1
|
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Front Oncol 2020; 10:580874. [PMID: 33117718 PMCID: PMC7550802 DOI: 10.3389/fonc.2020.580874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV), comprising microvesicles and exosomes, are particles released by every cell of an organism, found in all biological fluids, and commonly involved in cell-to-cell communication through the transfer of cargo materials such as miRNA, proteins, and immune-related ligands (e.g., FasL and PD-L1). An important characteristic of EV is that their composition, abundance, and roles are tightly related to the parental cells. This translates into a higher release of characteristic pro-tumor EV by cancer cells that leads to harming signals toward healthy microenvironment cells. In line with this, the key role of tumor-derived EV in cancer progression was demonstrated in multiple studies and is considered a hot topic in the field of oncology. Given their characteristics, tumor-derived EV carry important information concerning the state of tumor cells. This can be used to follow the outset, development, and progression of the neoplasia and to evaluate the design of appropriate therapeutic strategies. In keeping with this, the present brief review will focus on B-cell malignancies and how EV can be used as potential biomarkers to follow disease progression and stage. Furthermore, we will explore several proposed strategies aimed at using biologically engineered EV for treatment (e.g., drug delivery mechanisms) as well as for impairing the biogenesis, release, and internalization of cancer-derived EV, with the final objective to disrupt tumor–microenvironment communication.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
2
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
3
|
Gam R, Sung M, Prasad Pandurangan A. Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges. Cells 2019; 8:E1189. [PMID: 31581647 PMCID: PMC6829265 DOI: 10.3390/cells8101189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
The process of direct cell reprogramming, also named transdifferentiation, permits for the conversion of one mature cell type directly into another, without returning to a dedifferentiated state. This makes direct reprogramming a promising approach for the development of several cellular and tissue engineering therapies. To achieve the change in the cell identity, direct reprogramming requires an arsenal of tools that combine experimental and computational techniques. In the recent years, several methods of transdifferentiation have been developed. In this review, we will introduce the concept of direct cell reprogramming and its background, and cover the recent developments in the experimental and computational prediction techniques with their applications. We also discuss the challenges of translating this technology to clinical setting, accompanied with potential solutions.
Collapse
Affiliation(s)
- Rihab Gam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Minkyung Sung
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
4
|
Abstract
The first 20 years of somatic cell nuclear transfer can hardly be described as a success story. Controversially, many factors leading to the fiasco are not intrinsic features of the technique itself. Misunderstandings and baseless accusations alongside with unsupported fears and administrative barriers hampered cloners to overcome the initial challenging period with obvious difficulties that are common features of a radically new approach. In spite of some promising results of mostly sporadic and small-scale experiments, the future of cloning is still uncertain. On the other hand, a reincarnation, just like the idea of electric cars, may result in many benefits in various areas of science and economy. One can only hope that-in contrast to electric cars-the ongoing paralyzed phase will not last for 100 years, and breakthroughs achieved in some promising areas will provide enough evidence to intensify research and large-scale application of cloning in the next decade.
Collapse
|
5
|
Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. Int J Mol Sci 2017; 18:ijms18030552. [PMID: 28273812 PMCID: PMC5372568 DOI: 10.3390/ijms18030552] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs). Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.
Collapse
|
6
|
Engebretson B, Mussett ZR, Sikavitsas VI. Tenocytic extract and mechanical stimulation in a tissue-engineered tendon construct increases cellular proliferation and ECM deposition. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Brandon Engebretson
- School of Chemical, Biological and Materials Engineering; University of Oklahoma; Norman OK USA
| | - Zachary R. Mussett
- Stephenson School of Biomedical Engineering; University of Oklahoma; Norman OK USA
| | | |
Collapse
|
7
|
Goh YY, Yan YK, Tan NS, Goh SA, Li S, Teoh YC, Lee PPF. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex. Sci Rep 2016; 6:36868. [PMID: 27841290 PMCID: PMC5107956 DOI: 10.1038/srep36868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways.
Collapse
Affiliation(s)
- Yan-Yih Goh
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Yaw-Kai Yan
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore.,KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Su-Ann Goh
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shang Li
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - You-Chuan Teoh
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Peter P F Lee
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
8
|
Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Reports 2015; 4:685-98. [PMID: 25754206 PMCID: PMC4400646 DOI: 10.1016/j.stemcr.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. BMSCs cross lineage boundaries toward renal cells via cell-extract reprogramming Reprogrammed BMSCs acquire proximal tubular-like epithelial cell properties Reprogrammed BMSCs integrate into proximal tubuli and protect mice from AKI
Collapse
Affiliation(s)
- Evangelia Papadimou
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Marina Morigi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Paraskevas Iatropoulos
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Cinzia Rota
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy "G. Lanzani," USC Hematology, 24122 Bergamo, Italy
| | - Maria Grazia de Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, 15 Dana Road, BSB C-06, Valhalla, NY 10595, USA
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| |
Collapse
|
9
|
Xie F, Tang X, Zhang Q, Deng C. Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Mol Med Rep 2014; 11:182-8. [PMID: 25333210 PMCID: PMC4237102 DOI: 10.3892/mmr.2014.2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
Human adipose tissue stem cells (ATSCs) can differentiate into various types of cell in response to lineage-specific induction factors. Reprogramming cells using nuclear and cytoplasmic extracts derived from another type of somatic cell is an effective method of producing specific types of differentiated cell. In the present study, the ability of reprogrammed ATSCs to acquire epidermal keratinocyte properties following transient exposure to epidermal keratinocyte extracts was demonstrated. Reversibly permeabilized ATSCs were incubated for 1 h in nuclear and cytoplasmic extracts from epidermal keratinocytes, resealed with CaCl2 and cultured. ATSC reprogramming is demonstrated by nuclear uptake of epidermal keratinocyte extracts. After one week of exposure to extracts, ATSCs underwent changes in cell morphology, cell-specific genes were activated, and epidermal keratinocyte markers including K19 and K1/K10 (markers of stem cells and terminally differentiated keratinocytes, respectively) were expressed. This study indicates that the reprogramming of ATSCs using nuclear and cytoplasmic extracts from epidermal keratinocytes is a viable option for the production of specific types of cell.
