1
|
Kim TO, Geris JM, Flanagan JM, Grace RF, Lambert MP, O’Farrell C, Rose MJ, Shimano KA, Niss O, Neunert C, Nakano TA, MacMath D, Dinu B, Kirk SE, Neufeld EJ, Despotovic JM, Scheurer ME, Grimes AB. Genetic variants in canonical Wnt signaling pathway associated with pediatric immune thrombocytopenia. Blood Adv 2024; 8:5529-5538. [PMID: 39189922 PMCID: PMC11538615 DOI: 10.1182/bloodadvances.2024012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Through the use of genetic sequencing, molecular variants driving autoimmunity are increasingly identified in patients with chronic and refractory immune cytopenias. With the goal of discovering genetic variants that predispose to pediatric immune thrombocytopenia (ITP) or increase risk for chronic disease, we conducted a genome-wide association study in a large multi-institutional cohort of pediatric patients with ITP. A total of 591 patients were genotyped using an Illumina Global Screening Array BeadChip. Six variants met genome-wide significance in comparison between children with ITP and a cohort of healthy children. One variant in NAV2 was inversely associated with ITP (adjusted odds ratio [aOR], 0.52; P = 3.2 × 10-11). Two other variants in close proximity to NKD1 were also inversely associated with ITP (aOR, 0.43; P = 8.86 × 10-15; aOR, 0.48; P = 1.84 × 10-16). These genes have been linked to the canonical Wnt signaling pathway. No variants met genome-wide significance in comparison of those with ITP that self-resolved in <1 year versus those who developed chronic ITP. This study identifies genetic variants that may contribute to ITP risk and raises a novel pathway with a potential role in ITP pathogenesis.
Collapse
Affiliation(s)
- Taylor Olmsted Kim
- Department of Pediatrics/ Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Jennifer M. Geris
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jonathan M. Flanagan
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Rachael F. Grace
- Harvard Medical School, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston Children’s Hospital, Boston, MA
| | - Michele P. Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Candelaria O’Farrell
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Melissa J. Rose
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, OH
- Pediatrics, The Ohio State University, Columbus, OH
| | - Kristin A. Shimano
- University of California San Francisco, Benioff Children’s Hospital, San Francisco, CA
| | - Omar Niss
- Department of Pediatrics, Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Cindy Neunert
- Columbia University Irving Medical Center, Morgan Stanley Children’s Hospital, New York, NY
- Columbia University Irving Medical Center, New York, NY
| | - Taizo A. Nakano
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO
| | - Derek MacMath
- National Institute of Allergy and Infectious Disease, Bethesda, MD
| | - Bogdan Dinu
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Susan E. Kirk
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | | | - Michael E. Scheurer
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Amanda B. Grimes
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
2
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
3
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
4
|
Expression of Killer Immunoglobulin Receptor Genes among HIV-Infected Individuals with Non-AIDS Comorbidities. J Immunol Res 2022; 2022:1119611. [PMID: 35071606 PMCID: PMC8769865 DOI: 10.1155/2022/1119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Combined antiretroviral therapy (cART) increased the life expectancy of people living with HIV (PLHIV) and remarkably reduced the morbidity and mortality associated with HIV infection. However, non-AIDS associated comorbidities including diabetes, hypertension, hyperlipidemia, and cardiovascular diseases (CVD) are increasingly reported among PLHIV receiving cART. Killer cell immunoglobulin receptors (KIRs) expressed on the surface of natural killer (NK) cells have been previously implicated in controlling HIV disease progression. The aim of this study is to investigate the role of KIRs in developing non-AIDS associated comorbidities among PLHIV. Demographic and behavioral data were collected from voluntary participants using a standardized questionnaire. Whole blood samples were collected for KIR genotyping. Hypertension (29.5%) and hyperlipidemia (29.5%) followed by diabetes (23.7%) and CVD (9.7%) were mainly reported among our study participants with higher rate of comorbid conditions observed among
years old. The observed KIR frequency (OF) was ≥90% for inhibitory KIR2DL1 and KIR3DL1, activating KIR2DS4 and the pseudogene KIR2DP1 among study participants. We detected significant differences in the expression of KIR3DS4 and KIR3DL1 (
) between diabetic and nondiabetic and in the expression of KIR2DL3 between hypertensive and normotensive HIV-infected individuals (
). Moreover, KIR2DL1 and KIR2DP1 were associated with significantly reduced odds of having CVD (OR 0.08; 95% CI: 0.01-0.69;
). Our study suggests the potential role of KIR in predisposition to non-AIDS comorbidities among PLHIV and underscores the need for more studies to further elucidate the role of KIRs in this population.
