1
|
Rowley PA, Ellahi A, Han K, Patel JS, Van Leuven JT, Sawyer SL. Nuku, a family of primate retrocopies derived from KU70. G3 (BETHESDA, MD.) 2021; 11:jkab163. [PMID: 34849803 PMCID: PMC8496227 DOI: 10.1093/g3journal/jkab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
The gene encoding the ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue-specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Aisha Ellahi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78751, USA
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio- Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| |
Collapse
|
2
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
3
|
KARP-1 works as a heterodimer with Ku70, but the function of KARP-1 cannot perfectly replace that of Ku80 in DSB repair. Exp Cell Res 2011; 317:2267-75. [PMID: 21756904 DOI: 10.1016/j.yexcr.2011.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 11/20/2022]
Abstract
Ku, the heterodimer of Ku70 and Ku80, plays an essential role in the DNA double-strand break (DSB) repair pathway, i.e., non-homologous end-joining (NHEJ). Two isoforms of Ku80 encoded by the same genes, namely, Ku80 and KARP-1 are expressed and function in primate cells, but not in rodent cells. Ku80 works as a heterodimer with Ku70. However, it is not yet clear whether KARP-1 forms a heterodimer with Ku70 and works as a heterodimer. Although KARP-1 appears to work in NHEJ, its physiological role remains unclear. In this study, we established and characterized EGFP-KARP-1-expressing xrs-6 cell lines, EGFP-KARP-1/xrs-6. We found that nuclear localization signal (NLS) of KARP-1 is localized in the C-terminal region. Our data showed that KARP-1 localizes within the nucleus in NLS-dependent and NLS-independent manner and forms a heterodimer with Ku70, and stabilizes Ku70. On the other hand, EGFP-KARP-1 could not perfectly complement the radiosensitivity and DSB repair activity of Ku80-deficient xrs-6 cells. Furthermore, KARP-1 could not accumulate at DSBs faster than Ku80, although EGFP-KARP-1 accumulates at DSBs. Our data demonstrate that the function of KARP-1 could not perfectly replace that of Ku80 in DSB repair, although KARP-1 has some biochemical properties, which resemble those of Ku80, and works as a heterodimer with Ku70. On the other hand, the number of EGFP-KARP-1-expressing xrs-6 cells showing pan-nuclear γ-H2AX staining significantly increases following X-irradiation, suggesting that KARP-1 may have a novel role in DSB response.
Collapse
|
4
|
Abstract
Small molecule inhibitors of DNA repair are emerging as potent and selective anticancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and noncompetitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy.
Collapse
Affiliation(s)
- Benjamin J. Moeller
- David H. Koch Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Renata Pasqualini
- David H. Koch Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Wadih Arap
- David H. Koch Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med 2009; 13:3019-3031. [PMID: 19522844 PMCID: PMC4516462 DOI: 10.1111/j.1582-4934.2009.00825.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022] Open
Abstract
DNA repair is an indispensable part of a cell's defence system against the devastating effects of DNA-damaging conditions. The regulation of this function is a really demanding situation, particularly when the stressing factors persist for a long time. In such cases, the depletion of existing DNA repair proteins has to be compensated by the induction of the analogous gene products. In addition, the arrest of transcription, which is another result of many DNA-damaging agents, needs to be overcome through regulation of transcription-specific DNA repair pathways. The involvement of the ubiquitin-proteasome system (UPS) in cancer- and chemotherapy-related DNA-damage repair relevant to the above transcriptional modification mechanisms are illustrated in this review. Furthermore, the contribution of UPS to the regulation of localization and accessibility of DNA repair proteins to chromatin, in response to cellular stress is discussed.
