1
|
Chevalier Q, Huchelmann A, Debié P, Mercier P, Hartmann M, Vonthron-Sénécheau C, Bach TJ, Schaller H, Hemmerlin A. Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1110. [PMID: 38674519 PMCID: PMC11055089 DOI: 10.3390/plants13081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein. After treatment with fosmidomycin, the plasma membrane localization of this GFP-based sensor is altered, and a nuclear distribution of fluorescence is observed instead. In tobacco cells, a visual screen of conditions allowing membrane localization in the presence of fosmidomycin identified jasmonic acid methyl esther (MeJA) as a chemical capable of gradually overcoming inhibition. Using Arabidopsis protein prenyltransferase loss-of-function mutant lines expressing GFP-CaM-CVIL proteins, we demonstrated that in the presence of MeJA, protein farnesyltransferase (PFT) can modify the GFP-CaM-CVIL sensor, a substrate the enzyme does not recognize under standard conditions. Similar to MeJA, farnesol and MVA also alter the protein substrate specificity of PFT, whereas DX and geranylgeraniol have limited or no effect. Our data suggest that MeJA adjusts the protein substrate specificity of PFT by promoting a metabolic cross-talk directing the origin of the prenyl group used to modify the protein. MVA, or an MVA-derived metabolite, appears to be a key metabolic intermediate for this change in substrate specificity.
Collapse
Affiliation(s)
- Quentin Chevalier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Alexandre Huchelmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pauline Debié
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pierre Mercier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Michael Hartmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Catherine Vonthron-Sénécheau
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Thomas J. Bach
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Hubert Schaller
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| |
Collapse
|
2
|
Li C, Wang Y, Wei M, Wang X. The involvement of a novel calmodulin-like protein isoform from oyster Crassostrea gigas in transcription factor regulation provides new insight into acclimation to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106423. [PMID: 36822075 DOI: 10.1016/j.aquatox.2023.106423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Marine organisms need to adapt to improve organismal fitness under ocean acidification (OA). Recent studies have shown that marine calcifiers can achieve acclimation by stimulating calcium binding/signaling pathways. Here, a CaM-like gene (CgCaLP-2) from oyster Crassostrea gigas which typically responded to long-term CO2 exposure (two months) rather than short-term exposure (one week) was characterized. The cloned cDNA was 678 bp and was shorter than the retrieved sequence from NCBI (1125 bp). The two sequences, designated as CgCaLP-2-v1 and CgCaLP-2-v2, were demonstrated to be different splice variants by the genome sequence analysis. Western blotting analysis revealed two bands of 23 kD and 43 kD in mantle and hemocytes, corresponding to predicted molecular weight of CgCaLP-2-v1 and CgCaLP-2-v2, respectively. The isoform CgCaLP-2-v1 (the 23 kD band) was highly stimulated in response to long-term CO2 exposure (42-day and 56-day treatment) in hemocytes and mantle tissue. The fluorescence signal of CgCaLP-2 in mantle and hemocytes became more intensive after long-term CO2 exposure. Besides, in hemocytes, CgCaLP-2 presented a higher localization on the nuclear membrane after long-term CO2 exposure (56 d). The target gene network of CgCaLP-2 was predicted, and a transcription factor (TF) gene annotated as Homeobox protein SIX4 (CgSIX4) showed a similar expressive trend to CgCaLP-2 during CO2 exposure. Suppression of CgCaLP-2 via RNA interference significantly reduced the mRNA expression of CgSIX4. The results suggested that CgCaLP-2 might mediate the Ca2+-CaLP-TF signal transduction pathway under long-term CO2 exposure. This study serves as an example to reveal that alternative splicing is an important mechanism for generation multiple protein isoforms and thus shape the plastic responses under CO2 exposure, providing new insight into the potential acclimation ability of marine calcifiers to future OA.
Collapse
Affiliation(s)
- Changmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yilin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Manman Wei
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
4
|
Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. PLANT PHYSIOLOGY 2021; 187:2485-2508. [PMID: 34618086 PMCID: PMC8644358 DOI: 10.1093/plphys/kiab385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP-ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs' activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.
Collapse
Affiliation(s)
- Hasana Sternberg
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella Buriakovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daria Bloch
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Gutman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaul Yalovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
6
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
7
|
Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. Calcium Signaling in Plants Under Drought. SIGNALING AND COMMUNICATION IN PLANTS 2020:259-298. [DOI: 10.1007/978-3-030-40277-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
8
|
Moyet L, Salvi D, Bouchnak I, Miras S, Perrot L, Seigneurin-Berny D, Kuntz M, Rolland N. Calmodulin is involved in the dual subcellular location of two chloroplast proteins. J Biol Chem 2019; 294:17543-17554. [PMID: 31578278 PMCID: PMC6873194 DOI: 10.1074/jbc.ra119.010846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 12/02/2022] Open
Abstract
Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.
Collapse
Affiliation(s)
- Lucas Moyet
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Stéphane Miras
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Laura Perrot
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| |
Collapse
|
9
|
Hála M, Žárský V. Protein Prenylation in Plant Stress Responses. Molecules 2019; 24:molecules24213906. [PMID: 31671559 PMCID: PMC6866125 DOI: 10.3390/molecules24213906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
Protein prenylation is one of the most important posttranslational modifications of proteins. Prenylated proteins play important roles in different developmental processes as well as stress responses in plants as the addition of hydrophobic prenyl chains (mostly farnesyl or geranyl) allow otherwise hydrophilic proteins to operate as peripheral lipid membrane proteins. This review focuses on selected aspects connecting protein prenylation with plant responses to both abiotic and biotic stresses. It summarizes how changes in protein prenylation impact plant growth, deals with several families of proteins involved in stress response and highlights prominent regulatory importance of prenylated small GTPases and chaperons. Potential possibilities of these proteins to be applicable for biotechnologies are discussed.