Collapse
Affiliation(s)
- Feng Xie
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Xinjie Tang
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Qun Zhang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
10
|
Goh PA, Verma PJ. Generation of induced pluripotent stem cells from mouse adipose tissue. Methods Mol Biol 2014; 1194:253-70. [PMID: 25064108 DOI: 10.1007/978-1-4939-1215-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The discovery that embryonic stem (ES) cell-like cells can be generated by simply over-expressing four key genes in adult somatic cells has changed the face of regenerative medicine. These induced pluripotent stem (iPS) cells have a wide range of potential uses from drug testing and in vitro disease modeling to personalized cell therapies for patients. However, prior to the realization of their potential, many issues need to be considered. One of these is the low-efficiency formation of iPSC. It has been extensively demonstrated that the somatic cell type can greatly influence reprogramming outcomes. We have shown that adipose tissue-derived cells (ADCs) can be easily isolated from adult animals and can be reprogrammed to a pluripotent state with high efficiency. Here, we describe a protocol for the high-efficiency derivation of ADCs and their subsequent use to generate mouse iPSC using Oct4, Sox2, Klf4, and cMyc retroviral vectors.
Collapse
Affiliation(s)
- Pollyanna Agnes Goh
- Research Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
11
|
Kim SY, Kim TS, Park SH, Lee MR, Eun HJ, Baek SK, Ko YG, Kim SW, Seong HH, Campbell KHS, Lee JH. Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:266-77. [PMID: 25049951 PMCID: PMC4093206 DOI: 10.5713/ajas.2013.13699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/29/2013] [Accepted: 11/25/2013] [Indexed: 11/27/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with 4 μg/mL of digitonin for 2 min at 4°C in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at 18°C was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sang-Hoon Park
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Mi-Ran Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hye-Ju Eun
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Yeoung-Gyu Ko
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sung-Woo Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hwan-Hoo Seong
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Keith H S Campbell
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| |
Collapse
|
12
|
Shoshani O, Zipori D. Stress as a fundamental theme in cell plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:371-7. [PMID: 25038585 DOI: 10.1016/j.bbagrm.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/16/2023]
Abstract
Over a decade of intensive investigation of the possible plasticity of mammalian cells has eventually substantiated that mammalian species are endowed with a remarkable capacity to change mature cell fates. We review below the evidence for the occurrence of processes such as dedifferentiation and transdifferentiation within mammalian tissues in vivo, and in cells removed from their protective microenvironment and seeded in culture under conditions poorly resembling their physiological state in situ. Overall, these studies point to one major conclusion: stressful conditions, whether due to in vivo tissue damage or otherwise to isolation of cells from their in vivo restrictive niches, lead to extreme fate changes. Some examples of dedifferentiation are discussed in detail showing that rare cells within the population tend to turn back into less mature ones due to severe cell damage. It is proposed that cell stress, mechanistically sensed by isolation from neighboring cells, leads to dedifferentiation, in an attempt to build a new stem cell reservoir for subsequent regeneration of the damaged tissue. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- Ofer Shoshani
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Talaei-Khozani T, Heidari F, Esmaeilpour T, Vojdani Z, Mostafavi-Pour Z, Rohani L. Cardiomyocyte marker expression in mouse embryonic fibroblasts by cell-free cardiomyocyte extract and epigenetic manipulation. IRANIAN JOURNAL OF MEDICAL SCIENCES 2014; 39:203-12. [PMID: 24753644 PMCID: PMC3993041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/22/2013] [Accepted: 04/07/2013] [Indexed: 10/28/2022]
Abstract
BACKGROUND The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. METHODS Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. RESULTS The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. CONCLUSION It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.
Collapse
Affiliation(s)
- Tahereh Talaei-Khozani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
,Department of Tissue Engineering, School of Advance Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Fatemeh Heidari
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Tahereh Esmaeilpour
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Zahra Vojdani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Zohrah Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leili Rohani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
14
|
Ma N, Ding F, Zhang J, Bao C, Zhong H, Mei J. Myocardial structural protein expression in umbilical cord blood mesenchymal stem cells after myogenic induction. Cell Biol Int 2013; 37:899-904. [PMID: 23505133 DOI: 10.1002/cbin.10096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Abstract
To assess the effects of three methods of inducing myogenic cells differentiation, umbilical blood mesenchymal stem cells (UCMSCs) from nearly full-term pregnancy mongrel dogs were purified and cultured. Fourth-passage UCMSCs were used to detect surface antigens, including CD11a, CD11b, CD29, CD34 and CD71. The cells were induced by 5-azacytidine (5-aza), myocardial lysates and myocardial induced fluid. Positive expression of Nkx2.5, α-actin, desmin, β-MHC and troponin-I (TN I) were detected after 3 weeks. The immunohistochemical results were CD11a (-), CD11b (-), CD34 (-), CD29 (+) and CD71 (+). Nkx2.5 was detected in 5-aza group, myocardial lysates group and myocardial induced fluid group. Semi-quantitative analysis showed Nkx2.5 expression significantly higher in myocardial lysates group than in the 5-aza group or myocardial-induced fluid group (P < 0.05), but there was no significant difference between the 5-aza and myocardial-induced fluid groups for Nkx2.5 expression (P > 0.05). MSCs did not express myocardial structural proteins before differentiation, but α-actin, desmin, β-MHC and troponin-I were present after differentiation. The positive expression of four proteins differed with the differentiation conditions. The UCMSCs can be differentiated into myogenic cells by three methods, but the degrees of differentiation are inconsistent. Our results show that the effects of 5-aza and myocardial lysates are better than that of myocardial induced fluid.
Collapse
Affiliation(s)
- Nan Ma
- Department of Cardio-Thoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | | | | | | | | | | |
Collapse
|
15
|
Rathbone AJ, Liddell S, Campbell KHS. Proteomic analysis of early reprogramming events in murine somatic cells incubated with Xenopus laevis oocyte extracts demonstrates network associations with induced pluripotency markers. Cell Reprogram 2013; 15:269-80. [PMID: 23768116 DOI: 10.1089/cell.2012.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reprogramming of somatic cells into a pluripotent/embryonic-like state holds great potential for regenerative medicine, bypassing ethical issues associated with embryonic stem cells (ESCs). Numerous methods, including somatic cell nuclear transfer (SCNT), fusion to pluripotent cells, the use of cell extracts, and expression of transcription factors, have been used to reprogram cells into ES-like cells [termed induced pluripotent stem cells (iPSCs)]. This study investigated early events in the nuclei of permeabilized murine somatic cells incubated in cytoplasmic extract prepared from Xenopus laevis germinal vesicle-stage oocytes by identifying proteins that showed significant quantitative changes using proteomic techniques. A total of 69 protein spots from two-dimensional electrophoresis were identified as being significantly altered in expression after treatment, and 38 proteins were identified by tandem mass spectrometry. Network analysis was used to highlight pathway connections and interactions between these identified proteins, which were found to be involved in many functions--primarily nuclear structure and dynamics, transcription, and translation. The pluripotency markers Klf4, c-Myc, Nanog, and POU5F1 were highlighted by the interaction network analysis, as well as other compounds/proteins known to be repressed in pluripotent cells [e.g., protein kinase C (PRKC)] or enhanced during differentiation of ESCs (e.g., retinoic acid). The network analysis also indicated additional proteins and pathways potentially involved in early reprogramming events.