Collapse
|
6
|
Pucci S, Mazzarelli P, Paola M, Sesti F, Fabiola S, Boothman DA, David BA, Spagnoli LG, Luigi SG. Interleukin-6 affects cell death escaping mechanisms acting on Bax-Ku70-Clusterin interactions in human colon cancer progression. Cell Cycle 2009; 8:473-81. [PMID: 19177010 PMCID: PMC2853871 DOI: 10.4161/cc.8.3.7652] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Activation of pro-survival pathways and apoptotic cell death escape are considered hallmarks of oncogenic cell transformation. Tissue microenvironment strongly influences tumorigenesis, redirecting some pathways versus a persisting pro-survival state. Here, we report evidence on the role of interleukin 6 (IL-6) in affecting pro-survival pathways in colon cancer progression, modulating the expression and the molecular interactions among the pro-apoptotic factor Bax, the DNA repair proteins Ku70/86 and Clusterin isoforms. In human colorectal carcinomas (n = 50) at different stages of disease, we found an increased IL-6 production, the loss of Ku86 and Clusterin 50-55 kDa pro-apoptotic isoform. Conversely, we observed the overexpression of Bax and the 40 kDa prosurvival sClusterin (sCLU) isoform. Bax co-localized with Ku70 that was found atypically expressed in the cytoplasm of advanced stage colon cancers (Dukes'C-D; n = 22). IL-6 treatment of a colon cancer cell line, Caco-2, modulated the expression of genes involved in tumor invasion and apoptosis, as observed by microarrays. In particular, IL-6 downmodulated Bax expression at mRNA level. Concomitantly, IL-6 exposure influenced Bax also at protein level acting on the Bax-Ku70-sCLU physical interactions in the cytoplasm, by affecting the Ku70 acetylation and phosphorylation state, thus leading to the inhibition of Bax pro-apoptotic activity. In addition, we found that IL-6 treatment induced a significant downregulation of Ku86 and a strong increase of sCLU, confirming tumor biopsies data. In contrast Somatostatin treatment of Caco-2 cells was able to restore apoptosis, demonstrating that Ku70-Bax-CLU interactions could be dynamically modulated. Hence, IL-6 could favor tumor expansion, promoting cell survival and apoptosis escape throughout the different stages of tumor evolution. Uncovering the molecular mechanisms of action of these factors may offer strategies for selectively manipulate the cancer cells sensitivity to therapy.
Collapse
Affiliation(s)
- Sabina Pucci
- Department of Biopathology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
An investigation of hormesis of trichloroethylene in L-02 liver cells by differential proteomic analysis. Mol Biol Rep 2008; 36:2119-29. [PMID: 19109764 DOI: 10.1007/s11033-008-9424-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Hormesis is the dose-response pattern of the biological responses to toxic chemicals, characterized by low-dose stimulation and high-dose inhibition. Although it is known that some cell types exhibit an adaptive response to low levels of cytotoxic agents, its molecular mechanism is still unclear and it has yet to be established whether this is a universal phenomenon that occurs in all cell types in response to exposure to every chemical. Trichloroethylene (TCE) is an organic solvent widely used and is released into the atmosphere from industrial degreasing operations. Acute (short-term) and chronic (long-term) inhalation exposure to trichloroethylene can affect the human health. In order to elucidate a cell-survival adaptive response of L-02 liver cells exposed to low dose of TCE, CCK-8 assay was used to assess cytotoxicity, and examined the possible mechanisms of hormesis by proteomics technology. We found that exposure of L-02 liver cells to low level of TCE resulted in adaptation to further exposure to higher level, about 1,000 protein-spots were obtained by two-dimensional electrophoresis (2-DE) and five protein spots were identified by matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry sequencing of tryptic peptides. Our results suggest that a relationship may exist between identified proteins and TCE-induced hormesis, which are very useful for further study of the mechanism and risk assessment of TCE.
Collapse
|
8
|
Sibani S, Rampakakis E, Di Paola D, Zannis-Hadjopoulos M. Fine mapping and functional activity of the adenosine deaminase origin in murine embryonic fibroblasts. J Cell Biochem 2008; 104:773-84. [PMID: 18181156 DOI: 10.1002/jcb.21662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
9
|
Gullo C, Au M, Feng G, Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta Rev Cancer 2006; 1765:223-34. [PMID: 16480833 DOI: 10.1016/j.bbcan.2006.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
Ku is a heterodimeric protein made up of two subunits, Ku70 and Ku80. It was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. It is a highly versatile regulatory protein that has been implicated in multiple nuclear processes, e.g., DNA repair, telomere maintenance and apoptosis. Accordingly, Ku is thought to play a crucial role in maintenance of chromosomal integrity and cell survival. Recent reports suggest that there is a positive relationship between Ku and the development of cancer, making Ku an important candidate target for anticancer drug development. Specifically, prior studies suggest that a delicate balance exists in Ku expression, as overexpression of Ku proteins promotes oncogenic phenotypes, including hyperproliferation and resistance to apoptosis; whereas deficient or low expression of Ku leads to genomic instability and tumorigenesis. Such observations through various experimental models indicate that Ku may act as either a tumor suppressor or an oncoprotein. Hence, understanding the link between the various functions of Ku and the development of cancer in different cell systems may help in the development of novel anticancer therapeutic agents that target Ku. These studies may also increase our understanding of how Ku autoantibodies are generated in autoimmune diseases.