Collapse
Affiliation(s)
- Michal Hála
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| |
Collapse
|
10
|
Tai L, Li BB, Nie XM, Zhang PP, Hu CH, Zhang L, Liu WT, Li WQ, Chen KM. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:681. [PMID: 31275331 PMCID: PMC6593290 DOI: 10.3389/fpls.2019.00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 05/02/2023]
Abstract
Calcium (Ca2+) signaling and nicotinamide adenine dinucleotide (NAD) signaling are two basic signal regulation pathways in organisms, playing crucial roles in signal transduction, energy metabolism, stress tolerance, and various developmental processes. Notably, calmodulins (CaMs) and NAD kinases (NADKs) are important hubs for connecting these two types of signaling networks, where CaMs are the unique activators of NADKs. NADK is a key enzyme for NADP (including NADP+ and NADPH) biosynthesis by phosphorylating NAD (including NAD+ and NADH) and therefore, maintains the balance between NAD pool and NADP pool through an allosteric regulation mode. In addition, the two respective derivatives from NAD+ (substrate of NADK) and NADP+ (product of NADK), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), have been considered to be the important messengers for intracellular Ca2+ homeostasis which could finally influence the combination between CaM and NADK, forming a feedback regulation mechanism. In this review article, we briefly summarized the major research advances related to the feedback regulation pathway, which is activated by the interaction of CaM and NADK during plant development and signaling. The theories and fact will lay a solid foundation for further studies related to CaM and NADK and their regulatory mechanisms as well as the NADK-mediated NAD signaling behavior in plant development and response to stress.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Vandelle E, Vannozzi A, Wong D, Danzi D, Digby AM, Dal Santo S, Astegno A. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:221-237. [PMID: 29908490 DOI: 10.1016/j.plaphy.2018.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 06/02/2018] [Indexed: 05/23/2023]
Abstract
Calcium (Ca2+) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca2+-binding proteins in grapevine and to explore their potential for further biotechnological applications.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy.
| | - Darren Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton ACT 2601, Australia.
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Anne-Marie Digby
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
12
|
Yu B, Yan S, Zhou H, Dong R, Lei J, Chen C, Cao B. Overexpression of CsCaM3 Improves High Temperature Tolerance in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:797. [PMID: 29946334 PMCID: PMC6006952 DOI: 10.3389/fpls.2018.00797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
High temperature (HT) stress affects the growth and production of cucumbers, but genetic resources with high heat tolerance are very scarce in this crop. Calmodulin (CaM) has been confirmed to be related to the regulation of HT stress resistance in plants. CsCaM3, a CaM gene, was isolated from cucumber inbred line "02-8." Its expression was characterized in the present study. CsCaM3 transcripts differed among the organs and tissues of cucumber plants and could be induced by HTs or abscisic acid, but not by salicylic acid. CsCaM3 transcripts exhibited subcellular localization to the cytoplasm and nuclei of cells. Overexpression of CsCaM3 in cucumber plants has the potential to improve their heat tolerance and protect against oxidative damage and photosynthesis system damage by regulating the expression of HT-responsive genes in plants, including chlorophyll catabolism-related genes under HT stress. Taken together, our results provide useful insights into stress tolerance in cucumber.
Collapse
Affiliation(s)
- Bingwei Yu
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Shuangshuang Yan
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Huoyan Zhou
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Riyue Dong
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Jianjun Lei
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Changming Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Bihao Cao
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase. Mol Cell Biol 2017; 37:MCB.00333-17. [PMID: 28894027 DOI: 10.1128/mcb.00333-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes.
Collapse
|
14
|
Liao J, Deng J, Qin Z, Tang J, Shu M, Ding C, Liu J, Hu C, Yuan M, Huang Y, Yang R, Zhou Y. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas. FRONTIERS IN PLANT SCIENCE 2017; 8:482. [PMID: 28424729 PMCID: PMC5380670 DOI: 10.3389/fpls.2017.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/20/2017] [Indexed: 05/10/2023]
Abstract
L. japonicus, a model plant of legumes plants, is widely used in symbiotic nitrogen fixation. A large number of studies on it have been published based on the genetic, biochemical, structural studies. These results are secondhand reports that CaM is a key regulator during Rhizobial infection. In plants, there are multiple CaM genes encoding several CaM isoforms with only minor amino acid differences. Moreover, the regulation mechanism of this family of proteins during rhizobia infection is still unclear. In the current study, a family of genes encoding CaMs and CMLs that possess only the Ca2+-binding EF-hand motifs were analyzed. Using ML and BI tree based on amino acid sequence similarity, seven loci defined as CaMs and 19 CMLs, with at least 23% identity to CaM, were identified. The phylogenetics, gene structures, EF hand motif organization, and expression characteristics were evaluated. Seven CaM genes, encoding only 4 isoforms, were found in L. japonicus. According to qRT-PCR, four LjCaM isoforms are involved in different rhizobia infection stages. LjCaM1 might be involved in the early rhizobia infection epidermal cells stage. Furthermore, additional structural differences and expression behaviors indicated that LjCMLs may have different potential functions from LjCaMs.
