1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R, Kiatwuthinon P. SNF1 plays a crucial role in the utilization of n-alkane and transcriptional regulation of the genes involved in it in the yeast Yarrowia lipolytica. Heliyon 2024; 10:e32886. [PMID: 38975102 PMCID: PMC11226914 DOI: 10.1016/j.heliyon.2024.e32886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
- Napapol Poopanitpan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sorawit Piampratom
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Patthanant Viriyathanit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Threesara Lertvatasilp
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
3
|
Braam S, Tripodi F, Österberg L, Persson S, Welkenhuysen N, Coccetti P, Cvijovic M. Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:143-154. [PMID: 38756204 PMCID: PMC11097897 DOI: 10.15698/mic2024.05.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
The AMPK/SNF1 pathway governs energy balance in eukaryotic cells, notably influencing glucose de-repression. In S. cerevisiae, Snf1 is phosphorylated and hence activated upon glucose depletion. This activation is required but is not sufficient for mediating glucose de-repression, indicating further glucose-dependent regulation mechanisms. Employing fluorescence recovery after photobleaching (FRAP) in conjunction with non-linear mixed effects modelling, we explore the spatial dynamics of Snf1 as well as the relationship between Snf1 phosphorylation and its target Mig1 controlled by hexose sugars. Our results suggest that inactivation of Snf1 modulates Mig1 localization and that the kinetic of Snf1 localization to the nucleus is modulated by the presence of non-fermentable carbon sources. Our data offer insight into the true complexity of regulation of this central signaling pathway in orchestrating cellular responses to fluctuating environmental cues. These insights not only expand our understanding of glucose homeostasis but also pave the way for further studies evaluating the importance of Snf1 localization in relation to its phosphorylation state and regulation of downstream targets.
Collapse
Affiliation(s)
- Svenja Braam
- Department of Mathematical Sciences, Chalmers University of Technology, University of GothenburgSweden.
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of MilanoBicoccaItaly.
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, University of GothenburgSweden.
- Department of Biology and Biological Engineering, Department of Mathematical Sciences, Chalmers University of TechnologySweden.
- Department of Biotechnology and Biosciences, Chalmers University of Technology, University of GothenburgGothenburg, SE412 96Sweden.
- University of MilanoBicoccaMilano, 20126Italy.
| | - Sebastian Persson
- Department of Mathematical Sciences, Chalmers University of Technology, University of GothenburgSweden.
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology, University of GothenburgSweden.
- Department of Biology and Biological Engineering, Department of Mathematical Sciences, Chalmers University of TechnologySweden.
- Department of Biotechnology and Biosciences, Chalmers University of Technology, University of GothenburgGothenburg, SE412 96Sweden.
- University of MilanoBicoccaMilano, 20126Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of MilanoBicoccaItaly.
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, University of GothenburgSweden.
| |
Collapse
|
4
|
Plank M, Carmiol N, Mitri B, Lipinski AA, Langlais PR, Capaldi AP. Systems level analysis of time and stimuli specific signaling through PKA. Mol Biol Cell 2024; 35:ar60. [PMID: 38446618 PMCID: PMC11064662 DOI: 10.1091/mbc.e23-02-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Nicole Carmiol
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bassam Mitri
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | - Paul R. Langlais
- The Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
6
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Abstract
In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.
Collapse
|
9
|
Lengyel S, Rascle C, Poussereau N, Bruel C, Sella L, Choquer M, Favaron F. Snf1 Kinase Differentially Regulates Botrytis cinerea Pathogenicity according to the Plant Host. Microorganisms 2022; 10:microorganisms10020444. [PMID: 35208900 PMCID: PMC8877277 DOI: 10.3390/microorganisms10020444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20–80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.
Collapse
Affiliation(s)
- Szabina Lengyel
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christine Rascle
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Nathalie Poussereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christophe Bruel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Correspondence: (L.S.); (M.C.)
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
- Correspondence: (L.S.); (M.C.)
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
| |
Collapse
|
10
|
A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in Candida albicans snf4Δ Mutants. mSphere 2021; 6:e0092921. [PMID: 34908458 PMCID: PMC8673253 DOI: 10.1128/msphere.00929-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric protein kinase SNF1 is a key regulator of metabolic adaptation in the pathogenic yeast Candida albicans, and mutants with a defective SNF1 complex cannot grow on carbon sources other than glucose. We identified a novel type of suppressor mutation in the β-subunit Kis1 that rescued the growth defects of cells lacking the regulatory γ-subunit Snf4 of the SNF1 complex. Unlike wild-type Kis1, the mutated Kis1A396T could bind to the catalytic α-subunit Snf1 in the absence of Snf4. Binding of Kis1A396T did not enhance phosphorylation of Snf1 by the upstream activating kinase Sak1, which is impaired in snf4Δ mutants. Nevertheless, the mutated Kis1A396T reestablished SNF1-dependent gene expression, confirming that SNF1 functionality was restored. The repressor proteins Mig1 and Mig2 were phosphorylated even in the absence of Snf1, but their phosphorylation patterns were altered, indicating that SNF1 regulates Mig1 and Mig2 activity indirectly. In contrast to wild-type cells, mutants lacking Snf4 were unable to reduce the amounts of Mig1 and Mig2 when grown on alternative carbon sources, and this deficiency was also remediated by the mutated Kis1A396T. These results provide novel insights into the regulation of SNF1 and the repressors Mig1 and Mig2 in the metabolic adaptation of C. albicans. IMPORTANCE The highly conserved protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans, but it is not clear how it regulates its downstream targets in this fungus. We show that the repressor proteins Mig1 and Mig2 are phosphorylated also in cells lacking the catalytic α-subunit Snf1 of the SNF1 complex, but the amounts of both proteins were reduced in wild-type cells when glucose was replaced by alternative carbon sources, pointing to an indirect mechanism of regulation. Mutants lacking the regulatory γ-subunit Snf4 of the SNF1 complex, which cannot grow on alternative carbon sources, were unable to downregulate Mig1 and Mig2 levels. We identified a novel type of suppressor mutation, an amino acid substitution in the β-subunit Kis1, which enabled Kis1 to bind to Snf1 in the absence of Snf4, thereby restoring Mig1 and Mig2 downregulation, SNF1-dependent gene expression, and growth on alternative carbon sources. These results provide new insights into the SNF1 signaling pathway in C. albicans.
