1
|
Aikio M, Odeh HM, Wobst HJ, Lee BL, Chan Ú, Mauna JC, Mack KL, Class B, Ollerhead TA, Ford AF, Barbieri EM, Cupo RR, Drake LE, Smalley JL, Lin YT, Lam S, Thomas R, Castello N, Baral A, Beyer JN, Najar MA, Dunlop J, Gitler AD, Javaherian A, Kaye JA, Burslem GM, Brown DG, Donnelly CJ, Finkbeiner S, Moss SJ, Brandon NJ, Shorter J. Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy. Cell Rep 2025; 44:115205. [PMID: 39817908 PMCID: PMC11831926 DOI: 10.1016/j.celrep.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we show that p38α MAPK inhibition reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. Remarkably, p38α MAPK inhibition mitigates aberrant TDP-43 phenotypes in diverse ALS patient-derived motor neurons. p38α MAPK phosphorylates TDP-43 at pathological S409/S410 and S292, which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we establish that PRMT1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. Notably, R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote PRMT1-mediated R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Mari Aikio
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Úna Chan
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Korrie L Mack
- Neumora Therapeutics, Watertown, MA 02472, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Class
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Thomas A Ollerhead
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L Smalley
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Yuan-Ta Lin
- Neumora Therapeutics, Watertown, MA 02472, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicholas Castello
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ashmita Baral
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jenna N Beyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohd A Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Dunlop
- Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Deparments of Neurology and Physiology, Neuroscience Graduate Program and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Ben Messaoud N, López JM. p38α and p38β regulate osmostress-induced apoptosis. J Biol Chem 2025; 301:108061. [PMID: 39653241 PMCID: PMC11757794 DOI: 10.1016/j.jbc.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen-activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program. Indeed, sustained activation of p38 accelerates osmostress-induced cell death, but the p38 isoforms involved are not well characterized. Here we study the expression and activation of Xenopus p38 isoforms in response to hyperosmotic stress. We find that p38α, p38β, and p38γ are early activated by hyperosmotic shock and sustained activation of p38α and p38β accelerates osmostress-induced apoptosis. Moreover, microinjection of cytochrome c in the oocytes induces caspase-3 activation and p38α and p38β phosphorylation suggesting that caspases and kinases are interlinked in a positive feedback loop to promote cell death. In summary, we present a more complete view of the mechanisms involved in osmostress-induced apoptosis.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - José M López
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Kumar N, Sharma S, Kumar R, Meena VK, Barua S. Evolution of drug resistance against antiviral agents that target cellular factors. Virology 2024; 600:110239. [PMID: 39276671 DOI: 10.1016/j.virol.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have classically been developed by directly disrupting the functions of viral proteins. However, this strategy has been largely unsuccessful due to the rapid generation of viral escape mutants. It has been well established that as compared to the virus-centric approach, the strategy of developing antiviral drugs by targeting host-dependency factors (HDFs) minimizes drug resistance. However, recent reports have indicated that drug resistance against some of the host-targeting antiviral agents can in fact occur under some circumstances. Long-term selection pressure of a host-targeting antiviral agent may induce the virus to use an alternate cellular factor or alters its affinity towards the target that confers resistance. Alternatively, virus may synchronize its life cycle with the patterns of drug therapy. In addition, virus may subvert host's immune system to perpetuate under the limiting conditions of the targeted cellular factor. This review describes novel potential mechanisms that may account for the acquiring resistance against agents that target HDFs.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKAUST), Jammu, India.
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
4
|
Folgueira C, Herrera-Melle L, López JA, Galvan-Alvarez V, Martin-Rincon M, Cuartero MI, García-Culebras A, Dumesic PA, Rodríguez E, Leiva-Vega L, León M, Porteiro B, Iglesias C, Torres JL, Hernández-Cosido L, Bonacasa C, Marcos M, Moro MÁ, Vázquez J, Calbet JAL, Spiegelman BM, Mora A, Sabio G. Remodeling p38 signaling in muscle controls locomotor activity via IL-15. SCIENCE ADVANCES 2024; 10:eadn5993. [PMID: 39141732 PMCID: PMC11323882 DOI: 10.1126/sciadv.adn5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Skeletal muscle has gained recognition as an endocrine organ releasing myokines upon contraction during physical exercise. These myokines exert both local and pleiotropic health benefits, underscoring the crucial role of muscle function in countering obesity and contributing to the overall positive effects of exercise on health. Here, we found that exercise activates muscle p38γ, increasing locomotor activity through the secretion of interleukin-15 (IL-15). IL-15 signals in the motor cortex, stimulating locomotor activity. This activation of muscle p38γ, leading to an increase locomotor activity, plays a crucial role in reducing the risk of diabetes and liver steatosis, unveiling a vital muscle-brain communication pathway with profound clinical implications. The correlation between p38γ activation in human muscle during acute exercise and increased blood IL-15 levels highlights the potential therapeutic relevance of this pathway in treating obesity and metabolic diseases. These findings provide valuable insights into the molecular basis of exercise-induced myokine responses promoting physical activity.
Collapse
Affiliation(s)
- Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - María Isabel Cuartero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Phillip A. Dumesic
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Iglesias
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | | | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Clara Bonacasa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jose A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bruce M. Spiegelman
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
5
|
Zhou X, Ohgaki R, Jin C, Xu M, Okanishi H, Endou H, Kanai Y. Inhibition of amino acid transporter LAT1 in cancer cells suppresses G0/G1-S transition by downregulating cyclin D1 via p38 MAPK activation. J Pharmacol Sci 2024; 154:182-191. [PMID: 38395519 DOI: 10.1016/j.jphs.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1, SLC7A5) is upregulated in various cancers and associated with disease progression. Nanvuranlat (Nanv; JPH203, KYT-0353), a selective LAT1 inhibitor, suppresses the uptake of large neutral amino acids required for rapid growth and proliferation of cancer cells. Previous studies have suggested that the inhibition of LAT1 by Nanv induces the cell cycle arrest at G0/G1 phase, although the underlying mechanisms remain unclear. Using pancreatic cancer cells arrested at the restriction check point (R) by serum deprivation, we found that the Nanv drastically suppresses the G0/G1-S transition after release. This blockade of the cell cycle progression was accompanied by a sustained activation of p38 mitogen-activated protein kinase (MAPK) and subsequent phosphorylation-dependent proteasomal degradation of cyclin D1. Isoform-specific knockdown of p38 MAPK revealed the predominant contribution of p38α. Proteasome inhibitors restored the cyclin D1 amount and released the cell cycle arrest caused by Nanv. The increased phosphorylation of p38 MAPK and the decrease of cyclin D1 were recapitulated in xenograft tumor models treated with Nanv. This study contributes to delineating the pharmacological activities of LAT1 inhibitors as anti-cancer agents and provides significant insights into the molecular basis of the amino acid-dependent cell cycle checkpoint at G0/G1 phase.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd., Yokohama, Kanagawa, 230-0046, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
See WZC, Naidu R, Tang KS. Paraquat and Parkinson's Disease: The Molecular Crosstalk of Upstream Signal Transduction Pathways Leading to Apoptosis. Curr Neuropharmacol 2024; 22:140-151. [PMID: 36703582 PMCID: PMC10716878 DOI: 10.2174/1570159x21666230126161524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogenactivated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
7
|
Qi XM, Chen G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023; 12:1674. [PMID: 37443708 PMCID: PMC10341180 DOI: 10.3390/cells12131674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.