Collapse
|
5
|
Mkorombindo T, Tran-Nguyen TK, Yuan K, Zhang Y, Xue J, Criner GJ, Kim YI, Pilewski JM, Gaggar A, Cho MH, Sciurba FC, Duncan SR. HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk. JCI Insight 2021; 6:e150187. [PMID: 34464355 PMCID: PMC8525585 DOI: 10.1172/jci.insight.150187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) and human leukocyte antigen–Class I (HLA–Class I) molecules on target cells. We hypothesized HLA–Class I and KIR inheritance affect risks for COPD. HLA–Class I alleles and KIR genotypes were defined by candidate gene analyses in multiple cohorts of patients with COPD (total n = 392) and control smokers with normal spirometry (total n = 342). Compared with controls, patients with COPD had overrepresentations of HLA-C*07 and activating KIR2DS1, with underrepresentations of HLA-C*12. Particular HLA-KIR permutations were synergistic; e.g., the presence of HLA-C*07 + KIR2DS1 + HLA-C12null versus HLAC*07null + KIR2DS1null + HLA-C12 was associated with COPD, especially among HLA-C1 allotype homozygotes. Cytotoxicity of COPD lymphocytes was more enhanced by KIR stimulation than those of controls and was correlated with lung function. These data show HLA-C and KIR polymorphisms strongly influence COPD susceptibility and highlight the importance of lymphocyte-mediated cytotoxicity in COPD pathogenesis. Findings here also indicate that HLA-KIR typing could stratify at-risk patients and raise possibilities that HLA-KIR axis modulation may have therapeutic potential.
Collapse
Affiliation(s)
- Takudzwa Mkorombindo
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thi K Tran-Nguyen
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaiyu Yuan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jianmin Xue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Young-Il Kim
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael H Cho
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R Duncan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Mohammadhosayni M, Aslani S, Norouzi M, Jazayeri SM, Ahmadi M, Ghazanfari T. A systematic review and meta-analysis of killer-cell immunoglobulin-like receptor (KIR) family genes association with risk of hepatitis B virus (HBV). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Anderson KM, Augusto DG, Dandekar R, Shams H, Zhao C, Yusufali T, Montero-Martín G, Marin WM, Nemat-Gorgani N, Creary LE, Caillier S, Mofrad MRK, Parham P, Fernández-Viña M, Oksenberg JR, Norman PJ, Hollenbach JA. Killer Cell Immunoglobulin-like Receptor Variants Are Associated with Protection from Symptoms Associated with More Severe Course in Parkinson Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1323-1330. [PMID: 32709660 DOI: 10.4049/jimmunol.2000144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.
Collapse
Affiliation(s)
- Kirsten M Anderson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Danillo G Augusto
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Hengameh Shams
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Chao Zhao
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Tasneem Yusufali
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304
| | - Stacy Caillier
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720; and
| | - Peter Parham
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | | | - Jorge R Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158;
| |
Collapse
|
8
|
Gonzalez-Galarza FF, McCabe A, Santos EJMD, Jones J, Takeshita L, Ortega-Rivera ND, Cid-Pavon GMD, Ramsbottom K, Ghattaoraya G, Alfirevic A, Middleton D, Jones AR. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 2020; 48:D783-D788. [PMID: 31722398 PMCID: PMC7145554 DOI: 10.1093/nar/gkz1029] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/19/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
The Allele Frequency Net Database (AFND, www.allelefrequencies.net) provides the scientific community with a freely available repository for the storage of frequency data (alleles, genes, haplotypes and genotypes) related to human leukocyte antigens (HLA), killer-cell immunoglobulin-like receptors (KIR), major histocompatibility complex Class I chain related genes (MIC) and a number of cytokine gene polymorphisms in worldwide populations. In the last five years, AFND has become more popular in terms of clinical and scientific usage, with a recent increase in genotyping data as a necessary component of Short Population Report article submissions to another scientific journal. In addition, we have developed a user-friendly desktop application for HLA and KIR genotype/population data submissions. We have also focused on classification of existing and new data into ‘gold–silver–bronze’ criteria, allowing users to filter and query depending on their needs. Moreover, we have also continued to expand other features, for example focussed on HLA associations with adverse drug reactions. At present, AFND contains >1600 populations from >10 million healthy individuals, making AFND a valuable resource for the analysis of some of the most polymorphic regions in the human genome.