Collapse
Affiliation(s)
- Alex J Rathbone
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | | | | |
Collapse
|
16
|
Qu T, Shi G, Ma K, Yang HN, Duan WM, Pappas GD. Targeted cell reprogramming produces analgesic chromaffin-like cells from human mesenchymal stem cells. Cell Transplant 2013; 22:2257-66. [PMID: 23394594 DOI: 10.3727/096368912x662435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of allogeneic adrenal chromaffin cells demonstrated the promise of favorable outcomes for pain relief in patients. However, there is a very limited availability of suitable human adrenal gland tissues, genetically well-matched donors in particular, to serve as grafts. Xenogeneic materials, such as porcine and bovine adrenal chromaffin cells, present problems; for instance, immune rejection and possible pathogenic contamination are potential issues. To overcome these challenges, we have tested the novel approach of cell reprogramming to reprogram human bone marrow (BM)-derived mesenchymal stem cells (hMSCs) using cellular extracts of porcine chromaffin cells. We produced a new type of cell, chromaffin-like cells, generated from the reprogrammed hMSCs, which displayed a significant increase in expression of human preproenkephalin (hPPE), a precursor for enkephalin opioid peptides, compared to the inherent expression of hPPE in naive hMSCs. The resultant chromaffin-like cells not only expressed the key molecular markers of adrenal chromaffin cells, such as tyrosine hydroxylase (TH) and methionine enkephalin (Met-enkephalin), but also secreted opioid peptide Met-enkephalin in culture. In addition, intrathecal injection of chromaffin-like cells in rats produced significant analgesic effects without using immunosuppressants. These results suggest that analgesic chromaffin-like cells can be produced from an individual's own tissue-derived stem cells by targeted cell reprogramming and also that these chromaffin-like cells may serve as potential autografts for chronic pain management.
Collapse
Affiliation(s)
- T Qu
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cell therapy is based on the replacement of damaged cells in order to restore injured tissues. The first consideration is that an abundant source of cells is needed; second, these cells should be immunologically compatible with the guest and third, there should be no real threat of these cells undergoing malignant transformation in the future. Given these requirements, already differentiated adult cells or adult stem cells obtained from the body of the patient appear to be the ideal candidates to meet all of these demands. The utilization of somatic cells also avoids numerous ethical and political drawbacks and concerns. Transdifferentiation is the phenomenon by which an adult differentiated cell switches to another differentiated cell. This paper reviews the importance of transdifferentiation, discussing the cells that are suitable for this process and the methods currently employed to induce the change in cell type.
Collapse
|
18
|
Lee S, Lassalle MW. Firm wheat-germ cell-free system with extended vector usage for high-throughput protein screening. J Biosci Bioeng 2011; 112:170-7. [PMID: 21601517 DOI: 10.1016/j.jbiosc.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/07/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
The wheat germ cell-free system is composed out of five basic steps, growth of Escherichia coli harboring plasmid, first colony-PCR, second PCR, transcription, and translation. Improvements of culture medium, colony based PCR, and modifications within the split primer set of the second PCR amplify both DNA and RNA levels. This yields more than 5 times increase in protein amount for pEU-originated templates. Especially, for the low PCR-amplifiable vectors with pET-origin, it leads to 30 fold higher product amount in translation. This broadens the range of usable vectors, overcoming the existing cell-free system limitations for high-throughput protein screening. Noteworthily, the system successfully maintains translation by S-30 cell-free extract below 30 OD. In conclusion, this improved firm cell-free system reduces cost and enables robotic automation and high-throughput thermodynamic analysis, especially for proteins that are difficult to be expressed.
Collapse
Affiliation(s)
- SungGa Lee
- Senior Research Fellow Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | |
Collapse
|
19
|
Han J, Sidhu K. Embryonic stem cell extracts: use in differentiation and reprogramming. Regen Med 2011; 6:215-27. [DOI: 10.2217/rme.11.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cells have been studied extensively for decades and they have the inherent capacity to self-renew as well as to generate one or more types of specialized cells. The current focus of research on stem cells, particularly on embryonic stem cells, is on directed differentiation of these cells into specific cell types for future regenerative medicine. For the past few years, the process of reprogramming, which mediates convertion of somatic cells to their pluripotent state, has been given much attention, as it provides a possible source of autologous stem cells. In addition, understanding the molecular mechanism of differentiation and reprogramming has long been a subject of interest. In this article, we have briefly introduced stem cells and discussed the use of embryonic stem cells in reprogramming of somatic cells and differentiation to different lineages. The application of embryonic stem cells extracts in inducing reprogramming and transdifferentiation has also been described and discussed. Should this approach be successful, patient-specific cells will be produced safely and the likelihood of rejection will be decreased when used in cell therapy for many debilitating human diseases for which there is no cure such as Parkinson’s disease, Alzheimer’s disease, diabetes and others.