Collapse
Affiliation(s)
- Charles Gullo
- Multiple Myeloma Research Laboratory, MMRL, Singapore Health Services, SingHealth, 7 Hospital Drive, Block A #02-05, Singapore 169611, Republic of Singapore
| | | | | | | |
Collapse
|
10
|
Uegaki K, Adachi N, So S, Iiizumi S, Koyama H. Heterozygous inactivation of human Ku70/Ku86 heterodimer does not affect cell growth, double-strand break repair, or genome integrity. DNA Repair (Amst) 2005; 5:303-11. [PMID: 16325483 DOI: 10.1016/j.dnarep.2005.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Ku, the heterodimer of Ku70 and Ku86, plays crucial roles in non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. It has recently been reported that heterozygous disruption of the human KU86 locus results in haploinsufficient phenotypes, including retarded growth, increased radiosensitivity, elevated p53 levels and shortened telomeres. In this paper, however, we show that heterozygous inactivation of either the KU70 or KU86 gene does not cause any defects in cell proliferation or DSB repair in human somatic cells. Moreover, although these heterozygous cell lines express reduced levels of both Ku70 and Ku86, they appear to maintain overall genome integrity with no elevated p53 levels or telomere shortening. These results clearly indicate that Ku haploinsufficiency is not a commonly observed phenomenon in human cells. Our data also suggest that the impact of KU70/KU86 mutations on telomere metabolism varies between cell types in humans.
Collapse
Affiliation(s)
- Koichi Uegaki
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
11
|
Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A. Expression of DNA-dependent protein kinase in human granulocytes. Cell Res 2005; 14:331-40. [PMID: 15353130 DOI: 10.1038/sj.cr.7290233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNA-PK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Department of Medical Microbiology, Lund University, Malmo University Hospital, S-205 02 Malmo, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
The role of Ku86 at telomeres has been extensively studied in various organisms; however, a role for Ku86 at human telomeres was unknown because Ku86 deletion is lethal for human cells. Here, we used small interference RNA to decrease Ku86 protein levels in human cells. An approximately 50% reduction in the amount of Ku86 protein was achieved 72 hours after transfection with Ku86-specific small interference RNAs. This decrease in Ku86 levels resulted in a rapid loss of cell viability characterized by increased apoptosis and decreased mitotic index in the cell population. Importantly, Ku86 knockdown was concomitant with a significant loss of telomeric sequences and with increased chromosomal aberrations, including chromatid-type fusions involving telomeric sequences. These findings demonstrate a role for Ku86 in regulating telomere length and telomere capping in human cells, which, in turn, could impact on cancer and aging.
Collapse
Affiliation(s)
- Isabel Jaco
- Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | |
Collapse
|
14
|
d'Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004; 18:1781-99. [PMID: 15289453 DOI: 10.1101/gad.1214504] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to DNA damage, cells engage a complex set of events that together comprise the DNA-damage response (DDR). These events bring about the repair of the damage and also slow down or halt cell cycle progression until the damage has been removed. In stark contrast, the ends of linear chromosomes, telomeres, are generally not perceived as DNA damage by the cell even though they terminate the DNA double-helix. Nevertheless, it has become clear over the past few years that many proteins involved in the DDR, particularly those involved in responding to DNA double-strand breaks, also play key roles in telomere maintenance. In this review, we discuss the current knowledge of both the telomere and the DDR, and then propose an integrated model for the events associated with the metabolism of DNA ends in these two distinct physiological contexts.
