1
|
Wang X, Tan Q, Bao X, Gong X, Zhao L, Chen J, Liu L, Li R. Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e. PLANTS (BASEL, SWITZERLAND) 2025; 14:1243. [PMID: 40284131 PMCID: PMC12030594 DOI: 10.3390/plants14081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Tomatoes are important horticultural crops worldwide. Verticillium wilt is a disease caused by Verticillium dahliae that causes serious tomato yield losses. V. dahliae can be classified into three distinct races in tomatoes. We identified the specific VdR3e gene of V. dahliae race 3 and found that VdR3e triggered immune responses in the resistant tomato cultivar IVF6384. We confirmed that VdR3e triggers immune responses in the parents of IVF6384 plants and conducted transcriptome sequencing between male and female IVF6384 plants after VdR3e infiltration to analyze the potential regulatory network response to VdR3e. We found that both parents had a series of detoxification and stress resistance responses to VdR3e, but those of the male IVF6384 parent were concentrated in disease resistance-related signaling pathways. Moreover, several vital differentially expressed genes involved in functional annotation related to plant-pathogen interactions and plant hormone signaling stimulated immune responses in Nicotiana benthamiana. This study provides a new and comprehensive perspective on tomato resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Qian Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Xiyue Bao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Xinyue Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Lingmin Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
2
|
Zhong J, Situ J, He C, He J, Kong G, Li H, Jiang Z, Li M. A virulent milRNA of Fusarium oxysporum f. sp. cubense impairs plant resistance by targeting banana AP2 transcription factor coding gene MaPTI6L. HORTICULTURE RESEARCH 2025; 12:uhae361. [PMID: 40070402 PMCID: PMC11894533 DOI: 10.1093/hr/uhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Fungi produce microRNA-like RNAs (milRNAs) with functional importance in various biological processes. Our previous research identified a new milRNA Foc-milR87 from Fusarium oxysporum f. sp. cubense, which contributes to fungal virulence by targeting the pathogen glycosyl hydrolase encoding gene. However, the potential roles of fungal milRNAs in interactions with hosts are not well understood. This study demonstrated that Foc-milR87 specifically suppressed the expression of MaPTI6L, a pathogenesis-related gene that encodes a transcriptional activator in the banana (Musa acuminata Cavendish group cv. 'Baxi Jiao') genome, by targeting the 3'untranslated region (UTR) of MaPTI6L. Transient overexpression of MaPTI6L activated plant defense responses that depend on its nuclear localization, yet co-expression with Foc-milR87 attenuated these responses. MaPTI6L enhanced plant resistance by promoting transcription of the salicylic acid signaling pathway marker gene MaEDS1. Sequence analysis of the MaPTI6L gene in 19 banana varieties, particularly those resistant to Fusarium wilt, uncovered single nucleotide polymorphisms (SNPs) at Foc-milR87 target sites. Experimental validation showed that these SNPs significantly reduce the microRNA's ability to suppress target gene expression. Our findings reveal that Foc-milR87 plays an important role in impairing plant resistance by targeting MaPTI6L mRNA and reducing MaEDS1 transcription during the early infection stage, suggesting the 3'UTR of MaPTI6L as a promising target for genome editing in generation of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiaqi Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Junjian Situ
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Chengcheng He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Jiahui He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guanghui Kong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Huaping Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| |
Collapse
|
3
|
Xu Y, Zhang T, Mu S, Peng Y, Wu D, Yang L, Li Q, Wu Z, Zhang J. Discovery of Arbutin as Novel Potential Antiviral Agent Against Tomato Yellow Leaf Curl Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3967-3976. [PMID: 39918282 DOI: 10.1021/acs.jafc.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a major plant virus, infects multiple plant species, severely threatening global food security. Arbutin, a natural product used in cosmetics to reduce pigmentation, also exhibits antibacterial and anti-inflammatory properties. However, its potential in plant protection remains undocumented. This study reveals arbutin's ability to inhibit TYLCV infection. In Nicotiana benthamiana, 100 μg/mL arbutin inhibited viral gene accumulation by up to 76.8%, surpassing ningnanmycin (65.8%) and ribavirin (39.5%). Besides, microscale thermophoresis indicated that arbutin bound strongly to the TYLCV coat protein (CP). Molecular docking indicated that arbutin interacted with ARG58, VAL65, and CYS69. RT-qPCR and Western blot experiments confirmed the crucial roles of these amino acids, especially VAL65, in viral infection. Transcriptome analysis revealed that mutating VAL65 affected plant-pathogen interaction pathways and MAPK signaling in host defense mechanisms. This study unveils arbutin's novel antiviral function, providing crucial insights for developing new biopesticides against plant viruses.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingting Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shimei Mu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yanqun Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Duanpu Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qing Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Coll A, Lukan T, Stare K, Zagorščak M, Mahkovec Povalej T, Baebler Š, Prat S, Coll NS, Valls M, Petek M, Gruden K. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. THE NEW PHYTOLOGIST 2024; 244:202-218. [PMID: 39129060 DOI: 10.1111/nph.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Mahkovec Povalej
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Salomé Prat
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Núria Sánchez Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| |
Collapse
|
5
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Xu Y, Zhang Y, Ma F, Zhao J, Yang H, Song S, Zhang S. Identification of DREB Family Genes in Banana and Their Function under Drought and Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2119. [PMID: 39124237 PMCID: PMC11314547 DOI: 10.3390/plants13152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Bananas are one of the most important cash crops in the tropics and subtropics. Drought and low-temperature stress affect the growth of banana. The DREB (dehydration responsive element binding protein) gene family, as one of the major transcription factor families, plays crucial roles in defense against abiotic stress. Currently, systematic analyses of the banana DREB (MaDREB) gene family have not yet been reported. In this study, 103 members of the MaDREB gene family were identified in the banana genome. In addition, transcriptomic analysis results revealed that MaDREBs responded to drought and cold stress. The expression of MaDREB14/22/51 was induced by drought and cold stress; these geneswere selected for further analysis. The qRT-PCR validation results confirmed the transcriptome results. Additionally, transgenic Arabidopsis plants overexpressing MaDREB14/22/51 exhibited enhanced resistance to drought and cold stress by reducing MDA content and increasing PRO and soluble sugar content. This study enhances our understanding of the function of the MaDREB gene family, provides new insights into their regulatory role under abiotic stress, and lays a good foundation for improving drought and cold stress-tolerant banana verities.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Yanshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| | - Funing Ma
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Jingxi Zhao
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Huiting Yang
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Shun Song
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| |
Collapse
|
7
|
Lohmaneeratana K, Leetanasaksakul K, Thamchaipenet A. Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1551. [PMID: 38891358 PMCID: PMC11174868 DOI: 10.3390/plants13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
8
|
Fick A, Swart V, Bombarely A, van den Berg N. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13453. [PMID: 38590150 PMCID: PMC11002358 DOI: 10.1111/mpp.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València (IBMCP‐CSIC‐UPV)ValenciaSpain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
9
|
Widyawan A, Al-Saleh MA, El Komy MH, Al Dhafer HM, Ibrahim YE. Potential of resistance inducers for citrus huanglongbing management via soil application and assessment of induction of pathogenesis-related protein genes. Heliyon 2023; 9:e19715. [PMID: 37809984 PMCID: PMC10558989 DOI: 10.1016/j.heliyon.2023.e19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Huanglongbing (HLB) or citrus greening currently is the most devastating citrus disease worldwide. Unfortunately, no practical cure has been available up to now. This makes the control of HLB as early as possible very important to be conducted. The objective of this study was to investigate the efficacy of the application of salicylic acid (SA) and Phenylacetic acid (PAA) on one-year-old seedlings of different citrus species (Citrus reticulata, C. sinensis, C. aurantifolii) growing on C. volkameriana and C. aurantium by soil drench methods. Factorial analysis of variance showed the percent change in "Candidatus Liberibacter asiaticus" titer and disease severity on a different combination of citrus species growing on the two rootstocks treated with inducers and Oxytetracycline (OTC) were significantly different compared to the untreated plants. SA alone or in combination with OTC provided excellent (P-value < 0.05) control of HLB based on all parameters. The interaction between both factors (Rootstocks x Citrus species) significantly influenced the Ct value (P-value = 0.0001). "Candidatus Liberibacter asiaticus" titer in plants treated with OTC was reduced significantly with a range of -18.75 up to -78.42. Overall, the highest reduction was observed in the application of OTC on sweet orange growing on C. volkameriana (-78.42), while the lowest reduction was observed in the same cultivar which was treated with a combination of SA and OTC (-3.36). Induction of pathogenesis-related (PR) genes, i.e., PR1, PR2, and PR15, biosynthesis of Jasmonic acid and ethylene which are also important pathways to defense activity were also significantly increased in treated plants compared to untreated plants. This study suggests that the application of inducer alone is acceptable for HLB management. We proposed the application of SA and PAA as a soil drench on the citrus seedlings as promising, easy, and environmentally safe for HLB disease control on citrus seedlings.
