1
|
Malovic E, Ealy A, Miller C, Jang A, Hsu PJ, Sarkar S, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic reader YTHDF2 regulates SEK1( MAP2K4)-JNK-cJUN inflammatory signaling in astrocytes during neurotoxic stress. iScience 2024; 27:110619. [PMID: 39252959 PMCID: PMC11382029 DOI: 10.1016/j.isci.2024.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
Affiliation(s)
- Emir Malovic
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Cameron Miller
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Ahyoung Jang
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Phillip J Hsu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Cody Goeser
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Aleah Kristen Hartman
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Allen Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bharathi Palanisamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Malovic E, Ealy A, Hsu PJ, Sarkar S, Miller C, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic Reader YTHDF2 Regulates SEK1( MAP2K4 )-JNK-cJUN Inflammatory Signaling in Astrocytes during Neurotoxic Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577106. [PMID: 38328119 PMCID: PMC10849634 DOI: 10.1101/2024.01.26.577106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
|
3
|
Dai Y, Nasehi F, Winchester CD, Foley AC. Tbx5 overexpression in embryoid bodies increases TAK1 expression but does not enhance the differentiation of sinoatrial node cardiomyocytes. Biol Open 2023; 12:bio059881. [PMID: 37272627 PMCID: PMC10261723 DOI: 10.1242/bio.059881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.
Collapse
Affiliation(s)
- Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Fatemeh Nasehi
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Charles D. Winchester
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Ann C. Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Heinen T, Xie C, Keshavarz M, Stappert D, Künzel S, Tautz D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front Genet 2022; 12:812139. [PMID: 35069705 PMCID: PMC8766832 DOI: 10.3389/fgene.2021.812139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Dominik Stappert
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Sven Künzel
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Preston SP, Doerflinger M, Scott HW, Allison CC, Horton M, Cooney J, Pellegrini M. The role of MKK4 in T-cell development and immunity to viral infections. Immunol Cell Biol 2020; 99:428-435. [PMID: 33175451 PMCID: PMC8247422 DOI: 10.1111/imcb.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Hamish W Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Miles Horton
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
8
|
Wolle P, Engel J, Smith S, Goebel L, Hennes E, Lategahn J, Rauh D. Characterization of Covalent Pyrazolopyrimidine–MKK7 Complexes and a Report on a Unique DFG-in/Leu-in Conformation of Mitogen-Activated Protein Kinase Kinase 7 (MKK7). J Med Chem 2019; 62:5541-5546. [DOI: 10.1021/acs.jmedchem.9b00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Steven Smith
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Lisa Goebel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Elisabeth Hennes
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
9
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
10
|
Cao Y, Shen M, Jiang Y, Sun SC, Liu H. Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy. Reproduction 2018; 155:307-319. [DOI: 10.1530/rep-18-0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/23/2018] [Indexed: 01/02/2023]
Abstract
Oxidative stress-induced granulosa cell (GCs) injury is believed to be a common trigger for follicular atresia. Emerging evidence indicates that excessive autophagy occurs in mammalian cells with oxidative damage. N-acetyl-5-methoxytrypamine (melatonin) has been shown to prevent GCs from oxidative injury, although the exact mechanism remains to be elucidated. Here, we first demonstrated that the suppression of autophagy through the JNK/BCL-2/BECN1 signaling is engaged in melatonin-mediated GCs protection against oxidative damage. Melatonin inhibited the loss of GCs viability, formation of GFP-MAP1LC3B puncta, accumulation of MAP1LC3B-II blots, degradation of SQSTM1 and the expression of BECN1, which was correlated with impaired activation of JNK during oxidative stress. On the other hand, blocking of autophagy and/or JNK also reduced the level of H2O2-induced GCs death, but failed to further restore GCs viability in the presence of melatonin. Particularly, the suppression of autophagy provided no additional protective effects when GCs were pretreated with JNK inhibitor and/or melatonin. Importantly, we found that the enhanced interaction between BCL-2 and BECN1 might be a responsive mechanism for autophagy suppression via the melatonin/JNK pathway. Moreover, blocking the downstream antioxidant system of melatonin using specific inhibitors further confirmed a direct role of melatonin/JNK/autophagy axis in preserving GCs survival without scavenging reactive oxygen species (ROS). Taken together, our findings uncover a novel function of melatonin in preventing GCs from oxidative damage by targeting JNK-mediated autophagy, which might contribute to develop therapeutic strategies for patients with ovulation failure-related disorders.
Collapse
|
11
|
SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH 2-terminal kinase. Cell Death Differ 2018; 25:1638-1656. [PMID: 29449643 DOI: 10.1038/s41418-018-0069-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/06/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
c-Jun NH2-terminal kinases (JNKs) are responsive to stress stimuli and their activation regulate key cellular functions, including cell survival, growth, differentiation and aging. Previous studies demonstrate that activation of JNK requires dual phosphorylation by the mitogen-activated protein kinase kinases. However, other post-translational mechanisms involved in regulating the activity of JNK have been poorly understood. In this work, we studied the functional significance of reversible lysine acetylation in regulating the kinase activity of JNK. We found that the acetyl transferase p300 binds to, acetylates and inhibits kinase activity of JNK. Using tandem mass spectrometry, molecular modelling and molecular dynamics simulations, we found that acetylation of JNK at Lys153 would hinder the stable interactions of the negatively charged phosphates and prevent the adenosine binding to JNK. Our screening for the deacetylases found SIRT2 as a deacetylase for JNK. Mechanistically, SIRT2-dependent deacetylation enhances ATP binding and enzymatic activity of JNK towards c-Jun. Furthermore, SIRT2-mediated deacetylation favours the phosphorylation of JNK by MKK4, an upstream kinase. Our results indicate that deacetylation of JNK by SIRT2 promotes oxidative stress-induced cell death. Conversely, SIRT2 inhibition attenuates H2O2-mediated cell death in HeLa cells. SIRT2-deficient (SIRT2-KO) mice exhibit increased acetylation of JNK, which is associated with markedly reduced catalytic activity of JNK in the liver. Interestingly, SIRT2-KO mice were resistant to acetaminophen-induced liver toxicity. SIRT2-KO mice show lower cell death, minimal degenerative changes, improved liver function and survival following acetaminophen treatment. Overall, our work identifies SIRT2-mediated deacetylation of JNK as a critical regulator of cell survival during oxidative stress.