Collapse
Affiliation(s)
- Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
8
|
Díaz-Mora E, González-Romero D, Meireles-da-Silva M, Sanz-Ezquerro JJ, Cuenda A. p38δ controls Mitogen- and Stress-activated Kinase-1 (MSK1) function in response to toll-like receptor activation in macrophages. Front Cell Dev Biol 2023; 11:1083033. [PMID: 36846591 PMCID: PMC9946961 DOI: 10.3389/fcell.2023.1083033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Mitogen- and Stress-activated Kinase (MSK) 1 is a nuclear protein, activated by p38α Mitogen-Activated Kinase (MAPK) and extracellular signal-regulated kinase (ERK1/2), that modulate the production of certain cytokines in macrophages. Using knockout cells and specific kinase inhibitors, we show that, besides p38α and ERK1/2, another p38MAPK, p38δ, mediates MSK phosphorylation and activation, in LPS-stimulated macrophages. Additionally, recombinant MSK1 was phosphorylated and activated by recombinant p38δ, to the same extent than by p38α, in in vitro experiments. Moreover, the phosphorylation of the transcription factors CREB and ATF1, that are MSK physiological substrates, and the expression of the CREB-dependent gene encoding DUSP1, were impaired in p38δ-deficient macrophages. Also, the transcription of IL-1Ra mRNA, that is MSK-dependent, was reduced. Our results indicate that MSK activation can be one possible mechanism by which p38δ regulates the production of a variety of inflammatory molecules involved in immune innate response.
Collapse
Affiliation(s)
- Ester Díaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Diego González-Romero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Marta Meireles-da-Silva
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Juan José Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain,*Correspondence: Ana Cuenda,
| |
Collapse
|
9
|
Shabardina V, Charria PR, Saborido GB, Diaz-Mora E, Cuenda A, Ruiz-Trillo I, Sanz-Ezquerro JJ. Evolutionary analysis of p38 stress-activated kinases in unicellular relatives of animals suggests an ancestral function in osmotic stress. Open Biol 2023; 13:220314. [PMID: 36651171 PMCID: PMC9846432 DOI: 10.1098/rsob.220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
p38 kinases are key elements of the cellular stress response in animals. They mediate the cell response to a multitude of stress stimuli, from osmotic shock to inflammation and oncogenes. However, it is unknown how such diversity of function in stress evolved in this kinase subfamily. Here, we show that the p38 kinase was already present in a common ancestor of animals and fungi. Later, in animals, it diversified into three JNK kinases and four p38 kinases. Moreover, we identified a fifth p38 paralog in fishes and amphibians. Our analysis shows that each p38 paralog has specific amino acid substitutions around the hinge point, a region between the N-terminal and C-terminal protein domains. We showed that this region can be used to distinguish between individual paralogs and predict their specificity. Finally, we showed that the response to hyperosmotic stress in Capsaspora owczarzaki, a close unicellular relative of animals, follows a phosphorylation-dephosphorylation pattern typical of p38 kinases. At the same time, Capsaspora's cells upregulate the expression of GPD1 protein resembling an osmotic stress response in yeasts. Overall, our results show that the ancestral p38 stress pathway originated in the root of opisthokonts, most likely as a cell's reaction to salinity change in the environment. In animals, the pathway became more complex and incorporated more stimuli and downstream targets due to the p38 sequence evolution in the docking and substrate binding sites around the hinge region. This study improves our understanding of p38 evolution and opens new perspectives for p38 research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Pedro Romero Charria
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Gonzalo Bercedo Saborido
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Ester Diaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Barcelona, Spain,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Juan Jose Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Chander Y, Kumar R, Verma A, Khandelwal N, Nagori H, Singh N, Sharma S, Pal Y, Puvar A, Pandit R, Shukla N, Chavada P, Tripathi BN, Barua S, Kumar N. Resistance evolution against host-directed antiviral agents: Buffalopox virus switches to use p38-ϒ under long-term selective pressure of an inhibitor targeting p38-α. Mol Biol Evol 2022; 39:6668988. [PMID: 35975687 PMCID: PMC9435063 DOI: 10.1093/molbev/msac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Nagori
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hiar, Haryana, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Rameshchandra Pandit
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Priyank Chavada
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Bhupendra N Tripathi
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
11
|
Romero-Becerra R, Mora A, Manieri E, Nikolic I, Santamans AM, Montalvo-Romeral V, Cruz FM, Rodríguez E, León M, Leiva-Vega L, Sanz L, Bondía V, Filgueiras-Rama D, Jiménez-Borreguero LJ, Jalife J, Gonzalez-Teran B, Sabio G. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation. eLife 2022; 11:e75250. [PMID: 35971771 PMCID: PMC9381040 DOI: 10.7554/elife.75250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38β, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.
Collapse
Affiliation(s)
| | - Alfonso Mora
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Elisa Manieri
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Ivana Nikolic
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | | | | | - Elena Rodríguez
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Marta León
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Laura Sanz
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Víctor Bondía
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Hospital Clínico Universitario San CarlosMadridSpain
| | | | - José Jalife
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann ArborAnn ArborUnited States
| | - Barbara Gonzalez-Teran
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- Gladstone InstitutesSan FranciscoUnited States
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| |
Collapse
|
12
|
Stefanoska K, Gajwani M, Tan ARP, Ahel HI, Asih PR, Volkerling A, Poljak A, Ittner A. Alzheimer's disease: Ablating single master site abolishes tau hyperphosphorylation. SCIENCE ADVANCES 2022; 8:eabl8809. [PMID: 35857446 PMCID: PMC9258953 DOI: 10.1126/sciadv.abl8809] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein is a hallmark of neurodegenerative tauopathies such as Alzheimer's disease. A central unanswered question is why tau becomes progressively hyperphosphorylated. Here, we show that tau phosphorylation is governed by interdependence- a mechanistic link between initial site-specific and subsequent multi-site phosphorylation. Systematic assessment of site interdependence identified distinct residues (threonine-50, threonine-69, and threonine-181) as master sites that determine propagation of phosphorylation at multiple epitopes. CRISPR point mutation and expression of human tau in Alzheimer's mice showed that site interdependence governs physiologic and amyloid-associated multi-site phosphorylation and cognitive deficits, respectively. Combined targeting of master sites and p38α, the most central tau kinase linked to interdependence, synergistically ablated hyperphosphorylation. In summary, our work delineates how complex tau phosphorylation arises to inform therapeutic and biomarker design for tauopathies.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| | - Mehul Gajwani
- Dementia Research Centre, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- Monash Biomedical Imaging, Monash University, Clayton,Victoria, Australia
| | - Amanda R. P. Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Holly I. Ahel
- Department of Biomedical Sciences, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Prita R. Asih
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alexander Volkerling
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Arne Ittner
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| |
Collapse
|
13
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal 2022; 15:eabj6915. [PMID: 35380879 PMCID: PMC7612652 DOI: 10.1126/scisignal.abj6915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.
Collapse
Affiliation(s)
- Spyridoula-Angeliki Nikou
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Bianca M. Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Mary J. Green
- Experimental Histopathology Lab, The Francis Crick Institute; London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Peter J. Parker
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- School of Cancer and Pharmaceutical Sciences, New Hunt’s House, King’s College London; London, UK
| |
Collapse
|
14
|
Carrasco E, Gomez-Gutierrez P, Campos PM, Vega M, Messeguer A, Perez JJ. Discovery of novel 2,3,5-trisubstituted pyridine analogs as potent inhibitors of IL-1β via modulation of the p38 MAPK signaling pathway. Eur J Med Chem 2021; 223:113620. [PMID: 34186234 DOI: 10.1016/j.ejmech.2021.113620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Interleukin-1β is a central mediator of innate immune responses and inflammation. It plays a key role in a wide variety of pathologies, ranging from autoinflammatory diseases to metabolic syndrome and malignant tumors. It is well established that its inhibition results in a rapid and sustained reduction in disease severity, underlining the importance of having a repertoire of drugs of this class. At present, there are only three interleukin-1β blockers approved in the clinic. All of them are biologics, requiring parenteral administration and resulting in expensive treatments. In an exercise to identify small molecule allosteric inhibitors of MAP kinases, we discovered a series of compounds that block IL-1β release produced as a consequence of a stimulus involved in triggering an inflammatory response. The present study reports the hit-to-lead optimization process that permitted the identification of the compound 13b (AIK3-305) an orally available, potent and selective inhibitor of IL-1β. Furthermore, the study also reports the results of an in vivo efficacy study of 13b in a LPS endotoxic shock model in male BALB/c mice, where IL-1β inhibition is monitored in different tissues.