Collapse
Affiliation(s)
- Arya Widyawan
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mohammed A. Al-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mahmoud H. El Komy
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Hathal M. Al Dhafer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Yasser E. Ibrahim
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Fusarium Yellows of Ginger ( Zingiber officinale Roscoe) Caused by Fusarium oxysporum f. sp. zingiberi Is Associated with Cultivar-Specific Expression of Defense-Responsive Genes. Pathogens 2023; 12:pathogens12010141. [PMID: 36678490 PMCID: PMC9863783 DOI: 10.3390/pathogens12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop yield of ginger worldwide. The compatible interaction between ginger and Foz leading to susceptibility is dissected here. The pathogenicity of two Foz isolates on ginger was confirmed by their ability to colonise ginger and in turn induce both internal and external plant symptoms typical of Fusarium yellows. To shed light on Foz susceptibility at the molecular level, a set of defense-responsive genes was analysed for expression in the roots of ginger cultivars challenged with Foz. These include nucleotide-binding site (NBS) type of resistant (R) genes with a functional role in pathogen recognition, transcription factors associated with systemic acquired resistance, and enzymes involved in terpenoid biosynthesis and cell wall modifications. Among three R genes, the transcripts of ZoNBS1 and ZoNBS3 were rapidly induced by Foz at the onset of infection, and the expression magnitude was cultivar-dependent. These expression characteristics extend to the other genes. This study is the first step in understanding the mechanisms of compatible host-pathogen interactions in ginger.
Collapse
|
11
|
Ijaz S, Haq IU, Razzaq HA. Mutation introduced in DDTFR10/A gene of ethylene response element-binding protein (EREBP) family through CRISPR/Cas9 genome editing confers increased Fusarium wilt tolerance in tomato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1-10. [PMID: 36733839 PMCID: PMC9886765 DOI: 10.1007/s12298-022-01273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
We investigated the role of the DDTFR10/A gene of the ethylene response element-binding protein (EREBP) family through the CRISPR/Cas9 genome editing approach. The associated role of this gene in tomato fruit ripening was known. The involvement of ripening-regulatory proteins in plant defense has been documented; therefore, to find the involvement of the DDTFR10/A gene in host susceptibility, we introduced the mutation in DDTFR10/A gene through CRISPR/cas9 in the genome of the tomato plant. The 50% biallelic and 50% homozygous mutations were observed in the T0 generation. The CRISPR/Cas9 edited plants showed 40% reduced symptoms of Fusarium wilt compared to control plants (non-edited). The DDTFR10/A gene expression in tomato plants was evaluated against biotic (Fusarium wilt) and abiotic (salinity) stresses, and the upregulated expression of this gene was found under both challenges. However, a comparative increase in DDTFR10/A gene expression was observed in tomato plants upon inoculation with Fusarium oxysporum f. sp. lycopersici. The phenotypic assay performed on edited tomato plants demonstrated the role of the DDTFR10/A gene in contributing toward susceptibility against Fusarium wilt. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01273-6.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Hafiza Arooj Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
12
|
Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum tuberosum L. Mol Biol Rep 2022; 49:11675-11684. [PMID: 36178561 DOI: 10.1007/s11033-022-07958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Disease-resistant cultivars are the best solution to get their maximum yield potential and avoid fungicide application. There is no doubt about the contribution, and use of R genes (resistance genes) in resistance development in plants, while S genes (susceptibility genes) also hold a strong position in pathogenesis by resistance repression, and their loss of function contributes to enhanced resistance. Hence, we attempted to knock out the function of the StERF3 gene in potatoes through CRISPR/Cas9-based genome editing and investigated the CRISPR/Cas9 approach as strategic control against late blight disease in potato plants. METHODS AND RESULTS The StERF3 gene was edited in late blight susceptible cv. Lady Rosetta. Full allelic edited plants were identified through DnpI, and N1aIV mediated restriction digestion and then further analyzed through Indel Detection by Amplicon Analysis. Sequence analysis of targeted plants for indel identification showed full allelic editing. The detached leaf assay of full allelic edited plants demonstrated the role of the StERF3 gene in susceptibility to late blight in potatoes. In planta disease assay also showed reduced, slowed, and delayed disease progression in StERF3-loss-of-function mutants compared to wild-type (control) plants. Less fungal biomass was quantified in knockouts through Real-time qPCR that supported less susceptibility of edited plants to late blight. Besides, relatively high expression of pathogens-related genes, StPR1, and StNPR1, were also observed in StERF3-loss-of-function mutants compared to the corresponding control. CONCLUSION The results showed the functional inhibition of StERF3 genes using the CRISPR/Cas9 approach. The functional knockouts (StERF3 gene-edited potato plants) revealed enhanced resistance against Phytophthora infestans, thereby demonstrating the best strategic control for late blight disease in potato plants.
Collapse
|
13
|
Wu Y, Zhang L, Nie L, Zheng Y, Zhu S, Hou J, Li R, Chen G, Tang X, Wang C, Yuan L. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 2022; 23:598. [PMID: 35978316 PMCID: PMC9382803 DOI: 10.1186/s12864-022-08812-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Dehydration responsive element binding protein (DREB) is a significant transcription factor class known to be implicated in abiotic stresses. In this study, we systematically conducted a genome-wide identification and expression analysis of the DREB gene family, including gene structures, evolutionary relationships, chromosome distribution, conserved domains, and expression patterns. A total of 65 DREB family gene members were identified in Chinese cabbage (Brassica rapa L.) and were classified into five subgroups based on phylogenetic analysis. Through analysis of the conserved domains of BrDREB family genes, only one exon existed in the gene structure. Through the analysis of cis-acting elements, these genes were mainly involved in hormone regulation and adversity stress. In order to identify the function of BrDREB2B, overexpressed transgenic Arabidopsis was constructed. After different stress treatments, the germination rate, root growth, survival rate, and various plant physiological indicators were measured. The results showed that transgenic Arabidopsis thaliana plants overexpressing BrDREB2B exhibited enhanced tolerance to salt, heat and drought stresses. Taken together, our results are the first to report the BrDREB2B gene response to drought and heat stresses in Chinese cabbage and provide a basis for further studies to determine the function of BrDREBs in response to abiotic stresses.