Collapse
|
15
|
Khurana B, Kristie TM. A Protein Sequestering System Reveals Control of Cellular Programs by the Transcriptional Coactivator HCF-1. J Biol Chem 2004; 279:33673-83. [PMID: 15190068 DOI: 10.1074/jbc.m401255200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian transcriptional coactivator HCF-1 is a critical component of the multiprotein herpes simplex virus immediate early gene enhancer core complex. The protein has also been implicated in basic cellular processes such as cell-cycle progression, transcriptional coactivation, and mRNA processing. Functions have been attributed to HCF-1 primarily from analyses of protein-protein interactions and from the cell-cycle-arrested phenotype of an HCF-1 temperature-sensitive mutant. However, neither the mechanisms involved nor specific cellular transcriptional targets have been identified. As the protein is essential for cell viability and proliferation, a genetic system was developed to specifically sequester the nuclear factor in the cell cytoplasm in a regulated manner. This approach exhibits no significant cell toxicity yet clearly demonstrates the requirement of available nuclear HCF-1 for herpes simplex virus immediate early gene expression during productive infection. Additionally, cellular transcriptional events were identified that contribute to understanding the functions ascribed to the protein and implicate the protein in events that impact the regulation of critical cellular processes.
Collapse
Affiliation(s)
- Bharat Khurana
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- Jessica A Downs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
17
|
Gururaja T, Li W, Noble WS, Payan DG, Anderson DC. Multiple functional categories of proteins identified in an in vitro cellular ubiquitin affinity extract using shotgun peptide sequencing. J Proteome Res 2003; 2:394-404. [PMID: 12938929 DOI: 10.1021/pr034019n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To construct a high information content assay for examination of the function of the cellular ubiquitin system, we added his-tagged ubiquitin, ATP, and an ATP-regenerating system to endogenous human cellular ubiquitin system enzymes, and labeled cellular proteins with hexa-histidine tagged ubiquitin in vitro. Labeling depended on ATP, the ATP recycling system, the proteasome inhibitor MG132, and the ubiquitin protease inhibitor ubiquitin aldehyde, and was inhibited by iodoacetamide. Quadruplicate affinity extracted proteins were digested with trypsin, and the peptides were analyzed by 2D capillary LC-MS/MS, SEQUEST, MEDUSA, and support vector machine calculations. Identified proteins included 22 proteasome subunits or associated proteins, 18 E1, E2, or E3 ubiquitin system enzymes or related proteins, 4 ubiquitin domain proteins and 36 proteins in functional clusters associated with redox processes, endocytosis/vesicle trafficking, the cytoskeleton, DNA damage/repair, calcium binding, and mRNA splicing. This suggests a link between the ubiquitin system and these cellular processes. This map of cellular ubiquitin-associated proteins may be useful for further studies of ubiquitin system function.
Collapse
|
18
|
Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003; 2:655-72. [PMID: 12767346 DOI: 10.1016/s1568-7864(03)00062-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of the XRCC genes has played an important part in understanding mammalian DNA repair processes, especially those involved in double-strand break (DSB) repair. Most of these genes were identified through their ability to correct DNA damage hypersensitivity in rodent cell lines, and they represent components of several different repair pathways including base-excision repair, non-homologous end joining, and homologous recombination. We document the phenotypic effects of mutation of the XRCC genes, and the current state of our knowledge of their functions. In addition to their continuing importance in discovering mechanisms of DNA repair, analysis of the XRCC genes is making a substantial contribution to the understanding of specific human disorders, including cancer.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
19
|
Do E, Taira E, Irie Y, Gan Y, Tanaka H, Kuo CH, Miki N. Molecular cloning and characterization of rKAB1, which interacts with KARP-1, localizes in the nucleus and protects cells against oxidative death. Mol Cell Biochem 2003; 248:77-83. [PMID: 12870657 DOI: 10.1023/a:1024157515342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ku autoantigen/KARP-1 (Ku86 autoantigen related protein-1) plays an important role in the double-strand break repair of mammalian DNA as a DNA-binding component of DNA-dependent protein kinase (DNA-PK) complex. KARP-1 is differently transcribed from the human Ku86 autoantigen gene locus and it is implicated in the control of DNA-dependent protein kinase activity. We cloned rKAB1, a rat homolog of KAB1 (KARP-1 binding protein 1 of human) from a rat hippocampal cDNA library. rKAB1 mRNA was specifically expressed in the brain and the thymus. EGFP-tagged rKAB1 protein localized in cell nucleus and in the condensed chromosome during the mitotic cell division. We found that rKAB1 works as a protective protein against cell damage by oxidative stress.