Collapse
|
11
|
Barney JB, Chandrashekarappa DG, Soncini SR, Schmidt MC. Drug resistance in diploid yeast is acquired through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. PLoS Genet 2021; 17:e1009800. [PMID: 34555030 PMCID: PMC8460028 DOI: 10.1371/journal.pgen.1009800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Previous studies of adaptation to the glucose analog, 2-deoxyglucose, by Saccharomyces cerevisiae have utilized haploid cells. In this study, diploid cells were used in the hope of identifying the distinct genetic mechanisms used by diploid cells to acquire drug resistance. While haploid cells acquire resistance to 2-deoxyglucose primarily through recessive alleles in specific genes, diploid cells acquire resistance through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. Dominant-acting, missense alleles in all three subunits of yeast AMP-activated protein kinase confer resistance to 2-deoxyglucose. Dominant-acting, nonsense alleles in the REG1 gene, which encodes a negative regulator of AMP-activated protein kinase, confer 2-deoxyglucose resistance through haploinsufficiency. Most of the resistant strains isolated in this study achieved resistance through aneuploidy. Cells with a monosomy of chromosome 4 are resistant to 2-deoxyglucose. While this genetic strategy comes with a severe fitness cost, it has the advantage of being readily reversible when 2-deoxyglucose selection is lifted. Increased expression of the two DOG phosphatase genes on chromosome 8 confers resistance and was achieved through trisomies and tetrasomies of that chromosome. Finally, resistance was also mediated by increased expression of hexose transporters, achieved by duplication of a 117 kb region of chromosome 4 that included the HXT3, HXT6 and HXT7 genes. The frequent use of aneuploidy as a genetic strategy for drug resistance in diploid yeast and human tumors may be in part due to its potential for reversibility when selection pressure shifts.
Collapse
Affiliation(s)
- Jordan B. Barney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Samantha R. Soncini
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi. PLoS Negl Trop Dis 2021; 15:e0009435. [PMID: 34029334 PMCID: PMC8177656 DOI: 10.1371/journal.pntd.0009435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, has a digenetic life cycle. In its passage from the insect vector to the mammalian host, and vice versa, it must be prepared to cope with abrupt changes in environmental conditions, such as carbon source, pH, temperature and osmolarity, in order to survive. Sensing and signaling pathways that allow the parasite to adapt, have unique characteristics with respect to their hosts and other free-living organisms. Many of the canonical proteins involved in these transduction pathways have not yet been found in the genomes of these parasites because they present divergences either at the functional, structural and/or protein sequence level. All of this makes these pathways promising targets for therapeutic drugs. The AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by environmental stresses such as osmotic stress, hypoxia, ischaemia and exercise that results in reduction of ATP and increase of AMP levels. Thus, AMPK is regarded as a fuel gauge, functioning both as a nutrient and an energy sensor, to maintain energy homeostasis and, eventually, to protect cells from death by nutrient starvation. In the present study we report the characterization of AMPK complexes for the first time in T. cruzi and propose the function of TcAMPK as a novel regulator of nutritional stress in epimastigote forms. We show that there is phosphotransferase activity specific for SAMS peptide in epimastigotes extracts, which is inhibited by Compound C and is modulated by carbon source availability. In addition, TcAMPKα2 subunit has an unprecedented functional substitution (Ser x Thr) at the activation loop and its overexpression in epimastigotes led to higher autophagic activity during prolonged nutritional stress. Moreover, the over-expression of the catalytic subunits resulted in antagonistic phenotypes associated with proliferation. Together, these results point to a role of TcAMPK in autophagy and nutrient sensing, key processes for the survival of trypanosomatids and for its life cycle progression. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. This silent illness is endemic in Latin-American countries and is conventionally transmitted to humans by insects from the Reduviidae family. In its passage from the insect vector to the mammalian host, and vice versa, the parasite must overcome abrupt changes in environmental conditions in order to survive. The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase activated by environmental stresses that cause imbalances of the intracellular AMP:ATP ratios. Thus, AMPK is regarded as a “fuel gauge”, functioning both as a nutrient and an energy sensor to help maintain energy homeostasis and protect cells from death by nutrient starvation. In the present study we report the characterization of AMPK complexes for the first time in T. cruzi and describe the function of AMPK as a novel regulator of nutritional stress in epimastigote forms. We demonstrate that this complex possesses specific AMPK kinase activity, is inhibited by Compound C and is modulated by carbon source availability. Together, these results point to a role of AMPK in autophagy and nutrient sensing, key processes for the survival of this parasite and for its life cycle progression.
Collapse
|
13
|
Characterization of sucrose non-fermenting-1 ( SNF1) homologue gene in Fusarium udum WSP-V2 and its regulation by the biocontrol agent Pseudomonas fluorescens OKC. 3 Biotech 2021; 11:19. [PMID: 33442517 DOI: 10.1007/s13205-020-02560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022] Open
Abstract
Sucrose non-fermenting 1 (SNF1) is a protein kinase and plays an important role in the energy homeostasis of glucose repressible gene transcription. It derepresses glucose repressed genes and associated with pathogenesis and production of cell wall degrading enzymes in fungal species. In the present study, we identified and characterized SNF1 homologue FuSNF1 in the F. udum strain WSP-V2. Transcript analysis of FuSNF1 along with the MAP kinases and some cell wall degrading enzyme (CWDE) genes of F. udum during interaction with pigeonpea revealed that most MAP kinases and CWDE genes was positively correlated with the FuSNF1 gene. Interestingly, transcript accumulation of all these genes was lowered when pigeonpea seeds were bioprimed with a PGPR strain Pseudomonas fluorescens OKC. Transcript accumulation of FuSNF1 was observed from the day of inoculation and reached maximum level on day 7 in OKC non-bioprimed plants. However, transcript accumulation was low (1.5 fold) in F. udum inoculated with pigeonpea plants bioprimed with OKC. Transcript accumulation patterns of the F. udum MAP Kinases genes and CWDE genes also showed a similar trend and their transcript accumulation was lowered in the OKC bioprimed treatment. The results thus indicate a prime role of FuSNF1 in regulating pathogenicity and virulence of F. udum. The results further emphasize the importance of application of effective PGPR strains in regulating virulence of F. udum. In silico analysis of the SNF1 reference proteins from different fungal species showed that their homologue FuSNF1 is likely to be thermostable and acidic in nature.
