shum-Tim D, Ong H, Marleau S, Colmegna I, Servant MJ. Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc Res 2021; 117:756-766. [PMID: 32339220 PMCID: PMC7898947 DOI: 10.1093/cvr/cvaa118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Diabetes is a conventional risk factor for atherosclerotic cardiovascular disease and myocardial infarction (MI) is the most common cause of death among these patients. Mesenchymal stromal cells (MSCs) in patients with type 2 diabetes mellitus (T2DM) and atherosclerosis have impaired ability to suppress activated T-cells (i.e. reduced immunopotency). This is mediated by an inflammatory shift in MSC-secreted soluble factors (i.e. pro-inflammatory secretome) and can contribute to the reduced therapeutic effects of autologous T2DM and atherosclerosis-MSC post-MI. The signalling pathways driving the altered secretome of atherosclerosis- and T2DM-MSC are unknown. Specifically, the effect of IκB kinase β (IKKβ) modulation, a key regulator of inflammatory responses, on the immunopotency of MSCs from T2DM patients with advanced atherosclerosis has not been studied. METHODS AND RESULTS MSCs were isolated from adipose tissue obtained from patients with (i) atherosclerosis and T2DM (atherosclerosis+T2DM MSCs, n = 17) and (ii) atherosclerosis without T2DM (atherosclerosis MSCs, n = 17). MSCs from atherosclerosis+T2DM individuals displayed an inflammatory senescent phenotype and constitutively expressed active forms of effectors of the canonical IKKβ nuclear factor-κB transcription factors inflammatory pathway. Importantly, this constitutive pro-inflammatory IKKβ signature resulted in an altered secretome and impaired in vitro immunopotency and in vivo healing capacity in an acute MI model. Notably, treatment with a selective IKKβ inhibitor or IKKβ knockdown (KD) (clustered regularly interspaced short palindromic repeats/Cas9-mediated IKKβ KD) in atherosclerosis+T2DM MSCs reduced the production of pro-inflammatory secretome, increased survival, and rescued their immunopotency both in vitro and in vivo. CONCLUSIONS Constitutively active IKKβ reduces the immunopotency of atherosclerosis+T2DM MSC by changing their secretome composition. Modulation of IKKβ in atherosclerosis+T2DM MSCs enhances their myocardial repair ability.
Collapse
Affiliation(s)
- Ozge Kizilay Mancini
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - David N Huynh
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Liliane Menard
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Surgical Research, Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Huy Ong
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Ines Colmegna
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marc J Servant
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
45
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
46
|
Ni H, Xu S, Chen H, Dai Q. Nicotine Modulates CTSS (Cathepsin S) Synthesis and Secretion Through Regulating the Autophagy-Lysosomal Machinery in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:2054-2069. [PMID: 32640907 DOI: 10.1161/atvbaha.120.314053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Increased CTSS (cathepsin S) has been reported to play a critical role in atherosclerosis progression. Both CTSS synthesis and secretion are essential for exerting its functions. However, the underlying mechanisms contributing to CTSS synthesis and secretion in atherosclerosis remain unclear. Approach and Results: In this study, we showed that nicotine activated autophagy and upregulated CTSS expression in vascular smooth muscle cells and in atherosclerotic plaques. Western blotting and immunofluorescent staining showed that nicotine inhibited the mTORC1 (mammalian target of rapamycin complex 1) activity, promoted the nuclear translocation of TFEB (transcription factor EB), and upregulated the expression of CTSS. Chromatin immunoprecipitation-qualificative polymerase chain reaction, electrophoretic mobility shift assay, and luciferase reporter assay further demonstrated that TFEB directly bound to the CTSS promoter. mTORC1 inhibition by nicotine or rapamycin promoted lysosomal exocytosis and CTSS secretion. Live cell assays and IP-MS (immunoprecipitation-mass spectrometry) identified that the interactions involving Rab10 (Rab10, member RAS oncogene family) and mTORC1 control CTSS secretion. Nicotine promoted vascular smooth muscle cell migration by upregulating CTSS, and CTSS inhibition suppressed nicotine-induced atherosclerosis in vivo. CONCLUSIONS We concluded that nicotine mediates CTSS synthesis and secretion through regulating the autophagy-lysosomal machinery, which offers a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huaner Ni