Collapse
Affiliation(s)
- Eunju Do
- Department of Pharmacology, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Watanabe F, Shinohara KI, Teraoka H, Komatsu K, Tatsumi K, Suzuki F, Imai T, Sagara M, Tsuji H, Ogiu T. Involvement of DNA-dependent protein kinase in down-regulation of cell cycle progression. Int J Biochem Cell Biol 2003; 35:432-40. [PMID: 12565705 DOI: 10.1016/s1357-2725(02)00268-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The catalytic polypeptide of DNA-dependent protein kinase (p470) is encoded by the gene responsible for murine severe combined immunodeficiency (SCID) devoid of DNA double-strand break repair and V(D)J recombination. Here, we have characterized the role of p470 in cell proliferation using SCID mice and the cell lines. In accord with DNA histogram patterns, SCID cell lines (SD/SD-eA and SC3VA2) expressing extremely low level of DNA-PK activity grew faster than a normal mouse cell line (CB/CB-eB) and SC3VA2 complemented with human p470 gene (RD13B2). In regenerating liver after partial hepatectomy, de novo DNA synthesis determined by [(3)H]thymidine incorporation started at 30h in C.B-17/Icr-SCID (SCID) mice and at around 36h in C.B-17/Icr (C.B-17) mice. Compared with normal cells, SCID cells contained slightly higher levels of transcripts of cyclin A, cyclin E, B-Myb and dihydrofolate reductase, which are regulated by E2F-1. E2F-1 playing a key role in G1- to S-phase progression was phosphorylated in vitro by DNA-PK. Importantly, the E2F-1 promoter transcriptional activity in SCID cell lines (SD/SD-eA and SC3VA2) was 4-5-fold higher than that in CB/CB-eB and RD13B2. These results suggest that p470 is involved in down-regulation of cell cycle progression through E2F-1-responsible genes.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, 101-0062, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Braastad CD, Han Z, Hendrickson EA. Constitutive DNase I hypersensitivity of p53-regulated promoters. J Biol Chem 2003; 278:8261-8. [PMID: 12475992 DOI: 10.1074/jbc.m204256200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of p53 to alter, at the transcriptional level, the gene expression of downstream targets is critical for its role as a tumor suppressor. Most models of p53 activation postulate the stepwise recruitment by p53 of coactivators, histone acetyltransferases, and/or chromatin remodeling factors to a promoter region to facilitate the subsequent access of the general transcriptional machinery required for transcriptional induction. We demonstrate here, however, that the promoter regions for the p53 target genes, p21, 14-3-3sigma, and KARP-1, exist in a constitutively open conformation that is readily accessible to DNase I. This conformation was not altered by DNA damage or by whether p53 was present or absent in the cell. In contrast, p53 response elements, which resided outside the immediate promoter regions, existed within DNase I-resistant chromatin domains. Thus, p53 activation of downstream target genes occurs without p53 inducing chromatin alterations detectable by DNase I accessibility at either the promoter or the response element. As such, these data support models of p53 activation that do not require extensive chromatin alterations to support cognate gene expression.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
22
|
Kurosawa A, Shinohara KI, Watanabe F, Shimizu-Saito K, Koiwai O, Yamamoto K, Teraoka H. Human neutrophils isolated from peripheral blood contain Ku protein but not DNA-dependent protein kinase. Int J Biochem Cell Biol 2003; 35:86-94. [PMID: 12467650 DOI: 10.1016/s1357-2725(02)00123-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ku protein, a heterodimer of 70kDa (Ku70) and 86kDa (Ku86) polypeptides, is involved in non-homologous DNA end-joining (NHEJ) of DNA double-strand break repair and V(D)J recombination in combination with the catalytic component of DNA-dependent protein kinase (p470). Although Ku protein is known to be ubiquitously present in eukaryotic cells, it was previously reported to be absent in mature neutrophils. Using a mixture of protease inhibitors in the isolation procedure of neutrophils from human peripheral blood, we were able to detect Ku in the neutrophils by immunoblot and flow-cytometric analyses. Transcripts of Ku70 and Ku86 genes were also detected by the reverse transcriptase-polymerase chain reaction (RT-PCR), and Ku protein was shown to be localized in the nucleus of neutrophils as a heterodimer. Like poly(ADP-ribose) polymerase-1, neither mRNA nor protein of p470 was detected in the neutrophils. These results suggest that Ku is involved independently of p470 in DNA metabolism and signal transduction.