Collapse
Affiliation(s)
- Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Antony McCabe
- Computational Biology Facility, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| | | | - James Jones
- Institute of Integrative Biology, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| | - Louise Takeshita
- Computational Biology Facility, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| | - Nestor D Ortega-Rivera
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Glenda M Del Cid-Pavon
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Kerry Ramsbottom
- Institute of Integrative Biology, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| | - Gurpreet Ghattaoraya
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Derek Middleton
- Institute of Integrative Biology, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
9
|
Abou Hassan F, Bou Hamdan M, Melhem NM. The Role of Natural Killer Cells and Regulatory T Cells While Aging with Human Immunodeficiency Virus. AIDS Res Hum Retroviruses 2019; 35:1123-1135. [PMID: 31510754 DOI: 10.1089/aid.2019.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined antiretroviral therapy (cART) has increased the quality of life of people living with HIV (PLHIV). Consequently, the number of PLHIV >50 years is increasing worldwide. Patients on cART are known to remain in a proinflammatory state. The latter is linked to the development of non-AIDS-related chronic conditions. Although the number of aging PLHIV is increasing, the effect of HIV infection on the process of aging is not fully understood. Understanding the complexity of aging with HIV by investigating the effect of the latter on different components of the innate and adaptive immune systems is important to reduce the impact of these comorbid conditions and improve the quality of life of PLHIV. The role of killer immunoglobulin receptors (KIRs), expressed on the surface of natural killer (NK) cells, and their human leukocyte antigen (HLA) ligands in the clearance, susceptibility to or disease progression following HIV infection is well established. However, data on the effect of KIR-HLA interaction in aging HIV-infected population and the development of non-AIDS-related comorbid conditions are lacking. Moreover, conflicting data exist on the role of regulatory T cells (Tregs) during HIV infection. The purpose of this review is to advance the current knowledge on the role of NK cells and Tregs while aging with HIV infection.
Collapse
Affiliation(s)
- Farouk Abou Hassan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada M. Melhem
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Zhao J, Tang W, Yao J, Chen Q, Xu Q, Wu S. The Role of Killer Immunoglobulin-Like Receptor Genes in Susceptibility to HIV-1 Infection and Disease Progression: A Meta-Analysis. AIDS Res Hum Retroviruses 2019; 35:948-959. [PMID: 31288555 DOI: 10.1089/aid.2019.0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic studies on the association of the killer immunoglobulin-like receptor (KIR) genes with HIV-1 infection and disease progression have been widely carried out with somewhat contradictory results. Therefore, we undertook a quantitative assessment based on 25 studies [involving 3,216 HIV-1 infected subjects, 1,690 exposed uninfected subjects, 1,262 healthy controls (HCs), 748 typical progressors (TPs), and 244 long-term nonprogressors (LTNPs)] to further define the roles of KIR in HIV-1 control/susceptibility. An overall analysis, showed that, among the 16 KIR genes, the presence of KIR2DS4 may associate with an elevated risk of HIV-1 infection (p < .05, using HCs), whereas KIR3DS1 may associate with a reduced risk (p < .001, using HCs). In the subgroup analyses, among Africans, KIR2DS4 also revealed a significant risk of HIV-1 infection (p < .05), whereas KIR2DL2, 2DL5, and 2DS3 conferred a protective role (p < .05). KIR2DL2 and 3DL1 showed an increased risk of acquiring infection among Caucasians (p < .05). A negative effect on susceptibility to infection for KIR2DL1, 2DL3, and 3DS1 was found among East Asians. 3DS1 conferred a protective effect of HIV-1 infection among serodiscordant couples (p < .05). Moreover, among Chinese, KIR2DL3 was significantly lower in frequency in TPs when compared with LTNPs (p < .05), indicating a possible role in the delay of disease progression. This meta-analysis supports the individual studies that associate specific KIR genes with HIV-1 infection and disease progression and further emphasizes that this outcome differs according to specific populations.