Collapse
Affiliation(s)
- Jinnuo Han
- Stem Cell Laboratory, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Kuldip Sidhu
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
20
|
Liu Y, Ding Y, Ma P, Wu Z, Duan H, Liu Z, Wan P, Lu X, Xiang P, Ge J, Wang Z. Enhancement of long-term proliferative capacity of rabbit corneal epithelial cells by embryonic stem cell conditioned medium. Tissue Eng Part C Methods 2010; 16:793-802. [PMID: 19842914 DOI: 10.1089/ten.tec.2009.0380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Induction of autologous stem cells for directed differentiation has become a predominant method to obtain autologous cells for tissue reconstruction. However, the low inducing efficiency and contamination with other type of cells hinder its clinical utilization. Here we report a novel phenomenon that the corneal epithelial cells maintain long-term proliferative capacity and tissue-specific cell phenotype by factors secreted from murine embryonic stem cells (ESCs). The rabbit corneal epithelial cells grew very well in culture medium with addition of 40% ESC conditioned medium (ESC-CM). These corneal epithelial cells have been serially subcultured for more than 20 passages and maintained high cell purity, cobble-stone-like morphology, enhanced colony forming efficiency, normal diploid, and capacity to regenerate a functional stratified corneal epithelial equivalent. More importantly, these cells did not form tumor, and the cells lost their proliferative capacity after withdrawal of ESC-CM. The long-term proliferative capacity of corneal epithelial cells is partly resulted from enhancement of cell survival and colony formation, and mediated by ectopic expression of telomerase. Our findings indicate that this new ESC-CM culture system can generate low-immunogenic autologous cells sufficiently for use in regenerative medicine.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics 2009; 10:717-30. [DOI: 10.1002/pmic.200900462] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
ZHANG J, LIU QM, XU DK, HE FC. In situ Fabrication and Application of Protein Microarray With Cell-free System*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abstract
Interactions of proteins with DNA mediate many critical nuclear functions. Chromatin immunoprecipitation (ChIP) is a robust technique for studying protein-DNA interactions. Current ChIP assays, however, either require large cell numbers, which prevent their application to rare cell samples or small-tissue biopsies, or involve lengthy procedures. We describe here a 1-day micro ChIP (microChIP) protocol suitable for up to eight parallel histone and/or transcription factor immunoprecipitations from a single batch of 1,000 cells. MicroChIP technique is also suitable for monitoring the association of one protein with multiple genomic sites in 100 cells. Alterations in cross-linking and chromatin preparation steps also make microChIP applicable to approximately 1-mm(3) fresh- or frozen-tissue biopsies. From cell fixation to PCR-ready DNA, the procedure takes approximately 8 h for 16 ChIPs.
Collapse
|
24
|
Rajasingh J, Lambers E, Hamada H, Bord E, Thorne T, Goukassian I, Krishnamurthy P, Rosen KM, Ahluwalia D, Zhu Y, Qin G, Losordo DW, Kishore R. Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 2008; 102:e107-17. [PMID: 18483406 PMCID: PMC2435186 DOI: 10.1161/circresaha.108.176115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The oocyte-independent source for the generation of pluripotent stem cells is among the ultimate goals in regenerative medicine. We report that on exposure to mouse embryonic stem cell (mESC) extracts, reversibly permeabilized NIH3T3 cells undergo dedifferentiation followed by stimulus-induced redifferentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 control and ESC extract-treated NIH3T3 cells including the reactivation of ESC-specific transcripts. Epigenetically, ESC extracts induced CpG demethylation of Oct4 promoter, hyperacetylation of histones 3 and 4, and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically induced hindlimb ischemia or acute myocardial infarction transplantation of reprogrammed NIH3T3 cells significantly improved postinjury physiological functions and showed anatomic evidence of engraftment and transdifferentiation into skeletal muscle, endothelial cell, and cardiomyocytes. These data provide evidence for the generation of functional multipotent stem-like cells from terminally differentiated somatic cells without the introduction of retroviral mediated transgenes or ESC fusion.
Collapse
Affiliation(s)
- Johnson Rajasingh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Hiromichi Hamada
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Evelyn Bord
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Tina Thorne
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Ilona Goukassian
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Kenneth M. Rosen
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center. Tufts University School of Medicine, Boston, MA 02135
| | - Deepali Ahluwalia
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Yan Zhu
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center. Tufts University School of Medicine, Boston, MA 02135
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Douglas W. Losordo
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Raj Kishore
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| |
Collapse
|
25
|
He M, Stoevesandt O, Taussig MJ. In situ synthesis of protein arrays. Curr Opin Biotechnol 2008; 19:4-9. [DOI: 10.1016/j.copbio.2007.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
|
26
|
Zhou W, Xiang T, Walker S, Farrar V, Hwang E, Findeisen B, Sadeghieh S, Arenivas F, Abruzzese RV, Polejaeva I. Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol Reprod Dev 2008; 75:744-58. [PMID: 17886272 DOI: 10.1002/mrd.20797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.
Collapse
|
27
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
28
|
He M, Wang MW. Arraying proteins by cell-free synthesis. ACTA ACUST UNITED AC 2007; 24:375-80. [PMID: 17604221 DOI: 10.1016/j.bioeng.2007.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.
Collapse
Affiliation(s)
- Mingyue He
- Technology Research Group, The Babraham Institute, Cambridge CB22 3AT, United Kingdom.
| | | |
Collapse
|
29
|
Neri T, Monti M, Rebuzzini P, Merico V, Garagna S, Redi CA, Zuccotti M. Mouse Fibroblasts Are Reprogrammed to Oct-4 and Rex-1 Gene Expression and Alkaline Phosphatase Activity by Embryonic Stem Cell Extracts. CLONING AND STEM CELLS 2007; 9:394-406. [PMID: 17907950 DOI: 10.1089/clo.2006.0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A recent remarkable study has shown that when mouse NIH-3T3 fibroblasts are exposed to an embryonic stem cell (ESC) extract, the majority of them expresses the Oct-4 gene, form ESC-like colonies, and embryoid-like bodies that differentiate into cells of the three germ layers. The use of cell extracts for inducing cell dedifferentiation could be a powerful system to obtain large quantities of pluripotent cells. It is thus of crucial importance that the robustness of this method of cell transdifferentiation is tested by other laboratories before it is advanced to a more ambitious use in cell therapy programs. We report here our experimental observations using the same reprogramming protocol on STO and NIH-3T3 mouse fibroblasts. Three are the main results: first, we confirmed an enduring reprogramming activity of the ESC extract, although on a much smaller number of cells that varies from approximately 0.003 to 0.04% of the total population of fibroblasts and with an effect limited to the induction of Oct-4 and Rex-1 gene expression and alkaline phosphatase activity. Second, the expression of OCT-4, SSEA-1, and Forssman antigen proteins was never detected. Third, our work has clearly demonstrated that ESCs may survive the procedure of extract preparation, may be source of contamination that is expanded in culture and give false positive results.