Collapse
|
12
|
Abstract
The ADP-ribosyltransferase C3 exoenzyme from C. botulinum selectively inactivates Rho and is therefore often used as an inhibitor for investigations on Rho signaling. Previous studies of our group revealed that C3 inhibited cell proliferation in HT22 cells accompanied by increased transcriptional activities of Sp1 and c-Jun and reduced levels of cyclin D1, p21 and phosphorylated p38. By use of a p38α-deficient and a p38α-expressing control cell line, the impact of p38 on C3-mediated inhibition of cell proliferation and alterations on MAPK signaling was studied by growth kinetic experiments and Western blot analyses. The cell growth of p38α-expressing cells was impaired by C3, while the p38α-deficient cells did not exhibit any C3-induced effect. The activity of the MKK3/6-p38 MAPK signaling cascade as well as the phosphorylation of c-Jun and JNK was reduced by C3 exclusively in the presence of p38α. Moreover, the activity of upstream MAPKKK TAK1 was lowered in the p38α-expressing cells. These results indicated a resistance of p38α-deficient cells to C3-mediated inhibition of cell growth. This anti-proliferative effect was highly associated with the decreased activity of c-Jun and upstream p38 and JNK MAPK signaling as a consequence of the absence of p38α in these cells.
Collapse
|
13
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
14
|
Astaxanthin pretreatment attenuates acetaminophen-induced liver injury in mice. Int Immunopharmacol 2017; 45:26-33. [PMID: 28152447 DOI: 10.1016/j.intimp.2017.01.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Acetaminophen (APAP) is a conventional drug widely used in the clinic because of its antipyretic-analgesic effects. However, accidental or intentional APAP overdoses induce liver injury and even acute liver failure (ALF). Astaxanthin (ASX) is the strongest antioxidant in nature that shows preventive and therapeutic properties, such as ocular protection, anti-tumor, anti-diabetes, anti-inflammatory, and immunomodulatory effects. The aim of present study was to determine whether ASX pretreatment provides protection against APAP-induced liver failure. METHODS Male C57BL/6 mice were randomly divided into 7 groups, including control, oil, ASX (30mg/kg or 60mg/kg), APAP and APAP+ASX (30mg/kg or 60mg/kg) groups. Saline, olive oil and ASX were administered for 14days. The APAP and APAP+ASX groups were given a peritoneal injection of 700mg/kg or 300mg/kg APAP to determine the 5-day survival rate and for further observation, respectively. Blood and liver samples were collected to detect alanine transaminase (ALT), aspartate transaminase (AST), inflammation, oxidative stress and antioxidant systems, and to observe histopathologic changes and key proteins in the mitogen-activated protein kinase (MAPK) family. RESULTS ASX pretreatment before APAP increased the 5-day survival rate in a dose-dependent manner and reduced the ALT, AST, hepatic necrosis, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), oxidative stress and pro-inflammatory factors. ASX protected against APAP toxicity by inhibiting the depletion of glutathione (GSH) and superoxide dismutase (SOD). Administration of ASX did not change the expression of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38. However, phosphorylation of JNK, ERK and P38 was reduced, consistent with the level of tumor necrosis factor alpha (TNF-α) and TNF receptor-associated factor 2 (TRAF2). CONCLUSION ASX provided protection for the liver against APAP hepatotoxicity by alleviating hepatocyte necrosis, blocking ROS generation, inhibiting oxidative stress, and reducing apoptosis by inhibiting the TNF-α-mediated JNK signal pathway and by phosphorylation of ERK and P38, which made sense in preventing and treating liver damage.
Collapse
|
15
|
Yue J, López JM. JNK does not regulate meiotic progression in Xenopus oocytes: The strange case of pJNK and pERK. Dev Biol 2016; 416:42-51. [DOI: 10.1016/j.ydbio.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/13/2023]
|
16
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
17
|
Katari SK, Natarajan P, Swargam S, Kanipakam H, Pasala C, Umamaheswari A. Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. J Recept Signal Transduct Res 2016; 36:558-571. [PMID: 26906522 DOI: 10.3109/10799893.2016.1141955] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
c-Jun-NH2 terminal kinases (JNKs) come under a class of serine/threonine protein kinases and are encoded by three genes, namely JNK1, JNK2 and JNK3. Human JNK1 is a cytosolic kinase belonging to mitogen-activated protein kinase (MAPK) family, which plays a major role in intracrinal signal transduction cascade mechanism. Overexpressed human JNK1, a key kinase interacts with other kinases involved in the etiology of many cancers, such as skin cancer, liver cancer, breast cancer, brain tumors, leukemia, multiple myeloma and lymphoma. Thus, to unveil a novel human JNK1 antagonist, receptor-based pharmacophore modeling was performed with the available eighteen cocrystal structures of JNK1 in the protein data bank. Eighteen e-pharmacophores were generated from the 18 cocrystal structures. Four common e-pharmacophores were developed from the 18 e-pharmacophores, which were used as three-dimensional (3D) query for shape-based similarity screening against more than one million small molecules to generate a JNK1 ligand library. Rigid receptor docking (RRD) performed using GLIDE v6.3 for the 1683 compounds from in-house library and 18 cocrystal ligands with human JNK1 from lower stringency to higher stringency revealed 17 leads. Further to derive the best leads, dock complexes obtained from RRD were studied further with quantum-polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area (MM-GBSA). Four leads have showed lesser binding free energy and better binding affinity towards JNK1 compared to 18 cocrystal ligands. Additionally, JNK1-lead1 complex interaction stability was reasserted using 50 ns MD simulations run and also compared with the best resolute cocrystal structure using Desmond v3.8. Thus, the results obtained from RRD, QPLD, IFD and MD simulations indicated that lead1 might be used as a potent antagonist toward human JNK1 in cancer therapeutics.
Collapse
Affiliation(s)
- Sudheer Kumar Katari
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Pradeep Natarajan
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Sandeep Swargam
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Hema Kanipakam
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Chiranjeevi Pasala
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Amineni Umamaheswari
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| |
Collapse
|
18
|
Lee KG, Lee SG, Lee HH, Lee HJ, Shin JS, Kim NJ, An HJ, Nam JH, Jang DS, Lee KT. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock. Chem Biol Interact 2015; 235:85-94. [DOI: 10.1016/j.cbi.2015.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/27/2015] [Accepted: 04/16/2015] [Indexed: 12/01/2022]
|
19
|
Kovalevich J, Yen W, Ozdemir A, Langford D. Cocaine induces nuclear export and degradation of neuronal retinoid X receptor-γ via a TNF-α/JNK- mediated mechanism. J Neuroimmune Pharmacol 2015; 10:55-73. [PMID: 25586717 PMCID: PMC4336643 DOI: 10.1007/s11481-014-9573-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Cocaine abuse represents an immense societal health and economic burden for which no effective treatment currently exists. Among the numerous intracellular signaling cascades impacted by exposure to cocaine, increased and aberrant production of pro-inflammatory cytokines in the CNS has been observed. Additionally, we have previously reported a decrease in retinoid-X-receptor-gamma (RXR-γ) in brains of mice chronically exposed to cocaine. Through obligate heterodimerization with a number of nuclear receptors, RXRs serve as master regulatory transcription factors, which can potentiate or suppress expression of a wide spectrum of genes. Little is known about the regulation of RXR levels, but previous studies indicate cellular stressors such as cytokines negatively regulate levels of RXRs in vitro. To evaluate the mechanism underlying the cocaine-induced decreases in RXR-γ levels observed in vivo, we exposed neurons to cocaine in vitro and examined pathways which may contribute to disruption in RXR signaling, including activation of stress pathways by cytokine induction. In these studies, we provide the first evidence that cocaine exposure disrupts neuronal RXR-γ signaling in vitro by promoting its nuclear export and degradation. Furthermore, we demonstrate this effect may be mediated, at least in part, by cocaine-induced production of TNF-α and its downstream effector c-Jun-NH-terminal kinase (JNK). Findings from this study are therefore applicable to both cocaine abuse and to pathological conditions characterized by neuroinflammatory factors, such as neurodegenerative disease.