Collapse
Affiliation(s)
- Jinqiu Liao
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education UniversityGuiyang, China
| | - Zongzhi Qin
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural UniversityChengdu, China
| | - Maorong Shu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jing Liu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chao Hu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ruiwu Yang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
15
|
Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc'h N, Ducos E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:185-98. [PMID: 26147561 DOI: 10.1111/pce.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 05/12/2023]
Abstract
The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.
Collapse
Affiliation(s)
- Christelle Dutilleul
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Iliana Ribeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Nathalie Blanc
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Cynthia D Nezames
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Piotr Zglobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ana María Palacio Barrera
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Martine Courtois
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, UMR CNRS 7247, UFR, IFC, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, Nouzilly, F-37380, France
| | - Nathalie Giglioli-Guivarc'h
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Eric Ducos
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| |
Collapse
|
16
|
Chinpongpanich A, Phean-O-Pas S, Thongchuang M, Qu LJ, Buaboocha T. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein. Acta Biochim Biophys Sin (Shanghai) 2015; 47:880-9. [PMID: 26423116 DOI: 10.1093/abbs/gmv097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/14/2022] Open
Abstract
A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.
Collapse
Affiliation(s)
- Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srivilai Phean-O-Pas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mayura Thongchuang
- Division of Food Safety Management and Technology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
18
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 03/26/2024] Open
Abstract
In a preceding study we have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was there demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, in this initial study complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established now new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
19
|
Zhu X, Dunand C, Snedden W, Galaud JP. CaM and CML emergence in the green lineage. TRENDS IN PLANT SCIENCE 2015; 20:483-9. [PMID: 26115779 DOI: 10.1016/j.tplants.2015.05.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 05/02/2023]
Abstract
Calmodulin (CaM) is a well-studied calcium sensor that is ubiquitous in all eukaryotes and contributes to signaling during developmental processes and adaptation to environmental stimuli. Among eukaryotes, plants have a remarkable variety of CaM-like proteins (CMLs). The expansion of genomic data sets offers the opportunity to explore CaM and CML evolution among the green lineage from algae to land plants. Database analysis indicates that a striking diversity of CaM and CMLs evolved in angiosperms during terrestrial colonization and reveals the emergence of new CML classes throughout the green lineage that correlate with the acquisition of novel biological traits. Here, we speculate that expansion of the CML family was driven by selective pressures to process environmental signals efficiently as plants adapted to land environments.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Christophe Dunand
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Wayne Snedden
- Department of Biology, Queen's University, Kingston, ONT K7L 3N6, Canada
| | - Jean-Philippe Galaud
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| |
Collapse
|
20
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
21
|
Hemsley PA. The importance of lipid modified proteins in plants. THE NEW PHYTOLOGIST 2015; 205:476-89. [PMID: 25283240 DOI: 10.1111/nph.13085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, University of Dundee, Dundee, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| |
Collapse
|
22
|
Jamshidiha M, Ishida H, Sutherland C, Gifford JL, Walsh MP, Vogel HJ. Structural analysis of a calmodulin variant from rice: the C-terminal extension of OsCaM61 regulates its calcium binding and enzyme activation properties. J Biol Chem 2013; 288:32036-49. [PMID: 24052265 PMCID: PMC3814798 DOI: 10.1074/jbc.m113.491076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Indexed: 02/04/2023] Open
Abstract
OsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca(2+)] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca(2+). NMR dynamics data for OsCaM61 indicate that the two lobes of the CaM domain act together unlike the independent behavior of the lobes seen in mammalian CaM and soybean CaM4. Also, data demonstrate that the positively charged nuclear localization signal region in the tail in apo-OsCaM61 is helical, whereas it becomes flexible in the Ca(2+)-saturated protein. The extra helix in apo-OsCaM61 provides additional interactions in the C-lobe and increases the structural stability of the closed apo conformation. This leads to a decrease in the Ca(2+) binding affinity of EF-hands III and IV in OsCaM61. In Ca(2+)-OsCaM61, the basic nuclear localization signal cluster adopts an extended conformation, exposing the C-terminal extension for prenylation or enabling OsCaM61 to be transferred to the nucleus. Moreover, Ser(172) and Ala(173), residues in the tail, interact with different regions of the protein. These interactions affect the ability of OsCaM61 to activate different target proteins. Altogether, our data show that the tail is not simply a linker between the prenyl group and the protein but that it also provides a new regulatory mechanism that some plants have developed to fine-tune Ca(2+) signaling events.
Collapse
Affiliation(s)
- Mostafa Jamshidiha
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Hiroaki Ishida
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Cindy Sutherland
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Jessica L. Gifford
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Michael P. Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Hans J. Vogel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
23
|
Charpentier M, Oldroyd GE. Nuclear calcium signaling in plants. PLANT PHYSIOLOGY 2013; 163:496-503. [PMID: 23749852 PMCID: PMC3793031 DOI: 10.1104/pp.113.220863] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
Plant cell nuclei can generate calcium responses to a variety of inputs, tantamount among them the response to signaling molecules from symbiotic microorganisms .
Collapse
Affiliation(s)
- Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giles E.D. Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
24
|
Pateraki I, Renato M, Azcón-Bieto J, Boronat A. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:74-85. [PMID: 23302027 DOI: 10.1111/tpj.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 05/10/2023]
Abstract
Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle.