Collapse
Affiliation(s)
- Ying Wu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Liting Zhang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Libing Nie
- College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yushan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Renjie Li
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| |
Collapse
|
14
|
Zhou R, Dong Y, Liu X, Feng S, Wang C, Ma X, Liu J, Liang Q, Bao Y, Xu S, Lang X, Gai S, Yang KQ, Fang H. JrWRKY21 interacts with JrPTI5L to activate the expression of JrPR5L for resistance to Colletotrichum gloeosporioides in walnut. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1152-1166. [PMID: 35765867 DOI: 10.1111/tpj.15883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) anthracnose, induced by Colletotrichum gloeosporioides, is a catastrophic disease impacting the walnut industry in China. Although WRKY transcription factors play a key role in plant immunity, the function of the WRKY gene family in walnut resistance to C. gloeosporioides is not clear. Here, through transcriptome sequencing and quantitative real-time polymerase chain reaction (qRT-PCR), we identified a differentially expressed gene, JrWRKY21, that was significantly upregulated upon C. gloeosporioides infection in walnut. JrWRKY21 positively regulated walnut resistance to C. gloeosporioides, as demonstrated by virus-induced gene silencing and transient gene overexpression. Additionally, JrWRKY21 directly interacted with the transcriptional activator of the pathogenesis-related (PR) gene JrPTI5L in vitro and in vivo, and could bind to the W-box in the JrPTI5L promoter for transcriptional activation. Moreover, JrPTI5L could induce the expression of the PR gene JrPR5L through binding to the GCCGAC motif in the promoter. Our data support that JrWRKY21 can indirectly activate the expression of the JrPR5L gene via the WRKY21-PTI5L protein complex to promote resistance against C. gloeosporioides in walnut. The results will enhance our understanding of the mechanism behind walnut disease resistance and facilitate the genetic improvement of walnut by molecular breeding for anthracnose-resistant varieties.
Collapse
Affiliation(s)
- Rui Zhou
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xia Liu
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Shan Feng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
15
|
Plant chitinases and their role in plant defense – a comprehensive review. Enzyme Microb Technol 2022; 159:110055. [DOI: 10.1016/j.enzmictec.2022.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
16
|
Sun M, Qiu L, Liu Y, Zhang H, Zhang Y, Qin Y, Mao Y, Zhou M, Du X, Qin Z, Dai S. Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:774229. [PMID: 35360329 PMCID: PMC8960991 DOI: 10.3389/fpls.2022.774229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pto interaction (Pti) proteins are a group of proteins that can be phosphorylated by serine/threonine protein kinase Pto, which have diverse functions in plant development and stress response. In this study, we analyzed the phylogenetic relationship, gene structure, and conserved motifs of Pti1s and predicted the potential cis-elements in the promoters of Pti1 genes using bioinformatics methods. Importantly, we systematically summarized the diverse functions of Pti1s in tomato, rice, Arabidopsis, potato, apple, and cucumber. The potential cis-elements in promoters of Pti1s decide their functional diversity in response to various biotic and abiotic stresses. The protein kinase Pti1 was phosphorylated by Pto and then modulated the downstream signaling pathways for PTI and ETI in the disease insistence process. In addition, some transcription factors have been defined as Ptis (e.g., Pti4, Pti5, and Pti6) originally, which actually were ethylene-response factors (ERFs). Pti4, Pti5, and Pti6 were modulated by salicylic acid (SA), jasmonate (JA), and ethylene signaling pathways and regulated diverse defense-related gene expression to cope with Pst infection and insect wounding.
Collapse
|
17
|
Liang Y, Ma F, Li B, Guo C, Hu T, Zhang M, Liang Y, Zhu J, Zhan X. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. HORTICULTURE RESEARCH 2022; 9:uhac198. [PMID: 36467272 PMCID: PMC9714257 DOI: 10.1093/hr/uhac198] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
Drought stress caused by water deficit reduces plant productivity in many regions of the world. In plants, basic helix-loop-helix (bHLH) transcription factors regulate a wide range of cellular activities related to growth, development and stress response; however, the role of tomato SlbHLHs in drought stress responses remains elusive. Here, we used reverse genetics approaches to reveal the function of SlbHLH96, which is induced by drought and abscisic acid (ABA) treatment. We found that SlbHLH96 functions as a positive regulator of drought tolerance in tomato. Overexpression of SlbHLH96 in tomato improves drought tolerance by stimulating the expression of genes encoding antioxidants, ABA signaling molecules and stress-related proteins. In contrast, silencing of SlbHLH96 in tomato reduces drought tolerance. SlbHLH96 physically interacts with an ethylene-responsive factor, SlERF4, and silencing of SlERF4 in tomato also decreases drought tolerance. Furthermore, SlbHLH96 can repress the expression of the ABA catabolic gene, SlCYP707A2, through direct binding to its promoter. Our results uncover a novel mechanism of SlbHLH96-mediated drought tolerance in tomato plants, which can be exploited for breeding drought-resilient crops.
Collapse
Affiliation(s)
| | | | - Boyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Cong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mingke Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yan Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | | | |
Collapse
|
18
|
Lally RD, Donaleshen K, Chirwa U, Eastridge K, Saintilnord W, Dickinson E, Murphy R, Borst S, Horgan K, Dawson K. Transcriptomic Response of Huanglongbing-Infected Citrus sinensis Following Field Application of a Microbial Fermentation Product. FRONTIERS IN PLANT SCIENCE 2021; 12:754391. [PMID: 34917102 PMCID: PMC8669595 DOI: 10.3389/fpls.2021.754391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is considered the most destructive disease in Citrus production and threatens the future of the industry. Microbial-derived defense elicitors have gained recognition for their role in plant defense priming. This work assessed a 5% (V/V) microbial fermentation application (MFA) and its role in the elicitation of defense responses in HLB-infected Citrus sinensis trees following a foliar application with a pump sprayer. Using a PCR detection method, HLB infection levels were monitored in healthy and infected trees for 20months. Nutrient analysis assessed N, P, K, Ca, Mg, Mn, Zn, Fe, B, and Cu concentrations in the trees. MFA significantly increased Cu concentrations in treated trees and resulted in the stabilization of disease index (DI) in infected trees. Initial real-time qPCR analysis of defense-associated genes showed a significant increase in pathogenesis-related protein 2 (PR2) and phenylalanine ammonia lyase (PAL) gene expression in healthy and HLB-infected trees in response to MFA. Gene expression of PR2 and PAL peaked 6h post-microbial fermentation application during an 8-h sampling period. A transcriptomic assessment using GeneChip microarray of the hour 6 samples revealed differential expression of 565 genes when MFA was applied to healthy trees and 909 genes when applied infected citrus trees when compared to their respective controls. There were 403 uniquely differentially expressed genes in response to MFA following an intersectional analysis of both healthy and infected citrus trees. The transcriptomic analysis revealed that several genes associated with plant development, growth, and defense were upregulated in response to MFA, including multiple PR genes, lignin formation genes, ROS-related genes, hormone synthases, and hormone regulators. This study provides further evidence that MFA may play an important role as a plant elicitor in an integrated pest management strategy in citrus and other agronomically important crops.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | | | | | | | | | |
Collapse
|
19
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
20
|