Collapse
Affiliation(s)
- Jane Kovalevich
- Department of Neuroscience, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | |
Collapse
|
20
|
Ma K, Xu Y, Wang C, Li N, Li K, Zhang Y, Li X, Yang Q, Zhang H, Zhu X, Bai H, Ben J, Ding Q, Li K, Jiang Q, Xu Y, Chen Q. A cross talk between class A scavenger receptor and receptor for advanced glycation end-products contributes to diabetic retinopathy. Am J Physiol Endocrinol Metab 2014; 307:E1153-65. [PMID: 25352436 DOI: 10.1152/ajpendo.00378.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to hyperglycemia in patients with diabetes, many signaling pathways contribute to the pathogenesis of diabetic complications, including diabetic retinopathy (DR). Excessive production of inflammatory mediators plays an important role in this process. Amadori-glycated albumin, one of the major forms of advanced glycated end-products, has been implicated in DR by inducing inflammatory responses in microglia/macrophages. Our goal was to delineate the potential cross talk between class A scavenger receptor (SR-A) and the receptor for advanced glycated end-product (RAGE) in the context of DR. We show here that SR-A ablation caused an exacerbated form of DR in streptozotocin-injected C57BL/6J mice as evidenced by fundus imaging and electroretinography. Immunohistochemical staining and RT-PCR assay indicated that there was augmented activation of proinflammatory macrophages with upregulated synthesis of proinflammatory mediators in the retina in Sr-a(-/-) mice. Overexpression of SR-A suppressed RAGE-induced mitogen-activated protein kinase (MAPK) signaling, whereas RAGE activation in macrophages favored a proinflammatory (M1) phenotype in the absence of SR-A. Mechanistic analysis on bone marrow-derived macrophages and HEK293 cell line revealed that SR-A interacted with and inhibited the phosphorylation of mitogen-activated protein kinase kinase 7, the major kinase in the RAGE-MAPK-NF-κB signaling, thereby leading to diminished secretion of proinflammatory cytokines. Our findings suggest that the antagonism between SR-A and RAGE contributes to the pathogenesis of DR by nurturing a disease-prone macrophage phenotype. Therefore, specific agonist that boosts SR-A signaling could potentially provide benefits in the prevention and/or intervention of DR.
Collapse
Affiliation(s)
- Ke Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Yiming Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Chenchen Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Nan Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Kexue Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Yan Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Xiaoyu Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qing Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Hanwen Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Xudong Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Hui Bai
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Jingjing Ben
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qingqing Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Keran Li
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
21
|
Wu RCC, Cho WL. Cloning and characterization of microbial activated Aedes aegypti MEK4 (AaMEK4): influences of noncatalytic domains on enzymatic activity. INSECT MOLECULAR BIOLOGY 2014; 23:644-655. [PMID: 25039995 DOI: 10.1111/imb.12116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein kinases are known to be involved in a number of signal transduction cascades. Both the stress-activated Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) p38 pathways have been shown to correlate with the insect immune response to microbial infection. MAP kinase kinase 4 (MEK4) is an upstream kinase of JNK and p38 kinase. The cDNA of AaMEK4 was cloned and characterized. AaMEK4 was activated by microbial lysates of Gram-positive, Gram-negative bacteria and yeast. The conserved lysine (K112 ) and the putative phosphorylation sites (S238 and T242 ) were shown to be important for kinase activity by site-directed mutagenesis. A common MAPK docking site (MAPK_dsA) was found and in addition, a new nearby docking site, MAPK_dsB, was identified in the N-terminal noncatalytic domain of AaMEK4. MAPK_dsB was shown to be a unique element in the MEK4 family. In this study, both MAPK_dsA and _dsB were demonstrated to be important to AaMEK4 enzymatic activity for the downstream protein kinase, Aap38.