Collapse
|
14
|
Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. eLife 2020; 9:e64588. [PMID: 33372657 PMCID: PMC7781599 DOI: 10.7554/elife.64588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022] Open
Abstract
Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jaehyoun Lee
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical CenterKansas CityUnited States
| | - Jerry L Workman
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
15
|
Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, Rohr R, Reggiori F, De Virgilio C, Dengjel J. Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 2020; 28:3486-3496.e6. [PMID: 31553916 DOI: 10.1016/j.celrep.2019.08.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rudolf Rohr
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
16
|
Schmidt GW, Welkenhuysen N, Ye T, Cvijovic M, Hohmann S. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases. Mol Genet Genomics 2020; 295:1489-1500. [PMID: 32948893 PMCID: PMC7524853 DOI: 10.1007/s00438-020-01715-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Glucose, fructose and mannose are the preferred carbon/energy sources for the yeast Saccharomyces cerevisiae. Absence of preferred energy sources activates glucose derepression, which is regulated by the kinase Snf1. Snf1 phosphorylates the transcriptional repressor Mig1, which results in its exit from the nucleus and subsequent derepression of genes. In contrast, Snf1 is inactive when preferred carbon sources are available, which leads to dephosphorylation of Mig1 and its translocation to the nucleus where Mig1 acts as a transcription repressor. Here we revisit the role of the three hexose kinases, Hxk1, Hxk2 and Glk1, in glucose de/repression. We demonstrate that all three sugar kinases initially affect Mig1 nuclear localization upon addition of glucose, fructose and mannose. This initial import of Mig1 into the nucleus was temporary; for continuous nucleocytoplasmic shuttling of Mig1, Hxk2 is required in the presence of glucose and mannose and in the presence of fructose Hxk2 or Hxk1 is required. Our data suggest that Mig1 import following exposure to preferred energy sources is controlled via two different pathways, where (1) the initial import is regulated by signals derived from metabolism and (2) continuous shuttling is regulated by the Hxk2 and Hxk1 proteins. Mig1 nucleocytoplasmic shuttling appears to be important for the maintenance of the repressed state in which Hxk1/2 seems to play an essential role.
Collapse
Affiliation(s)
- Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.,Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, Göteborg, Sweden
| | - Tian Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
17
|
Persson S, Welkenhuysen N, Shashkova S, Cvijovic M. Fine-Tuning of Energy Levels Regulates SUC2 via a SNF1-Dependent Feedback Loop. Front Physiol 2020; 11:954. [PMID: 32922308 PMCID: PMC7456839 DOI: 10.3389/fphys.2020.00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022] Open
Abstract
Nutrient sensing pathways are playing an important role in cellular response to different energy levels. In budding yeast, Saccharomyces cerevisiae, the sucrose non-fermenting protein kinase complex SNF1 is a master regulator of energy homeostasis. It is affected by multiple inputs, among which energy levels is the most prominent. Cells which are exposed to a switch in carbon source availability display a change in the gene expression machinery. It has been shown that the magnitude of the change varies from cell to cell. In a glucose rich environment Snf1/Mig1 pathway represses the expression of its downstream target, such as SUC2. However, upon glucose depletion SNF1 is activated which leads to an increase in SUC2 expression. Our single cell experiments indicate that upon starvation, gene expression pattern of SUC2 shows rapid increase followed by a decrease to initial state with high cell-to-cell variability. The mechanism behind this behavior is currently unknown. In this work we study the long-term behavior of the Snf1/Mig1 pathway upon glucose starvation with a microfluidics and non-linear mixed effect modeling approach. We show a negative feedback mechanism, involving Snf1 and Reg1, which reduces SUC2 expression after the initial strong activation. Snf1 kinase activity plays a key role in this feedback mechanism. Our systems biology approach proposes a negative feedback mechanism that works through the SNF1 complex and is controlled by energy levels. We further show that Reg1 likely is involved in the negative feedback mechanism.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:7273-7311. [PMID: 32651601 DOI: 10.1007/s00253-020-10680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/21/2023]
Abstract
System-wide interactions in living cells and discovery of the diverse roles of transcriptional regulatory proteins that are mediator proteins with catalytic domains and regulatory subunits and transcription factors in the cellular pathways have become crucial for understanding the cellular response to environmental conditions. This review provides information for future metabolic engineering strategies through analyses on the highly interconnected regulatory networks in Saccharomyces cerevisiae and Pichia pastoris and identifying their components. We discuss the current knowledge on the carbon catabolite repression (CCR) mechanism, interconnecting regulatory system of the central metabolic pathways that regulate cell metabolism based on nutrient availability in the industrial yeasts. The regulatory proteins and their functions in the CCR signalling pathways in both yeasts are presented and discussed. We highlight the importance of metabolic signalling networks by signifying ways on how effective engineering strategies can be designed for generating novel regulatory circuits, furthermore to activate pathways that reconfigure the network architecture. We summarize the evidence that engineering of multilayer regulation is needed for directed evolution of the cellular network by putting the transcriptional control into a new perspective for the regulation of central carbon metabolism of the industrial yeasts; furthermore, we suggest research directions that may help to enhance production of recombinant products in the widely used, creatively engineered, but relatively less studied P. pastoris through de novo metabolic engineering strategies based on the discovery of components of signalling pathways in CCR metabolism. KEY POINTS: • Transcriptional regulation and control is the key phenomenon in the cellular processes. • Designing de novo metabolic engineering strategies depends on the discovery of signalling pathways in CCR metabolism. • Crosstalk between pathways occurs through essential parts of transcriptional machinery connected to specific catalytic domains. • In S. cerevisiae, a major part of CCR metabolism is controlled through Snf1 kinase, Glc7 phosphatase, and Srb10 kinase. • In P. pastoris, signalling pathways in CCR metabolism have not yet been clearly known yet. • Cellular regulations on the transcription of promoters are controlled with carbon sources.