Collapse
Affiliation(s)
- Irini Pateraki
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
26
|
Ranty B, Cotelle V, Galaud JP, Mazars C. Nuclear Calcium Signaling and Its Involvement in Transcriptional Regulation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1123-43. [DOI: 10.1007/978-94-007-2888-2_51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Hildreth SB, Gehman EA, Yang H, Lu RH, K C R, Harich KC, Yu S, Lin J, Sandoe JL, Okumoto S, Murphy AS, Jelesko JG. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci U S A 2011; 108:18179-84. [PMID: 22006310 PMCID: PMC3207657 DOI: 10.1073/pnas.1108620108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An effective plant alkaloid chemical defense requires a variety of transport processes, but few alkaloid transporters have been characterized at the molecular level. Previously, a gene fragment encoding a putative plasma membrane proton symporter was isolated, because it was coordinately regulated with several nicotine biosynthetic genes. Here, we show that this gene fragment corresponds to a Nicotiana tabacum gene encoding a nicotine uptake permease (NUP1). NUP1 belongs to a plant-specific class of purine uptake permease-like transporters that originated after the bryophytes but before or within the lycophytes. NUP1 expressed in yeast cells preferentially transported nicotine relative to other pyridine alkaloids, tropane alkaloids, kinetin, and adenine. NUP1-GFP primarily localized to the plasma membrane of tobacco Bright Yellow-2 protoplasts. WT NUP1 transcripts accumulated to high levels in the roots, particularly in root tips. NUP1-RNAi hairy roots had reduced NUP1 mRNA accumulation levels, reduced total nicotine levels, and increased nicotine accumulation in the hairy root culture media. Regenerated NUP1-RNAi plants showed reduced foliar and root nicotine levels as well as increased seedling root elongation rates. Thus, NUP1 affected nicotine metabolism, localization, and root growth.
Collapse
Affiliation(s)
- Sherry B. Hildreth
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
- Biological Sciences Department, Virginia Tech, Blacksburg, VA 24061
| | - Elizabeth A. Gehman
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
- Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, Fort Detrick, MD 21702
| | - Haibing Yang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Rong-He Lu
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Ritesh K C
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Kim C. Harich
- Biochemistry Department, Virginia Tech, Blacksburg, VA 24061; and
| | - Shi Yu
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Jinshan Lin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Jackson L. Sandoe
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Angus S. Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - John G. Jelesko
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
28
|
Analysis of calcium signaling pathways in plants. Biochim Biophys Acta Gen Subj 2011; 1820:1283-93. [PMID: 22061997 DOI: 10.1016/j.bbagen.2011.10.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Ca2+ signals are represented by stimulus-specific spatially and temporally defined Ca2+ signatures. These Ca2+ signatures are detected, decoded and transmitted to downstream responses by a complex toolkit of Ca2+ binding proteins that function as Ca2+ sensors. SCOPE OF REVIEW This review will reflect on advancements in monitoring Ca2+ dynamics in plants. Moreover, it will provide insights in the extensive and complex toolkit of plant Ca2+ sensor proteins that relay the information presented in the Ca2+ signatures into phosphorylation events, changes in protein-protein interaction or regulation of gene expression. MAJOR CONCLUSIONS Plants' response to signals is encoded by different Ca2+ signatures. The plant decoding Ca2+ toolkit encompasses different families of Ca2+ sensors like Calmodulins (CaM), Calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs). These Ca2+ sensors are encoded by complex gene families and form intricate signaling networks in plants that enable specific, robust and flexible information processing. GENERAL SIGNIFICANCE This review provides new insights about the biochemical regulation, physiological functions and of newly identified target proteins of the major plant Ca2+ sensor families. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
29
|
Lee HY, Bowen CH, Popescu GV, Kang HG, Kato N, Ma S, Dinesh-Kumar S, Snyder M, Popescu SC. Arabidopsis RTNLB1 and RTNLB2 Reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. THE PLANT CELL 2011; 23:3374-91. [PMID: 21949153 PMCID: PMC3203430 DOI: 10.1105/tpc.111.089656] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 05/18/2023]
Abstract
Receptors localized at the plasma membrane are critical for the recognition of pathogens. The molecular determinants that regulate receptor transport to the plasma membrane are poorly understood. In a screen for proteins that interact with the FLAGELIN-SENSITIVE2 (FLS2) receptor using Arabidopsis thaliana protein microarrays, we identified the reticulon-like protein RTNLB1. We showed that FLS2 interacts in vivo with both RTNLB1 and its homolog RTNLB2 and that a Ser-rich region in the N-terminal tail of RTNLB1 is critical for the interaction with FLS2. Transgenic plants that lack RTNLB1 and RTNLB2 (rtnlb1 rtnlb2) or overexpress RTNLB1 (RTNLB1ox) exhibit reduced activation of FLS2-dependent signaling and increased susceptibility to pathogens. In both rtnlb1 rtnlb2 and RTNLB1ox, FLS2 accumulation at the plasma membrane was significantly affected compared with the wild type. Transient overexpression of RTNLB1 led to FLS2 retention in the endoplasmic reticulum (ER) and affected FLS2 glycosylation but not FLS2 stability. Removal of the critical N-terminal Ser-rich region or either of the two Tyr-dependent sorting motifs from RTNLB1 causes partial reversion of the negative effects of excess RTNLB1 on FLS2 transport out of the ER and accumulation at the membrane. The results are consistent with a model whereby RTNLB1 and RTNLB2 regulate the transport of newly synthesized FLS2 to the plasma membrane.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - George Viorel Popescu
- National Institute for Laser, Plasma, and Radiation Physics, Magurele 077125 Bucharest, Romania
| | - Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shisong Ma
- College of Biological Sciences, University of California, Davis, California 95616
| | | | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Sorina Claudia Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
30
|
Michaeli S, Fait A, Lagor K, Nunes-Nesi A, Grillich N, Yellin A, Bar D, Khan M, Fernie AR, Turano FJ, Fromm H. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:485-98. [PMID: 21501262 DOI: 10.1111/j.1365-313x.2011.04612.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.