Collapse
Affiliation(s)
- Aya Kurosawa
- Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, 101-0062, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
24
|
Braastad CD, Leguia M, Hendrickson EA. Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. Nucleic Acids Res 2002; 30:1713-24. [PMID: 11937624 PMCID: PMC113227 DOI: 10.1093/nar/30.8.1713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2002] [Accepted: 02/27/2002] [Indexed: 12/31/2022] Open
Abstract
The human Ku86 gene and an isoform, KARP-1 (Ku86 autoantigen related protein-1), encode overlapping, but differentially regulated, transcripts. Ku86 is constitutively transcribed at high levels and, although it plays a seminal role in DNA double-strand break repair, its expression is not induced by DNA damage. KARP-1, in contrast, is expressed constitutively only at low levels and its expression is induced by DNA damage in a p53-dependent fashion. The regulatory elements promoting KARP-1 gene expression and p53 responsiveness, however, were unknown. Here, we report that a strong DNase I hypersensitive site (DHS) resides approximately 25 kb upstream from the Ku86 promoter. This DHS is encompassed by a hypomethylated CpG island. Reporter assays demonstrated that this region corresponded to a promoter(s), which promoted transcription of peroxisomal trans-2-enoyl CoA reductase in the centromeric direction and KARP-1 in the telomeric direction. KARP-1 primer extension products were mapped to this CpG island in the correct transcriptional orientation confirming that KARP-1 transcription initiates from this site. Moreover, a p53 response element within the first intron of the KARP-1 transcriptional unit was identified using chromatin immunoprecipitation and antibodies specific to activated forms of p53. These data expand our understanding of this important DNA repair locus.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
25
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
26
|
Abstract
Ku86 plays a key role in nonhomologous end joining in mammals. Functional inactivation in rodents of either Ku86 or Ku70, which form the heterodimeric DNA end-binding subunit of the DNA-dependent protein kinase complex, is nevertheless compatible with viability. In contrast, no human patient has been described with mutations in either Ku86 or Ku70. This has led to the hypotheses that either these genes are performing an additional essential role(s) and/or redundant pathways exist that mask the phenotypic expression of these genes when they are mutated in humans. To address this issue, we describe here the construction of human somatic cell lines containing a targeted disruption of the Ku86 locus. Human HCT116 colon cancer cells heterozygous for Ku86 were haploinsufficient with an increase in polyploid cells, a reduction in cell proliferation, elevated p53 levels, and a slight hypersensitivity to ionizing radiation. Functional inactivation of the second Ku86 allele resulted in cells with a drastically reduced doubling time. These cells were capable of undergoing only a limited number of cell divisions, after which they underwent apoptosis. These experiments demonstrate that the Ku86 locus is essential in human somatic tissue culture cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA>
| | | | | |
Collapse
|
27
|
Bertinato J, Schild-Poulter C, Haché RJ. Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 2001; 114:89-99. [PMID: 11112693 DOI: 10.1242/jcs.114.1.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ku antigen is a heteromeric (Ku70/Ku80), mostly nuclear protein. Ku participates in multiple nuclear processes from DNA repair to V(D)J recombination to telomere maintenance to transcriptional regulation and serves as a DNA binding subunit and allosteric regulator of DNA-dependent protein kinase. While some evidence suggests that subcellular localization of Ku may be subject to regulation, how Ku gains access to the nucleus is poorly understood. In this work, using a combination of indirect immunofluorescence and direct fluorescence, we have demonstrated that transfer of the Ku heterodimer to the nucleus is determined by basic nuclear localization signals in each of the Ku subunits that function independently. A bipartite basic nuclear localization signal between amino acids 539–556 of Ku70 was observed to be required for nuclear import of full-length Ku70 monomer, while a short Ku80 motif of four amino acids from 565–568 containing three lysines was required for the nuclear import of full-length Ku80. Ku heterodimers containing only one nuclear localization signal accumulated in the nucleus as efficiently as wild-type Ku, while site directed mutagenesis inactivating the basic motifs in each subunit, resulted in a Ku heterodimer that was completely localized to the cytoplasm. Lastly, our results indicate that mutations in Ku previously proposed to abrogate Ku70/Ku80 heterodimerization, markedly reduced the accumulation of Ku70 without affecting heterodimer formation in mammalian cells.