Collapse
Affiliation(s)
- Jiangyang Zhao
- Department of Clinical Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenqian Tang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Jun Yao
- National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Beijing, China
| | - Qiaopei Chen
- Department of Clinical Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingqing Xu
- National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Beijing, China
| | - Shike Wu
- Department of Gastrointestinal and Anal Surgery, Rui Kang Hospital, Guangxi Traditional Chinese Medical University, Nanning, China
| |
Collapse
|
11
|
Insights into the Interplay between KIR Gene Frequencies and Chronic HBV Infection in Burkina Faso. Mediterr J Hematol Infect Dis 2018; 10:e2018060. [PMID: 30416692 PMCID: PMC6223576 DOI: 10.4084/mjhid.2018.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Objective Hepatitis B virus (HBV) infection is the leading risk factor for cirrhosis and hepatocellular carcinoma (HCC). The objective of this investigation was to assess the association between “Killer Cell Immunoglobulin-Like Receptor” (KIR) gene frequencies and chronic HBV infection. Methods Chronic HBV carriers and healthy patients were selected for this study. The viral load for HBV were performed, and SSP-PCR was used to characterize the frequencies of KIR genes. Results The study suggested that inhibitory genes KIR2DL2 (crude OR = 2.82; p < 0.001), KIR2DL3 (crude OR = 2.49; p < 0.001) and activator gene KIR2DS2 (crude OR = 3.95; p< 0.001) might be associated with chronic stages of HBV infection. Conversely the inhibitory genes KIR3DL1 (crude OR = 0.49; p = 0.0018) and KIR3DL2 (crude OR = 0.41; p = 0.005), the activator gene KIR2DS1 (crude OR = 0.48; p = 0.014) and the pseudo gene KIR2DP1 (crude OR = 0.49; p = 0.008) could be associated with immunity against HBV infection. Chronic HBV patients who are carriers for the KIR3DL3 gene (crude OR = 8; p = 0.048) were positive for HBeAg and patients who carried the KIR3DL2 gene (crude OR = 3.21; p = 0.012) had a high HBV viral load compared to the rest of the study population. Conclusion Our data showed evidence of a correlation between the risk of developing chronic HBV infection and certain KIR gene frequencies and also show that KIR3DL1, KIR3DL2, KIR2DS1 might confer a protective status against chronic HBV infection.
Collapse
|
12
|
Misra MK, Augusto DG, Martin GM, Nemat-Gorgani N, Sauter J, Hofmann JA, Traherne JA, González-Quezada B, Gorodezky C, Bultitude WP, Marin W, Vierra-Green C, Anderson KM, Balas A, Caro-Oleas JL, Cisneros E, Colucci F, Dandekar R, Elfishawi SM, Fernández-Viña MA, Fouda M, González-Fernández R, Große A, Herrero-Mata MJ, Hollenbach SQ, Marsh SGE, Mentzer A, Middleton D, Moffett A, Moreno-Hidalgo MA, Mossallam GI, Nakimuli A, Oksenberg JR, Oppenheimer SJ, Parham P, Petzl-Erler ML, Planelles D, Sánchez-García F, Sánchez-Gordo F, Schmidt AH, Trowsdale J, Vargas LB, Vicario JL, Vilches C, Norman PJ, Hollenbach JA. Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop. Hum Immunol 2018; 79:825-833. [PMID: 30321631 DOI: 10.1016/j.humimm.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3 ∼ KIR3DL1/S1 ∼ KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.