Collapse
Affiliation(s)
- Simon Michaeli
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Perochon A, Aldon D, Galaud JP, Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 2011; 93:2048-53. [PMID: 21798306 DOI: 10.1016/j.biochi.2011.07.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/09/2011] [Indexed: 01/01/2023]
Abstract
Calmodulin (CaM) is a primary calcium sensor in all eukaryotes. It binds calcium and regulates the activity of a wide range of effector proteins in response to calcium signals. The list of CaM targets includes plant-specific proteins whose functions are progressively being elucidated. Plants also possess numerous calmodulin-like proteins (CMLs) that appear to have evolved unique functions. Functional studies of CaM and CMLs in plants highlight the importance of this protein family in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation or metabolic changes. This review summarizes some of the significant progress made by biochemical and genetic studies in identifying the properties and physiological functions of plant CaMs and CMLs. We discuss emerging paradigms in the field and highlight the areas that need further investigation.
Collapse
Affiliation(s)
- Alexandre Perochon
- UMR 5546 CNRS/Universite Paul Sabatier Toulouse III, Pole de biotechnologie vegetale, Auzeville, Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
32
|
Bond AE, Row PE, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences. PHYTOCHEMISTRY 2011; 72:975-96. [PMID: 21353264 DOI: 10.1016/j.phytochem.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 01/21/2011] [Indexed: 05/03/2023]
Abstract
Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.
Collapse
Affiliation(s)
- A E Bond
- Biochemistry Group, College of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|
33
|
Reddy ASN, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. THE PLANT CELL 2011; 23:2010-32. [PMID: 21642548 PMCID: PMC3159525 DOI: 10.1105/tpc.111.084988] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca(2+) level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca(2+) and Ca(2+)/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca(2+)- and Ca(2+)/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca(2+)-regulated transcriptional networks.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
34
|
Hink MA, de Vries SC, Visser AJWG. Fluorescence fluctuation analysis of receptor kinase dimerization. Methods Mol Biol 2011; 779:199-215. [PMID: 21837568 DOI: 10.1007/978-1-61779-264-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Receptor kinases are essential for the cellular perception of signals. The classical model for activation of the receptor kinase involves dimerization, induced by the binding of the ligand. The mechanisms by which plant receptors transduce signals across the cell surface are largely unknown but plant receptors seem to dimerize as well. In this chapter, we describe two fluorescence fluctuation techniques, fluorescence cross-correlation spectroscopy and photon counting histogram analysis, to study the oligomerization state of receptor kinases in living plant cells in a quantitative manner.
Collapse
Affiliation(s)
- Mark A Hink
- Department of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Abstract
The past two decades revealed a plethora of Ca2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics' approaches and bioinformatics are exposing Ca2+-responsive cis-elements and the corresponding Ca2+-responsive genes. Here, we review the current knowledge on Ca2+-signaling pathways that regulate gene expression in plants, and we link these to mechanisms by which plants respond to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yael Galon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
36
|
Andrews M, Huizinga DH, Crowell DN. The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC PLANT BIOLOGY 2010; 10:118. [PMID: 20565889 PMCID: PMC3017772 DOI: 10.1186/1471-2229-10-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/18/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Protein prenylation is a common post-translational modification in metazoans, protozoans, fungi, and plants. This modification, which mediates protein-membrane and protein-protein interactions, is characterized by the covalent attachment of a fifteen-carbon farnesyl or twenty-carbon geranylgeranyl group to the cysteine residue of a carboxyl terminal CaaX motif. In Arabidopsis, era1 mutants lacking protein farnesyltransferase exhibit enlarged meristems, supernumerary floral organs, an enhanced response to abscisic acid (ABA), and drought tolerance. In contrast, ggb mutants lacking protein geranylgeranyltransferase type 1 exhibit subtle changes in ABA and auxin responsiveness, but develop normally. RESULTS We have expressed recombinant Arabidopsis protein farnesyltransferase (PFT) and protein geranylgeranyltransferase type 1 (PGGT1) in E. coli and characterized purified enzymes with respect to kinetic constants and substrate specificities. Our results indicate that, whereas PFT exhibits little specificity for the terminal amino acid of the CaaX motif, PGGT1 exclusively prenylates CaaX proteins with a leucine in the terminal position. Moreover, we found that different substrates exhibit similar K(m) but different k(cat) values in the presence of PFT and PGGT1, indicating that substrate specificities are determined primarily by reactivity rather than binding affinity. CONCLUSIONS The data presented here potentially explain the relatively strong phenotype of era1 mutants and weak phenotype of ggb mutants. Specifically, the substrate specificities of PFT and PGGT1 suggest that PFT can compensate for loss of PGGT1 in ggb mutants more effectively than PGGT1 can compensate for loss of PFT in era1 mutants. Moreover, our results indicate that PFT and PGGT1 substrate specificities are primarily due to differences in catalysis, rather than differences in substrate binding.