Collapse
Affiliation(s)
- Esther Carrasco
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Patricia Gomez-Gutierrez
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain; Dept. of Chemical Engineering, Universitat Politecnica de Catalunya, 08028, Barcelona, Spain
| | - Pedro M Campos
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Miguel Vega
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Angel Messeguer
- IQAC CSIC, Institute of Advanced Chemistry of Catalonia, Dept. Biological Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Juan J Perez
- Dept. of Chemical Engineering, Universitat Politecnica de Catalunya, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Falvo S, Santillo A, Di Fiore MM, Rosati L, Chieffi Baccari G. JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:529-536. [PMID: 33970561 DOI: 10.1002/jez.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
16
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020; 21:ijms21207524. [PMID: 33053909 PMCID: PMC7589630 DOI: 10.3390/ijms21207524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38β (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38β in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38β might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Collapse
Affiliation(s)
- Olga Roche
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Elena Arconada-Luque
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Natalia García-Flores
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Liliana F. Mellor
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-420
| |
Collapse
|
18
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
19
|
Barrio L, Román-García S, Díaz-Mora E, Risco A, Jiménez-Saiz R, Carrasco YR, Cuenda A. B Cell Development and T-Dependent Antibody Response Are Regulated by p38γ and p38δ. Front Cell Dev Biol 2020; 8:189. [PMID: 32266269 PMCID: PMC7105866 DOI: 10.3389/fcell.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
p38MAP kinase (MAPK) signal transduction pathways are important regulators of inflammation and the immune response; their involvement in immune cell development and function is still largely unknown. Here we analysed the role of the p38 MAPK isoforms p38γ and p38δ in B cell differentiation in bone marrow (BM) and spleen, using mice lacking p38γ and p38δ, or conditional knockout mice that lack both p38γ and p38δ specifically in the B cell compartment. We found that the B cell differentiation programme in the BM was not affected in p38γ/δ-deficient mice. Moreover, these mice had reduced numbers of peripheral B cells as well as altered marginal zone B cell differentiation in the spleen. Expression of co-stimulatory proteins and activation markers in p38γ/δ-deficient B cells are diminished in response to B cell receptor (BCR) and CD40 stimulation; p38γ and p38δ were necessary for B cell proliferation induced by BCR and CD40 but not by TLR4 signaling. Furthermore, p38γ/δ-null mice produced significantly lower antibody responses to T-dependent antigens. Our results identify unreported functions for p38γ and p38δ in B cells and in the T-dependent humoral response; and show that the combined activity of these kinases is needed for peripheral B cell differentiation and function.
Collapse
Affiliation(s)
- Laura Barrio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Sara Román-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ester Díaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
20
|
Dumont AA, Dumont L, Berthiaume J, Auger-Messier M. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118557. [PMID: 31505169 DOI: 10.1016/j.bbamcr.2019.118557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is essential for normal heart function. However, p38 also contributes to heart failure pathogenesis by affecting cardiomyocytes contractility and survival. To unravel part of the complex role of p38 in cardiac function, we performed an APEX2-based proximity assay in cultured neonatal rat ventricular myocytes and identified the protein interaction networks (interactomes) of two highly expressed p38 isoforms in the heart. We found that p38α and p38γ have distinct interactomes in cardiomyocytes under both basal and osmotic stress-activated states. Interestingly, the activated p38α interactome contains many RNA-binding proteins implicated in splicing, including the serine/arginine-rich splicing factor 3 (SRSF3). Its interaction with the activated p38α was validated by co-immunoprecipitation. The cytoplasmic abundance and alternative splicing function of SRSF3 are also both modulated by the p38 signaling pathway. Our findings reveal a new function for p38 as a specific regulator of SRSF3 in cardiomyocytes.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
21
|
Chowdhury D, Singh A, Gupta A, Tulsawani R, Meena RC, Chakrabarti A. p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of Elk-1 activity in heat-stressed HeLa cells. Cell Stress Chaperones 2019; 24:393-407. [PMID: 30783905 PMCID: PMC6439063 DOI: 10.1007/s12192-019-00974-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Stress-activated and mitogen-activated protein kinases (MAPKs) regulate gene expression by post-translational modifications of transcription factors. Elk-1, a transcription factor that regulates the expression of immediate early genes, is amenable to regulation by all the three mammalian MAPKs. In the present report, using inhibitors specific for different MAPK pathways, we show that during exposure of HeLa cells to heat stress, Elk-1 is SUMOylated with SUMO1 by p38 MAPK pathway-dependent mechanisms. Elk-1-phosphorylation levels were significantly reduced under similar conditions. We also show that transcriptional activity of Elk-1 as assessed by luciferase reporter expression and qPCR estimation of the expression of genes regulated by Elk-1 was downregulated upon exposure to heat stress; this downregulation was reversed when heat exposure was performed in the presence of either SB203580 (p38 MAPK inhibitor) or ginkgolic acid (inhibitor of SUMOylation). Elk-1 induced transcription is also regulated by PIAS2 which acts as a coactivator upon the activation of extracellular signal-regulated kinases (ERKs) and as a corepressor upon its phosphorylation by p38 MAPK. Since heat stress activates the p38 MAPK pathway, we determined if PIAS2 was phosphorylated in heat-stressed HeLa cells. Our studies indicate that in HeLa cells exposed to heat stress, PIAS2 is phosphorylated by p38 MAPK pathway-dependent mechanisms. Collectively, the results presented demonstrate that in heat-stressed HeLa cells, p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of transactivation by Elk-1.
Collapse
Affiliation(s)
- Daipayan Chowdhury
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ajeet Singh
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Avinash Gupta
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Department of Chemistry, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Chand Meena
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Amitabha Chakrabarti
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
22
|
Zhang D, Huang S, Mei H, Kevin M, Shi T, Chen L. Protein-ligand interaction fingerprints for accurate prediction of dissociation rates of p38 MAPK Type II inhibitors. Integr Biol (Camb) 2019; 11:53-60. [PMID: 30855664 DOI: 10.1093/intbio/zyz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Binding/unbinding kinetics are key determinants of drug potencies. However, there are still a lot of challenges in predicting kinetic properties during early-stage drug development. In this work, position-restrained molecular dynamics simulations combined with energy decomposition were applied to extract protein-ligand interaction (PLI) fingerprints along the unbinding pathway of 20 p38 mitogen-activated protein kinase (p38 MAPK) Type II inhibitors. The results showed that the electrostatic and/or van der Waals interaction fingerprints at three key positions can be used for accurate prediction of the dissociation rate constants (koff) of p38 MAPK Type II inhibitors. The strategy proposed in this paper can provide not only an efficient method of predicting the dissociation rates of the p38 MAPK Type II inhibitors, but also the atom-level mechanism of enthalpy-driven unbinding process.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | | | - Tingting Shi
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Linxin Chen
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Fang C, Wu B, Le NTT, Imberdis T, Mercer RCC, Harris DA. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog 2018; 14:e1007283. [PMID: 30235355 PMCID: PMC6147624 DOI: 10.1371/journal.ppat.1007283] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022] Open
Abstract
Synaptic degeneration is one of the earliest pathological correlates of prion disease, and it is a major determinant of the progression of clinical symptoms. However, the cellular and molecular mechanisms underlying prion synaptotoxicity are poorly understood. Previously, we described an experimental system in which treatment of cultured hippocampal neurons with purified PrPSc, the infectious form of the prion protein, induces rapid retraction of dendritic spines, an effect that is entirely dependent on expression of endogenous PrPC by the target neurons. Here, we use this system to dissect pharmacologically the underlying cellular and molecular mechanisms. We show that PrPSc initiates a stepwise synaptotoxic signaling cascade that includes activation of NMDA receptors, calcium influx, stimulation of p38 MAPK and several downstream kinases, and collapse of the actin cytoskeleton within dendritic spines. Synaptic degeneration is restricted to excitatory synapses, spares presynaptic structures, and results in decrements in functional synaptic transmission. Pharmacological inhibition of any one of the steps in the signaling cascade, as well as expression of a dominant-negative form of p38 MAPK, block PrPSc-induced spine degeneration. Moreover, p38 MAPK inhibitors actually reverse the degenerative process after it has already begun. We also show that, while PrPC mediates the synaptotoxic effects of both PrPSc and the Alzheimer’s Aβ peptide in this system, the two species activate distinct signaling pathways. Taken together, our results provide powerful insights into the biology of prion neurotoxicity, they identify new, druggable therapeutic targets, and they allow comparison of prion synaptotoxic pathways with those involved in other neurodegenerative diseases. Prion diseases are a group of fatal neurodegenerative disorders that includes Creutzfeldt-Jakob disease and kuru in humans, and bovine spongiform encephalopathy in cattle. The infectious agent, or prion, that transmits these diseases is a naked protein molecule, the prion protein (PrP), which is an altered form of a normal, cellular protein. Although a great deal is known about how prions propagate themselves and transmit infection, the process by which they actually cause neurons to degenerate has remained mysterious. Here, we have used a specialized neuronal culture system to dissect the cellular and molecular mechanisms by which prions damage synapses, the structures that connect nerve cells and that play a crucial role in learning, memory, and neurological disease. Our results define a stepwise molecular pathway underlying prion synaptic toxicity, which involves activation of glutamate neurotransmitter receptors, influx of calcium ions into the neuron, and stimulation of specific mitogen-activated protein kinases, which attach phosphate groups to proteins to regulate their activity. We demonstrate that specific drugs, as well as a dominant-negative kinase mutant, block these steps and thereby prevent the synaptic degeneration produced by prions. Our results provide new insights into the pathogenesis of prion diseases, they uncover new drug targets for treating these diseases, and they allow us to compare prion diseases to other, more common neurodegenerative disorders like Alzheimer’s disease.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Nhat T. T. Le
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Thibaut Imberdis
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Robert C. C. Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy. Acta Pharm Sin B 2018; 8:511-517. [PMID: 30109176 PMCID: PMC6089844 DOI: 10.1016/j.apsb.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.