Collapse
Affiliation(s)
- R C-C Wu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | | |
Collapse
|
22
|
Sakai H, Sato A, Aihara Y, Ikarashi Y, Midorikawa Y, Kracht M, Nakagama H, Okamoto K. MKK7 mediates miR-493-dependent suppression of liver metastasis of colon cancer cells. Cancer Sci 2014; 105:425-30. [PMID: 24533778 PMCID: PMC4317799 DOI: 10.1111/cas.12380] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022] Open
Abstract
The prognosis of advanced colon cancer patients is profoundly affected by the presence or absence of liver metastasis. miR-493 functions as a potent suppressor of liver metastasis, and low-level miR-493 expression in human primary colon cancer is associated with an elevated incidence of liver metastasis. We previously showed that IGF1R is a target gene of miR-493, and that the inhibition of IGF1R partly explains how miR-493 suppresses liver metastasis. However, major functional targets that mediate the antimetastatic activity of miR-493 remain elusive. Here, we extended our search for target genes and identified MKK7, a mitogen-activated protein kinase kinase, as a novel target of miR-493. miR-493 inhibits MKK7 expression by targeting the binding site at the 3′-UTR of the mkk7 gene. MKK7 was expressed in six out of seven colon cancer cell lines examined but not in non-transformed colon epithelial cells, and its expression was required for the activating phosphorylation of JNK. RNA interference-mediated inhibition of MKK7 resulted in marked suppression of liver metastasis of colon cancer cells. A significant decrease of metastasized cells by the MKK7 knockdown was observed, even at early stages of the metastatic settlement, in accordance with a time course of the miR-493-mediated inhibition of the metastasis. Immunohistochemical examination in human primary colon tumors revealed that the occurrence of liver metastasis is associated with elevated levels of MKK7. Thus, MKK7 is a major functional target of miR-493, and its suppression thwarts liver metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Hiroaki Sakai
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lai LJ, Hsu WH, Wu AM, Wu JH. Ocular injury by transient formaldehyde exposure in a rabbit eye model. PLoS One 2013; 8:e66649. [PMID: 23818956 PMCID: PMC3688594 DOI: 10.1371/journal.pone.0066649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/08/2013] [Indexed: 02/02/2023] Open
Abstract
Formaldehyde (FA) is frequently used in sterilizing surgical instruments and materials. Exposure to FA is highly concerned for eye tissues. Rabbit corneal epithelial cells were examined for changes after FA exposure. Our results showed that cell survival decreased 7 days after transient 3 min exposure to more than 100 ppm FA by trypan blue staining while MTT assay detected significant decrease at 20 ppm at 24 hours observation. The decrease of cell survival rate was concentration (up to 600 ppm)- and observation time (1–7 day)- dependent. The cell number decreased after 100 ppm FA exposure for more than 10 min at 7-day observation. The FA treated cells showed increased apoptosis/necrosis and cell cycle accumulation at sub G1 phase as well as mitochondria clustering around nucleus. The in vivo rabbit eye exposure for tear production by Schirmer’s test revealed that the FA-induced overproduction of tear also exhibited observation time (1–10 day)- and FA concentration (20–300 ppm for 5 min exposure)-dependent. Activated extracellular signal-regulated kinase (pERK2) in cornea explants by western blotting was reduced and increased c-Jun amino - terminal kinase (JNK) activation (pJNK) in cornea and conjunctiva was evident at 2 month after exposure to 50–200 ppm FA for 5 min. In conclusion, injury to the eye with transient exposure of up to 100 ppm FA for 3 min decreased corneal cell survival while a more sensitive MTT test detected the cell decrease at 20 ppm FA exposure. Morphology changes can be observed even at 5 ppm FA exposure for 3 min at 7 days after. The FA exposure also increased apoptotic/necrotic cells and sub-G1 phase in cell cycle. Long term effect (2 months after exposure) on the eye tissues even after the removal of FA can be observed with persistent JNK activation in cornea and conjunctiva.
Collapse
Affiliation(s)
- Li-Ju Lai
- Department of Ophthalmology, Chang Gang Memorial Hospital, Chia Yi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gang University, Kwei San, Tao Yuan, Taiwan
| | - Wei-Hsiu Hsu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gang University, Kwei San, Tao Yuan, Taiwan
| | - Albert M. Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gang University, Kwei San, Tao Yuan, Taiwan
| | - June H. Wu
- Department of Microbiology and Immunology, College of Medicine, Chang Gang University, Kwei San, Tao Yuan, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Winchester CL, Ohzeki H, Vouyiouklis DA, Thompson R, Penninger JM, Yamagami K, Norrie JD, Hunter R, Pratt JA, Morris BJ. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia. Hum Mol Genet 2012; 21:4910-21. [DOI: 10.1093/hmg/dds331] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Lee SI, Boyle DL, Berdeja A, Firestein GS. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-terminal kinase pathway. Arthritis Res Ther 2012; 14:R38. [PMID: 22353730 PMCID: PMC3392838 DOI: 10.1186/ar3750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis. Methods Three 2'-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis. Results MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01). Conclusions MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.
Collapse
Affiliation(s)
- Sang-il Lee
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | | | | | | |
Collapse
|
26
|
Apoptotic signaling in endothelial cells with neutrophil activation. Mol Cell Biochem 2011; 363:269-80. [DOI: 10.1007/s11010-011-1179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 11/24/2011] [Indexed: 01/03/2023]
|
27
|
The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 2011; 90:536-44. [DOI: 10.1016/j.ejcb.2010.11.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022] Open
|
28
|
A redox microenvironment is essential for MAPK-dependent secretion of pro-inflammatory cytokines: Modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium. Cell Immunol 2011; 270:53-61. [DOI: 10.1016/j.cellimm.2011.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 04/08/2011] [Indexed: 01/21/2023]
|
29
|
Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington SJ, Chen C, Melendez JA. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol 2010; 225:52-62. [PMID: 20648623 DOI: 10.1002/jcp.22193] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox-responsive molecular signals that drive senescence-associated (SA) matrix metalloproteinase-1 (MMP-1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady-state (H(2)O(2)) 3.5-fold (13.7-48.6 pM) relative to young cells. Restricting H(2)O(2) production through low O(2) exposure or by antioxidant treatments prevented SA increases in MMP-1 expression. The H(2)O(2)-dependent control of SA MMP-1 is attributed to sustained JNK activation and c-jun recruitment to the MMP-1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK-4) and inhibitory phosphatase (MKP-1), respectively. Enforced MKP-1 expression negates SA increases in JNK phosphorylation and MMP-1 production. Overall, these studies define redox-sensitive signaling networks regulating SA MMP-1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover.
Collapse
Affiliation(s)
- Jaya Dasgupta
- Centers for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C. Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 2010; 9:239. [PMID: 20836852 PMCID: PMC2949798 DOI: 10.1186/1476-4598-9-239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/13/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Ceramide is an important second messenger that has diverse cellular and biological effect. It is a specific and potent inducer of apoptosis and suppressor of cell growth. In leukemia, chemoresistance generally developed due to deregulated ceramide metabolism. In combinatorial treatment strategies of leukemia, few components have the capability to increases ceramide production. Manipulation in ceramide production by physiological and pharmacological modulators therefore will give additive effect in leukemia chemotherapy. RESULTS Here, we show that Withanolide D (C4β-C5β,C6β-epoxy-1-oxo-,20β, dihydroxy-20S,22R-witha-2,24-dienolide; WithaD), a pure herbal compound isolated from Withania somnifera could effectively induces apoptosis in a dose and time dependant manner both in myeloid (K562) and lymphoid (MOLT-4) cells being nontoxic to normal lymphocytes and control proliferative cells. WithaD potentially augment ceramide production in these cells. Downstream of ceramide, WithaD acted on MKK group of proteins and significantly increased JNK and p38MAPK phosphorylation. Pharmacological inhibition of p38MAPK and JNK proves their cooperative action on WithaD-induced cell death. Dissecting the cause of ceramide production, we found activation of neutral sphingomyelinase and showed neutral-sphingomyelinase 2 (N-SMase 2) is a critical mediator of WithaD-induced apoptosis. Knockdown of N-SMase 2 by siRNA and inhibitor of N-SMase (GW4869) significantly reduced WithaD-induced ceramide generation and phosphorylation of MKK4 and MKK3/6, whereas phosphorylation of MKK7 was moderately regulated in leukemic cells. Also, both by silencing of N-SMase 2 and/or blocking by GW4869 protects these cells from WithaD-mediated death and suppressed apoptosis, whereas Fumonisin B1, an inhibitor of ceramide synthase, did not have any effect. Additionally, WithaD effectively induced apoptosis in freshly isolated lymphoblasts from patients and the potent cell killing activity was through JNK and p38MAPK activation. CONCLUSION Our results demonstrate that WithaD enhance the ceramide accumulation by activating N-SMase 2, modulate phosphorylation of the JNK and p38MAPK and induced apoptosis in both myeloid and lymphoid cells along with primary cells derived from leukemia patients. Taken together, this pure herbal compound (WithaD) may consider as a potential alternative tool with additive effects in conjunction with traditional chemotherapeutic treatment, thereby accelerate the process of conventional drug development.