Collapse
Affiliation(s)
- Michelle Andrews
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - David H Huizinga
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Dow AgroSciences LLC, Indianapolis, IN 46268, USA
| | - Dring N Crowell
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
37
|
Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 2010; 8:e1000282. [PMID: 20098722 PMCID: PMC2808208 DOI: 10.1371/journal.pbio.1000282] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022] Open
Abstract
In plants, auxin distribution and tissue patterning are coordinated via a feedback loop involving the auxin-regulated cell polarity factor ICR1 and the secretory machinery. Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning. The coordination of different cells during pattern formation is a fundamental process in the development of multicellular organisms. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells demonstrates the importance of cell polarity for tissue patterning. The direction of auxin flow is determined by polar subcellular localization of auxin transport proteins called PINs, which facilitate auxin efflux. At the same time, an auxin-mediated positive feedback mechanism reinforces the polar distribution of PINs. However, the molecular mechanisms that underlie polar PIN localization are not well understood. In eukaryotic cells, the Rho family of small GTPases function as central regulators of cell polarity. We show that a Rho-interacting protein from plants, called ICR1, is required for recruitment via the secretory system of PIN proteins to polar domains in the cell membrane. As a result, ICR1 is required for directional auxin transport and distribution and thereby for proper pattern formation. In addition, both the expression and subcellular localization of ICR1 are regulated by auxin, suggesting that ICR1 could function in a positive feedback loop that reinforces auxin distribution. Thus, ICR1 forms an auxin-modulated link between cell polarity, protein secretion, and auxin-dependent tissue patterning.
Collapse
Affiliation(s)
- Ora Hazak
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daria Bloch
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Poraty
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hasana Sternberg
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jing Zhang
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
| | - Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Gerber E, Hemmerlin A, Bach TJ. Chapter 9 The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
39
|
Abstract
Ca2+ ions play a vital role as second messengers in plant cells during various developmental processes and in response to environmental stimuli. Plants have evolved a diversity of unique proteins that bind Ca2+ using the evolutionarily conserved EF-hand motif. The currently held hypothesis is that these proteins function as Ca2+ sensors by undergoing conformational changes in response to Ca2+-binding that facilitate their regulation of target proteins and thereby co-ordinate various signalling pathways. The three main classes of these EF-hand Ca2+sensors in plants are CaMs [calmodulins; including CMLs (CaM-like proteins)], CDPKs (calcium-dependent protein kinases) and CBLs (calcineurin B-like proteins). In the plant species examined to date, each of these classes is represented by a large family of proteins, most of which have not been characterized biochemically and whose physiological roles remain unclear. In the present review, we discuss recent advances in research on CaMs and CMLs, CDPKs and CBLs, and we attempt to integrate the current knowledge on the different sensor classes into common physiological themes.
Collapse
|
40
|
Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 2009; 9:3100-14. [PMID: 19526560 DOI: 10.1002/pmic.200800340] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To gain a better understanding of salt stress responses in plants, we used a proteomic approach to investigate changes in rice (Oryza sativa) root plasma-membrane-associated proteins following treatment with 150 mmol/L NaCl. With or without a 48 h salt treatment, plasma membrane fractions from root tip cells of a salt-sensitive rice cultivar, Wuyunjing 8, were purified by PEG aqueous two-phase partitioning, and plasma-membrane-associated proteins were separated by IEF/SDS-PAGE using an optimized rehydration buffer. Comparative analysis of three independent biological replicates revealed that the expressions of 18 proteins changed by more than 1.5-fold in response to salt stress. Of these proteins, nine were up-regulated and nine were down-regulated. MS analysis indicated that most of these membrane-associated proteins are involved in important physiological processes such as membrane stabilization, ion homeostasis, and signal transduction. In addition, a new leucine-rich-repeat type receptor-like protein kinase, OsRPK1, was identified as a salt-responding protein. Immuno-blots indicated that OsRPK1 is also induced by cold, drought, and abscisic acid. Using immuno-histochemical techniques, we determined that the expression of OsRPK1 was localized in the plasma membrane of cortex cells in roots. The results suggest that different rice cultivars might have different salt stress response mechanisms.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Crowell DN, Huizinga DH. Protein isoprenylation: the fat of the matter. TRENDS IN PLANT SCIENCE 2009; 14:163-70. [PMID: 19201644 DOI: 10.1016/j.tplants.2008.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 05/08/2023]
Abstract
Protein isoprenylation refers to the covalent attachment of a 15-carbon farnesyl or 20-carbon geranylgeranyl moiety to a cysteine residue at or near the carboxyl terminus. This post-translational lipid modification, which mediates protein-membrane and protein-protein interactions, is necessary for normal control of abscisic acid and auxin signaling, meristem development, and other fundamental processes. Recent studies have also revealed roles for protein isoprenylation in cytokinin biosynthesis and innate immunity. Most isoprenylated proteins are further modified by carboxyl terminal proteolysis and methylation and, collectively, these modifications are necessary for the targeting and function of isoprenylated proteins.
Collapse
Affiliation(s)
- Dring N Crowell
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | | |
Collapse
|
42
|
Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. PLANT PHYSIOLOGY 2009; 149:760-74. [PMID: 19052154 PMCID: PMC2633824 DOI: 10.1104/pp.108.132217] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors important for plant growth and development. Comprehensive information on monocot CRYs is currently only available for rice (Oryza sativa). We report here the molecular and functional characterization of two CRY genes, TaCRY1a and TaCRY2, from the monocot wheat (Triticum aestivum). The expression of TaCRY1a was most abundant in seedling leaves and barely detected in roots and germinating embryos under normal growth conditions. The expression of TaCRY2 in germinating embryos was equivalent to that in leaves and much higher than the TaCRY1a counterpart. Transition from dark to light slightly affected the expression of TaCRY1a and TaCRY2 in leaves, and red light produced a stronger induction of TaCRY1a. Treatment of seedlings with high salt, polyethylene glycol, and abscisic acid (ABA) up-regulated TaCRY2 in roots and germinating embryos. TaCRY1a displays a light-responsive nucleocytoplasmic shuttling pattern similar to that of Arabidopsis (Arabidopsis thaliana) CRY1, contains nuclear localization domains in both the N and C termini, and includes information for nuclear export in its N-terminal domain. TaCRY2 was localized to the nucleus in the dark. Expression of TaCRY1a-green fluorescent protein or TaCRY2-green fluorescent protein in Arabidopsis conferred a shorter hypocotyl phenotype under blue light. These transgenic Arabidopsis plants showed higher sensitivity to high-salt, osmotic stress, and ABA treatment during germination and postgermination development, and they displayed altered expression of stress/ABA-responsive genes. The primary root growth in transgenic seedlings was less tolerant of ABA. These observations indicate that TaCRY1 and TaCRY2 might be involved in the ABA signaling pathway in addition to their role in primary blue light signal transduction.