Collapse
Affiliation(s)
- J Bertinato
- Graduate Program in Biochemistry, Department of Medicine, University of Ottawa, Ontario, Canada, K1Y 4K9
| | | | | |
Collapse
|
28
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
29
|
Fouladi B, Waldren CA, Rydberg B, Cooper PK. Comparison of repair of DNA double-strand breaks in identical sequences in primary human fibroblast and immortal hamster-human hybrid cells harboring a single copy of human chromosome 11. Radiat Res 2000; 153:795-804. [PMID: 10825755 DOI: 10.1667/0033-7587(2000)153[0795:corodd]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Löbrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.
Collapse
Affiliation(s)
- B Fouladi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
30
|
Brown KD, Lataxes TA, Shangary S, Mannino JL, Giardina JF, Chen J, Baskaran R. Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. J Biol Chem 2000; 275:6651-6. [PMID: 10692474 DOI: 10.1074/jbc.275.9.6651] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome damaging events, such as gamma-irradiation exposure, result in the induction of pathways that activate DNA repair mechanisms, halt cell cycle progression, and/or trigger apoptosis. We have investigated the effects of gamma-irradiation on cellular levels of the Ku autoantigens. Ku70 and Ku80 have been shown to form a heterodimeric complex that can bind tightly to free DNA ends and activate the protein kinase DNA-PKcs. We have found that irradiation results in an up-regulation of cellular levels of Ku70, but not Ku80, and that this enhanced level of Ku70 accumulates within the nucleus. Further, we uncovered that the postirradiation up-regulation of Ku70 utilizes a mechanism that is dependent on both p53 and damage response protein kinase ATM (ataxia-telangiectasia-mutated); however, the activation of DNA-PK does not require Ku70 up-regulation. These findings suggest that Ku70 up-regulation provides the cell with a means of assuring either proper DNA repair or an appropriate response to DNA damage independent of DNA-PKcs activation.
Collapse
Affiliation(s)
- K D Brown
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10:2703-34. [PMID: 10436023 PMCID: PMC25504 DOI: 10.1091/mbc.10.8.2703] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Collapse
Affiliation(s)
- K W Kohn
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
32
|
Kasten U, Plottner N, Johansen J, Overgaard J, Dikomey E. Ku70/80 gene expression and DNA-dependent protein kinase (DNA-PK) activity do not correlate with double-strand break (dsb) repair capacity and cellular radiosensitivity in normal human fibroblasts. Br J Cancer 1999; 79:1037-41. [PMID: 10098733 PMCID: PMC2362213 DOI: 10.1038/sj.bjc.6690166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expression of the Ku70 and Ku80 genes as well as the activity of the DNA-dependent protein kinase (DNA-PK) were studied in 11 normal human fibroblast lines. The proteins studied are known to be part of a double-strand break (dsb) repair complex involved in non-homologous recombination, as was demonstrated for the radiosensitive rodent mutant cell lines of the complementation groups 5-7. The 11 fibroblast lines used in this study represent a typical spectrum of normal human radiosensitivity with the surviving fraction measured for a dose of 3.5 Gy, SF3.5 GY, ranging from 0.03 to 0.28. These differences in cell survival were previously shown to correlate with the number of non-repaired dsbs. We found that the mRNA signal intensities of both Ku70 and Ku80 genes were fairly similar for the 11 cell lines investigated. In addition, the DNA-PK activity determined by the pulldown assay was fairly constant in these fibroblast lines. Despite the correlation between cell survival and dsb repair capacity, there was no correlation between dsb repair capacity and DNA-PK activity in the tested normal human fibroblast lines. Obviously, in this respect, other proteins/pathways appear to be more relevant.