Collapse
Affiliation(s)
- Susmita Mondal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Current Address: Department of Microbiology, Sammilani Mahavidyalaya, Baghajatin, E.M By Pass, Kolkata-700075, India
| | - Chandan Mandal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rajender Sangwan
- Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Sarmila Chandra
- Kothari Medical Center, 8/3, Alipore Road, Kolkata 700027, India
| | - Chitra Mandal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
31
|
Specific regulation of JNK signalling by the novel rat MKK7gamma1 isoform. Cell Signal 2010; 22:1761-72. [PMID: 20633641 DOI: 10.1016/j.cellsig.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 01/20/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) mediate a diversity of physiological and pathophysiological effects. Apart from isoform-specific JNK activation, upstream kinases are supposed to be the relevant regulators, which are involved in the context- and signalosome-depending functions. In the present study we report the cloning and characterization of the novel rat MKK7gamma1, a splice variant of MKK7 with an additional exon in the N-terminal region, in the neuronal pheochromocytoma cell line PC12. Transfected MKK7gamma1 increased basal JNK activity, in particular phosphorylation of JNK2. Consequently, JNK signalling was changed in mRNA-, protein- and activation-levels of JNK targets, such as transcription factors (c-Jun, p53, c-Myc), cell cycle regulators (p21, CyclinD1) and apoptotic proteins (Fas, Bim, Bcl-2, Bcl-xl). These alterations promote the sensitivity of MKK7gamma1-transfected cells towards cell death and repress cell proliferation under normal cell growth conditions. Complexes of JIP-1, MKK7 and JNK2 were the major JNK signalosomes under basal conditions. After stimulation with taxol (5muM) and tunicamycin (1.4mug/ml), MKK7gamma1- but not MKK7beta1-transfection, reduced cell death and even increased cell proliferation. Cellular stress also led to an increased phosphorylation of JNK1 and the almost complete abrogation of complexes of JIP-1, MKK7 and JNK2 in MKK7gamma1-transfected PC12 cells. Summarizing, MKK7gamma1 affects the function and activity of individual JNK isoforms and the formation of their signalosomes. This study demonstrates for the first time that one splice-variant of MKK7 tightly controls JNK signalling and effectively adapts JNK functions to the cellular context.
Collapse
|
32
|
Morgan MJ, Liu ZG. Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 2010; 30:1-12. [PMID: 20652490 PMCID: PMC6608586 DOI: 10.1007/s10059-010-0105-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022] Open
Abstract
TNFalpha is a pleotropic cytokine that initiates many downstream signaling pathways, including NF-kappaB activation, MAP kinase activation and the induction of both apoptosis and necrosis. TNFalpha has shown to lead to reactive oxygen species generation through activation of NADPH oxidase, through mitochondrial pathways, or other enzymes. As discussed, ROS play a role in potentiation or inhibition of many of these signaling pathways. We particularly discuss the role of sustained JNK activation potentiated by ROS, which generally is supportive of apoptosis and "necrotic cell death" through various mechanisms, while ROS could have inhibitory or stimulatory roles in NF-kappaB signaling.
Collapse
Affiliation(s)
- Michael J. Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zheng-gang Liu
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Harding SJ, Browne GJ, Miller BW, Prigent SA, Dickens M. Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochim Biophys Acta Mol Basis Dis 2010; 1802:733-40. [PMID: 20550965 PMCID: PMC2954285 DOI: 10.1016/j.bbadis.2010.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022]
Abstract
p38 MAPK is activated potently during cardiac ischaemia, although the precise mechanism by which it is activated is unclear. We used the isolated perfused rat heart to investigate the signalling pathways activated upstream of p38 during global cardiac ischaemia. Ischaemia strongly activated p38α but not the JNK pathway. The MAPKKs, MKK3, MKK4 and MKK6 have previously been identified as potential upstream activators of p38; however, in the ischaemic perfused heart, we saw activation of MKK3 and MKK6 but not MKK4. MKK3 and MKK6 showed different temporal patterns of activity, indicating distinct modes of activation and physiological function. Consistent with a lack of JNK activation, we saw no activation of MKK4 or MKK7 at any time point during ischaemia. A lack of MKK4 activation indicates, at least in the ischaemic heart, that MKK4 is not a physiologically relevant activator of p38. The MAPKKK, ASK1, was strongly activated late during ischaemia, with a similar time course to that of MKK6 and in ischaemic neonatal cardiac myocytes ASK1 expression preferentially activated MKK6 rather than MKK3. These observations suggest that during ischaemia ASK1 is coupled to p38 activation primarily via MKK6. Potent activation of ASK1 during ischaemia without JNK activation shows that during cardiac ischaemia, ASK1 preferentially activates the p38 pathway. These results demonstrate a specificity of responses seldom seen in previous studies and illustrate the benefits of using direct assays in intact tissues responding to physiologically relevant stimuli to unravel the complexities of MAPK signalling.
Collapse
Affiliation(s)
- Stephen J Harding
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
34
|
Gandhi A, Guo T, Ghose R. Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-.ALPHA.) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci 2010; 35:163-73. [DOI: 10.2131/jts.35.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Tao Guo
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Romi Ghose
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| |
Collapse
|
35
|
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 2009; 9:915-30. [PMID: 20025601 PMCID: PMC3762688 DOI: 10.2174/156800909790192383] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed.