Collapse
Affiliation(s)
- Pei Xu
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Jiangsu 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, Crowell DN, Bach TJ. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. THE PLANT CELL 2009; 21:285-300. [PMID: 19136647 PMCID: PMC2648074 DOI: 10.1105/tpc.108.063248] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/12/2008] [Accepted: 12/19/2008] [Indexed: 05/07/2023]
Abstract
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.
Collapse
Affiliation(s)
- Esther Gerber
- Institut de Biologie Moléculaire des Plantes (Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, associated with the Université Louis Pasteur), F-67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim MC, Chung WS, Yun DJ, Cho MJ. Calcium and calmodulin-mediated regulation of gene expression in plants. MOLECULAR PLANT 2009; 2:13-21. [PMID: 19529824 PMCID: PMC2639735 DOI: 10.1093/mp/ssn091] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 05/17/2023]
Abstract
Sessile plants have developed a very delicate system to sense diverse kinds of endogenous developmental cues and exogenous environmental stimuli by using a simple Ca2+ ion. Calmodulin (CaM) is the predominant Ca2+ sensor and plays a crucial role in decoding the Ca2+ signatures into proper cellular responses in various cellular compartments in eukaryotes. A growing body of evidence points to the importance of Ca2+ and CaM in the regulation of the transcriptional process during plant responses to endogenous and exogenous stimuli. Here, we review recent progress in the identification of transcriptional regulators modulated by Ca2+ and CaM and in the assessment of their functional significance during plant signal transduction in response to biotic and abiotic stresses and developmental cues.
Collapse
Affiliation(s)
- Min Chul Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | | | | | | |
Collapse
|
45
|
Mazars C, Bourque S, Mithöfer A, Pugin A, Ranjeva R. Calcium homeostasis in plant cell nuclei. THE NEW PHYTOLOGIST 2009; 181:261-274. [PMID: 19130634 DOI: 10.1111/j.1469-8137.2008.02680.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggesting that, while interacting with other organelles, the nucleus has the potential to generate and regulate calcium signals on its own.
Collapse
Affiliation(s)
- Christian Mazars
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Stéphane Bourque
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Axel Mithöfer
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Alain Pugin
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Raoul Ranjeva
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| |
Collapse
|
46
|
Ahumada I, Cairó A, Hemmerlin A, González V, Pateraki I, Bach TJ, Rodríguez-Concepción M, Campos N, Boronat A. Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1100-1111. [PMID: 32688858 DOI: 10.1071/fp08012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Thiolases are ubiquitous enzymes involved in many essential biochemical processes. Biosynthetic thiolases, also known as acetoacetyl-CoA thiolases (AACT), catalyse a reversible Claisen-type condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. Here, we report the characterisation of two genes from Arabidopsis thaliana L., ACT1 and ACT2, which encode two closely related AACT isoforms (AACT1 and AACT2, respectively). Transient expression of constructs encoding AACT1 and AACT2 fused to GFP revealed that the two proteins show a different subcellular localisation. While AACT1 is found in peroxisomes, AACT2 localises in the cytosol and the nucleus. The peroxisomal localisation of AACT1 depends on the presence of a C-terminal peroxisomal targeting sequence (PTS1) motif (Ser-Ala-Leu) not previously found in other organisms. ACT1 and ACT2 genes are also differentially expressed. Whereas ACT2 is expressed at relatively high level in all plant tissues, the expression of ACT1 is restricted to roots and inflorescences and its transcript is present at very low levels. The obtained results are in agreement with the involvement of AACT2 in catalysing the first step of the mevalonate pathway. The metabolic function of AACT1 is not clear at present, although its particular peroxisomal localisation might exclude a role in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Iván Ahumada
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Albert Cairó
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Víctor González
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Irene Pateraki
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Manuel Rodríguez-Concepción
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Narciso Campos
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Albert Boronat
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
47
|
Huizinga DH, Omosegbon O, Omery B, Crowell DN. Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. THE PLANT CELL 2008; 20:2714-28. [PMID: 18957507 PMCID: PMC2590716 DOI: 10.1105/tpc.107.053389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Isoprenylated proteins bear an isoprenylcysteine methyl ester at the C terminus. Although isoprenylated proteins have been implicated in meristem development and negative regulation of abscisic acid (ABA) signaling, the functional role of the terminal methyl group has not been described. Here, we show that transgenic Arabidopsis thaliana plants overproducing isoprenylcysteine methyltransferase (ICMT) exhibit ABA insensitivity in stomatal closure and seed germination assays, establishing ICMT as a negative regulator of ABA signaling. By contrast, transgenic plants overproducing isoprenylcysteine methylesterase (ICME) exhibit ABA hypersensitivity in stomatal closure and seed germination assays. Thus, ICME is a positive regulator of ABA signaling. To test the hypothesis that ABA signaling is under feedback regulation at the level of isoprenylcysteine methylation, we examined the effect of ABA on ICMT and ICME gene expression. Interestingly, ABA induces ICME gene expression, establishing a positive feedback loop whereby ABA promotes ABA responsiveness of plant cells via induction of ICME expression, which presumably results in the demethylation and inactivation of isoprenylated negative regulators of ABA signaling. These results suggest strategies for metabolic engineering of crop species for drought tolerance by targeted alterations in isoprenylcysteine methylation.