Collapse
|
19
|
Meng L, Liu HL, Lin X, Hu XP, Teng KR, Liu SX. Enhanced multi-stress tolerance and glucose utilization of Saccharomyces cerevisiae by overexpression of the SNF1 gene and varied beta isoform of Snf1 dominates in stresses. Microb Cell Fact 2020; 19:134. [PMID: 32571355 PMCID: PMC7310068 DOI: 10.1186/s12934-020-01391-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/03/2022] Open
Abstract
Background The Saccharomyces cerevisiae Snf1 complex is a member of the AMP-activated protein kinase family and plays an important role in response to environmental stress. The α catalytic subunit Snf1 regulates the activity of the protein kinase, while the β regulatory subunits Sip1/Sip2/Gal83 specify substrate preferences and stress response capacities of Snf1. In this study, we aim to investigate the effects of SNF1 overexpression on the cell tolerance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses and to explore the valid Snf1 form in the light of β subunits in these stresses. Results The results suggest that overexpression of SNF1 is effective to improve cell resistance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses, which might be related to the changed accumulation of fatty acids and amino acids and altered expression levels of genes involved in glucose transport and glycolysis. However, different form of β regulatory subunits dominated in stresses with regard to cell tolerance and glucose utilization. The Sip1 isoform was more necessary to the growth and glucose consumption in ethanol stress. The glucose uptake largely depended on the Sip2 isoform in high sugar and ethanol stresses. The Gal83 isoform only contributed inferior effect on the growth in ethanol stress. Therefore, redundancy and synergistic effect of β subunits might occur in high glucose, ethanol, and heat stresses, but each subunit showed specificity under various stresses. Conclusions This study enriches the understanding of the function of Snf1 protein kinase and provides an insight to breed multi-stress tolerant yeast strains.
Collapse
Affiliation(s)
- Lu Meng
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Hui-Ling Liu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Xue Lin
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China.
| | - Xiao-Ping Hu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Kun-Ru Teng
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Si-Xin Liu
- College of Science, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
20
|
Tumolo JM, Hepowit NL, Joshi SS, MacGurn JA. A Snf1-related nutrient-responsive kinase antagonizes endocytosis in yeast. PLoS Genet 2020; 16:e1008677. [PMID: 32191698 PMCID: PMC7176151 DOI: 10.1371/journal.pgen.1008677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/22/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endocytosis is regulated in response to changing environmental conditions to adjust plasma membrane (PM) protein composition for optimal cell growth. Protein networks involved in cargo capture and sorting, membrane sculpting and deformation, and vesicle scission have been well-characterized, but less is known about the networks that sense extracellular cues and relay signals to trigger endocytosis of specific cargo. Hal4 and Hal5 are yeast Snf1-related kinases that were previously reported to regulate nutrient transporter stability by an unknown mechanism. Here we demonstrate that loss of Hal4 and Hal5 activates endocytosis of many different kinds of PM proteins, including Art1-mediated and Art1-independent endocytic events. Acute inhibition of Hal5 in the absence of Hal4 triggers rapid endocytosis, suggesting that Hal kinases function in a nutrient-sensing relay upstream of the endocytic response. Interestingly, Hal5 localizes to the PM, but shifts away from the cell surface in response to stimulation with specific nutrients. We propose that Hal5 functions as a nutrient-responsive regulator of PM protein stability, antagonizing endocytosis and promoting stability of endocytic cargos at the PM in nutrient-limiting conditions. Cellular homeostasis, a fundamental requirement for all living organisms, is maintained in part through evolutionarily conserved mechanisms that regulate the abundance and activity of ion and nutrient transporters at the cell surface. These mechanisms often incorporate signaling networks that sense changes in the environment and relay signals to alter protein composition at the plasma membrane, often by inducing endocytosis of specific transporters in order to adjust and optimize transport activities at the cell surface. Here, we investigate two kinases in yeast–Hal4 and Hal5 –that are related to the yeast and human AMP sensing kinases. Loss of both Hal4 and Hal5 was previously reported to result in destabilization of ion and nutrient transporters by an unknown mechanism. Our data indicates that Hal kinases function broadly in the regulation of many different classes of endocytic cargo. Hal5 localizes to the plasma membrane in a manner that is responsive to nutrient availability and acute loss of Hal5 activity triggers rapid internalization of endocytic cargo. By uncovering a role for Hal5 as a nutrient-responsive regulator of endocytosis, this research sheds light on how signaling molecules regulate membrane trafficking events to coordinate adaptive growth responses.
Collapse
Affiliation(s)
- Jessica M. Tumolo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Samika S. Joshi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wang BZ, Yang JJ, Zhang H, Smith CA, Jin K. AMPK Signaling Regulates the Age-Related Decline of Hippocampal Neurogenesis. Aging Dis 2019; 10:1058-1074. [PMID: 31595203 PMCID: PMC6764723 DOI: 10.14336/ad.2019.0102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
The global incidence of age-associated neurological diseases is expected to rise with increasingly greying societies. In the aged brain, there is a dramatic decrease in the number of stem cells, which is a main cause for the decrease in brain function. Intrinsic factors, such as cell metabolism, have been studied but its role in neurogenesis is still unknown. Therefore, this study sought to establish whether AMP-activated protein kinase (AMPK) signaling does indeed regulate hippocampal neurogenesis in the aged brain. We found that i) AMPKα2 was the predominant catalytic subunit in the subgranular and subventricular zones; ii) AMPK activation was at a significantly higher level in the aged vs. young hippocampus; iii) short term (7 days) treatment with selective AMPK signaling inhibitor Compound C (10 mg/kg/day, i.p.) significantly increased the numbers of newborn (BrdU+), Type 2 (MCM2+), and Type 3 (DCX+) neural stem cells, but not Type 1 (GFAP+/Sox2+) cells, in the aged hippocampus. Taken together, our results demonstrate that AMPK signaling plays a critical role in the age-related decline of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Brian Z Wang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Jane J Yang
- School of Interdisciplinary Studies, University of Texas at Dallas, TX 75080, USA
| | - Hongxia Zhang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Charity A Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| |
Collapse
|
22
|
Hayashi N, Oki M. Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae. Curr Genet 2019; 66:335-344. [PMID: 31372715 DOI: 10.1007/s00294-019-01022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
Abstract
Nutrient metabolism is regulated for adaptation to, for example, environmental alterations, cellular stress, cell cycle, and cellular ageing. This regulatory network consists of cross-talk between cytoplasmic organelles and the nucleus. The ras-like nuclear small G protein, Ran, functions in nuclear-cytosolic transport and regulatory signal transmission. In yeast, some genes involved in the Ran system in yeast are required for growth on glycerol medium. Growth deficiency, due to mutations in the GSP1 gene, which encodes Ran, is allele specific. Specifically in this study, the gsp1-1894 cells lost mitochondria, and could not grow on media containing glycerol, galactose or maltose. However, the gsp1-1894 cells grew better on a high salt medium (1 M NaCl) and had increased expression levels of GPD1-lacZ. Furthermore, disruption of the HOG1 gene suppressed their growth deficiency on glycerol medium. These findings suggest that altered activation of Hog1 in the gsp1-1894 cells resulted in the loss of mitochondria and inhibition of glycerol metabolism. Growth deficiency of the gsp1-1894 cells on galactose medium was further suppressed by high dosage of the SIP2 DNA, which encodes the cytosolic β subunit of AMPK. This suggests that higher cytosolic activity of AMPK is required for the utilization of an alternative carbon source in gsp1-1894 cells.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Department of Health and Nutrition, Faculty of Human Health Science, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa, Ishikawa, 920-1392, Japan.