Collapse
Affiliation(s)
- Z. Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - L. Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - C. Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
36
|
Byun JY, Yoon CH, An S, Park IC, Kang CM, Kim MJ, Lee SJ. The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis 2009; 30:1880-8. [PMID: 19783847 DOI: 10.1093/carcin/bgp235] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To prevent the development of malignancies, mammalian cells activate disposal programs, such as programmed cell death, in response to deregulated oncogene expression. However, the molecular basis for regulation of cellular disposal machinery in response to activated oncogenes is unclear at present. In this study, we show that upregulation of the autophagy-related protein, Atg5, is critically required for the oncogenic H-ras-induced autophagic cell death and that Rac1/mitogen-activated kinase kinase (MKK) 7/c-Jun N-terminal kinase (JNK) signals upregulation of Atg5. Overexpression of H-ras(V12) induced marked autophagic vacuole formation and cell death in normal fibroblasts, which remained unaffected by a caspase inhibitor. Pretreatment with Bafilomycin A1, an autophagy inhibitor, completely attenuated H-ras(V12)-induced cell death as well as autophagic vacuole formation. Selective production of Atg5 was observed in cells overexpressing H-ras(V12), and small interfering RNA (siRNA) targeting of Atg5 clearly inhibited autophagic cell death. Interestingly, inhibition of JNK or c-Jun by specific siRNA suppressed Atg5 upregulation and autophagic cell death. Moreover, inhibition of MKK7, but not MKK4, effectively attenuated H-ras(V12)-induced JNK activation. In addition, ectopic expression of RacN17 or Rac1-siRNA effectively inhibited MKK7-JNK activation, Atg5 upregulation and autophagic cell death. These data support the notion that upregulation of Atg5 is required for the oncogenic H-ras-induced autophagic cell death in normal fibroblasts and that activation of Rac1/MKK7/JNK-signaling pathway leads to upregulation of Atg5 in response to oncogenic H-ras. Our findings suggest that in cells acquiring deregulated oncogene expression, oncogenic stress triggers autophagic cell death, which protects cells against malignant progression.
Collapse
Affiliation(s)
- Joo-Yun Byun
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Shuto M, Seko K, Kuramoto N, Sugiyama C, Kawada K, Yoneyama M, Nagashima R, Ogita K. Activation of c-Jun N-Terminal Kinase Cascades Is Involved in Part of the Neuronal Degeneration Induced by Trimethyltin in Cortical Neurons of Mice. J Pharmacol Sci 2009; 109:60-70. [DOI: 10.1254/jphs.08211fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
p38 alpha MAPK inhibits JNK activation and collaborates with IkappaB kinase 2 to prevent endotoxin-induced liver failure. EMBO Rep 2008; 9:1048-54. [PMID: 18704119 DOI: 10.1038/embor.2008.149] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/27/2008] [Accepted: 06/27/2008] [Indexed: 12/13/2022] Open
Abstract
Activation of c-Jun amino-terminal kinase (JNK) facilitates tumour necrosis factor (TNF)-induced cell death. The p38 mitogen-activated protein kinase pathway is induced by TNF stimulation, but it has not been implicated in TNF-induced cell death. Here, we show that hepatocyte-specific ablation of p38alpha in mice results in excessive activation of JNK in the liver after in vivo challenge with bacterial lipopolysaccharide (LPS). Despite increased JNK activity, p38alpha-deficient hepatocytes were not sensitive to LPS/TNF toxicity showing that JNK activation was not sufficient to mediate TNF-induced liver damage. By contrast, LPS injection caused liver failure in mice lacking both p38alpha and IkappaB kinase 2 (IKK2) in hepatocytes. Therefore, when combined with partial nuclear factor-kappaB inhibition, p38alpha deficiency sensitizes the liver to cytokine-induced damage. Collectively, these results reveal a new function of p38alpha in collaborating with IKK2 to protect the liver from LPS/TNF-induced failure by controlling JNK activation.
Collapse
|
39
|
Kawada K, Yoneyama M, Nagashima R, Ogita K. In vivo acute treatment with trimethyltin chloride causes neuronal degeneration in the murine olfactory bulb and anterior olfactory nucleus by different cascades in each region. J Neurosci Res 2008; 86:1635-46. [PMID: 18183623 DOI: 10.1002/jnr.21612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our earlier study demonstrated that in vivo acute treatment with trimethyltin chloride (TMT) produces severe neuronal damage in the dentate gyrus and cognition impairment in mice. In the present study, we assessed whether TMT was capable of causing neuronal degeneration in the olfactory bulb (OB) and anterior olfactory nucleus (AON) of the mouse brain. An intraperitoneal injection of TMT at the dose of 2.8 mg/kg led to a dramatic increase in the number of degenerating cells, which were reactive with antibody against single-stranded DNA, in the granule cell layer (GCL) of the OB and AON 1 day and 2 days later, respectively. TMT treatment produced a marked translocation of phospho-c-Jun-N-terminal kinase from the cytoplasm to the nucleus in the AON. Expectedly, a marked increase in phospho-c-Jun-positive cells was seen in the AON after the treatment. In addition to the AON, the mitral cell layer of the olfactory bulb showed the presence of phospho-c-Jun-positive cells after the treatment. However, the GCL had no cells positive for either phospho-c-Jun-N-terminal kinase or phospho-c-Jun at any time after the treatment with TMT. Similarly, TMT-induced nuclear translocation of the lysosomal enzyme deoxyribonuclease II was seen in the AON, but not in the GCL. On the other hand, TMT elicited the expression of activated caspase 3 in the GCL but not in the AON. Taken together, our results suggest that TMT is capable of causing neuronal degeneration in the murine OB and AON through different cascades in the two structures.
Collapse
Affiliation(s)
- Koichi Kawada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University Hirakata, Osaka, Japan
| | | | | | | |
Collapse
|
40
|
Role of NF-κB/RelA and MAPK Pathways in Keratinocytes in Response to Sulfur Mustard. J Invest Dermatol 2008; 128:1626-32. [DOI: 10.1038/sj.jid.5701234] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett 2008; 272:12-22. [PMID: 18572308 DOI: 10.1016/j.canlet.2008.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 02/19/2008] [Accepted: 05/08/2008] [Indexed: 11/20/2022]
Abstract
Much work has been done in the 20 years since the discovery of the first metastasis suppressor gene to investigate the diverse biochemical functions of the proteins these genes encode. The function of metastasis suppressors cannot be solely predicted from correlative clinical data or in vitro studies. Instead, careful design of in vivo experiments to test broader hypotheses is necessary to pinpoint the mechanism of action of these novel proteins. Our laboratory identified c-Jun NH2-terminal kinase activating kinase 1 (JNKK1)/Mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a metastasis suppressor in prostate and ovarian cancer. JNKK1/MKK4 is a stress activated protein kinase (SAPK) involved in a variety of signaling events, ranging from the regulation of hepatoblast survival during mammalian development to metastasis suppression in adult ovarian and prostate cancers. JNKK1/MKK4 function has typically been associated with the c-Jun NH2-terminal kinase (JNK) signaling pathway, particularly in the immune system where JNK plays a role in inflammatory signaling and apoptosis. However, evidence continues to accumulate that JNKK1/MKK4 is also a physiologic activator of p38 under certain conditions, and that activation of p38 arrests cell cycle progression. This review will provide a historical perspective on the role of JNKK1/MKK4 in SAPK signaling, including some recent findings from our own laboratory that shed light on the complicated role for JNKK1/MKK4 in metastatic colonization.