Collapse
|
25
|
Comparative chemical array screening for p38γ/δ MAPK inhibitors using a single gatekeeper residue difference between p38α/β and p38γ/δ. Sci Rep 2016; 6:29881. [PMID: 27431267 PMCID: PMC4949465 DOI: 10.1038/srep29881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/23/2016] [Indexed: 11/08/2022] Open
Abstract
Mammalian p38 mitogen activated protein kinases (MAPKs) are responsive to a variety of cellular stresses. The development of specific pyridinyl imidazole inhibitors has permitted the characterization of the p38 MAPK isoform p38α, which is expressed in most cell types, whereas the physiological roles of p38γ and p38δ are poorly understood. In this study, we report an approach for identifying selective inhibitors against p38γ and p38δ by focusing on the difference in gatekeeper residues between p38α/β and p38γ/δ. Using GST-fused p38α wild type and T106M mutant constructs, wherein the p38α gatekeeper residue (Thr-106) was substituted by the p38γ/δ-type (Met), we performed comparative chemical array screening to identify specific binders of the mutant and identified SU-002 bound to p38αT106M specifically. SU-002 was found to inhibit p38αT106M but not p38α kinase activity in in vitro kinase assays. SU-005, the analog of SU-002, had inhibitory effects against the kinase activity of p38γ and p38δ in vitro but not p38α. In addition, SU-005 inhibited both p38γ and p38δ auto-phosphorylation in HeLa and HEK293T cells. These results demonstrate that the comparative chemical array screening approach is a powerful technique to explore specific inhibitors for mutant proteins with even single amino-acid substitutions in a high-throughput manner.
Collapse
|
26
|
Escós A, Risco A, Alsina-Beauchamp D, Cuenda A. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy. Front Cell Dev Biol 2016; 4:31. [PMID: 27148533 PMCID: PMC4830812 DOI: 10.3389/fcell.2016.00031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK) family. p38MAPK signaling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Alejandra Escós
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Spanish National Research Council (CSIC) Madrid, Spain
| | - Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Spanish National Research Council (CSIC) Madrid, Spain
| | - Dayanira Alsina-Beauchamp
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Spanish National Research Council (CSIC) Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Spanish National Research Council (CSIC) Madrid, Spain
| |
Collapse
|
27
|
Zur R, Garcia-Ibanez L, Nunez-Buiza A, Aparicio N, Liappas G, Escós A, Risco A, Page A, Saiz-Ladera C, Alsina-Beauchamp D, Montans J, Paramio JM, Cuenda A. Combined deletion of p38γ and p38δ reduces skin inflammation and protects from carcinogenesis. Oncotarget 2016; 6:12920-35. [PMID: 26079427 PMCID: PMC4536989 DOI: 10.18632/oncotarget.4320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/25/2015] [Indexed: 12/21/2022] Open
Abstract
The contribution of chronic skin inflammation to the development of squamous cell carcinoma (SCC) is poorly understood. While the mitogen-activated protein kinase p38α regulates inflammatory responses and tumour development, little is known about the role of p38γ and p38δ in these processes. Here we show that combined p38γ and p38δ (p38γ/δ) deletion blocked skin tumour development in a chemically induced carcinogenesis model. p38γ/δ deletion reduced TPA-induced epidermal hyperproliferation and inflammation; it inhibited expression of proinflammatory cytokines and chemokines in keratinocytes in vitro and in whole skin in vivo, resulting in decreased neutrophil recruitment to skin. Our data indicate that p38γ/δ in keratinocytes promote carcinogenesis by enabling formation of a proinflammatory microenvironment that fosters epidermal hyperproliferation and tumourigenesis. These findings provide genetic evidence that p38γ and p38δ have essential roles in skin tumour development, and suggest that targeting inflammation through p38γ/δ offers a therapeutic strategy for SCC treatment and prevention.
Collapse
Affiliation(s)
- Rafal Zur
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Laura Garcia-Ibanez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Angel Nunez-Buiza
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Noelia Aparicio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - Alejandra Escós
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, CIEMAT and I+12 Biomedical Research Institute, University Hospital 12 de Octubre, Madrid, Spain
| | - Cristina Saiz-Ladera
- Molecular Oncology Unit, CIEMAT and I+12 Biomedical Research Institute, University Hospital 12 de Octubre, Madrid, Spain
| | | | - José Montans
- Centro Anatomopatológico, Camino de Vinateros, Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT and I+12 Biomedical Research Institute, University Hospital 12 de Octubre, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
28
|
Yang C, Cao P, Gao Y, Wu M, Lin Y, Tian Y, Yuan W. Differential expression of p38 MAPK α, β, γ, δ isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration. Sci Rep 2016; 6:22182. [PMID: 26911458 PMCID: PMC4766431 DOI: 10.1038/srep22182] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
P38MAPK mediates cytokine induced inflammation in nucleus pulposus (NP) cells and involves in multiple cellular processes which are related to intervertebral disc degeneration (IDD). The aim of this study was to investigate the expression, activation and function of p38 MAPK isoforms (α,β, γ and δ) in degenerative NP and the effect of p38 activation in NP cells on macrophage polarization. P38 α, β and δ isoforms are preferential expressed, whereas the p38γ isoform is absent in human NP tissue. LV-sh-p38α, sh-p38β transfection in NP cells significantly decreased the ADAMTS-4,-5, MMP-13,CCL3 expression and restored collagen-II and aggrecan expression upon IL-1β stimulation. As compared with p38α and p38β, p38δ exhibited an opposite effect on ADAMTS-4,-5, MMP-13 and aggrecan expression in NP cells. Furthermore, the production of GM-CSF and IFNγ which were trigged by p38α or p38β in NP cells induced macrophage polarization into M1 phenotype. Our finding indicates that p38 MAPK α, β and δ isoform are predominantly expressed and activated in IDD. P38 positive NP cells modulate macrophage polarization through the production of GM-CSF and IFNγ. Hence, Our study suggests that selectively targeting p38 isoforms could ameliorate the inflammation in IDD and regard IDD progression.