Hassan S, Berk K, Aronsson H. Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress. J Biomol Struct Dyn 2021; 40:7191-7204. [PMID: 33754946 DOI: 10.1080/07391102.2021.1894980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Soil salinity and the resulting salt stress it imposes on crop plants is a major problem for modern agriculture. Understanding how salt tolerance mechanisms in plants are regulated is therefore important. One regulatory mechanism is the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor family, including dehydration responsive element binding (DREB) transcription factors. By binding to DNA, specifically upstream of genes that play roles in salt tolerance pathways, DREB proteins upregulate expression of these genes. DREB in Triticum aestivum (wheat) cluster in sub-groups and in this study by scanning the recently extended predicted proteome of wheat for DREB, we increased the number of members of this sub-family. Using the wheat genome, we identified 576 genes coding for the AP2 domain of which 508 were identified to have one AP2 domain, a characteristic of the DREB/ERF subfamily. We confirmed the existing four sub-groups by sequence-based phylogenetic analyses but also identified 32 new DREB subfamily members, not belonging to any known sub-group. Transcription factor profile inference analysis identified two genes, TraesCS2B02G002700 and TraesCS2D02G015200, being homologous to DREB1A of Arabidopsis thaliana. Based on molecular simulation (25 ns) analysis, TraesCS2B02G002700 with a CCGAC motif was observed to interact very stably with DNA. In silico mutational analysis at the 19th position in the DREB domain of TraesCS2B02G002700-DNA complex indicated this as a stable part for recognizing and forming interaction with DNA. Moreover, six target genes were predicted having an upstream CCGAC motif regulated by TraesCS2B02G002700. Our study provides an overall framework for exploring the transcription factors in plants and identifying e.g. potential salt stress target genes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sameer Hassan
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katrin Berk
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Yang H, Sun Y, Wang H, Zhao T, Xu X, Jiang J, Li J. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC PLANT BIOLOGY 2021; 21:72. [PMID: 33530947 PMCID: PMC7856819 DOI: 10.1186/s12870-021-02848-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/21/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND APETALA2/ethylene responsive factor (AP2/ERF) transcription factors are a plant-specific family of transcription factors and one of the largest families of transcription factors. Ethylene response factors (ERF) regulate plant growth, development, and responses to biotic and abiotic stress. In a previous study, the ERF2 gene was significantly upregulated in both resistant and susceptible tomato cultivars in response to Stemphylium lycopersici. The main purpose of this study was to systematically analyze the ERF family and to explore the mechanism of ERF2 in tomato plants resisting pathogen infection by the Virus-induced Gene Silencing technique. RESULTS In this experiment, 134 ERF genes were explored and subjected to bioinformatic analysis and divided into twelve groups. The spatiotemporal expression characteristics of ERF transcription factor gene family in tomato were diverse. Combined with RNA-seq, we found that the expression of 18 ERF transcription factors increased after inoculation with S. lycopersici. In ERF2-silenced plants, the susceptible phenotype was observed after inoculation with S. lycopersici. The hypersensitive response and ROS production were decreased in the ERF2-silenced plants. Physiological analyses showed that the superoxide dismutase, peroxidase and catalase activities were lower in ERF2-silenced plants than in control plants, and the SA and JA contents were lower in ERF2-silenced plants than in control plants after inoculation with S. lycopersici. Furthermore, the results indicated that ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance. CONCLUSIONS In this study, we identified and analyzed members of the tomato ERF family by bioinformatics methods and classified, described and analyzed these genes. Subsequently, we used VIGS technology to significantly reduce the expression of ERF2 in tomatoes. The results showed that ERF2 had a positive effect on tomato resistance to S. lycopersici. Interestingly, ERF2 played a key role in multiple SA, JA and ROS signaling pathways to confer resistance to invasion by S. lycopersici. In addition, ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance to S. lycopersici. In summary, this study provides gene resources for breeding for disease resistance in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yaoguang Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Hexuan Wang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
22
|
Falak N, Imran QM, Hussain A, Yun BW. Transcription Factors as the "Blitzkrieg" of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. Int J Mol Sci 2021; 22:E522. [PMID: 33430258 PMCID: PMC7825681 DOI: 10.3390/ijms22020522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
Collapse
Affiliation(s)
- Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
- Department of Medical Biochemistry and Biophysics, Umea University, 90187 Umea, Sweden
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| |
Collapse
|
23
|
Ding J, Karim H, Li Y, Harwood W, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley ( Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:791584. [PMID: 34925430 PMCID: PMC8672199 DOI: 10.3389/fpls.2021.791584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 05/07/2023]
Abstract
The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription-polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.
Collapse
Affiliation(s)
- Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qiantao Jiang,
| |
Collapse
|
24
|
Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, Wang Y, Ma F, Zhou Y, Gross R, Xu H, Wang R, Xiao F, Liu Y, Niu X. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110702. [PMID: 33288015 DOI: 10.1016/j.plantsci.2020.110702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. tomato (Pst) is a pathogenic microorganism that causes bacterial speck disease and affects tomato yield and quality. Pto is a disease resistant gene for plant to recognize and defense against Pst. Pto interacts with Pti (Pto interacting) proteins, which include three transcription factors, Pti4, Pti5, Pti6, and they were thought to be downstream of Pto-mediated pathway to promote the expression of disease-related genes. In the present work, the overexpression plants of Pti4, Pti5 or Pti6 were obtained by Agrobacterium-mediated transformation in tomato. The Pti4/5/6-overexpressed lines indicated enhanced expression of pathogenesis-related genes and resistance to pathogenic bacteria Pst DC3000. Meanwhile, the transgenic plants showed that Pti4/5/6 function in ripening but performed no obvious adverse influence on flowering time, seed-setting rate, weight and soluble solids content of fruits. Furthermore, Pti-overexpressed fruits exhibited increased enzymatic activities of phenylalnine ammonialyase, catalase, peroxidase and decreased content of malondialdehyde. Additionally, cell-free and in vivo ubiquitination assay indicated that Pti4, Pti5 and Pti6 degraded by 26S proteasome which suggested that these Pti transcription regulators' functions could be regulated by ubiquitin-mediated post translational regulation in tomato.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yilong Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yingying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Huanhuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruipeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
25
|
Ghorbani R, Zakipour Z, Alemzadeh A, Razi H. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1463-1476. [PMID: 32647461 PMCID: PMC7326749 DOI: 10.1007/s12298-020-00832-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 05/18/2023]
Abstract
The AP2/ERF transcription factor family plays an important role in different biological processes such as growth, development and response to abiotic and biotic stresses in plants. The genome-wide analysis identified 531 AP2/ERF genes in Brassica napus (oilseed rape or canola) that ranged from 333 to 6440 bp in genomic and 273-2493 bp in coding DNA sequence length. We classified BnAP2/ERF proteins into five subfamilies including AP2 (58 genes), ERF (250 genes), DREB/CBF (194 genes), RAV (26 genes), and Soloist (3 genes). Furthermore, AP2/ERF proteins were subdivided into 15 groups according to the AP2/ERF classification in Arabidopsis. The number of exons in BnAP2/ERF genes was from one to eleven and most of these genes in the same subfamily had the same exon-intron pattern. The results also indicated that the composition of conserved motifs in most proteins in each group was similar. The intron-exon patterns and the composition of conserved motifs validated the BnAP2/ERF transcription factors phylogenetic classification. Based on the results of genome distribution, BnAP2/ERF genes were located unevenly on the 19 B. napus chromosomes. The results indicated that gene duplication may play an important role in genome expansion of B. napus. Furthermore, genome evolution of B. napus using orthologous and paralogous identification was studied. We found 278, 380 and 366 orthologous gene pairs between B. napus with A. thaliana, B. rapa and B. oleracea, respectively. The results of this study will be useful in investigation of functional role and molecular mechanisms of BnAP2/ERF transcription factors genes in response to different stresses.