Collapse
|
42
|
Yang YS, Li XY, Hong J, Gu WQ, Zhang YF, Yang J, Song HD, Chen JL, Ning G. Interleukin-18 enhances glucose uptake in 3T3-L1 adipocytes. Endocrine 2007; 32:297-302. [PMID: 18247160 DOI: 10.1007/s12020-008-9048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 12/21/2022]
Abstract
In order to characterize the potential causative effects of interleukin-18 (IL-18) on insulin resistance, we measured glucose uptake in 3T3-L1 adipocytes treated with mouse recombinant IL-18. IL-18 surprisingly enhanced, rather than reduced insulin-mediated glucose uptake in adipocytes. Moreover IL-18 could counteract the glucose uptake suppression caused by tumor necrosis factor alpha in 3T3-L1 adipocytes. The mechanism dissection showed that the IL-18 upregulated phosphorylated Akt and downregulated phosphorylated P38 MAPK. These findings indicated that the elevated serum IL-18 levels in obesity and diabetes might be a compensatory response to insulin resistance.
Collapse
Affiliation(s)
- Yi-Sheng Yang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine & Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao-Tong University Medical School, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang Z, Zhang K, Chen X, Meng J, Chen D. Effect of siRNA targeted against MKK4 on myostatin-induced downregulation of differentiation marker gene expression. Mol Cell Biochem 2007; 310:241-4. [PMID: 18049864 DOI: 10.1007/s11010-007-9677-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/22/2007] [Indexed: 11/26/2022]
Abstract
The c-Jun N-terminal kinase (JNK) pathway was reported to be involved in myostatin signaling and MKK4 was suggested as the only upstream kinase for myostatin-induced JNK activation, implying that MKK4 is a suitable target of RNA interference (RNAi) for blocking myostatin activity. The aim of this study was to evaluate the effect of small interfering RNA (siRNA) targeted against MKK4 on myostatin-induced downregulation of differentiation marker gene expression. Real-time quantitative PCR revealed that the level of MKK4 expression was efficiently reduced by MKK4-specific siRNA. Western blot assays showed that knockdown of MKK4 attenuated the myostatin-induced downregulation of MyoD and myogenin expression.
Collapse
Affiliation(s)
- Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, PR China
| | | | | | | | | |
Collapse
|
44
|
Sethi G, Ahn KS, Xia D, Kurie JM, Aggarwal BB. Targeted Deletion of MKK4 Gene Potentiates TNF-Induced Apoptosis through the Down-Regulation of NF-κB Activation and NF-κB-Regulated Antiapoptotic Gene Products. THE JOURNAL OF IMMUNOLOGY 2007; 179:1926-33. [PMID: 17641059 DOI: 10.4049/jimmunol.179.3.1926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MAPK kinase 4 (MKK4) is a dual-specificity kinase that activates both JNK and p38 MAPK. However, the mechanism by which MKK4 regulates TNF-induced apoptosis is not fully understood. Therefore, we used fibroblasts derived from MKK4 gene-deleted (MKK4-KO) mice to determine the role of this kinase in TNF signaling. We found that when compared with the wild-type cells, deletion of MKK4 gene enhanced TNF-induced apoptosis, and this correlated with down-regulation of TNF-induced cell-proliferative (COX-2 and cyclin D1) and antiapoptotic (survivin, IAP1, XIAP, Bcl-2, Bcl-x(L), and cFLIP) gene products, all regulated by NF-kappaB. Indeed we found that TNF-induced NF-kappaB activation was abrogated in MKK4 gene-deleted cells, as determined by DNA binding. Further investigation revealed that TNF-induced I kappaB alpha kinase activation, I kappaB alpha phosphorylation, I kappaB alpha degradation, and p65 nuclear translocation were all suppressed in MKK4-KO cells. NF-kappaB reporter assay revealed that NF-kappaB activation induced by TNF, TNFR1, TRADD, TRAF2, NIK, and I kappaB alpha kinase was modulated in gene-deleted cells. Overall, our results indicate that MKK4 plays a central role in TNF-induced apoptosis through the regulation of NF-kappaB-regulated gene products.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Cell Line
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Fibroblasts/cytology
- Fibroblasts/enzymology
- Fibroblasts/immunology
- Gene Deletion
- Gene Targeting
- MAP Kinase Kinase 4/deficiency
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/physiology
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Lee YJ, Shukla SD. Histone H3 phosphorylation at serine 10 and serine 28 is mediated by p38 MAPK in rat hepatocytes exposed to ethanol and acetaldehyde. Eur J Pharmacol 2007; 573:29-38. [PMID: 17643407 PMCID: PMC2723821 DOI: 10.1016/j.ejphar.2007.06.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 01/10/2023]
Abstract
Ethanol modulates mitogen-activated protein kinases (MAPKs). We have now investigated the influence of ethanol and its metabolite, acetaldehyde on histone H3 phosphorylation to ascertain downstream targets of MAPKs. In primary culture of rat hepatocytes, ethanol and acetaldehyde increased phosphorylation of nuclear histone H3 at serine 10 and serine 28. Specific inhibitors of p38 MAPK, SB203580, PD169316 and SB202190 blocked this phosphorylation. The inactive analogue, SB202474 had no effect. In contrast, c-Jun N-terminal kinase (JNK) inhibitor, SP600125 or MAP/ERK kinase (MEK) 1/2 inhibitor, PD98059 had no effect on the histone H3 phosphorylation. The p38 MAPK activation correlated with upstream activation of MAPK kinase (MKK) 3/6 but was independent of protein synthesis. In the nuclear fraction, the phosphorylation of p38 MAPK and its protein level increased with peak activation at 24 h by ethanol and at 30 min by acetaldehyde. These responses were ethanol and acetaldehyde dose dependent. Surprisingly, the phosphorylation of p38 MAPK was undetectable in the cytosolic fraction suggesting a subcellular selectivity of p38 MAPK signaling. The phosphorylation of JNK and p42/44 MAPK and their protein levels also increased in the nuclear fraction. Although ethanol caused translocation of all three major MAPKs (p42/44 MAPK, JNK, p38 MAPK) into the nucleus, histone H3 phosphorylation at serine 10 and serine 28 was mediated by p38 MAPK. This histone H3 phosphorylation had no influence on ethanol and acetaldehyde induced apoptosis. These studies demonstrate for the first time that ethanol and acetaldehyde stimulated phosphorylation of histone H3 at serine 10 and serine 28 are downstream nuclear response mediated by p38 MAPK in hepatocytes.