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shuang Xu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hangwei Chen
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qiuyan Dai
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
47
|
Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10:8111-8129. [PMID: 32724461 PMCID: PMC7381724 DOI: 10.7150/thno.47865] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Dysregulated inflammation is a complicated pathological process involved in various diseases, and the treatment of inflammation-linked disorders currently represents an enormous global burden. Extracellular vesicles (EVs) are nanosized, lipid membrane-enclosed vesicles secreted by virtually all types of cells, which act as an important intercellular communicative medium. Considering their capacity to transfer bioactive substances, both unmodified and engineered EVs are increasingly being explored as potential therapeutic agents or therapeutic vehicles. Moreover, as the nature's own delivery tool, EVs possess many desirable advantages, such as stability, biocompatibility, low immunogenicity, low toxicity, and biological barrier permeability. The application of EV-based therapy to combat inflammation, though still in an early stage of development, has profound transformative potential. In this review, we highlight the recent progress in EV engineering for inflammation targeting and modulation, summarize their preclinical applications in the treatment of inflammatory disorders, and present our views on the anti-inflammatory applications of EV-based nanotherapeutics.
Collapse
|
48
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This review summarizes the effects of microparticles and exosomes in the progression of atherosclerosis and the prospect for their diagnostic and therapeutic potentials. RECENT FINDINGS Microparticles and exosomes can induce endothelial dysfunction, vascular inflammation, coagulation, thrombosis, and calcification via their components of proteins and noncoding RNAs, which may promote the progression of atherosclerosis. The applications of microparticles and exosomes become the spotlight of clinical diagnosis and therapy. Microparticles and exosomes are members of extracellular vesicles, which are generated in various cell types by different mechanisms of cell membrane budding and multivesicular body secretion, respectively. They are important physiologic pathways of cell-to-cell communication in vivo and act as messengers accelerating or alleviating the process of atherosclerosis. Microparticles and exosomes may become diagnostic biomarkers and therapeutic approaches of atherosclerosis.
Collapse
|
50
|
Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Kaji H. Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism. Bone 2020; 134:115298. [PMID: 32092478 DOI: 10.1016/j.bone.2020.115298] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Recent reports have described the interactions of muscle and bone. Various muscle-derived humoral factors, known as myokines, affect bone. Although extracellular vesicles (EVs) play a vital role in physiological and pathophysiological processes by transferring their contents to distant tissues during bone metabolism, the roles of EVs in the muscle-bone interactions remain unknown. In the present study, we investigated the effects of EVs secreted from mouse muscle C2C12 cells on mouse bone cells and mitochondrial biogenesis. EVs secreted from C2C12 cells (Myo-EVs) were isolated from the conditioned medium of C2C12 cells by ultracentrifugation. Myo-EVs suppressed osteoclast formation as well as the expression of tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cells cytoplasmic 1 and dendritic cell-specific transmembrane protein induced by receptor activator of nuclear factor κB ligand (RANKL) in mouse bone marrow cells and preosteoclastic Raw264.7 cells. Moreover, Myo-EVs suppressed oxygen consumption and mRNA expression of the mitochondrial biogenesis markers enhanced by RANKL in these cells. However, Myo-EVs did not affect the phenotypes or mitochondrial biogenesis of mouse primary osteoblasts. In conclusion, the present study showed for the first time that Myo-EVs suppress osteoclast formation and mitochondrial energy metabolism in mouse bone marrow and Raw264.7 cells. EVs secreted from skeletal muscles might be a crucial mediator of muscle-bone interactions.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|