Collapse
Affiliation(s)
- Chen Yang
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Peng Cao
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Yang Gao
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Ming Wu
- Kidney Institute, Department of Nephrology, Changzheng Hospital, Shanghai 200003, China
| | - Yun Lin
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Ye Tian
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Wen Yuan
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
29
|
Ben Messaoud N, Katzarova I, López JM. Basic Properties of the p38 Signaling Pathway in Response to Hyperosmotic Shock. PLoS One 2015; 10:e0135249. [PMID: 26335493 PMCID: PMC4559375 DOI: 10.1371/journal.pone.0135249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
Some properties of signaling systems, like ultrasensitivity, hysteresis (a form of biochemical memory), and all-or-none responses at a single cell level, are important to understand the regulation of irreversible processes. Xenopus oocytes are a suitable cell model to study these properties. The p38 MAPK (mitogen-activated protein kinase) pathway is activated by different stress stimuli, including osmostress, and regulates multiple biological processes, from immune response to cell cycle. Recently, we have reported that activation of p38 and JNK regulate osmostress-induced apoptosis in Xenopus oocytes and that sustained activation of p38 accelerates cytochrome c release and caspase-3 activation. However, the signaling properties of p38 in response to hyperosmotic shock have not been studied. Here we show, using Xenopus oocytes as a cell model, that hyperosmotic shock activates the p38 signaling pathway with an ultrasensitive and bimodal response in a time-dependent manner, and with low hysteresis. At a single cell level, p38 activation is not well correlated with cytochrome c release 2 h after hyperosmotic shock, but a good correlation is observed at 4 h after treatment. Interestingly, cytochrome c microinjection induces p38 phosphorylation through caspase-3 activation, and caspase inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock. To know the properties of the stress protein kinases activated by hyperosmotic shock will facilitate the design of computational models to predict cellular responses in human diseases caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ilina Katzarova
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem Toxicol 2015; 84:125-32. [PMID: 26303273 DOI: 10.1016/j.fct.2015.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/18/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
We investigated apoptosis induced by the green tea component the epigallocatechin-3-gallate (EGCG) and the pathways underlying its activity in a colon cancer cell line. A complete understanding of the mechanism(s) and molecules targeted by green tea polyphenols could be useful in developing novel therapeutic approaches for cancer treatment. EGCG, which is the major polyphenol in green tea, has cytotoxic effects and induced cell death in HT-29 cell death. In this study, we evaluated the effect EGCG on mitogen-activated protein kinase (MAPK) and Akt pathways. EGCG treatment increased phospho-ERK1/2, -JNK1/2 and -p38α, -p38γ and -p38δ, as well as phospho-Akt levels. Using a combination of kinase inhibitors, we found that EGCG-induced cell death is partially blocked by inhibiting Akt, ERK1/2 or alternative p38MAPK activity. Our data suggest that these kinase pathways are involved in the anti-cancer effects of EGCG and indicate potential use of this compound as chemotherapeutic agent for colon cancer treatment.
Collapse
|
31
|
Martin ED, Bassi R, Marber MS. p38 MAPK in cardioprotection - are we there yet? Br J Pharmacol 2015; 172:2101-13. [PMID: 25204838 PMCID: PMC4386984 DOI: 10.1111/bph.12901] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
PKs transfer a phosphate from ATP to the side-chain hydroxyl group of a serine, threonine or tyrosine residue of a substrate protein. This in turn can alter that protein's function; modulating fundamental cellular processes including, metabolism, transcription, growth, division, differentiation, motility and survival. PKs are subdivided into families based on homology. One such group are the stress-activated kinases, which as the name suggests, are activated in response to cellular stresses such as toxins, cytokines, mechanical deformation and osmotic stress. Members include the p38 MAPK family, which is composed of α, β, γ and δ, isoforms which are encoded by separate genes. These kinases transduce extracellular signals and coordinate the cellular responses needed for adaptation and survival. However, in cardiovascular and other disease states, these same systems can trigger maladaptive responses that aggravate, rather than alleviate, the disease. This situation is analogous to adrenergic, angiotensin and aldosterone signalling in heart failure, where inhibition is beneficial despite the importance of these hormones to homeostasis. The question is whether similar benefits could accrue from p38 inhibition? In this review, we will discuss the structure and function of p38, the history of p38 inhibitors and their use in preclinical studies. Finally, we will summarize the results of recent cardiovascular clinical trials with p38 inhibitors.
Collapse
Affiliation(s)
- E D Martin
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - R Bassi
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - M S Marber
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| |
Collapse
|
32
|
Criado G, Risco A, Alsina-Beauchamp D, Pérez-Lorenzo MJ, Escós A, Cuenda A. Alternative p38 MAPKs Are Essential for Collagen-Induced Arthritis. Arthritis Rheumatol 2014; 66:1208-17. [DOI: 10.1002/art.38327] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Gabriel Criado
- Instituto de Investigación Sanitaria and Hospital Universitario 12 de Octubre; Madrid Spain
| | - Ana Risco
- Centro Nacional de Biotecnología, CSIC; Madrid Spain
| | | | - María J. Pérez-Lorenzo
- Instituto de Investigación Sanitaria and Hospital Universitario 12 de Octubre; Madrid Spain
| | | | - Ana Cuenda
- Centro Nacional de Biotecnología, CSIC; Madrid Spain
| |
Collapse
|
33
|
Evertsson K, Fjällström AK, Norrby M, Tågerud S. p38 mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 (MK2) signaling in atrophic and hypertrophic denervated mouse skeletal muscle. J Mol Signal 2014; 9:2. [PMID: 24629011 PMCID: PMC3995524 DOI: 10.1186/1750-2187-9-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background p38 mitogen-activated protein kinase has been implicated in both skeletal muscle atrophy and hypertrophy. T317 phosphorylation of the p38 substrate mitogen-activated protein kinase-activated protein kinase 2 (MK2) correlates with muscle weight in atrophic and hypertrophic denervated muscle and may influence the nuclear and cytoplasmic distribution of p38 and/or MK2. The present study investigates expression and phosphorylation of p38, MK2 and related proteins in cytosolic and nuclear fractions from atrophic and hypertrophic 6-days denervated skeletal muscles compared to innervated controls. Methods Expression and phosphorylation of p38, MK2, Hsp25 (heat shock protein25rodent/27human, Hsp25/27) and Hsp70 protein expression were studied semi-quantitatively using Western blots with separated nuclear and cytosolic fractions from innervated and denervated hypertrophic hemidiaphragm and atrophic anterior tibial muscles. Unfractionated innervated and denervated atrophic pooled gastrocnemius and soleus muscles were also studied. Results No support was obtained for a differential nuclear/cytosolic localization of p38 or MK2 in denervated hypertrophic and atrophic muscle. The differential effect of denervation on T317 phosphorylation of MK2 in denervated hypertrophic and atrophic muscle was not reflected in p38 phosphorylation nor in the phosphorylation of the MK2 substrate Hsp25. Hsp25 phosphorylation increased 3-30-fold in all denervated muscles studied. The expression of Hsp70 increased 3-5-fold only in denervated hypertrophic muscles. Conclusions The study confirms a differential response of MK2 T317 phosphorylation in denervated hypertrophic and atrophic muscles and suggests that Hsp70 may be important for this. Increased Hsp25 phosphorylation in all denervated muscles studied indicates a role for factors other than MK2 in the regulation of this phosphorylation.