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
23
|
An Intragenic Recombination Event Generates a Snf4-Independent Form of the Essential Protein Kinase Snf1 in Candida albicans. mSphere 2019; 4:4/3/e00352-19. [PMID: 31217306 PMCID: PMC6584375 DOI: 10.1128/msphere.00352-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase. The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1Δ311 − 316 was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1Δ311 − 316 still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. IMPORTANCE Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase.
Collapse
|
24
|
AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking. Int J Mol Sci 2019; 20:ijms20030515. [PMID: 30691068 PMCID: PMC6387238 DOI: 10.3390/ijms20030515] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) plays a central role in the regulation of cellular metabolism. Recent studies reveal a novel role for AMPK in the regulation of glucose and other carbohydrates flux by controlling the endocytosis of transporters. The first step in glucose metabolism is glucose uptake, a process mediated by members of the GLUT/SLC2A (glucose transporters) or HXT (hexose transporters) family of twelve-transmembrane domain glucose transporters in mammals and yeast, respectively. These proteins are conserved from yeast to humans, and multiple transporters—each with distinct kinetic properties—compete for plasma membrane occupancy in order to enhance or limit the rate of glucose uptake. During growth in the presence of alternative carbon sources, glucose transporters are removed and replaced with the appropriate transporter to help support growth in response to this environment. New insights into the regulated protein trafficking of these transporters reveal the requirement for specific α-arrestins, a little-studied class of protein trafficking adaptor. A defining feature of the α-arrestins is that each contains PY-motifs, which can bind to the ubiquitin ligases from the NEDD4/Rsp5 (Neural precursor cell Expressed, Developmentally Down-regulated 4 and Reverses Spt- Phenotype 5, respectively) family. Specific association of α-arrestins with glucose and carbohydrate transporters is thought to bring the ubiquitin ligase in close proximity to its membrane substrate, and thereby allows the membrane cargo to become ubiquitinated. This ubiquitination in turn serves as a mark to stimulate endocytosis. Recent results show that AMPK phosphorylation of the α-arrestins impacts their abundance and/or ability to stimulate carbohydrate transporter endocytosis. Indeed, AMPK or glucose limitation also controls α-arrestin gene expression, adding an additional layer of complexity to this regulation. Here, we review the recent studies that have expanded the role of AMPK in cellular metabolism to include regulation of α-arrestin-mediated trafficking of transporters and show that this mechanism of regulation is conserved over the ~150 million years of evolution that separate yeast from man.
Collapse
|
25
|
Welkenhuysen N, Schnitzer B, Österberg L, Cvijovic M. Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways. Front Physiol 2019; 9:1964. [PMID: 30719010 PMCID: PMC6348271 DOI: 10.3389/fphys.2018.01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Systems biology approaches provide means to study the interplay between biological processes leading to the mechanistic understanding of the properties of complex biological systems. Here, we developed a vector format rule-based Boolean logic model of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better understand the role of crosstalk on network robustness and function. We identified that phosphatases are the common unknown components of the network and that crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient sensing events. The model was simulated with known crosstalk combinations and subsequent analysis led to the identification of characteristics and impact of pathway interconnections. Our results revealed that the interconnections between the Snf1 and Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our approach contributes to the understanding of the function and importance of crosstalk in nutrient signaling.
Collapse
Affiliation(s)
- Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Barbara Schnitzer
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Tripodi F, Castoldi A, Nicastro R, Reghellin V, Lombardi L, Airoldi C, Falletta E, Maffioli E, Scarcia P, Palmieri L, Alberghina L, Agrimi G, Tedeschi G, Coccetti P. Methionine supplementation stimulates mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1901-1913. [PMID: 30290237 DOI: 10.1016/j.bbamcr.2018.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Andrea Castoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | | | - Elisa Maffioli
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.
| | - Gabriella Tedeschi
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
27
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
28
|
Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2018; 18:4996351. [PMID: 29771304 PMCID: PMC6001886 DOI: 10.1093/femsyr/foy056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.
Collapse
Affiliation(s)
| | | | - Sanne J Wiersma
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maaike Goudriaan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | | | |
Collapse
|
29
|
Tripodi F, Fraschini R, Zocchi M, Reghellin V, Coccetti P. Snf1/AMPK is involved in the mitotic spindle alignment in Saccharomyces cerevisiae. Sci Rep 2018; 8:5853. [PMID: 29643469 PMCID: PMC5895576 DOI: 10.1038/s41598-018-24252-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Before anaphase onset, budding yeast cells must align the mitotic spindle parallel to the mother-bud axis to ensure proper chromosome segregation. The protein kinase Snf1/AMPK is a highly conserved energy sensor, essential for adaptation to glucose limitation and in response to cellular stresses. However, recent findings indicate that it plays important functions also in non-limiting glucose conditions. Here we report a novel role of Snf1/AMPK in the progression through mitosis in glucose-repressing condition. We show that active Snf1 is localized to the bud neck from bud emergence to cytokinesis in a septin-dependent manner. In addition, loss of Snf1 induces a delay of the metaphase to anaphase transition that is due to a defect in the correct alignment of the mitotic spindle. In particular, genetic data indicate that Snf1 promotes spindle orientation acting in parallel with Dyn1 and in concert with Kar9. Altogether this study describes a new role for Snf1 in mitosis and connects cellular metabolism to mitosis progression.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| | - Roberta Fraschini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Monica Zocchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Museo della Scienza e della Tecnologia Leonardo da Vinci, Milano, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Eurofins BioPharma, Vimodrone, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
30
|
Abstract
Mammalian AMPK is known to be activated by falling cellular energy status, signaled by rising AMP/ATP and ADP/ATP ratios. We review recent information about how this occurs but also discuss new studies suggesting that AMPK is able to sense glucose availability independently of changes in adenine nucleotides. The glycolytic intermediate fructose-1,6-bisphosphate (FBP) is sensed by aldolase, which binds to the v-ATPase on the lysosomal surface. In the absence of FBP, interactions between aldolase and the v-ATPase are altered, allowing formation of an AXIN-based AMPK-activation complex containing the v-ATPase, Ragulator, AXIN, LKB1, and AMPK, causing increased Thr172 phosphorylation and AMPK activation. This nutrient-sensing mechanism activates AMPK but also primes it for further activation if cellular energy status subsequently falls. Glucose sensing at the lysosome, in which AMPK and other components of the activation complex act antagonistically with another key nutrient sensor, mTORC1, may have been one of the ancestral roles of AMPK.