Collapse
Affiliation(s)
- U Kasten
- Institute of Biophysics and Radiobiology, University of Hamburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Muller C, Calsou P, Frit P, Salles B. Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 1999; 81:117-25. [PMID: 10214916 DOI: 10.1016/s0300-9084(99)80044-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear serine/threonine protein kinase consisting of a large catalytic sub-unit and the Ku heterodimer that regulates kinase activity by its association with DNA. DNA-PK is a major component of the DNA double strand break repair apparatus, and cells deficient in one of its component are hypersensitive to ionizing radiation. DNA-PK is also required to lymphoid V(D)J recombination and its absence confers in mice a severe combined immunodeficiency phenotype. The purpose of this review is to summarize the current knowledge on the mechanisms that contribute to regulate DNA-PK activity in vivo or in vitro and relates them to the role of DNA-PK in cellular functions. Finally, the studies devoted to drug-inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.
Collapse
Affiliation(s)
- C Muller
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UPR 906, Toulouse, France
| | | | | | | |
Collapse
|
34
|
Zdzienicka MZ. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 1999; 81:107-16. [PMID: 10214915 DOI: 10.1016/s0300-9084(99)80043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all organisms multiple pathways to repair DNA double-strand breaks (DSB) have been identified. In mammalian cells DSB are repaired by two distinct pathways, homologous and non-homologous (illegitimate) recombination. X-ray-sensitive mutants have provided a tool for the identification and understanding of the illegitimate recombination pathway in mammalian cells. Two (sub-)pathways can be distinguished, the first mediated by DNA-PK-dependent protein kinase (DNA-PK), and the second directed by the hMre11/hRad50 complex. A variety of mutants impaired in DSB repair by illegitimate recombination, with mutations in Ku, DNA-PKcs, XRCC4 or nibrin, have been described. Herein, the characterization of these mutants with respect to the impaired cellular function and the molecular defect is provided. Further studies on these mutants, as well as on new mutants impaired in as-of-yet unidentified pathways, should be helpful to a better understanding of DSB repair and of the processes leading to genome instability and cancer.
Collapse
Affiliation(s)
- M Z Zdzienicka
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University-LUMC, The Netherlands
| |
Collapse
|
35
|
Abstract
For many years it has been evident that mammalian cells differ dramatically from yeast and rejoin the majority of their DNA DSBs by a nonhomologous mechanism, recently termed NHEJ. In the last few years a number of genes and proteins have been identified that operate in the pathway providing insights into the mechanism. These proteins include the three components of DNA-PK, DNA ligase IV, and XRCC4. In yeast Sir2, -3, and -4 proteins are also involved in the process and therefore are likely to play a role in higher organisms. Studies with yeast suggest that NHEJ is an error-free mechanism. Although the process is far from understood, it is likely that the DNA-PK complex or Ku alone acts in a complex with the Sir proteins possibly protecting the ends and preventing random rejoining. Further work is required to establish the details of this mechanism and to determine whether this represents an accurate rejoining process for a complex break induced by ionizing radiation. It will be intriguing to discover how the cell achieves efficient and accurate rejoining without the use of homology. Interactions between the components of DNA-PK and other proteins playing a central role in damage response mechanisms are beginning to emerge. Interestingly, there is evidence that DNA repair and damage response mechanisms overlap in lower organisms. The overlapping defects of the yeast Ku mutants, tell mutants, and AT cell lines in telomere maintenance further suggest overlapping functions or interacting mechanisms. A challenge for the future will be to establish how these different damage response mechanisms overlap and interact.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
36
|
Myung K, Braastad C, He DM, Hendrickson EA. KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion. Proc Natl Acad Sci U S A 1998; 95:7664-9. [PMID: 9636207 PMCID: PMC22716 DOI: 10.1073/pnas.95.13.7664] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The KARP-1 (Ku86 Autoantigen Related Protein-1) gene, which is expressed from the human Ku86 autoantigen locus, appears to play a role in mammalian DNA double-strand break repair as a regulator of the DNA-dependent protein kinase complex. Here we demonstrate that KARP-1 gene expression is significantly up-regulated following exposure of cells to DNA damage. KARP-1 mRNA induction was completely dependent on the ataxia telangiectasia and p53 gene products, consistent with the presence of a p53 binding site within the second intron of the KARP-1 locus. These observations link ataxia telangiectasia, p53, and KARP-1 in a common pathway.
Collapse
Affiliation(s)
- K Myung
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
37
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
38
|
Hendrickson EA. Cell-cycle regulation of mammalian DNA double-strand-break repair. Am J Hum Genet 1997; 61:795-800. [PMID: 9382087 PMCID: PMC1715978 DOI: 10.1086/514895] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- E A Hendrickson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|