Collapse
Affiliation(s)
- Maneesh K Misra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danillo G Augusto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gonzalo Montero Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Betsy González-Quezada
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Clara Gorodezky
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Will P Bultitude
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Wesley Marin
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Kirsten M Anderson
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ravi Dandekar
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Merhan Fouda
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Alex Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Cambridge, UK
| | | | | | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luciana B Vargas
- Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Carlos Vilches
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado, Denver, CO 80045, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
14
|
Chaisri S, Traherne JA, Jayaraman J, Romphruk A, Trowsdale J, Leelayuwat C. Novel KIR genotypes and gene copy number variations in northeastern Thais. Immunology 2017; 153:380-386. [PMID: 28950036 DOI: 10.1111/imm.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
KIR (Killer Immunoglobulin-like Receptor) variants influence immune responses and are genetic factors in disease susceptibility. Using sequence-specific priming PCR, we have previously described the diversity of KIR genes in term of presence/absence in northeastern Thais (NETs). To provide additional resolution beyond conventional methods, quantitative PCR was applied to determine KIR copy number profiles. Novel expanded and contracted KIR copy number profiles were identified at cumulatively high frequencies. These all comprise haplotypes with duplication (6·9%) or deletion (2·7%) of KIR3DL1/S1 along with adjacent genes. Five expanded KIR profiles comprised haplotypes with duplications of KIR2DP1, 2DL1, 3DP1, 2DL4, 3DL1/S1 and 2DS1/4, whereas two contracted profiles contained only a single copy of KIR3DP1, 3DL1/S1 and 2DL4. Using a KIR haplotype prediction program (KIR Haplotype Identifier), 14% of NET haplotypes carried atypical haplotypes based on the gene copy number data.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine (CICM), Thammasat University, Klong Luang, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jyothi Jayaraman
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Amornrat Romphruk
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Blood Transfusion Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Mhandire K, Zijenah LS, Yindom LM, Duri K, Mlambo T, Tshabalala M, Mazengera LR, Mhandire DZ, Musarurwa C, Dandara C, Rowland-Jones S, Matarira HT, Stray-Pedersen B. KIR Gene Content Diversity in a Zimbabwean Population: Does KIR2DL2 Have a Role in Protection Against Human Immunodeficiency Virus Infection? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:727-735. [PMID: 27930093 DOI: 10.1089/omi.2016.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) mediate natural killer cell function through interaction with their cognate human leukocyte antigen ligands. Thus, KIR gene variants have been implicated in resistance or susceptibility to viral infections. However, research on the role of these variants remains contradictory and inconclusive. In the present study, we investigated KIR gene content diversity and its association with human immunodeficiency virus (HIV) infection in an adult Black Zimbabwean population. Presence or absence of 15 KIR genes was determined in 189 HIV-infected adults and 97 HIV-uninfected blood donors using sequence specific primer polymerase chain reaction. Frequencies of KIR genes, genotypes, and haplotypes were compared between the cases and controls to identify putative associations between KIR gene variants and HIV status. We report in this study the frequencies of 15 KIR genes and 43 KIR genotypes (40 known and 3 novel) among Zimbabweans. Importantly, the frequency of the inhibitory KIR2DL2 gene was significantly higher in the uninfected group (62%) compared to the HIV-infected group (47%) (OR = 0.55, 95% CI: 0.33-0.90, p = 0.019). KIR2DL2/2DL2 homozygosity was also significantly higher in the uninfected group (35%) compared to HIV-infected group (53%) (OR = 0.33, 95% CI: 0.16-0.72, p = 0.005) under a recessive model. We conclude that the KIR2DL2 gene may be involved in protection against HIV infection. It may be possible that inhibitory KIR genes may have an important role to play in HIV acquisition among populations of African origin in whom the activating KIR genes are less frequent compared to among Caucasians.