Collapse
Affiliation(s)
- Tui Neri
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia Animale, Universita' di Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The restoration of functional myocardium following heart failure still remains a formidable challenge among researchers. Irreversible damage caused by myocardial infarction is followed by left ventricular remodeling. The current pharmacologic and interventional strategies fail to regenerate dead myocardium and are usually insufficient to meet the challenge caused by necrotic cardiac myocytes. There is growing evidence, suggesting that the heart has the ability to regenerate through the activation of resident cardiac stem cells or through the recruitment of a stem cell population from other tissues such as bone marrow. These new findings belie the earlier conception about the poor regenerating ability of myocardial tissue. Stem cell therapy is a promising new approach for myocardial repair. However, it has been limited by the paucity of cell sources for functional human cardiomyocytes. Moreover, cells isolated from different sources exhibit idiosyncratic characteristics including modes of isolation, ease of expansion in culture, proliferative ability, characteristic markers, etc., which are the basis for several technical manipulations to achieve successful engraftment. Clinical trials show some evidence for the successful integration of stem cells of extracardiac origin in adult human heart with an improved functional outcome. This may be attributed to the discrepancies in the methods of detection, study subject selection (early or late post transplantation), presence of inflammation, and false identification of infiltrating leukocytes. This review discusses these issues in a comprehensive manner so that their physiological significance in animal as well as in human studies can be better understood.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Pharmacology, Central Drug Research Institute, POB-173, Lucknow-226001, India
| | | |
Collapse
|
31
|
Islam MQ, Islam K, Sharp CA. Epigenetic reprogramming of nonreplicating somatic cells for long-term proliferation by temporary cell-cell contact. Stem Cells Dev 2007; 16:253-68. [PMID: 17521237 DOI: 10.1089/scd.2006.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem (ES) cells are potential sources of tissue regeneration; however, transplanted ES cells produce tumors in the host tissues. In addition, transplantation between genetically unrelated individuals often results in graft rejection. Although the development of patient specific stem cell lines by somatic cell nuclear transfer (SCNT) represents a means of overcoming the problem of rejection, its human application has ethical dilemmas. Adult stem (AS) cells can also differentiate into specialized cells and may provide an alternative source of cells for human applications. In common with other somatic cells, AS cells have limited capacity for proliferation and cannot be produced in large quantities without genetic manipulation. We demonstrate here that nonreplicating mammalian cells can be reprogrammed for long-term proliferation by temporary cell-cell contact through coculture of AS cells with the GM05267-derived F7 mouse cell line. Subsequent elimination of F7 cells from the co-culture allows proliferation of previously nonreplicating cells, colonies of which can be isolated to produce cell lines. We also demonstrate that the epigenetically reprogrammed AS cells, without the physical transfer of either nuclear or cytoplasmic material from other cells, are capable of long-term proliferation and able to relay signals to other nonreplicating cells to reinitiate proliferation with no addition of recombinant factors. The reported cell amplification procedure is methodologically simple and can be easily reproduced. This procedure allows the production of an unlimited number of cells from a limited number of AS cells, making them an ideal source of cells for applications involving autologous cell transplantation.
Collapse
Affiliation(s)
- M Q Islam
- Laboratory of Cancer Genetics, Laboratory Medicine Center (LMC), University Hospital Linköping, 58216 Linköping, Sweden.
| | | | | |
Collapse
|
32
|
Freberg CT, Dahl JA, Timoskainen S, Collas P. Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 2007; 18:1543-53. [PMID: 17314394 PMCID: PMC1855029 DOI: 10.1091/mbc.e07-01-0029] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Analyses of molecular events associated with reprogramming somatic nuclei to pluripotency are scarce. We previously reported the reprogramming of epithelial cells by extract of undifferentiated embryonal carcinoma (EC) cells. We now demonstrate reprogramming of DNA methylation and histone modifications on regulatory regions of the developmentally regulated OCT4 and NANOG genes by exposure of 293T cells to EC cell extract. OCT4 and NANOG are transcriptionally up-regulated and undergo mosaic cytosine-phosphate-guanosine demethylation. OCT4 demethylation occurs as early as week 1, is enhanced by week 2, and is most prominent in the proximal promoter and distal enhancer. Targeted OCT4 and NANOG demethylation does not occur in 293T extract-treated cells. Retinoic acid-mediated differentiation of reprogrammed cells elicits OCT4 promoter remethylation and transcriptional repression. Chromatin immunoprecipitation analyses of lysines K4, K9, and K27 of histone H3 on OCT4 and NANOG indicate that primary chromatin remodeling determinants are acetylation of H3K9 and demethylation of dimethylated H3K9. H3K4 remains di- and trimethylated. Demethylation of trimethylated H3K9 and H3K27 also occurs; however, trimethylation seems more stable than dimethylation. We conclude that a central epigenetic reprogramming event is relaxation of chromatin at loci associated with pluripotency to create a conformation compatible with transcriptional activation.
Collapse
Affiliation(s)
- Christel T. Freberg
- Department of Biochemistry, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - John Arne Dahl
- Department of Biochemistry, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Sanna Timoskainen
- Department of Biochemistry, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Biochemistry, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
33
|
Collas P, Taranger CK. Toward reprogramming cells to pluripotency. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:47-67. [PMID: 16903416 DOI: 10.1007/3-540-31437-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The possibility of turning one somatic cell type into another may in the long run have beneficial applications in regenerative medicine. Somatic cell nuclear transfer (therapeutic cloning) may offer this possibility; however, ethical guidelines prevent application of this technology in many in countries. As a result, alternative approaches are being developed for altering cell fate. This communication discusses recent non-nuclear transfer-based in vitro approaches for reprogramming cells and enhancing their potential for differentiation toward various lineages.
Collapse
Affiliation(s)
- P Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | |
Collapse
|
34
|
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20:1487-1495. [PMID: 16791265 DOI: 10.1038/sj.leu.2404296] [Citation(s) in RCA: 1046] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 12/13/2022]
Abstract
Normal and malignant cells shed from their surface membranes as well as secrete from the endosomal membrane compartment circular membrane fragments called microvesicles (MV). MV that are released from viable cells are usually smaller in size compared to the apoptotic bodies derived from damaged cells and unlike them do not contain fragmented DNA. Growing experimental evidence indicates that MV are an underappreciated component of the cell environment and play an important pleiotropic role in many biological processes. Generally, MV are enriched in various bioactive molecules and may (i) directly stimulate cells as a kind of 'signaling complex', (ii) transfer membrane receptors, proteins, mRNA and organelles (e.g., mitochondria) between cells and finally (iii) deliver infectious agents into cells (e.g., human immuno deficiency virus, prions). In this review, we discuss the pleiotropic effects of MV that are important for communication between cells, as well as the role of MV in carcinogenesis, coagulation, immune responses and modulation of susceptibility/infectability of cells to retroviruses or prions.