Collapse
Affiliation(s)
- Kim Evertsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | | | | | | |
Collapse
|
34
|
A role for mitogen kinase kinase 3 in pulmonary inflammation validated from a proteomic approach. Pulm Pharmacol Ther 2014; 27:156-63. [PMID: 24480516 DOI: 10.1016/j.pupt.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Proteomics is a powerful tool to ascertain which proteins are differentially expressed in the context of disease. We have used this approach on inflammatory cells obtained from patients with asthma to ascertain whether novel drugs targets could be illuminated and to investigate the role of any such target in a range of in vitro and in vivo models of inflammation. A proteomic study was undertaken using peripheral blood mononuclear cells from mild asthmatic subjects compared with healthy subjects. The analysis revealed an increased expression of the intracellular kinase, mitogen activated protein kinase (MKK3), and the function of this protein was investigated further in preclinical models of inflammation using MKK3 knockout mice. We describe a 3.65 fold increase in the expression of MKK3 in CD8(+) T lymphocytes obtained from subjects with asthma compared with healthy subjects using a proteomic approach which we have confirmed in CD8(+), but not in CD4(+) T lymphocytes or human bronchial epithelial cells from asthmatic patients using a Western blot technique. In wild type mice, bacterial lipopolysaccharide (LPS) caused a significant increase in MKK3 expression and significantly reduced airway neutrophilia in MKK3(-/-) mice (median, 25, 75% percentile; wild/LPS; 5.3 (0.7-9.9) × 10(5) cells/mL vs MKK3(-/-)/LPS; 0 (0-1.9) × 10(5) cells/mL, P < 0.05). In contrast, eosinophilia in sensitized wild type mice challenged with allergen (0.5 (0.16-0.65) × 10(5) cells/mL) was significantly increased in MKK3(-/-) mice (2.2 (0.9-3.5) × 10(5) cells/mL, P < 0.05). Our results suggest that asthma is associated with MKK3 over-expression in CD8(+) cells. We have also demonstrated that MKK3 may be critical for airway neutrophilia, but not eosinophilia, suggesting that this may be a target worthy of further consideration in the context of diseases associated with neutrophil activation such as severe asthma and COPD.
Collapse
|
35
|
Chang HW, Chung FS, Yang CN. Molecular modeling of p38α mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. J Chem Inf Model 2013; 53:1775-86. [PMID: 23808966 DOI: 10.1021/ci4000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in inflammation and other physiological processes. Because specific inhibitors of p38α and p38β MAPK block the production of the major inflammatory cytokines and other proteins, p38α and p38β MAPK represent promising targets for the treatment of inflammation. In this work, a series of p38α inhibitors based on the structural scaffold of 4-benzoyl-5-aminopyrazole were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for p38 MAPK inhibition. Furthermore, we employed molecular dynamics (MD) simulations and the MM/GBSA method to compare the binding modes and binding free energies of a potent and selective compound interacting with p38α, p38β, p38γ, and p38δ MAPK in detail. Contour maps generated via 3D-QSAR analysis identified several key interactions that were also indicated through MD simulations. The binding free energies calculated via the MM/GBSA method were strongly correlated with experimentally observed biological activities and explained the selective inhibition of p38α and p38β, but not p38γ and p38δ detected here. On the basis of the obtained results, we provide insights regarding the development of novel potent p38α MAPK inhibitors.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Institute of Biotechnology, National University of Kaohsiung, Taiwan
| | | | | |
Collapse
|
36
|
Chen CM, Bentham J, Cosgrove C, Braganca J, Cuenda A, Bamforth SD, Schneider JE, Watkins H, Keavney B, Davies B, Bhattacharya S. Functional significance of SRJ domain mutations in CITED2. PLoS One 2012; 7:e46256. [PMID: 23082118 PMCID: PMC3474824 DOI: 10.1371/journal.pone.0046256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023] Open
Abstract
CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ) that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD) cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T) in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be insufficient.
Collapse
Affiliation(s)
- Chiann-mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jamie Bentham
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Catherine Cosgrove
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jose Braganca
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ana Cuenda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Simon D. Bamforth
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Jürgen E. Schneider
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Bernard Keavney
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1060] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
38
|
Hou S, Suresh PS, Qi X, Lepp A, Mirza SP, Chen G. p38γ Mitogen-activated protein kinase signals through phosphorylating its phosphatase PTPH1 in regulating ras protein oncogenesis and stress response. J Biol Chem 2012; 287:27895-905. [PMID: 22730326 DOI: 10.1074/jbc.m111.335794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatase plays a crucial role in determining cellular fate by inactivating its substrate kinase, but it is not known whether a kinase can vice versa phosphorylate its phosphatase to execute this function. Protein-tyrosine phosphatase H1 (PTPH1) is a specific phosphatase of p38γ mitogen-activated protein kinase (MAPK) through PDZ binding, and here, we show that p38γ is also a PTPH1 kinase through which it executes its oncogenic activity and regulates stress response. PTPH1 was identified as a substrate of p38γ by unbiased proteomic analysis, and its resultant phosphorylation at Ser-459 occurs in vitro and in vivo through their complex formation. Genetic and pharmacological analyses showed further that Ser-459 phosphorylation is directly regulated by Ras signaling and is important for Ras, p38γ, and PTPH1 oncogenic activity. Moreover, experiments with physiological stimuli revealed a novel stress pathway from p38γ to PTPH1/Ser-459 phosphorylation in regulating cell growth and cell death by a mechanism dependent on cellular environments but independent of canonical MAPK activities. These results thus reveal a new mechanism by which a MAPK regulates Ras oncogenesis and stress response through directly phosphorylating its phosphatase.
Collapse
Affiliation(s)
- Songwang Hou
- Department of Pharmacology and Toxicology, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abi Saab WF, Brown MS, Chadee DN. MLK4β functions as a negative regulator of MAPK signaling and cell invasion. Oncogenesis 2012; 1:e6. [PMID: 23552557 PMCID: PMC3412637 DOI: 10.1038/oncsis.2012.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mixed lineage kinase (MLK) 4, or MLK4, is a member of the MLK family of mitogen-activated protein kinase kinase kinases (MAP3Ks). Typically, MAP3Ks function to activate the mitogen-activated protein kinase (MAPK)-signaling pathways and regulate different cellular responses. However, here we report that MLK4β, unlike the other MLKs, negatively regulates the activities of the MAPKs, p38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and the MAP2Ks, MEK3 and 6. Our results show that MLK4β inhibits sorbitol- and tumor necrosis factor-induced activation of p38. Furthermore, MLK4β interacts with another MLK family member, MLK3, in HCT116 cells. Exogenous expression of MLK4β inhibits activation of MLK3 and also blocks matrix metalloproteinase-9 gelatinase activity and invasion in SKOV3 ovarian cancer cells. Collectively, our data establish MLK4β as a novel suppressor of MLK3 activation, MAPK signaling and cell invasion.
Collapse
Affiliation(s)
- W F Abi Saab
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
40
|
Mercado N, To Y, Kobayashi Y, Adcock IM, Barnes PJ, Ito K. p38 mitogen-activated protein kinase-γ inhibition by long-acting β2 adrenergic agonists reversed steroid insensitivity in severe asthma. Mol Pharmacol 2011; 80:1128-35. [PMID: 21917909 PMCID: PMC3228526 DOI: 10.1124/mol.111.071993] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 09/06/2011] [Indexed: 12/21/2022] Open
Abstract
Corticosteroid insensitivity (CI) is a major barrier to treating severe asthma. Despite intensive research, the molecular mechanism of CI remains uncertain. The aim of this study was to determine abnormality in corticosteroid action in severe asthma and to identify the molecular mechanism of the long-acting β(2)-adrenergic agonists (LABAs) formoterol and salmeterol on restoration of corticosteroid sensitivity in severe asthma in vitro. Peripheral blood mononuclear cells (PBMCs) were obtained from 16 subjects with severe corticosteroid-insensitive asthma, 6 subjects with mild corticosteroid-sensitive asthma, and 11 healthy volunteers. Corticosteroid (dexamethasone) sensitivity was determined on tumor necrosis factor-α (TNF-α)-induced interleukin (IL)-8 production. Glucocorticoid receptor (GR) phosphorylation and kinase phosphorylation were evaluated by immunoprecipitation-Western blotting analysis and kinase phosphorylation array in IL-2/IL-4-treated corticosteroid insensitive model in PBMCs. In vitro corticosteroid sensitivity on TNF-α-induced IL-8 production was significantly lower in patients with severe asthma than in healthy volunteers and patients with mild asthma. This CI seen in severe asthma was associated with reduced GR nuclear translocation and with hyperphosphorylation of GR, which were reversed by LABAs. In IL-2/IL-4-treated PBMCs, LABAs inhibited phosphorylation of Jun-NH(2)-terminal kinase and p38 mitogen-activated protein kinase-γ (p38MAPK-γ) as well as GR. In addition, cells with p38MAPK-γ knockdown by RNA interference did not develop CI in the presence of IL-2/IL-4. Furthermore, p38MAPK-γ protein expression was up-regulated in PBMCs from some patients with severe asthma. In conclusion, p38 MAPK-γ activation impairs corticosteroid action and p38 MAPK-γ inhibition by LABAs has potential for the treatment of severe asthma.