Collapse
Affiliation(s)
- Kudakwashe Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | | | - Louis-Marie Yindom
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Kerina Duri
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | - Tommy Mlambo
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | | | | | - Doreen Zvipo Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | - Cuthbert Musarurwa
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 5 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Sarah Rowland-Jones
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Hilda Tendisa Matarira
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Babill Stray-Pedersen
- 2 Letten Foundation Research House , Harare, Zimbabwe .,6 Institute of Clinical Medicine, University of Oslo and Womens' Clinic, Rikshospitalet, University Hospital , Oslo, Norway
| |
Collapse
|
16
|
Tao S, He Y, Dong L, He J, Chen N, Wang W, Han Z, Zhang W, He J, Zhu F. Associations of killer cell immunoglobulin-like receptors with acute myeloid leukemia in Chinese populations. Hum Immunol 2017; 78:269-273. [PMID: 28111167 DOI: 10.1016/j.humimm.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 12/28/2022]
Abstract
Many studies have investigated the relationship between KIR, HLA and acute myeloid leukemia (AML), but the results were different in different laboratories, and the data in Chinese population were limited. In this study, the distribution of KIR gene, KIR genotypes, HLA-C groups, HLA-Bw4, and KIR-HLA interaction from 273 healthy participants and 253 AML patients (M0-M6) in southern Chinese Han were determined to investigate the relationships among KIR, HLA and AML. The results showed that the frequencies of 2DS4del in M5 patients were significantly higher than those of the controls (65.0% vs 46.5%, P=0.0104, OR=2.135, P<ɑ'). The frequency of KIR genotype BX13 in the healthy controls was significantly higher than that in AML patients (3.7% vs 0%, P=0.0019, OR=20.2, P<ɑ'). No other significant differences in the frequencies of KIR, HLA and KIR-HLA interaction were identified between AML patients and controls. Our study suggests that 2DS4del may conduct a susceptibility to AML, and genotype BX13 might conduct a protective effect on AML.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin He
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Lina Dong
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Junjun He
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Nanying Chen
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Wang
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Zhedong Han
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Ji He
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Ghattaoraya GS, Dundar Y, González-Galarza FF, Maia MHT, Santos EJM, da Silva ALS, McCabe A, Middleton D, Alfirevic A, Dickson R, Jones AR. A web resource for mining HLA associations with adverse drug reactions: HLA-ADR. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw069. [PMID: 27189608 PMCID: PMC5647400 DOI: 10.1093/database/baw069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigens (HLA) are an important family of genes involved in the immune
system. Their primary function is to allow the host immune system to be able to
distinguish between self and non-self peptides—e.g. derived from invading pathogens.
However, these genes have also been implicated in immune-mediated adverse drug reactions
(ADRs), presenting a problem to patients, clinicians and pharmaceutical companies. We have
previously developed the Allele Frequency Net Database (AFND) that captures the allelic
and haplotype frequencies for these HLA genes across many healthy populations from around
the world. Here, we report the development and release of the HLA-ADR database that
captures data from publications where HLA alleles and haplotypes have been associated with
ADRs (e.g. Stevens–Johnson Syndrome/toxic epidermal necrolysis and drug-induced liver
injury). HLA-ADR was created by using data obtained through systematic review of the
literature and semi-automated literature mining. The database also draws on data already
present in AFND allowing users to compare and analyze allele frequencies in both ADR
patients and healthy populations. The HLA-ADR database provides clinicians and researchers
with a centralized resource from which to investigate immune-mediated ADRs. Database URL: http://www.allelefrequencies.net/hla-adr/.
Collapse
Affiliation(s)
- Gurpreet S Ghattaoraya
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Institute of Integrative Biology Liverpool Reviews and Implementation Group
| | - Yenal Dundar
- Liverpool Reviews and Implementation Group Hesketh Centre, Mersey Care NHS Trust, Southport, UK
| | - Faviel F González-Galarza
- Institute of Integrative Biology Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Maria Helena Thomaz Maia
- Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Tucuruí, Brazil
| | - Eduardo José Melo Santos
- Institute of Integrative Biology Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Tucuruí, Brazil
| | | | | | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool and Broadgreen University Hospital, Liverpool, UK Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine
| | | | | |
Collapse
|
18
|
The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to HIV-1 infection in the Polish population. Immunogenetics 2016; 68:327-37. [PMID: 26888639 PMCID: PMC4842214 DOI: 10.1007/s00251-016-0906-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are the most polymorphic receptors of natural killer (NK) cells. Their activity diversifies the functions of NK cells in the antiviral immune response, so the presence of certain KIR may affect transmission of HIV-1. The aim of the study was to evaluate the influence of KIR genes on the susceptibility to HIV-1 infection in the Polish population depending on the route of exposure. We determined the frequencies of activating (2DS1, 2DS2, 2DS3, 2DS4f, 2DS4del, 2DS5, 3DS1) and inhibitory (2DL1, 2DL2, 2DL3, 2DL5, 3DL1) KIRs in HIV-1-positive patients (n = 459), individuals exposed to HIV-1 but uninfected (EU, n = 118) and in uninfected, healthy blood donors (BD, n = 98). Analysis was performed using stepwise logistic regression. Apart from KIRs, CCR5-∆32, and CCR2-64I, alleles were also analyzed, as we knew or suspected that these features could affect susceptibility to HIV infection. The regression confirmed the protective effect of CCR5-∆32 (OR = 0.25, p = 0.006) and CCR2-64I (OR = 0.59, p = 0.032) against HIV infection. Among KIR genes, 2DL3 was found to be a protective factor (OR = 0.30, p = 0.015). A similar effect was seen for 3DS1 but only in intravenous drug users (IDUs) (OR = 0.30, p = 0.019), not in sexually exposed people. 2DL5 was found to be a factor facilitating HIV infection (OR = 2.13, p = 0.013). A similar effect was observed for 2DL2 but only in females (OR = 2.15, p = 0.040), and 2DS1 in IDUs (OR = 3.03, p = 0.022). Our results suggest a beneficial role of KIR3DS1 and 2DL3 supporting resistance to HIV infection and a harmful effect of 2DS1, 2DL5, and 2DL2 genes promoting HIV acquisition.