Collapse
Affiliation(s)
- J Ratajczak
- The Stem Cell Biology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
35
|
Collas P, Taranger CK, Boquest AC, Noer A, Dahl JA. On the way to reprogramming cells to pluripotency using cell-free extracts. Reprod Biomed Online 2006; 12:762-70. [PMID: 16792855 DOI: 10.1016/s1472-6483(10)61088-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The functional reprogramming of a differentiated cell to pluripotency may present beneficial applications in regenerative medicine. Somatic cell nuclear transfer may offer this possibility, but technical hurdles and ethical guidelines currently prevent application of this technology in several countries. As a result, alternative approaches are being developed for altering cell fate. Recent non-nuclear transfer-based approaches for reprogramming somatic cells are discussed as well as ways to enhance their differentiation potential. These approaches include the fusion of differentiated cells with embryonic stem cells and the use of extract from pluripotent cells to reprogramme differentiated cells into multipotent or pluripotent cells.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | | | | | | | | |
Collapse
|
36
|
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20:847-856. [PMID: 16453000 DOI: 10.1038/sj.leu.2404132] [Citation(s) in RCA: 1237] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/21/2005] [Accepted: 12/26/2005] [Indexed: 12/15/2022]
Abstract
Membrane-derived vesicles (MV) are released from the surface of activated eucaryotic cells and exert pleiotropic effects on surrounding cells. Since the maintenance of pluripotency and undifferentiated propagation of embryonic stem (ES) cells in vitro requires tight cell to cell contacts and effective intercellular signaling, we hypothesize that MV derived from ES cells (ES-MV) express stem cell-specific molecules that may also support self-renewal and expansion of adult stem cells. To address this hypothesis, we employed expansion of hematopoietic progenitor cells (HPC) as a model. We found that ES-MV (10 microg/ml) isolated from murine ES cells (ES-D3) in serum-free cultures significantly (i) enhanced survival and improved expansion of murine HPC, (ii) upregulated the expression of early pluripotent (Oct-4, Nanog and Rex-1) and early hematopoietic stem cells (Scl, HoxB4 and GATA 2) markers in these cells, and (iii) induced phosphorylation of MAPK p42/44 and serine-threonine kinase AKT. Furthermore, molecular analysis revealed that ES-MV express Wnt-3 protein and are selectively highly enriched in mRNA for several pluripotent transcription factors as compared to parental ES cells. More important, this mRNA could be delivered by ES-MV to target cells and translated into the corresponding proteins. The biological effects of ES-MV were inhibited after heat inactivation or pretreatment with RNAse, indicating a major involvement of protein and mRNA components of ES-MV in the observed phenomena. We postulate that ES-MV may efficiently expand HPC by stimulating them with ES-MV expressed ligands (e.g., Wnt-3) as well as increase their pluripotency after horizontal transfer of ES-derived mRNA.
Collapse
Affiliation(s)
- J Ratajczak
- Stem Cell Biology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Håkelien AM, Küntziger T, Gaustad KG, Marstad A, Collas P. In vitro reprogramming of nuclei and cells. Methods Mol Biol 2006; 348:259-68. [PMID: 16988386 DOI: 10.1007/978-1-59745-154-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Directly turning a somatic cell type into another would be beneficial for producing replacement cells for therapeutic purposes. To this end, novel cell reprogramming strategies are being developed. We describe here methods for functionally reprogramming a somatic cell using an extract derived from another somatic cell type. The procedure involves reversible permeabilization of 293T fibroblasts, incubation of the permeabilized cells in a nuclear and cytoplasmic extract of T-cells, resealing of the "reprogrammed" cells, and culture for assessment of reprogramming. Reprogramming has been evidenced by nuclear uptake and assembly of transcription factors, induction of activity of a chromatin remodeling complex, changes in chromatin composition, activation of lymphoid cell-specific genes, and expression of T-cell-specific surface molecules. The system is likely to constitute a powerful tool to examine the processes of nuclear reprogramming, at least as they occur in vitro.
Collapse
|
38
|
Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16:5719-35. [PMID: 16195347 PMCID: PMC1289416 DOI: 10.1091/mbc.e05-06-0572] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture. Microarray and quantitative analyses of gene expression reveal that the transition from a 293T to a pluripotent cell phenotype involves a dynamic up-regulation of hundreds of NCCIT genes, concomitant with down-regulation of 293T genes and of indicators of differentiation such as A-type lamins. Up-regulated genes encompass embryonic and stem cell markers, including OCT4, SOX2, NANOG, and Oct4-responsive genes. OCT4 activation is associated with DNA demethylation in the OCT4 promoter and nuclear targeting of Oct4 protein. In fibroblasts exposed to extract of mouse embryonic stem cells, Oct4 activation is biphasic and RNA-PolII dependent, with the first transient rise of Oct4 up-regulation being necessary for the second, long-term activation of Oct4. Genes characteristic of multilineage differentiation potential are also up-regulated in NCCIT extract-treated cells, suggesting the establishment of "multilineage priming." Retinoic acid triggers Oct4 down-regulation, de novo activation of A-type lamins, and nestin. Furthermore, the cells can be induced to differentiate toward neurogenic, adipogenic, osteogenic, and endothelial lineages. The data provide a proof-of-concept that an extract of undifferentiated carcinoma cells can elicit differentiation plasticity in an otherwise more developmentally restricted cell type.
Collapse
Affiliation(s)
- Christel K Taranger
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Advances in mammalian cloning prove that somatic nuclei can be reprogrammed to a state of totipotency by transfer into oocytes. An alternative approach to reprogram the somatic genome involves the creation of hybrids between somatic cells and other cells that contain reprogramming activities. Potential fusion partners with reprogramming activities include embryonic stem cells, embryonic germ cells, embryonal carcinoma cells, and even differentiated cells. Recent advances in fusion-mediated reprogramming are discussed from the standpoints of the developmental potency of hybrid cells, genetic and epigenetic correlates of reprogramming, and other aspects involved in the reprogramming process. In addition, the utility of fusion-mediated reprogramming for future cell-based therapies is discussed.