Collapse
Affiliation(s)
- Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an Campus, Xiamen, Fujian 361102, China.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
31
|
Mitochondrial Voltage-Dependent Anion Channel Protein Por1 Positively Regulates the Nuclear Localization of Saccharomyces cerevisiae AMP-Activated Protein Kinase. mSphere 2018; 3:mSphere00482-17. [PMID: 29359182 PMCID: PMC5760747 DOI: 10.1128/msphere.00482-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023] Open
Abstract
AMP-activated protein kinases (AMPKs) sense energy limitation and regulate transcription and metabolism in eukaryotes from yeast to humans. In mammals, AMPK responds to increased AMP-to-ATP or ADP-to-ATP ratios and is implicated in diabetes, heart disease, and cancer. Mitochondria produce ATP and are generally thought to downregulate AMPK. Indeed, some antidiabetic drugs activate AMPK by affecting mitochondrial respiration. ATP release from mitochondria is mediated by evolutionarily conserved proteins known as voltage-dependent anion channels (VDACs). One would therefore expect VDACs to serve as negative regulators of AMPK. However, our experiments in yeast reveal the existence of an opposite relationship. We previously showed that Saccharomyces cerevisiae VDACs Por1 and Por2 positively regulate AMPK/Snf1 catalytic activation. Here, we show that Por1 also plays an important role in promoting AMPK/Snf1 nuclear localization. Our counterintuitive findings could inform research in areas ranging from diabetes to cancer to fungal pathogenesis. Snf1 protein kinase of the yeast Saccharomyces cerevisiae is a member of the highly conserved eukaryotic AMP-activated protein kinase (AMPK) family, which is involved in regulating responses to energy limitation. Under conditions of carbon/energy stress, such as during glucose depletion, Snf1 is catalytically activated and enriched in the nucleus to regulate transcription. Snf1 catalytic activation requires phosphorylation of its conserved activation loop threonine (Thr210) by upstream kinases. Catalytic activation is also a prerequisite for Snf1’s subsequent nuclear enrichment, a process that is mediated by Gal83, one of three alternate β-subunits of the Snf1 kinase complex. We previously reported that the mitochondrial voltage-dependent anion channel (VDAC) proteins Por1 and Por2 play redundant roles in promoting Snf1 catalytic activation by Thr210 phosphorylation. Here, we show that the por1Δ mutation alone, which by itself does not affect Snf1 Thr210 phosphorylation, causes defects in Snf1 and Gal83 nuclear enrichment and Snf1’s ability to stimulate transcription. We present evidence that Por1 promotes Snf1 nuclear enrichment by promoting the nuclear enrichment of Gal83. Overexpression of Por2, which is not believed to have channel activity, can suppress the localization and transcription activation defects of the por1Δ mutant, suggesting that the regulatory role played by Por1 is separable from its channel function. Thus, our findings expand the positive roles of the yeast VDACs in carbon/energy stress signaling upstream of Snf1. Since AMPK/Snf1 and VDAC proteins are conserved in evolution, our findings in yeast may have implications for AMPK regulation in other eukaryotes, including humans. IMPORTANCE AMP-activated protein kinases (AMPKs) sense energy limitation and regulate transcription and metabolism in eukaryotes from yeast to humans. In mammals, AMPK responds to increased AMP-to-ATP or ADP-to-ATP ratios and is implicated in diabetes, heart disease, and cancer. Mitochondria produce ATP and are generally thought to downregulate AMPK. Indeed, some antidiabetic drugs activate AMPK by affecting mitochondrial respiration. ATP release from mitochondria is mediated by evolutionarily conserved proteins known as voltage-dependent anion channels (VDACs). One would therefore expect VDACs to serve as negative regulators of AMPK. However, our experiments in yeast reveal the existence of an opposite relationship. We previously showed that Saccharomyces cerevisiae VDACs Por1 and Por2 positively regulate AMPK/Snf1 catalytic activation. Here, we show that Por1 also plays an important role in promoting AMPK/Snf1 nuclear localization. Our counterintuitive findings could inform research in areas ranging from diabetes to cancer to fungal pathogenesis.
Collapse
|
32
|
Abstract
Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching on alternate ATP-generating catabolic pathways while switching off ATP-consuming anabolic pathways. However, its ancestral role in unicellular eukaryotes may have been in sensing of glucose rather than energy. In this article, we discuss a few interesting recent developments in the AMPK field. Firstly, we review recent findings on the canonical pathway by which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now known to be activated in mammalian cells by glucose starvation by a mechanism that occurs in the absence of changes in adenine nucleotides, involving the formation of complexes with Axin and LKB1 on the surface of the lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ subunits, AMPK heterotrimers contain a site for binding of allosteric activators termed the allosteric drug and metabolite (ADaM) site. A large number of synthetic activators, some of which show promise as hypoglycaemic agents in pre-clinical studies, have now been shown to bind there. Fourthly, some kinase inhibitors paradoxically activate AMPK, including one (SU6656) that binds in the catalytic site. Finally, although downstream targets originally identified for AMPK were mainly concerned with metabolism, recently identified targets have roles in such diverse areas as mitochondrial fission, integrity of epithelial cell layers, and angiogenesis.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang’an Campus, Xiamen, China
| |
Collapse
|
33
|
Wollman AJ, Shashkova S, Hedlund EG, Friemann R, Hohmann S, Leake MC. Transcription factor clusters regulate genes in eukaryotic cells. eLife 2017; 6:27451. [PMID: 28841133 PMCID: PMC5602325 DOI: 10.7554/elife.27451] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.