Collapse
Affiliation(s)
- Razieh Ghorbani
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Zakipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
26
|
An AP2/ERF Gene, HuERF1, from Pitaya ( Hylocereus undatus) Positively Regulates Salt Tolerance. Int J Mol Sci 2020; 21:ijms21134586. [PMID: 32605158 PMCID: PMC7369839 DOI: 10.3390/ijms21134586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Pitaya (Hylocereus undatus) is a high salt-tolerant fruit, and ethylene response factors (ERFs) play important roles in transcription-regulating abiotic tolerance. To clarify the function of HuERF1 in the salt tolerance of pitaya, HuERF1 was heterogeneously expressed in Arabidopsis. HuERF1 had nuclear localization when HuERF1::GFP was expressed in Arabidopsis protoplasts and had transactivation activity when HuERF1 was expressed in yeast. The expression of HuERF1 in pitaya seedlings was significantly induced after exposure to ethylene and high salinity. Overexpression of HuERF1 in Arabidopsis conferred enhanced tolerance to salt stress, reduced the accumulation of superoxide (O2·¯) and hydrogen peroxide (H2O2), and improved antioxidant enzyme activities. These results indicate that HuERF1 is involved in ethylene-mediated salt stress tolerance, which may contribute to the salt tolerance of pitaya.
Collapse
|
27
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
28
|
Wang P, Wu H, Zhao G, He Y, Kong W, Zhang J, Liu S, Liu M, Hu K, Liu L, Xu Y, Xu Z. Transcriptome analysis clarified genes involved in resistance to Phytophthora capsici in melon. PLoS One 2020; 15:e0227284. [PMID: 32050262 PMCID: PMC7015699 DOI: 10.1371/journal.pone.0227284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Phytophthora blight caused by Phytophthora capsici is a devastating disease for melon plant. However, the underlying resistance mechanisms are still poorly understood. In this study, the transcriptome differences between the resistant ZQK9 and susceptible E31 at 0, 3, and 5 days post-inoculation (dpi) were identified by RNA-seq. A total of 1,195 and 6,595 differentially expressed genes (DEGs) were identified in ZQK9 and E31, respectively. P. capsici infection triggered massive transcript changes in the inoculated tissues. Genes related to plant defense responses were activated, which was reflected by a lot of up-regulated DEGs involved in pathogenesis-related (PR) genes, hormones biosynthesis and signal transduction, secondary metabolites biosynthesis and cell wall modification in resistant ZQK9. The dataset generated in this study may provide a basis for identifying candidate resistant genes in melon against P. capsici and lay a foundation for further research on the molecular mechanisms.
Collapse
Affiliation(s)
- Pingyong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Haibo Wu
- Hainan Sanya Trial Center for Crops Breeding of Xinjiang Academy of Agricultural Sciences, Sanya, Hainan Province, China
| | - Guangwei Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Yuhua He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Weihu Kong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Jian Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Shuimiao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Mengli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Keyun Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Yongyang Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Zhihong Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| |
Collapse
|
29
|
Chun Y, Fang J, Zafar SA, Shang J, Zhao J, Yuan S, Li X. MINI SEED 2 (MIS2) Encodes a Receptor-like Kinase that Controls Grain Size and Shape in Rice. RICE (NEW YORK, N.Y.) 2020; 13:7. [PMID: 32006119 PMCID: PMC6994593 DOI: 10.1186/s12284-020-0368-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Grain size is a key agronomic trait that is directly associated with grain yield in rice. Although several genes related to grain size in rice have been identified, our understanding of the mechanism of grain development is still limited. RESULTS In this study, we reported the characterization of a novel seed size mutant mini seed 2 (mis2), in which the grain showed reduced length, width and thickness along with wrinkled surface. Microscopic analysis revealed that the spikelet epidermal cell size was reduced but the cell number was increased in the mis2 mutant, suggesting that MIS2 controls grain size by coordinately regulating epidermal cell size and cell number. Map-based cloning revealed that MIS2 encodes a receptor-like kinase CRINKLY4 (CR4) which showed the highest expression in developing panicles. The MIS2 protein is localized primarily on the plasma membrane along with the endosome. However, the Arg258Gln mutation located in extracellular domain in the mis2 mutant disturbed its subcellular localization. Additionally, three major haplotypes of MIS2 were identified in the japonica, indica and aus rice cultivars. The 18-bp InDel (insertion and deletion) in the 5'-UTR (untranslated region) caused different expression level of MIS2 in haplotypes. CONCLUSIONS We reported a key role of OsCR4 in controlling grain size and shape by coordinately regulating epidermal cell size and cell number. The Arg258 in the extracellular seven-repeat domain is essential for the correct subcellular behavior and function of the OsCR4 protein.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jiangyuan Shang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
30
|
Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 2019; 9:19120. [PMID: 31836790 PMCID: PMC6910970 DOI: 10.1038/s41598-019-55645-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The success of Bacillus amyloliquefaciens as a biological control agent relies on its ability to outgrow plant pathogens. It is also thought to interact with its plant host by inducing systemic resistance. In this study, the ability of B. amyloliquefaciens MBI600 to elicit defense (or other) responses in tomato seedlings and plants was assessed upon the expression of marker genes and transcriptomic analysis. Spray application of Serifel, a commercial formulation of MBI600, induced responses in a dose-dependent manner. Low dosage primed plant defense by activation of SA-responsive genes. Suggested dosage induced defense by mediating synergistic cross-talk between JA/ET and SA-signaling. Saturation of tomato roots or leaves with MBI600 elicitors activated JA/ET signaling at the expense of SA-mediated responses. The complex signaling network that is implicated in MBI600-tomato seedling interactions was mapped. MBI600 and flg22 (a bacterial flagellin peptide) elicitors induced, in a similar manner, biotic and abiotic stress responses by the coordinated activation of genes involved in JA/ET biosynthesis as well as hormone and redox signaling. This is the first study to suggest the activation of plant defense following the application of a commercial microbial formulation under conditions of greenhouse crop production.
Collapse
|
31
|
Lineage specific conservation of cis-regulatory elements in Cytokinin Response Factors. Sci Rep 2019; 9:13387. [PMID: 31527685 PMCID: PMC6746799 DOI: 10.1038/s41598-019-49741-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/31/2019] [Indexed: 01/17/2023] Open
Abstract
Expression patterns of genes are controlled by short regions of DNA in promoter regions known as cis-regulatory elements. How expression patterns change due to alterations in cis-regulatory elements in the context of gene duplication are not well studied in plants. Over 300 promoter sequences from a small, well-conserved family of plant transcription factors known as Cytokinin Response Factors (CRFs) were examined for conserved motifs across several known clades present in Angiosperms. General CRF and lineage specific motifs were identified. Once identified, significantly enriched motifs were then compared to known transcription factor binding sites to elucidate potential functional roles. Additionally, presence of similar motifs shows that levels of conservation exist between different CRFs across land plants, likely occurring through processes of neo- or sub-functionalization. Furthermore, significant patterns of motif conservation are seen within and between CRF clades suggesting cis-regulatory regions have been conserved throughout CRF evolution.