Collapse
Affiliation(s)
- Dominic J Ambrosi
- Center for Regenerative Biology, University of Connecticut, Storrs, CT, 06269-4243, USA
| | | |
Collapse
|
40
|
Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 Spec No 1:R47-58. [PMID: 15809273 DOI: 10.1093/hmg/ddi114] [Citation(s) in RCA: 878] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic marking systems confer stability of gene expression during mammalian development. Genome-wide epigenetic reprogramming occurs at stages when developmental potency of cells changes. At fertilization, the paternal genome exchanges protamines for histones, undergoes DNA demethylation, and acquires histone modifications, whereas the maternal genome appears epigenetically more static. During preimplantation development, there is passive DNA demethylation and further reorganization of histone modifications. In blastocysts, embryonic and extraembryonic lineages first show different epigenetic marks. This epigenetic reprogramming is likely to be needed for totipotency, correct initiation of embryonic gene expression, and early lineage development in the embryo. Comparative work demonstrates reprogramming in all mammalian species analysed, but the extent and timing varies, consistent with notable differences between species during preimplantation development. Parental imprinting marks originate in sperm and oocytes and are generally protected from this genome-wide reprogramming. Early primordial germ cells possess imprinting marks similar to those of somatic cells. However, rapid DNA demethylation after midgestation erases these parental imprints, in preparation for sex-specific de novo methylation during gametogenesis. Aberrant reprogramming of somatic epigenetic marks after somatic cell nuclear transfer leads to epigenetic defects in cloned embryos and stem cells. Links between epigenetic marking systems appear to be developmentally regulated contributing to plasticity. A number of activities that confer epigenetic marks are firmly established, while for those that remove marks, particularly methylation, some interesting candidates have emerged recently which need thorough testing in vivo. A mechanistic understanding of reprogramming will be crucial for medical applications of stem cell technology.
Collapse
Affiliation(s)
- Hugh D Morgan
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
41
|
Abstract
A major challenge in biology is to understand how genetic information is interpreted to direct the formation of specialized tissues within a multicellular organism. During differentiation, changes in chromatin structure and nuclear organization establish heritable patterns of gene expression in response to signals. Epigenetic states can be broadly divided into three categories: euchromatin, constitutive heterochromatin and facultative hetereochromatin. Although the static epigenetic profiles of expressed and silent loci are relatively well characterized, less is known about the transition between active and repressed states. Furthermore, it is important to expand on localized models of chromatin structure at specific genetic addresses to examine the entire nucleus. Changes in nuclear organization, replication timing and global chromatin modifications should be integrated when attempting to describe the epigenetic signature of a given cell type. It is also crucial to examine the temporal aspect of these changes. In this context, the capacity for cellular differentiation reflects both the repertoire of available transcription factors and the accessibility of cis-regulatory elements, which is governed by chromatin structure. Understanding this interplay between epigenetics and transcription will help us to understand differentiation pathways and, ultimately, to manipulate or reverse them.
Collapse
Affiliation(s)
- Katharine L Arney
- Lymphocyte Development, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
42
|
Kues WA, Carnwath JW, Niemann H. From fibroblasts and stem cells: implications for cell therapies and somatic cloning. Reprod Fertil Dev 2005; 17:125-34. [PMID: 15745637 DOI: 10.1071/rd04118] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 12/31/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.
Collapse
Affiliation(s)
- Wilfried A Kues
- Department of Biotechnology, Institut für Tierzucht, Mariensee, D-31535 Neustadt, Germany.
| | | | | |
Collapse
|
43
|
Abstract
Chromatin structure dictates whether DNA templates are accessible to nuclear proteins; therefore, it is tightly regulated. To reconfigure chromatin, cells often mobilize 'chromatin-remodelling complexes' that use energy to disrupt histone-DNA contacts. BAF complexes, which are related to the yeast SWI-SNF complex, are the prototypical mammalian chromatin-remodelling complexes. In the past few years, studies have revealed the crucial and diverse roles of BAF complexes in the regulation of the immune system - from lymphocyte development to immune responses. This review surveys these advances, highlighting the general insights these studies provide into the modes of action of BAF complexes, and it concludes with a discussion of some of the key opportunities and challenges in this field.
Collapse
Affiliation(s)
- Tian Chi
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
44
|
Street CN, Sipione S, Helms L, Binette T, Rajotte RV, Bleackley RC, Korbutt GS. Stem cell-based approaches to solving the problem of tissue supply for islet transplantation in type 1 diabetes. Int J Biochem Cell Biol 2004; 36:667-83. [PMID: 15010331 DOI: 10.1016/j.biocel.2003.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 09/16/2003] [Indexed: 02/01/2023]
Abstract
Type 1 diabetes is a debilitating condition, affecting millions worldwide, that is characterized by the autoimmune destruction of insulin-producing pancreatic islets of Langerhans. Although exogenous insulin administration has traditionally been the mode of treatment for this disease, recent advancements in the transplantation of donor-derived insulin-producing cells have provided new hope for a cure. However, in order for islet transplantation to become a widely used technique, an alternative source of cells must be identified to supplement the limited supply currently available from cadaveric donor organs. Stem cells represent a promising solution to this problem, and current research is being aimed at the creation of islet-endocrine tissue from these undifferentiated cells. This review presents a summary of the research to date involving stem cells and cell replacement therapy for type 1 diabetes. The potential for the differentiation of embryonic stem (ES) cells to islet phenotype is discussed, as well as the possibility of identifying and exploiting a pancreatic progenitor/stem cell from the adult pancreas. The possibility of creating new islets from adult stem cells derived from other tissues, or directly form other terminally differentiated cell types is also addressed. Finally, a model for the isolation and maturation of islets from the neonatal porcine pancreas is discussed as evidence for the existence of an islet precursor cell in the pancreas.