Collapse
Affiliation(s)
- Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Sviatlana Shashkova
- Biological Physical Sciences Institute, University of York, York, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Erik G Hedlund
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
34
|
Islam KT, Bond JP, Fakhoury AM. FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet 2017; 63:723-738. [PMID: 28132080 DOI: 10.1007/s00294-017-0676-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Fusarium virguliforme is a soil-borne pathogenic fungus that causes sudden death syndrome (SDS) in soybean. Its pathogenicity is believed to require the activity of cell-wall-degrading enzymes (CWDEs). The sucrose non-fermenting protein kinase 1 gene (SNF1) is a key component of the glucose de-repression pathway in yeast, and a regulator of gene expression for CWDEs in some plant pathogenic fungi. To elucidate the functional role of the SNF1 homolog in F. virguliforme, FvSNF1 was disrupted using a split-marker strategy. Disruption of FvSNF1 in F. virguliforme abolishes galactose utilization and causes poor growth on xylose, arabinose and sucrose. However, the resulting Fvsnf1 mutant grew similar to wild-type and ectopic transformants on glucose, fructose, maltose, or pectin as the main source of carbon. The Fvsnf1 mutant displayed no expression of the gene-encoding galactose oxidase (GAO), a secretory enzyme that catalyzes oxidation of D-galactose. It also exhibited a significant reduction in the expression of several CWDE-coding genes in contrast to the wild-type strain. Greenhouse pathogenicity assays revealed that the Fvsnf1 mutant was severely impaired in its ability to cause SDS on challenged soybean plants. Microscopy and microtome studies on infected roots showed that the Fvsnf1 mutant was defective in colonizing vascular tissue of infected plants. Cross and longitudinal sections of infected roots stained with fluorescein-labeled wheat germ agglutinin and Congo red showed that the Fvsnf1 mutant failed to colonize the xylem vessels and phloem tissue at later stages of infection. Quantification of the fungal biomass in inoculated roots further confirmed a reduced colonization of roots by the Fvsnf1 mutant when compared to the wild type. These findings suggest that FvSNF1 regulates the expression of CWDEs in F. virguliforme, thus affecting the virulence of the fungus on soybean.
Collapse
Affiliation(s)
- Kazi T Islam
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jason P Bond
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ahmad M Fakhoury
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
35
|
Welkenhuysen N, Borgqvist J, Backman M, Bendrioua L, Goksör M, Adiels CB, Cvijovic M, Hohmann S. Single-cell study links metabolism with nutrient signaling and reveals sources of variability. BMC SYSTEMS BIOLOGY 2017; 11:59. [PMID: 28583118 PMCID: PMC5460408 DOI: 10.1186/s12918-017-0435-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND The yeast AMPK/SNF1 pathway is best known for its role in glucose de/repression. When glucose becomes limited, the Snf1 kinase is activated and phosphorylates the transcriptional repressor Mig1, which is then exported from the nucleus. The exact mechanism how the Snf1-Mig1 pathway is regulated is not entirely elucidated. RESULTS Glucose uptake through the low affinity transporter Hxt1 results in nuclear accumulation of Mig1 in response to all glucose concentrations upshift, however with increasing glucose concentration the nuclear localization of Mig1 is more intense. Strains expressing Hxt7 display a constant response to all glucose concentration upshifts. We show that differences in amount of hexose transporter molecules in the cell could cause cell-to-cell variability in the Mig1-Snf1 system. We further apply mathematical modelling to our data, both general deterministic and a nonlinear mixed effect model. Our model suggests a presently unrecognized regulatory step of the Snf1-Mig1 pathway at the level of Mig1 dephosphorylation. Model predictions point to parameters involved in the transport of Mig1 in and out of the nucleus as a majorsource of cell to cell variability. CONCLUSIONS With this modelling approach we have been able to suggest steps that contribute to the cell-to-cell variability. Our data indicate a close link between the glucose uptake rate, which determines the glycolytic rate, and the activity of the Snf1/Mig1 system. This study hence establishes a close relation between metabolism and signalling.
Collapse
Affiliation(s)
- Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Mattias Backman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Mattias Goksör
- Department of Physics, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Caroline B Adiels
- Department of Physics, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96, Gothenburg, Sweden.
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
36
|
Schutt KL, Moseley JB. Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 2017; 28:1804-1814. [PMID: 28515144 PMCID: PMC5491188 DOI: 10.1091/mbc.e17-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Transient activation of the cellular energy sensor AMPK during osmotic stress requires its energy-sensing subunit. Cellular ATP levels decrease during osmotic stress, which triggers energy stress, which in turn requires dynamic activation of AMPK. The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
37
|
Kimura Y, Irie K, Mizuno T. Expression control of the AMPK regulatory subunit and its functional significance in yeast ER stress response. Sci Rep 2017; 7:46713. [PMID: 28429799 PMCID: PMC5399461 DOI: 10.1038/srep46713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved heterotrimeric kinase complex consisting of a catalytic subunit, α, and two regulatory subunits, β and γ. Previously, we demonstrated that Snf1, the Saccharomyces cerevisiae ortholog of AMPK, negatively regulates the unfolded protein response (UPR) pathway and the Hog1 MAP kinase pathway in ER stress response. However, it remains unclear how the alternate three β subunits, Sip1, Sip2, and Gal83, of the Snf1 complex participate in ER stress response. Here, we show that Gal83 plays a major role in Snf1-mediated downregulation of the UPR and Hog1 pathways. Gal83 is the most abundant β subunit in the normal state and further induced by ER stress. This induction is mediated via activation of the GAL83 promoter by the UPR. When expressed under the control of the GAL83 promoter, Sip2 exhibits potent functional activity equivalent to Gal83. Our results suggest that the functional significance of the β subunit of Snf1 AMPK in ER stress response is defined by modulation of the expression level through regulation of the promoter activity.
Collapse
Affiliation(s)
- Yuichi Kimura
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
38
|
Ramírez-Zavala B, Mottola A, Haubenreißer J, Schneider S, Allert S, Brunke S, Ohlsen K, Hube B, Morschhäuser J. The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans. Mol Microbiol 2017; 104:989-1007. [PMID: 28337802 DOI: 10.1111/mmi.13674] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
Abstract
The metabolic flexibility of the opportunistic fungal pathogen Candida albicans is important for colonisation and infection of different host niches. Complex regulatory networks, in which protein kinases play central roles, link metabolism and other virulence-associated traits, such as filamentous growth and stress resistance, and thereby control commensalism and pathogenicity. By screening a protein kinase deletion mutant library that was generated in the present work using an improved SAT1 flipper cassette, we found that the previously uncharacterised kinase Sak1 is a key upstream activator of the protein kinase Snf1, a highly conserved regulator of nutrient stress responses that is essential for viability in C. albicans. The sak1Δ mutants failed to grow on many alternative carbon sources and were hypersensitive to cell wall/membrane stress. These phenotypes were mirrored in mutants lacking other subunits of the SNF1 complex and partially compensated by a hyperactive form of Snf1. Transcriptional profiling of sak1Δ mutants showed that Sak1 ensures basal expression of glyoxylate cycle and gluconeogenesis genes even in glucose-rich media and thereby contributes to the metabolic plasticity of C. albicans. In a mouse model of gastrointestinal colonisation, sak1Δ mutants were rapidly outcompeted by wild-type cells, demonstrating that Sak1 is essential for the in vivo fitness of C. albicans.