Collapse
|
32
|
Zhu Y, Li Y, Zhang S, Zhang X, Yao J, Luo Q, Sun F, Wang X. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:571-584. [PMID: 30468551 DOI: 10.1111/plb.12943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/16/2018] [Indexed: 05/02/2023]
Abstract
The prevention of Botrytis cinerea infection and the study of grape seedlessness are very important for grape industries. Finding correlated regulatory genes is an important approach towards understanding their molecular mechanisms. Ethylene responsive factor (ERF) gene family play critical roles in defence networks and the growth of plants. To date, no large-scale study of the ERF proteins associated with pathogen defence and ovule development has been performed in grape (Vitis vinifera L.). In the present study, we identified 113 ERF genes (VvERF) and named them based on their chromosome locations. The ERF genes could be divided into 11 groups based on a multiple sequence alignment and a phylogenetic comparison with homologues from Arabidopsis thaliana. Synteny analysis and Ka/Ks ratio calculation suggested that segmental and tandem duplications contributed to the expansion of the ERF gene family. The evolutionary relationships between the VvERF genes were investigated by exon-intron structure characterisation, and an analysis of the cis-acting regulatory elements in their promoters suggested potential regulation after stress or hormone treatments. Expression profiling after infection with the fungus, B. cinerea, indicated that ERF genes function in responses to pathogen attack. In addition, the expression levels of most ERF genes were much higher during ovule development in seedless grapes, suggesting a role in ovule abortion related to seedlessness. Taken together, these results indicate that VvERF proteins are involved in responses to Botrytis cinerea infection and in grape ovule development. This information may help guide strategies to improve grape production.
Collapse
Affiliation(s)
- Y Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - Y Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - S Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - X Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - J Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - Q Luo
- Research Institute of Grapes and Melon in Xinjiang Uygur Autonomous Region, Shanshan, Xinjiang, China
| | - F Sun
- Research Institute of Grapes and Melon in Xinjiang Uygur Autonomous Region, Shanshan, Xinjiang, China
| | - X Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| |
Collapse
|
33
|
Bidarigh Fard A, Dehghan Nayeri F, Habibi Anbuhi M. Transient expression of etanercept therapeutic protein in tobacco (Nicotiana tabacum L.). Int J Biol Macromol 2019; 130:483-490. [PMID: 30825567 DOI: 10.1016/j.ijbiomac.2019.02.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Etanercept is a recombinant fusion protein of TNFR2 with the Fc portion of human IgG1. Etanercept, an anti-TNF drug, treats autoimmune diseases and improves patients' health. The main goal of the present study was to investigate the possibility of expressing recombinant protein of etanercept in a plant system. For this aim, first a modified version of pCAMBIA1305.1 plasmid with a new multiple cloning site and signal sequence of KDEL for protein secretion was constructed (pCAMBIA1305.1-linker). Then etanercept gene was cloned into the linker fragment of pCAMBIA1305.1-linker vector. Cloning was confirmed by PCR, enzymatic digestion and sequencing techniques. To evaluate the transient expression of the gene, agroinfiltrated tobacco leaves were inoculated with Agrobacterium tumefaciens containing etanercept gene cassette. The recombinant etanercept protein was examined by dot blot and ELISA assays. Our results using anti-human IgG HRP-conjugated antibody confirmed a high level expression of etanercept gene in the tobacco leaves.
Collapse
Affiliation(s)
- Amir Bidarigh Fard
- Agricultural Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Fatemeh Dehghan Nayeri
- Agricultural Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran.
| | | |
Collapse
|
34
|
Wang J, Zhang Q, Yu Q, Peng L, Wang J, Dai Q, Yang Y, Li X. CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 513:460-464. [PMID: 30967269 DOI: 10.1016/j.bbrc.2019.03.180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
Abstract
Abscisic acid (ABA), one of phytohormones, is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which perceive ABA and then inhibit PP2Cs to activate SnRK2s. Here, we report that a putative receptor-like cytoplasmic kinase (RLCK) in Arabidopsis named CARK6, which is a member of cytosolic ABA receptor kinases. We confirm that CARK6 interacts with ABA receptors, RCAR11-14 in vitro and in vivo. Induced overexpression of CARK6 in Arabidopsis enhances sensitivity to ABA by inhibition of seed germination and root elongation, and promotes the drought resistance. However, loss-of-function seedlings of cark6 are less sensitive to ABA and show reduced drought stress response with respect to water loss and stomatal aperture. In transgenic Arabidopsis complementation lines in the cark6 mutant background, stress responsivity was restored by CARK6. In conclusion, our data provide evidence that CARK6 plays a positive role in ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Jinling Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; College of Science and Biotechnology, Mianyang Teachers' College, Mianyang, 621000, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qilin Dai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
35
|
Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D, Zhang X. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:881-892. [PMID: 30315621 PMCID: PMC6587448 DOI: 10.1111/pbi.13022] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 05/08/2023]
Abstract
Sesame (Sesamum indicum L.) is an important oil crop renowned for its high oil content and quality. Recently, genome assemblies for five sesame varieties including two landraces (S. indicum cv. Baizhima and Mishuozhima) and three modern cultivars (S. indicum var. Zhongzhi13, Yuzhi11 and Swetha), have become available providing a rich resource for comparative genomic analyses and gene discovery. Here, we employed a reference-assisted assembly approach to improve the draft assemblies of four of the sesame varieties. We then constructed a sesame pan-genome of 554.05 Mb. The pan-genome contained 26 472 orthologous gene clusters; 15 409 (58.21%) of them were core (present across all five sesame genomes), whereas the remaining 41.79% (11 063) clusters and the 15 890 variety-specific genes were dispensable. Comparisons between varieties suggest that modern cultivars from China and India display significant genomic variation. The gene families unique to the sesame modern cultivars contain genes mainly related to yield and quality, while those unique to the landraces contain genes involved in environmental adaptation. Comparative evolutionary analysis indicates that several genes involved in plant-pathogen interaction and lipid metabolism are under positive selection, which may be associated with sesame environmental adaption and selection for high seed oil content. This study of the sesame pan-genome provides insights into the evolution and genomic characteristics of this important oilseed and constitutes a resource for further sesame crop improvement.
Collapse
Affiliation(s)
- Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleMelbourneVicAustralia
| | - Kun Lu
- College of Agronomy and Biotechnology, and Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingChina
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSenegal
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Jinfeng Chen
- Department of Plant Pathology & MicrobiologyUniversity of CaliforniaRiversideCAUSA
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | | | - David Edwards
- School of Biological Sciences and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
36
|
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol Biotechnol 2019; 61:153-172. [PMID: 30600447 DOI: 10.1007/s12033-018-0144-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Johni Debbarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Banashree Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India.
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
37
|
Wang Q, Xu G, Zhai J, Yuan H, Huang X. Identification of the targets of HbEIN3/EILs in genomic wide in Hevea brasiliensis. Biosci Biotechnol Biochem 2019; 83:1270-1283. [PMID: 30915888 DOI: 10.1080/09168451.2019.1597619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
EIN3/EILs are key regulators in ET signaling pathway. In this work, 4 members of EIN3/EILs of Hevea brasiliensis (HbEIN3/EILs) showed interaction with two F box proteins, HbEBF1 and HbEBF2. HbEIN3 located in nucleus and exhibited strong transcriptional activity. HbEIN3 was induced by ET treatment in C-serum, but not in B-serum of latex. HbEIN3/EILs bound to G-box cis-element. To globally search the potential targets of HbEIN3/EILs, genomic sequences of H. brasiliensis was re-annotated and an HCES (Hevea Cis-Elements Scanning) program was developed ( www.h-brasiliensis.com ). HCES scanning results showed that ET- and JA- responsive cis-elements distribute overlapping in gene promoters. 3146 genes containing G-box in promoters are potential targets of HbEIN3, including 41 genes involved in biosynthesis and drainage of latex, of which 7 rate-limiting genes of latex production were regulated by both ET and JA, suggesting that ET and JA signaling pathways coordinated the latex biosynthesis and drainage in H. brasiliensis. Abbreviations: ABRE: ABA responsive elements; bHLH: basic helix-loop-helix; COG: Orthologous Groups; DRE: dehydration response element; ERE: ethylene responsive element; ET: Ethylene; GO: Gene Ontology; HCES: Hevea Cis-Elements Scanning; JA: jasmonates; JRE: Jasmonate-responsive element; KEGG: Kyoto Encyclopedia of Genes and Genomes; NR: non-redundant database; PLACE: Plant Cis-acting Regulatory DNA Elements; qRT-PCR: quantitative real-time RT-PCR.