Collapse
|
19
|
Gamliel M, Anderson KL, Ebstein RP, Yirmiya N, Mankuta D. Paternal HLA-C and Maternal Killer-Cell Immunoglobulin-Like Receptor Genotypes in the Development of Autism. Front Pediatr 2016; 4:76. [PMID: 27517034 PMCID: PMC4963409 DOI: 10.3389/fped.2016.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are a family of cell surface proteins found on natural killer cells, which are components of the innate immune system. KIRs recognize MHC class I proteins, mainly HLA-C and are further divided into two groups: short-tailed 2/3DS activating receptors and long-tailed 2/3DL inhibitory receptors. Based on the Barker Hypothesis, the origins of illness can be traced back to embryonic development in the uterus, and since KIR:HLA interaction figures prominently in the maternal-fetal interface, we investigated whether specific KIR:HLA combinations may be found in autism spectrum disorders (ASD) children compared with their healthy parents. This study enrolled 49 ASD children from different Israeli families, and their healthy parents. Among the parents, a higher frequency of HLA-C2 allotypes was found in the fathers, while its corresponding ligand 2DS1 was found in higher percentage in the maternal group. However, such skewing in KIR:HLA frequencies did not appear in the ASD children. Additionally, analysis of "overall activation" indicated higher activation in maternal than in paternal cohorts.
Collapse
Affiliation(s)
- Moriya Gamliel
- Department of Immunology and Cancer Research, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Karen L Anderson
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Richard P Ebstein
- Department of Psychology, National University of Singapore , Singapore
| | - Nurit Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem , Jerusalem , Israel
| | - David Mankuta
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
20
|
Takeshita LYC, Jones AR, Gonzalez-Galarza FF, Middleton D. Allele frequencies database. ACTA ACUST UNITED AC 2014; 41:352-5. [PMID: 25538537 DOI: 10.1159/000368056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review describes a database for the collection, archiving, sorting, searching and display of gene and allele frequencies for immunogenetic genes.
Collapse
Affiliation(s)
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
21
|
González-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT, da Silva ALS, Teles e Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 2014; 43:D784-8. [PMID: 25414323 PMCID: PMC4383964 DOI: 10.1093/nar/gku1166] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been 12 years since the Allele Frequency Net Database (AFND; http://www.allelefrequencies.net) was first launched, providing the scientific community with an online repository for the storage of immune gene frequencies in different populations across the world. There have been a significant number of improvements from the first version, making AFND a primary resource for many clinical and scientific areas including histocompatibility, immunogenetics, pharmacogenetics and anthropology studies, among many others. The most widely used part of AFND stores population frequency data (alleles, genes or haplotypes) related to human leukocyte antigens (HLA), killer-cell immunoglobulin-like receptors (KIR), major histocompatibility complex class I chain-related genes (MIC) and a number of cytokine gene polymorphisms. AFND now contains >1400 populations from more than 10 million healthy individuals. Here, we report how the main features of AFND have been updated to include a new section on ‘HLA epitope’ frequencies in populations, a new section capturing the results of studies identifying HLA associations with adverse drug reactions (ADRs) and one for the examination of infectious and autoimmune diseases associated with KIR polymorphisms—thus extending AFND to serve a new user base in these growing areas of research. New criteria on data quality have also been included.