Collapse
Affiliation(s)
- Nicholas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
New Insights into the p38γ and p38δ MAPK Pathways. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:520289. [PMID: 22175015 PMCID: PMC3235882 DOI: 10.1155/2012/520289] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/13/2011] [Indexed: 01/19/2023]
Abstract
The mammalian p38 mitogen-activated protein kinases (MAPKs) family is composed of four members (p38α, p38β, p38γ, and p38δ), which are very similar in amino acid sequence but differ in their expression patterns. This suggests that they may have specific functions in different organs. In the last years most of the effort has been centred on the study of the function of the p38α isoform, which is widely referred to as p38 in the literature. However, the role that other p38 isoforms play in cellular functions and their implication in some of the pathological conditions have not been precisely defined so far. In this paper we highlight recent advances made in defining the functions of the two less studied alternative p38MAPKs, p38γ and p38δ. We describe that these p38MAPKs show similarities to the classical p38α isoform, although they may play central and distinct role in certain physiological and pathological processes.
Collapse
|
42
|
Qi X, Hou S, Lepp A, Li R, Basir Z, Lou Z, Chen G. Phosphorylation and stabilization of topoisomerase IIα protein by p38γ mitogen-activated protein kinase sensitize breast cancer cells to its poisons. J Biol Chem 2011; 286:35883-35890. [PMID: 21878638 DOI: 10.1074/jbc.m111.229260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cancer drugs suppress tumor cell growth by inhibiting specific cellular targets. However, most drugs also activate several cellular nonspecific stress pathways, and the implications of these off-target effects are mostly unknown. Here, we report that p38γ, but not p38α, MAPK is specifically activated by treatment of breast cancer cells with topoisomerase II (Topo II) drugs, whereas paclitaxel (Taxol) does not have this effect. The activated p38γ in turn phosphorylates and stabilizes Topo IIα protein, and this enhances the growth inhibition by Topo II drugs. Moreover, p38γ activity was shown to be necessary and sufficient for Topo IIα expression, the drug-p38γ-Topo IIα axis is only detected in intrinsically sensitive but not resistant cells, and p38γ is co-overexpressed with Topo IIα protein in primary breast cancers. These results reveal a new paradigm in which p38γ actively regulates the drug-Topo IIα signal transduction, and this may be exploited to increase the therapeutic activity of Topo II drugs.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Songwang Hou
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adrienne Lepp
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Rongshan Li
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Zainab Basir
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; Department of Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
43
|
Birtwistle MR, Kolch W. Biology using engineering tools: the negative feedback amplifier. Cell Cycle 2011; 10:2069-76. [PMID: 21572255 DOI: 10.4161/cc.10.13.16245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Negative feedback is an ubiquitous feature of biological networks. Recent work from Sturm and colleaguespresents experimental evidence that biological negative feedback can serve the same function as it does for engineered systems: robustness to perturbations within the feedback loop. Such behavior has important implications for how to attack deregulated signaling networks containing negative feedback in diseases such as cancer.
Collapse
Affiliation(s)
- Marc R Birtwistle
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | | |
Collapse
|
44
|
Rothweiler U, Åberg E, Johnson KA, Hansen TE, Jørgensen JB, Engh RA. p38α MAP kinase dimers with swapped activation segments and a novel catalytic loop conformation. J Mol Biol 2011; 411:474-85. [PMID: 21699901 DOI: 10.1016/j.jmb.2011.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/08/2023]
Abstract
Many protein kinase functions, including autophosphorylation in trans, require dimerization, possibly by activation segment exchange. Such dimers have been reported for a few autophosphorylating protein kinases, but not for mitogen-activated protein kinases (MAPKs). Activation of MAPKs proceeds not only via the well-characterized action of dual T/Y specificity MAPK kinases, phosphorylating both residues of the MAPK TxY activation loop motif, but also via a noncanonical activation pathway triggered by phosphorylation at Tyr323 and homodimerization. Here, we report the 2. 7-Å-resolution structure of p38α MAPK from Salmo salar in a novel domain-swapped homodimeric form. The tyrosines of the conserved sequence YxAPE anchor the swapped activation segments in a configuration suitable for autophosphorylation in trans and provide a model for the noncanonical pathway. In the dimer, a structural unit containing Tyr323 is formed at a dimerization contact region that stabilizes the HRD catalytic loop in a unique inactive geometry. This feature is consistent with the requirement of Tyr323 phosphorylation for the initiation of the noncanonical pathway. Despite the interacting surface of more than 2600 Å(2), the dimer is not obligate, as gel filtration shows the dimerization to occur only at relatively high concentrations. The transition from monomer to dimer involves a relatively simple hinged displacement of helix EF and adjacent residues. Thus, dimer formation is likely to be transient, compatible with functional requirements for autophosphorylation, allowing further modulation, for example, by scaffolding mechanisms.
Collapse
Affiliation(s)
- Ulli Rothweiler
- Department of Chemistry, The Norwegian Structural Biology Centre, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
45
|
Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA. p38α Signaling Induces Anoikis and Lumen Formation During Mammary Morphogenesis. Sci Signal 2011; 4:ra34. [PMID: 21610252 DOI: 10.1126/scisignal.2001684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stress-activated protein kinase (SAPK) p38 can induce apoptosis, and its inhibition facilitates mammary tumorigenesis. We found that during mammary acinar morphogenesis in MCF-10A cells grown in three-dimensional culture, detachment of luminal cells from the basement membrane stimulated mitogen-activated protein kinase (MAPK) kinases 3 and 6 (MKK3/6) and p38α signaling to promote anoikis. p38α signaling increased transcription of the death-promoting protein BimEL by phosphorylating the activating transcription factor 2 (ATF-2) and increasing c-Jun protein abundance, leading to cell death by anoikis and acinar lumen formation. Inhibition of p38α or ATF-2 caused luminal filling reminiscent of that observed in ductal carcinoma in situ (DCIS). The mammary glands of MKK3/6 knockout mice (MKK3(-/-)/MKK6(+/- )) showed accelerated branching morphogenesis relative to those of wild-type mice, as well as ductal lumen occlusion due to reduced anoikis. This phenotype was recapitulated by systemic pharmacological inhibition of p38α and β (p38α/β) in wild-type mice. Moreover, the development of DCIS-like lesions showing marked ductal occlusion was accelerated in MMTV-Neu transgenic mice treated with inhibitors of p38α and p38β. We conclude that p38α is crucial for the development of hollow ducts during mammary gland development, a function that may be crucial to its ability to suppress breast cancer.
Collapse
Affiliation(s)
- Huei-Chi Wen
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Cerezo-Guisado M, Reino PD, Remy G, Kuma Y, Arthur JC, Gallego-Ortega D, Cuenda A. Evidence of p38γ and p38δ involvement in cell transformation processes. Carcinogenesis 2011; 32:1093-9. [DOI: 10.1093/carcin/bgr079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Segreto HRC, Oshima CTF, Franco MF, Silva MRR, Egami MI, Teixeira VPC, Segreto RA. Phosphorylation and cytoplasmic localization of MAPK p38 during apoptosis signaling in bone marrow granulocytes of mice irradiated in vivo and the role of amifostine in reducing these effects. Acta Histochem 2011; 113:300-7. [PMID: 20074782 DOI: 10.1016/j.acthis.2009.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023]
Abstract
We studied p38 phosphorylation and its intracellular localization during p53 and Puma (a p53 upregulated modulator of apoptosis) apoptotic signaling pathway in bone marrow granulocytes in mice irradiated in vivo and the role of the radioprotector amifostine in ameliorating these responses. Sixty-four C57BL mice were randomly assigned in two non-irradiated (Ami-/rad- and Ami+/rad-) and two irradiated (Ami-/rad+ and Ami+/rad+) groups. Animals received 400mg/kg of amifostine i.p. 30 min prior to a single whole body radiation dose of 7Gy. The experiments were performed using immunohistochemistry for caspase-3, cleaved caspase-3, p53, p-p53 (Ser 15), Puma, p38 and p-p38 (Thr 180/Tyr 182) protein expression. In addition transmission electron microscopy was used for ultrastructural characterization of apoptosis. Data showed that: (i) amifostine significantly reduced the number of apoptotic cells, (ii) p-p53 and Puma proteins were strongly immunostained in granulocytes after irradiation (Ami-/rad+), (iii) amifostine decreased the immunostaining of the proteins (Ami+/rad+), (iv) p38 was immunolocalized in physiological conditions in the nucleus and cytoplasm of granulocytes and neither radiation nor amifostine changed the protein immunostaining or its subcellular distribution, but influenced its activation, (v) radiation-induced p38 phosphorylation and its cytoplasmic accumulation during apoptosis signaling in granulocytes after whole body high radiation dose and amifostine markedly reduced these effects.