Collapse
Affiliation(s)
- David H Huizinga
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
48
|
Bracha-Drori K, Shichrur K, Lubetzky TC, Yalovsky S. Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting. PLANT PHYSIOLOGY 2008; 148:119-31. [PMID: 18641086 PMCID: PMC2528099 DOI: 10.1104/pp.108.120477] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/16/2008] [Indexed: 05/18/2023]
Abstract
Prenylation is a posttranslational protein modification essential for developmental processes and response to abscisic acid. Following prenylation, the three C-terminal residues are proteoliticaly removed and in turn the free carboxyl group of the isoprenyl cysteine is methylated. The proteolysis and methylation, collectively referred to as CaaX processing, are catalyzed by Ste24 endoprotease or Rce1 endoprotease and by an isoprenyl cysteine methyltransferase (ICMT). Arabidopsis (Arabidopsis thaliana) contains single STE24 and RCE1 and two ICMT homologs. Here we show that in yeast (Saccharomyces cerevisiae) AtRCE1 promoted a-mating factor secretion and membrane localization of a ROP GTPase. Furthermore, green fluorescent protein fusion proteins of AtSTE24, AtRCE1, AtICMTA, and AtICMTB are colocalized in the endoplasmic reticulum, indicating that prenylated proteins reach this compartment and that CaaX processing is likely required for subcellular targeting. AtICMTB can process yeast a-factor more efficiently than AtICMTA. Sequence and mutational analyses revealed that the higher activity AtICMTB is conferred by five residues, which are conserved between yeast Ste14p, human ICMT, and AtICMTB but not in AtICMTA. Quantitative real-time reverse transcription-polymerase chain reaction and microarray data show that AtICMTA expression is significantly lower compared to AtICMTB. AtICMTA null mutants have a wild-type phenotype, indicating that its function is redundant. However, AtICMT RNAi lines had fasciated inflorescence stems, altered phylotaxis, and developed multiple buds without stem elongation. The phenotype of the ICMT RNAi lines is similar to farnesyltransferase beta-subunit mutant enhanced response to abscisic acid2 but is more subtle. Collectively, the data suggest that AtICMTB is likely the major ICMT and that methylation modulates activity of prenylated proteins.
Collapse
Affiliation(s)
- Keren Bracha-Drori
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
49
|
Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA. Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. PLANT METHODS 2008; 4:9. [PMID: 18489765 PMCID: PMC2424051 DOI: 10.1186/1746-4811-4-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/19/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND The isolation of green fluorescent protein (GFP) and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types. RESULTS We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings. CONCLUSION We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell) is available through Arabidopsis Biological Resource Center.
Collapse
Affiliation(s)
- Naohiro Kato
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
| | - Dexter Reynolds
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
- Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Matthew L Brown
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
| | - Marietta Boisdore
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
| | - Yukichi Fujikawa
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
| | - Andrea Morales
- Millennium Nucleus in Plant Cell Biology and Center of Plant Biotechnology, Andres Bello University, Av. República 217, 837-0146 Santiago, Chile
| | - Lee A Meisel
- Millennium Nucleus in Plant Cell Biology and Center of Plant Biotechnology, Andres Bello University, Av. República 217, 837-0146 Santiago, Chile
| |
Collapse
|
50
|
Galichet A, Hoyerová K, Kamínek M, Gruissem W. Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:1155-64. [PMID: 18184738 PMCID: PMC2259095 DOI: 10.1104/pp.107.107425] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/02/2008] [Indexed: 05/18/2023]
Abstract
Cytokinins regulate cell division and differentiation as well as a number of other processes implicated in plant development. The first step of cytokinin biosynthesis in Arabidopsis (Arabidopsis thaliana) is catalyzed by adenosine phosphate-isopentenyltransferases (AtIPT). The enzymes are localized in plastids or the cytoplasm where they utilize the intermediate dimethylallyl-diphosphate from the methylerythritolphosphate or mevalonic acid pathways. However, the regulatory mechanisms linking AtIPT activity and cytokinin biosynthesis with cytokinin homeostasis and isoprenoid synthesis are not well understood. Here, we demonstrate that expression of AtIPT3, one member of the adenosine AtIPT protein family in Arabidopsis, increased the production of specific isopentenyl-type cytokinins. Moreover, AtIPT3 is a substrate of the protein farnesyl transferase, and AtIPT3 farnesylation directed the localization of the protein in the nucleus/cytoplasm, whereas the nonfarnesylated protein was located in the plastids. AtIPT3 gain-of-function mutant analysis indicated that the different subcellular localization of the farnesylated protein and the nonfarnesylated protein was closely correlated with either isopentenyl-type or zeatin-type cytokinin biosynthesis. In addition, mutation of the farnesyl acceptor cysteine-333 of AtIPT3 abolishes cytokinin production, suggesting that cysteine-333 has a dual and essential role for AtIPT3 farnesylation and catalytic activity.
Collapse
Affiliation(s)
- Arnaud Galichet
- Institute of Plant Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|