Collapse
Affiliation(s)
- Cale N Street
- Surgical-Medical Research Institute, University of Alberta, Room 1074, Dentistry/Pharmacy Building, Edmonton, Alta., Canada T6G 2N8
| | | | | | | | | | | | | |
Collapse
|
45
|
Flasza M, Shering AF, Smith K, Andrews PW, Talley P, Johnson PA. Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers. CLONING AND STEM CELLS 2004; 5:339-54. [PMID: 14733752 DOI: 10.1089/153623003772032844] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic cell reprogramming holds great promise for the development of novel cellular therapeutics. A number of sources of reprogramming potential have been identified, including oocytes, embryonic germ (EG) cells and embryonic stem (ES) cells. However, each of these sources of reprogramming factors is problematic, since they are either not freely available or have special growth requirements. Embryonal carcinoma (EC) cells are another source of pluripotent cells that, unlike ES and EG cells, do not usually require special growth conditions. Since they share many of the key characteristics of ES cells, such as pluripotency, EC cells may provide a readily amenable alternative source of reprogramming factors and could serve as a model for ES cells in this respect. Here we show that mouse EC cells can also function as donors of reprogramming factors. PEG-mediated fusion between murine EC cells (P19) and the cells of a human T-lymphoma cell line (CEM-GFP) resulted in inter-species hybrid colony formation. Colonies of hybrid cells displayed heterogeneity in cellular morphology as well as in their pattern of human gene expression. Expression of two human transcription factors characteristic of undifferentiated pluripotent stem cells, Oct-4 and Sox-2, was detected in the hybrid cells, demonstrating activation of endogenous human markers of pluripotency. Simultaneously, down-regulation of CD45, a marker present in lymphocytic cells, was observed in some hybrids. The detection of human specific markers of differentiation, such as nestin, lamininbeta1, and collagen IValpha1, indicates that fusion resulted in reprogramming of the human cells to reflect the differentiation potential of the murine EC partner.
Collapse
|
46
|
Håkelien AM, Gaustad KG, Collas P. Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 2004; 316:834-41. [PMID: 15033476 DOI: 10.1016/j.bbrc.2004.02.127] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 10/26/2022]
Abstract
We report a transient modulation of cell fate in fibroblasts briefly exposed to an extract derived from the rat insulin-producing beta cell line, INS-1E. Primary fetal rat fibroblasts were reversibly permeabilized with Streptolysin O, incubated for 1h in a 15,000g INS-1E nuclear and cytoplasmic extract, resealed, and cultured. A first marker of change in cell fate was a reduction of cell and nuclear size within days of exposure to extract such that in some instances the fibroblasts resembled INS-1E cells. Second, two beta cell transcripts, Pdx-1 and insulin, were detected in the fibroblasts for up to 4 weeks. Third, (pro)insulin labeling was detected in 5-30% of the cells for a period of 8-14 days after incubation in extract. These phenotypes were absent from fibroblasts exposed to heat-treated INS-1E extracts, a human fibroblast cell line-derived extract or buffer. The results indicate that the extract of an insulinoma-derived cell line can promote at least a transient modification of cell fate towards a beta cell phenotype in non-beta cells. Because they are easily accessible, cell extracts may represent a practical source of material for investigating the mechanisms of alteration of a nuclear and cellular program.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Medical Biochemistry, University of Oslo, Oslo 0317, Norway
| | | | | |
Collapse
|
47
|
Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 2004; 314:420-7. [PMID: 14733922 DOI: 10.1016/j.bbrc.2003.12.109] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.
Collapse
|
48
|
Alison MR, Poulsom R, Otto WR, Vig P, Brittan M, Direkze NC, Lovell M, Fang TC, Preston SL, Wright NA. Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol 2004; 57:113-20. [PMID: 14747430 PMCID: PMC1770217 DOI: 10.1136/jcp.2003.010074] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2003] [Indexed: 01/25/2023]
Abstract
A large body of evidence supports the idea that certain adult stem cells, particularly those of bone marrow origin, can engraft at alternative locations, particularly when the recipient organ is damaged. Under strong and positive selection pressure these cells will clonally expand/differentiate, making an important contribution to tissue replacement. Similarly, bone marrow derived cells can be amplified in vitro and differentiated into many types of tissue. Despite seemingly irrefutable evidence for stem cell plasticity, a veritable chorus of detractors has emerged, some doubting its very existence, motivated perhaps by more than a little self interest. The issues that have led to this situation include the inability to reproduce certain quite startling observations, and extrapolation from the behaviour of embryonic stem cells to suggest that adult bone marrow cells simply fuse with other cells and adopt their phenotype. Although these issues need resolving and, accepting that cell fusion does appear to allow reprogramming of haemopoietic cells in special circumstances, criticising this whole new field because some areas remain unclear is not good science.
Collapse
Affiliation(s)
- M R Alison
- Histopathology Unit, Cancer Research (UK), London WC2A 3PX, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. Cloned Calves from Chromatin Remodeled In Vitro1. Biol Reprod 2004; 70:146-53. [PMID: 13679310 DOI: 10.1095/biolreprod.103.021220] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have developed a novel system for remodeling mammalian somatic nuclei in vitro prior to cloning by nuclear transplantation. The system involves permeabilization of the donor cell and chromatin condensation in a mitotic cell extract to promote removal of nuclear factors solubilized during chromosome condensation. The condensed chromosomes are transferred into enucleated oocytes prior to activation. Unlike nuclei of nuclear transplant embryos, nuclei of chromatin transplant embryos exhibit a pattern of markers closely resembling that of normal embryos. Healthy calves were produced by chromatin transfer. Compared with nuclear transfer, chromatin transfer shows a trend toward greater survival of cloned calves up to at least 1 mo after birth. This is the first successful demonstration of a method for directly manipulating the somatic donor chromatin prior to transplantation. This procedure should be useful for investigating mechanisms of nuclear reprogramming and for making improvements in the efficiency of mammalian cloning.
Collapse
|
50
|
Abstract
Methods for directly turning a somatic cell type into another type (a process referred to as transdifferentiation) would be beneficial for producing replacement cells for therapeutic applications. Adult stem cells have been shown to display a broader differentiation potential than anticipated and may contribute to tissues other than those in which they reside. In addition, novel transdifferentiation strategies are being developed. I report recent results on the functional reprogramming of a somatic cell using a nuclear and cytoplasmic extract derived from another somatic cell type. The reprogramming of 293T fibroblasts in an extract from T cells is evidenced by nuclear uptake and the assembly of transcription factors, induction of activity of a chromatin remodelling complex, changes in chromatin composition and activation of lymphoid cell-specific genes. The reprogrammed cells express T-cell-specific surface molecules and a complex regulatory function. Reprogramming cells in cell-free extracts may create possibilities for producing replacement cells for therapeutic applications. The system may also constitute a powerful tool to examine the mechanisms of nuclear reprogramming, at least as they occur in vitro.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Medical Biochemistry, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|