Collapse
Affiliation(s)
- Helena R C Segreto
- Department of Clinical and Experimental Oncology, Radiotherapy Division, Federal University of São Paulo, UNIFESP, Rua Pascal 778, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Moïse N, Dingar D, Mamarbachi AM, Villeneuve LR, Farhat N, Gaestel M, Khairallah M, Allen BG. Characterization of a novel MK3 splice variant from murine ventricular myocardium. Cell Signal 2010; 22:1502-12. [PMID: 20570725 PMCID: PMC5300773 DOI: 10.1016/j.cellsig.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/14/2010] [Accepted: 05/29/2010] [Indexed: 11/30/2022]
Abstract
p38 MAP kinase (MAPK) isoforms alpha, beta, and gamma, are expressed in the heart. p38alpha appears pro-apoptotic whereas p38beta is pro-hypertrophic. The mechanisms mediating these divergent effects are unknown; hence elucidating the downstream signaling of p38 should further our understanding. Downstream effectors include MAPK-activated protein kinase (MK)-3, which is expressed in many tissues including skeletal muscles and heart. We cloned full-length MK3 (MK3.1, 384 aa) and a novel splice variant (MK3.2, 266 aa) from murine heart. For MK3.2, skipping of exons 8 and 9 resulted in a frame-shift in translation of the first 85 base pairs of exon 10 followed by an in-frame stop codon. Of 3 putative phosphorylation sites for p38 MAPK, only Thr-203 remained functional in MK3.2. In addition, MK3.2 lacked nuclear localization and export signals. Quantitative real-time PCR confirmed the presence of these mRNA species in heart and skeletal muscle; however, the relative abundance of MK3.2 differed. Furthermore, whereas total MK3 mRNA was increased, the relative abundance of MK3.2 mRNA decreased in MK2(-/-) mice. Immunoblotting revealed 2 bands of MK3 immunoreactivity in ventricular lysates. Ectopically expressed MK3.1 localized to the nucleus whereas MK3.2 was distributed throughout the cell; however, whereas MK3.1 translocated to the cytoplasm in response to osmotic stress, MK3.2 was degraded. The p38alpha/beta inhibitor SB203580 prevented the degradation of MK3.2. Furthermore, replacing Thr-203 with alanine prevented the loss of MK3.2 following osmotic stress, as did pretreatment with the proteosome inhibitor MG132. In vitro, GST-MK3.1 was strongly phosphorylated by p38alpha and p38beta, but a poor substrate for p38delta and p38gamma. GST-MK3.2 was poorly phosphorylated by p38alpha and p38beta and not phosphorylated by p38delta and p38gamma. Hence, differential regulation of MKs may, in part, explain diverse downstream effects mediated by p38 signaling.
Collapse
Affiliation(s)
- Nadège Moïse
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Dharmendra Dingar
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Aida M. Mamarbachi
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Louis R. Villeneuve
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Nada Farhat
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Maya Khairallah
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Bruce G. Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| |
Collapse
|
49
|
Long D, Loeser R. p38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthritis Cartilage 2010; 18:1203-10. [PMID: 20633667 PMCID: PMC2929282 DOI: 10.1016/j.joca.2010.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/20/2010] [Accepted: 05/29/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The signaling protein p38 mitogen-activated protein kinase is required for inflammatory signaling in chondrocytes that regulates matrix metalloproteinase (MMP) production. We sought to determine the role of specific p38 isoforms in chondrocyte catabolic signaling in response to IL-1beta and fibronectin fragments (Fn-f). METHODS Human articular chondrocytes isolated from normal ankle cartilage from tissue donors or from osteoarthritic knee cartilage obtained during knee replacement were stimulated with IL-1beta or Fn-f, with or without pretreatment with p38 inhibitors (SB203580 or BIRB796) or growth factors (IGF-1 and OP-1). p38 isoform phosphorylation was measured by antibody array and immunoblotting. MMP-13 expression was measured by real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and immunoblotting. Chondrocytes were transfected with plasmids expressing constitutively active (CA) p38gamma or with adenovirus expressing dominant negative (DN) p38gamma. RESULTS Stimulation of chondrocytes with either IL-1beta or Fn-f led to enhanced phosphorylation of p38alpha and p38gamma, with little phosphorylation of p38beta or p38delta isoforms. p38alpha localized to the nucleus and p38gamma to the cytosol. Inhibition of both p38alpha and p38gamma with BIRB796 resulted in less inhibition of MMP-13 production in response to IL-1beta or FN-f than did inhibition of only p38alpha with SB203580. Transfection with CA p38gamma resulted in decreased MMP-13 production while transduction with DN p38gamma resulted in increased MMP-13 production. IGF-1 and OP-1 pretreatment inhibited p38alpha phosphorylation but not p38gamma phosphorylation. CONCLUSIONS p38gamma is activated by catabolic stimulation of human articular chondrocytes, but interestingly suppresses MMP-13 production. Treatments that increase p38gamma activation may be of therapeutic benefit in reducing chondrocyte production of MMP-13.
Collapse
Affiliation(s)
| | - R.F. Loeser
- Address for correspondence and reprints: Richard F. Loeser, MD, Section of Molecular Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, Fax: 336-716-1214,
| |
Collapse
|
50
|
Lovett FA, Cosgrove RA, Gonzalez I, Pell JM. Essential role for p38alpha MAPK but not p38gamma MAPK in Igf2 expression and myoblast differentiation. Endocrinology 2010; 151:4368-80. [PMID: 20610565 DOI: 10.1210/en.2010-0209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The muscle satellite cell is established as the major stem cell contributing to fiber growth and repair. p38 MAPK signaling is essential for myoblast differentiation and in particular for up-regulation of promyogenic Igf2 expression. p38 exists as four isoforms (alpha, beta, gamma, and delta), of which p38gamma is uniquely abundant in muscle. The aim of this study was to characterize p38 isoform expression and importance (using shRNA knockdown; demonstrated via both reduced protein and kinase activities) during myoblast differentiation. p38alpha and -gamma mRNA levels were most abundant in differentiating C2 cells with low/negligible contributions from p38beta and -delta, respectively. Increased phosphorylation of p38alpha and -gamma occurred during differentiation but via different mechanisms: p38alpha protein levels remained constant, whereas total p38gamma levels increased. Following shRNA knockdown of p38alpha, myoblast differentiation was dramatically inhibited [reduced myosin heavy chain (MHC), myogenin, pAkt protein levels]; significantly, Igf2 mRNA levels and promoter-reporter activities decreased. In contrast, knockdown of p38gamma induced a transient increase in both myogenin and MHC protein levels with no effect on Igf2 mRNA levels or promoter-reporter activity. Knockdown of p38alpha/beta markedly increased but that of p38gamma decreased caspase 3 activity, suggesting opposite actions on apoptosis. p38gamma was initially proposed to have a promyogenic function; however, p38gamma overexpression could not rescue reduced myoblast differentiation following p38alpha/beta inhibition. Therefore, p38alpha is essential for myoblast differentiation, and part of its action is to convert signals that indicate cell density into promyogenic gene expression in the form of the key peptide, IGF-II; p38gamma has a minor, yet opposing antimyogenic, function.
Collapse
Affiliation(s)
- Fiona A Lovett
- The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | |
Collapse
|