Collapse
Affiliation(s)
| | - Shivendra D. Shukla
- Corresponding author: Shivendra D. Shukla, Department of Medical Pharmacology & Physiology, School of medicine, University of Missouri-Columbia, One hospital Drive, M526 Medical Science Building, Columbia, MO 65212, Tel: (573) 882-2740, Fax: (573) 884-4276, E-mail:
| |
Collapse
|
46
|
Abstract
Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress activated MAP kinase signaling modules. It directly phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stress, pro-inflammatory cytokines and developmental cues. MKK4 is ubiquitously expressed and the targeted deletion of the Mkk4 gene in mice results in early embryonic lethality. Further studies in mice have indicated a role for MKK4 in liver formation, the immune system and cardiac hypertrophy. In humans, it is reported that loss of function mutations in the MKK4 gene are found in approximately 5% of tumors from a variety of tissues, suggesting it may have a tumor suppression function. Furthermore, MKK4 has been identified as a suppressor of metastasis of prostate and ovarian cancers. However, the role of MKK4 in cancer development appears complex as other studies support a pro-oncogenic role for MKK4 and JNK. Here we review the biochemical and functional properties of MKK4 and discuss the likely mechanisms by which it may regulate the steps leading to the formation of cancers.
Collapse
Affiliation(s)
- A J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
47
|
Kim MJ, Chae JS, Kim KJ, Hwang SG, Yoon KW, Kim EK, Yun HJ, Cho JH, Kim J, Kim BW, Kim HC, Kang SS, Lang F, Cho SG, Choi EJ. Negative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1. EMBO J 2007; 26:3075-85. [PMID: 17568772 PMCID: PMC1914103 DOI: 10.1038/sj.emboj.7601755] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 05/22/2007] [Indexed: 12/23/2022] Open
Abstract
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.
Collapse
Affiliation(s)
- Myung Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ji Soo Chae
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Kwang Je Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sang Gil Hwang
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Kyoung Wan Yoon
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Kyung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hee Jae Yun
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jun-Ho Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jeehyun Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bong-Woo Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Hyung-chul Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sang Sun Kang
- School of Science Education, Chungbuk National University, Chongju, Korea
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Eui-Ju Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
- Graduate School of Biotechnology, Korea University, Anam-dong, Seoul 136-701, Republic of Korea. Tel.: +82 2 3290 3446; +Fax: 82 2 3290 4741; E-mail:
| |
Collapse
|
48
|
Wang X, Destrument A, Tournier C. Physiological roles of MKK4 and MKK7: insights from animal models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:1349-57. [PMID: 17157936 DOI: 10.1016/j.bbamcr.2006.10.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of numerous physiological processes during development and in response to stress. Its activity is increased upon phosphorylation by the MAPK kinases, MKK4 and MKK7. Similar to the early embryonic death of mice caused by the targeted deletion of the jnk genes, mice lacking mkk4 or mkk7 die before birth. The inability of MKK4 and MKK7 to compensate for each other's functions in vivo is consistent with their synergistic effect in mediating JNK activation. However, the phenotypic analysis of the mutant mouse embryos indicates that MKK4 and MKK7 have specific roles that may be due to their selective regulation by extracellular stimuli and their distinct tissue distribution. MKK4 and MKK7 also have different biochemical properties. For example, whereas MKK4 can activate p38 MAPK, MKK7 functions as a specific activator of JNK. Here we summarize the studies that have shed light on the mechanism of activation of MKK4 and MKK7 and on their physiological functions.
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
49
|
Park HS, Mo JS, Choi EJ. Nitric oxide inhibits an interaction between JNK1 and c-Jun through nitrosylation. Biochem Biophys Res Commun 2006; 351:281-6. [PMID: 17054907 DOI: 10.1016/j.bbrc.2006.10.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) has been shown to negatively regulate c-Jun N-terminal kinase (JNK) through S-nitrosylation. Here, we show that disruption of an interaction between JNK and its substrate c-Jun is an important mechanism underlying the NO-mediated inhibition of JNK signaling. Endogenous NO, which was generated by interferon-gamma treatment, suppressed anisomycin-stimulated JNK activity in microglial BV-2 cells. The interferon-gamma-induced suppression of JNK1 activation in BV-2 cells was prevented completely by treatment with N(G)-nitro-l-arginine, an inhibitor of NO synthase. A NO donor S-nitro-N-acetyl-dl-penicillamine (SNAP) inhibited JNK activity in vitro, and this inhibition was reversed by a thiol-reducing agent, dithiothreitol. Nitric oxide disrupts a physical interaction between JNK and its substrate c-Jun both in vitro and in intact cells without affecting an interaction between SEK1 and JNK. Collectively, our results suggest that the inhibition of the interaction between JNK and c-Jun may be an integral part of the mechanism underlying the negative regulation of the JNK signaling pathway by NO.
Collapse
Affiliation(s)
- Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 700-757, Republic of Korea
| | | | | |
Collapse
|
50
|
Trivedi AK, Bararia D, Christopeit M, Peerzada AA, Singh SM, Kieser A, Hiddemann W, Behre HM, Behre G. Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination. Oncogene 2006; 26:1789-801. [PMID: 16983342 DOI: 10.1038/sj.onc.1209964] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Functional inactivation of transcription factors in hematopoietic stem cell development is involved in the pathogenesis of acute myeloid leukemia (AML). Stem cell regulator C/enhancer binding protein (EBP)alpha is among such transcription factors known to be inactive in AML. This is either due to mutations or inhibition by protein-protein interactions. Here, we applied a mass spectrometry-based proteomic approach to systematically identify putative co-activator proteins interacting with the DNA-binding domain (DBD) of C/EBP transcription factors. In our proteomic screen, we identified c-Jun N-terminal kinase (JNK) 1 among others such as PAK6, MADP-1, calmodulin-like skin proteins and ZNF45 as proteins interacting with DBD of C/EBPs from nuclear extract of myelomonocytic U937 cells. We show that kinase JNK1 physically interacts with DBD of C/EBPalpha in vitro and in vivo. Furthermore, we show that active JNK1 inhibits ubiquitination of C/EBPalpha possibly by phosphorylating in its DBD. Consequently, JNK1 prolongs C/EBPalpha protein half-life leading to its enhanced transactivation and DNA-binding capacity. In certain AML patients, however, the JNK1 mRNA expression and its kinase activity is decreased which suggests a possible reason for C/EBPalpha inactivation in AML. Thus, we report the first proteomic screen of C/EBP-interacting proteins, which identifies JNK1 as positive regulator of C/EBPalpha.
Collapse
Affiliation(s)
- A K Trivedi
- Bone Marrow Transplantation Section, Department of Internal Medicine IV, State Center for Cell and Gene Therapy, Martin-Luther-University Halle-Wittenberg, Halle, SA, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|