Collapse
Affiliation(s)
- Qichao Wang
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Gang Xu
- b School of Life Sciences , Tsinghua University , Beijing , China
| | - Jinling Zhai
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Hongmei Yuan
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Xi Huang
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| |
Collapse
|
38
|
John Lilly J, Subramanian B. Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:269-282. [PMID: 30824005 DOI: 10.1016/j.plantsci.2018.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/05/2023]
Abstract
OsWRKY13 TF gene is known to play a regulatory role of signaling in physiological pathways related to either development or disease resistance in rice plants. Rice cultivars IR 50 and TRY 3, resistant and susceptible respectively to sheath blight, TRY 3 and CO 43 resistant and susceptible respectively to sheath rot were challenged with fungal pathogens and disease scoring was carried out. Percent Disease Index (PDI) was significantly higher in susceptible varieties than resistant varieties. RT-PCR and qPCR analyses of WRKY13 using RNA extracted from the plant tissues revealed higher WRKY13 expression in resistant varieties (both diseases) upon pathogen challenge compared to uninfected control and also the susceptible varieties. To compute and evaluate the possible molecular mechanism for observed resistance correlated to WRKY13 gene expression, rice gene expression profiles against bacterial leaf blight and leaf blast disease from ROAD database were used to prioritize the locus IDs that were used as input in RiceNet v2 tool. The expression of WRKY13-regulated TIFY9 gene was predicted and validated using RT-PCR and qRT-PCR along with WRKY12 and PR2. All three genes showed induced expression in R. solani challenged sheath blight resistant variety. WRKY12 and PR2 expression in S. oryzae challenged sheath rot resistant variety was higher. Agrobacterium mediated transformation was carried out in rice plants using overexpression construct of WRKY13 (agroinfection in seeds of varieties susceptible to sheath blight and sheath rot, followed by selection in antibiotic media, germinating and hardening of putative transgenic lines). Based on qPCR analysis, the expression level of WRKY13 and the co-expression levels of WRKY12, TIFY9 and PR2 were found higher in PCR-positive T1 plants compared to wild-type. Infection bioassays in the transgenic plants of both varieties revealed enhanced resistance to the pathogens. A mechanism by which WRKY13 would influence the MAPK cascade with TIFY9 acting as a mediator, is proposed.
Collapse
Affiliation(s)
- Jimmy John Lilly
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Babu Subramanian
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
39
|
Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. RICE (NEW YORK, N.Y.) 2018; 11:52. [PMID: 30209707 PMCID: PMC6135729 DOI: 10.1186/s12284-018-0243-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/05/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Complex co-regulatory networks in plants may elicit responses during pathogen infections. A number of genes are activated when these responses take place. Identification of these genes would shed new light on understanding the mechanisms of rice response to pathogen infections and the elucidation of crosstalk among diverse signaling networks in rice disease resistance/susceptibility. RESULTS Here we report the identification of genes with pathogen-inducible cis-regulatory elements (PICEs) (AS-1, G-box, GCC-box, and H-box) in the promoter regions in rice. Our results showed that a set of 882 rice genes contained these four elements in their promoter regions. Of these genes, 190 encode disease resistance/susceptibility related proteins, and 70 encode transcription factors. Analyses of the available microarray data demonstrated that 357 transcripts were differentially expressed after pathogen infections. 48 out of 53 differentially expressed transcription factors are up-regulated or down-regulated by more than 1.1-fold in response to pathogen infections. Analyses of the public mRNA-Seq data showed that 327 transcripts were differently expressed after pathogen infections. A total of 100 up-regulated genes and 37 down-regulated genes were found in common between the microarray and mRNA-Seq data. CONCLUSIONS We report here a set of rice genes that contain the four PICEs, i.e., AS-1, G-box, GCC-box, and H-box, in their promoter regions, of which, 53.5% were up- or down-regulated when pathogens attack. The PICEs in the gene promoters are critical for rice response to pathogen infections. They are also useful markers for identification of rice genes involved in response to pathogen infections.
Collapse
Affiliation(s)
- Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Li Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jia Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bin Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
40
|
Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC PLANT BIOLOGY 2018; 18:46. [PMID: 29558898 PMCID: PMC5859658 DOI: 10.1186/s12870-018-1265-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/08/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants, ERF genes participate in a variety of regulatory pathways, such as plant growth and biotic and/or abiotic stress responses. Although the genome of Chinese white pear ('Dangshansuli') has been released, knowledge regarding the ERF family in pear, such as gene functions, evolutionary history and expression patterns, remains limited. RESULTS In our study, a total of 155 members of ERF families were identified in pear (Pyrus bretschneideri). The Ka and Ks values suggested that whole-genome duplication (WGD) and dispersed duplication have effectively contributed to the expansion of the pear ERF family. Gene structure and phylogeny analysis divided the PbrERF family into 12 groups, and their gene functions were predicted by comparative analysis. qRT-PCR was carried out to verify the relative expression levels of 7 genes in group III using wild and cultivated pear fruits at three key developmental stages. Wild samples had higher expression of these genes than cultivated samples, especially at the enlarged fruit stage. The transcriptome data of pear seedlings subjected to dehydration treatment further revealed that 4 of the 7 genes responded to drought conditions. CONCLUSION The AP2/ERF gene family is greatly expanded in pear. Comparative analysis revealed the probability of ERF genes performing functional roles in multiple pathways. Expression analysis at different stages of pear fruit development in wild and cultivated samples indicated that genes in group III might be involved in abiotic and/or biotic stresses. Further transcriptome data on seedlings subjected to drought treatment verified the potential role of ERF genes in stress response. These results will provide a valuable reference for understanding the function and evolution of the ERF family in higher plants.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuwei Wei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Meiling Ming
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
41
|
An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 2018; 8:1068. [PMID: 29348657 PMCID: PMC5773544 DOI: 10.1038/s41598-018-19518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron (Fe) is an essential element for plants; however, its availability is limited as it forms insoluble complexes in the soil. Consequently, plants have developed mechanisms to adapt to low Fe conditions. We demonstrate that ethylene is involved in Fe deficiency-induced physiological responses in Malus xiaojinensis, and describe the identification of MxERF4 as a protein-protein interaction partner with the MxFIT transcription factor, which is involved in the iron deficiency response. Furthermore, we demonstrate that MxERF4 acts as an MxFIT interaction partner to suppresses the expression of the Fe transporter MxIRT1, by binding directly to its promoter, requiring the EAR motif of the MxERF4 protein. Suppression of MxERF4 expression in M. xiaojinensis, using virus induced gene silencing resulted in an increase in MxIRT1 expression. Taken together, the results suggest a repression mechanism, where ethylene initiates the Fe deficiency response, and the response is then dampened, which may require a transient inhibition of Fe acquisition via the action of MxERF4.