Collapse
Affiliation(s)
- Faviel F González-Galarza
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | | | - Eduardo J M Santos
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil
| | - Felicity Kempson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Maria Helena Thomaz Maia
- Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil
| | | | - André Luiz Teles e Silva
- Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil
| | - Gurpreet S Ghattaoraya
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool and Broadgreen University Hospital, University of Liverpool, UK Institute of Infection and Global Health, University of Liverpool, UK
| |
Collapse
|
22
|
Smigoc Schweiger D, Mendez A, Kunilo Jamnik S, Bratanic N, Bratina N, Battelino T, Brecelj J, Vidan-Jeras B. Genetic risk for co-occurrence of type 1 diabetes and celiac disease is modified by HLA-C and killer immunoglobulin-like receptors. ACTA ACUST UNITED AC 2014; 84:471-8. [DOI: 10.1111/tan.12450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/06/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023]
Affiliation(s)
- D. Smigoc Schweiger
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases; University Medical Centre - University Children's Hospital; Ljubljana Slovenia
| | - A. Mendez
- Blood Transfusion Center of Slovenia; Tissue Typing Centre; Ljubljana Slovenia
| | - S. Kunilo Jamnik
- Blood Transfusion Center of Slovenia; Tissue Typing Centre; Ljubljana Slovenia
| | - N. Bratanic
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases; University Medical Centre - University Children's Hospital; Ljubljana Slovenia
| | - N. Bratina
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases; University Medical Centre - University Children's Hospital; Ljubljana Slovenia
| | - T. Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases; University Medical Centre - University Children's Hospital; Ljubljana Slovenia
- Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - J. Brecelj
- Department of Gastroenterology, Hepatology and Nutrition; University Medical Centre - University Children's Hospital; Ljubljana Slovenia
| | - B. Vidan-Jeras
- Blood Transfusion Center of Slovenia; Tissue Typing Centre; Ljubljana Slovenia
| |
Collapse
|
23
|
Giebel S, Boratyn-Nowicka A, Karabon L, Jedynak A, Pamula-Pilat J, Tecza K, Kula D, Kowal M, Frydecka I, Grzybowska E. Associations between genes for killer immunoglobulin-like receptors and their ligands in patients with epithelial ovarian cancer. Hum Immunol 2014; 75:508-13. [DOI: 10.1016/j.humimm.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/19/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
|
24
|
Ivarsson MA, Michaëlsson J, Fauriat C. Activating killer cell Ig-like receptors in health and disease. Front Immunol 2014; 5:184. [PMID: 24795726 PMCID: PMC4001058 DOI: 10.3389/fimmu.2014.00184] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 01/08/2023] Open
Abstract
Expression of non-rearranged HLA class I-binding receptors characterizes human and mouse NK cells. The postulation of the missing-self hypothesis some 30 years ago triggered the subsequent search and discovery of inhibitory MHC-receptors, both in humans and mice. These receptors have two functions: (i) to control the threshold for NK cell activation, a process termed “licensing” or “education,” and (ii) to inhibit NK cell activation during interactions with healthy HLA class I-expressing cells. The discovery of activating forms of KIRs (aKIR) challenged the concept of NK cell tolerance in steady state, as well as during immune challenge: what is the biological role of the activating KIR, in particular when NK cells express aKIRs in the absence of inhibitory receptors? Recently it was shown that aKIRs also participate in the education of NK cells. However, instead of lowering the threshold of activation like iKIRs, the expression of aKIRs has the opposite effect, i.e., rendering NK cells hyporesponsive. These findings may have consequences during NK cell response to viral infection, in cancer development, and in the initial stages of pregnancy. Here we review the current knowledge of activating KIRs, including the biological concept of aKIR-dependent NK cell education, and their impact in health and disease.
Collapse
Affiliation(s)
- Martin A Ivarsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Cyril Fauriat
- U1068, CRCM, Immunity and Cancer, INSERM , Marseille , France ; Institut Paoli-Calmettes , Marseille , France ; UM 105, Aix-Marseille Université , Marseille , France ; UMR 7258, CNRS , Marseille , France ; U1068, CRCM, Plateforme d'Immunomonitoring en Cancérologie, INSERM , Marseille , France
| |
Collapse
|
25
|
Abu-Amero KK, Kondkar AA, Al Otaibi A, Alorainy IA, Khan AO, Hellani AM, Oystreck DT, Bosley TM. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome. Ophthalmic Genet 2013; 36:14-20. [PMID: 23952617 DOI: 10.3109/13816810.2013.827218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. MATERIALS AND METHODS Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. RESULTS The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|