Collapse
|
42
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
43
|
Liu A, Cheng C. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. MOLECULAR PLANT PATHOLOGY 2017; 18:1062-1074. [PMID: 27415633 PMCID: PMC6638261 DOI: 10.1111/mpp.12460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ethylene response factors (ERFs) are a large plant-specific transcription factor family and play diverse important roles in various plant functions. However, most tomato ERFs have not been characterized. In this study, we showed that the expression of an uncharacterized member of the tomato ERF-IX subgroup, ERF68, was significantly induced by treatments with different bacterial pathogens, ethylene (ET) and salicylic acid (SA), but only slightly induced by bacterial mutants defective in the type III secretion system (T3SS) or non-host pathogens. The ERF68-green fluorescent protein (ERF68-GFP) fusion protein was localized in the nucleus. Transactivation and electrophoretic mobility shift assays (EMSAs) further showed that ERF68 was a functional transcriptional activator and was bound to the GCC-box. Moreover, transient overexpression of ERF68 led to spontaneous lesions in tomato and tobacco leaves and enhanced the expression of genes involved in ET, SA, jasmonic acid (JA) and hypersensitive response (HR) pathways, whereas silencing of ERF68 increased tomato susceptibility to two incompatible Xanthomonas spp. These results reveal the involvement of ERF68 in the effector-triggered immunity (ETI) pathway. To identify ERF68 target genes, chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) was performed. Amongst the confirmed target genes, a few genes involved in cell death or disease defence were differentially regulated by ERF68. Our study demonstrates the function of ERF68 in the positive regulation of hypersensitive cell death and disease defence by modulation of multiple signalling pathways, and provides important new information on the complex regulatory function of ERFs.
Collapse
Affiliation(s)
- An‐Chi Liu
- Graduate Institute of Plant Biology, National Taiwan UniversityTaipei10617, Taiwan
| | - Chiu‐Ping Cheng
- Graduate Institute of Plant Biology, National Taiwan UniversityTaipei10617, Taiwan
- Department of Life Science, College of Life ScienceNational Taiwan UniversityTaipei10617, Taiwan
| |
Collapse
|
44
|
Liu F, Xiao Z, Yang L, Chen Q, Shao L, Liu J, Yu Y. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. THE NEW PHYTOLOGIST 2017; 215:1490-1502. [PMID: 28675474 DOI: 10.1111/nph.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/21/2017] [Indexed: 05/22/2023]
Abstract
In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent.
Collapse
Affiliation(s)
- Fei Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhina Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Li Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lu Shao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
45
|
Salhi A, Negrão S, Essack M, Morton MJL, Bougouffa S, Razali R, Radovanovic A, Marchand B, Kulmanov M, Hoehndorf R, Tester M, Bajic VB. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Sci Rep 2017; 7:5968. [PMID: 28729549 PMCID: PMC5519719 DOI: 10.1038/s41598-017-05448-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/25/2017] [Indexed: 12/29/2022] Open
Abstract
Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Mitchell J L Morton
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | | | - Maxat Kulmanov
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia.
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
46
|
Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan YL. Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4263-4279. [PMID: 28922759 PMCID: PMC5853505 DOI: 10.1093/jxb/erx219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fruit set is a developmental transition from ovaries to fruitlets that determines yield potential. Cell wall invertase (CWIN) is essential for fruit and seed set, but the underlying molecular basis remains elusive. We addressed this issue by using CWIN-elevated transgenic tomato, focusing on ovaries and fruitlets at 2 d before and after anthesis, respectively. RNAseq analyses revealed that ovaries and fruitlets exhibited remarkable differences in their transcriptomic responses to elevated CWIN activity. Ovaries 2 d before anthesis were far more responsive to elevated CWIN activity compared with the fruitlets. We identified several previously unknown pathways that were up-regulated by elevated CWIN activity during fruit set. The most notable of these were expression of genes for defence, ethylene synthesis and the cell cycle along with a large number of cell wall-related genes. By contrast, expression of photosynthetic, protein degradation and some receptor-like kinase genes were generally decreased as compared with the wild type ovaries. GC-MS analyses revealed that 22 out of 24 amino acids exhibited reduced levels in the RNAi ovaries as compared with that in the wild type, probably owing to a down-regulated expression of protein degradation genes. Overall, the data indicate that (i) ovaries are much more sensitive to metabolic intervention than fruitlets; (ii) high CWIN activity could promote fruit set by improving resistance against pathogens and altering cell cycle and cell wall synthesis.
Collapse
Affiliation(s)
- Lei Ru
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Sonia Osorio
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
- Correspondence:
| |
Collapse
|
47
|
Sardar A, Nandi AK, Chattopadhyay D. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3573-3584. [PMID: 28541442 PMCID: PMC5853215 DOI: 10.1093/jxb/erx170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/26/2017] [Indexed: 05/21/2023]
Abstract
Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis.
Collapse
Affiliation(s)
- Atish Sardar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
48
|
Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:299. [PMID: 28326092 PMCID: PMC5339286 DOI: 10.3389/fpls.2017.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean 'Suinong 10.' Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar 'Dongnong 50' soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Yuanling Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xin Chang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dongyue Qi
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Lidong Dong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Guangjin Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Sujie Fan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Liangyu Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Qun Cheng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dan Han
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
49
|
Hadwiger LA, Tanaka K. Non-host Resistance: DNA Damage Is Associated with SA Signaling for Induction of PR Genes and Contributes to the Growth Suppression of a Pea Pathogen on Pea Endocarp Tissue. FRONTIERS IN PLANT SCIENCE 2017; 8:446. [PMID: 28421088 PMCID: PMC5379135 DOI: 10.3389/fpls.2017.00446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 05/06/2023]
Abstract
Salicylic acid (SA) has been reported to induce plant defense responses. The transcriptions of defense genes that are responsible for a given plant's resistance to an array of plant pathogens are activated in a process called non-host resistance. Biotic signals capable of carrying out the activation of pathogenesis-related (PR) genes in pea tissue include fungal DNase and chitosan, two components released from Fusarium solani spores that are known to target host DNA. Recent reports indicate that SA also has a physical affinity for DNA. Here, we report that SA-induced reactive oxygen species release results in fragment alterations in pea nuclear DNA and cytologically detectable diameter and structural changes in the pea host nuclei. Additionally, we examine the subsequent SA-related increase of resistance to the true pea pathogen F. solani f.sp. pisi and the accumulation of the phytoalexin pisatin. This is the first report showing that SA-induced PR gene activation may be attributed to the host pea genomic DNA damage and that at certain concentrations, SA can be temporally associated with subsequent increases in the defense response of this legume.
Collapse
|
50
|
Seo S, Nakaho K, Hong SW, Takahashi H, Shigemori H, Mitsuhara I. l-Histidine Induces Resistance in Plants to the Bacterial Pathogen Ralstonia solanacearum Partially Through the Activation of Ethylene Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:1932-42. [PMID: 27335353 DOI: 10.1093/pcp/pcw114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/09/2016] [Indexed: 05/27/2023]
Abstract
Wilt disease in plants, which is caused by the soil-borne bacterial pathogen Ralstonia solanacearum, is one of the most devastating plant diseases. We previously detected bacterial wilt disease-inhibiting activity in an extract from yeast cells. In the present study, we purified this activity and identified one of the substances responsible for the activity as the amino acid histidine. The exogenous application of l-histidine, but not d-histidine, inhibited wilt disease in tomato and Arabidopsis plants without exhibiting any antibacterial activity. l-Histidine induced the expression of genes related to ethylene (ET) biosynthesis and signaling as well as the production of ET in tomato and Arabidopsis plants. l-Histidine-induced resistance to R. solanacearum was partially abolished in ein3-1, an ET-insensitive Arabidopsis mutant line. Resistance to the fungal pathogen Botrytis cinerea, which is known to require ET biosynthesis or signaling, was also induced by exogenously applied l-histidine. These results suggest that l-histidine induces resistance to R. solanacearum and B. cinerea partially through the activation of ET signaling in plants.
Collapse
Affiliation(s)
- Shigemi Seo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kazuhiro Nakaho
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8666 Japan
| | - Si Won Hong
- Plant-Microbe Research Units, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555 Japan
| | - Hideyuki Shigemori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572 Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602 Japan
| |
Collapse
|