Collapse
Affiliation(s)
| | - Austin Mottola
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julia Haubenreißer
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sabrina Schneider
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
He X, Li C, Ke R, Luo L, Huang D. Down-regulation of adenosine monophosphate–activated protein kinase activity: A driver of cancer. Tumour Biol 2017; 39:1010428317697576. [PMID: 28381161 DOI: 10.1177/1010428317697576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine monophosphate–activated protein kinase (AMPK), a serine/threonine protein kinase, is known as “intracellular energy sensor and regulator.” AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of “Warburg effect” in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.
Collapse
Affiliation(s)
- Xiaoling He
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong Li
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Ke
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingyu Luo
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 2017; 14:164-180. [PMID: 28169991 PMCID: PMC5672799 DOI: 10.1038/nrurol.2016.272] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis. Despite AMPK's known function in physiology, its role in pathological processes such as prostate cancer is enigmatic. However, emerging evidence is now beginning to decode the paradoxical role of AMPK in cancer and, therefore, inform clinicians if - and how - AMPK could be therapeutically targeted. Spatiotemporal regulation of AMPK complexes could be one of the mechanisms that governs this kinase's role in cancer. We hypothesize that different upstream stimuli will activate select subcellular AMPK complexes. This hypothesis is supported by the distinct subcellular locations of the various AMPK subunits. Each of these unique AMPK complexes regulates discrete downstream processes that can be tumour suppressive or oncogenic. AMPK's final biological output is then determined by the weighted net function of these downstream signalling events, influenced by additional prostate-specific signalling.
Collapse
Affiliation(s)
- Ayesha S. Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
- Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
41
|
Bai L, Mei X, Shen Z, Bi Y, Yuan Y, Guo Z, Wang H, Zhao H, Zhou Z, Wang C, Zhu K, Li G, Lv G. Netrin-1 Improves Functional Recovery through Autophagy Regulation by Activating the AMPK/mTOR Signaling Pathway in Rats with Spinal Cord Injury. Sci Rep 2017; 7:42288. [PMID: 28186165 PMCID: PMC5301251 DOI: 10.1038/srep42288] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an process for the degradation of cytoplasmic aggregated proteins and damaged organelles and plays an important role in the development of SCI. In this study, we investigated the therapeutic effect of Netrin-1 and its potential mechanism for autophagy regulation after SCI. A rat model of SCI was established and used for analysis. Results showed that administration of Netrin-1 not only significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK) but also reduced the phosphorylation of mammalian target of rapamycin (mTOR) and P70S6K. In addition, the expression of Beclin-1 and the ratio of the light-chain 3B-II (LC3B-II)/LC3B-I in the injured spinal cord significantly increased in Netrin-1 group than those in SCI group. Moreover, the ratio of apoptotic neurons in the anterior horn of the spinal cord and the cavity area of spinal cord significantly decreased in Netrin-1 group compared with those in SCI group. In addition, Netrin-1 not only preserved motor neurons but also significantly improved motor fuction of injured rats. These results suggest that Netrin-1 improved functional recovery through autophagy stimulation by activating the AMPK/mTOR signaling pathway in rats with SCI. Thus, Netrin-1 treatment could be a novel therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Liangjie Bai
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zhaoliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Hongyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Haosen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zipeng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Chen Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Kunming Zhu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Gang Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Gang Lv
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
42
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
43
|
Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress. Cell Signal 2016; 28:1881-1893. [PMID: 27592031 DOI: 10.1016/j.cellsig.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms.
Collapse
Affiliation(s)
| | - Rhonda R McCartney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
McCartney RR, Garnar-Wortzel L, Chandrashekarappa DG, Schmidt MC. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1518-28. [PMID: 27524664 DOI: 10.1016/j.bbapap.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
The AMP-activated protein kinase is a metabolic regulator that transduces information about energy and nutrient availability. In yeast, the AMP-activated protein kinase, called Snf1, is activated when energy and nutrients are scarce. Earlier studies have demonstrated that activation of Snf1 requires the phosphorylation of the activation loop on threonine 210. Here we examined the regulation of Snf1 kinase activity in response to phosphorylation at other sites. Phosphoproteomic studies have identified numerous phosphorylation sites within the Snf1 kinase enzyme. We made amino acid substitutions in the Snf1 protein that were either non-phosphorylatable (serine to alanine) or phospho-mimetic (serine to glutamate) and examined the effects of these changes on Snf1 kinase function in vivo and on its catalytic activity in vitro. We found that changes to most of the phosphorylation sites had no effect on Snf1 kinase function. However, changes to serine 214, a site within the kinase activation loop, inhibited Snf1 kinase activity. Snf1-activating kinase 1 still phosphorylates Snf1-S214E on threonine 210 but the S214E enzyme is non-functional in vivo and catalytically inactive in vitro. We conclude that yeast have developed two distinct pathways for down-regulating Snf1 activity. The first is through direct dephosphorylation of the conserved activation loop threonine. The second is through phosphorylation of serine 214.
Collapse
Affiliation(s)
- Rhonda R McCartney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Leopold Garnar-Wortzel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dakshayini G Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
45
|
Sanz P, Viana R, Garcia-Gimeno MA. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:353-374. [PMID: 27812987 DOI: 10.1007/978-3-319-43589-3_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In yeast, SNF1 protein kinase is the orthologue of mammalian AMPK complex. It is a trimeric complex composed of Snf1 protein kinase (orthologue of AMPKα catalytic subunit), Snf4 (orthologue of AMPKγ regulatory subunit), and a member of the Gal83/Sip1/Sip2 family of proteins (orthologues of AMPKβ subunit) that act as scaffolds and also regulate the subcellular localization of the complex. In this chapter, we review the recent literature on the characteristics of SNF1 complex subunits, the structure and regulation of the activity of the SNF1 complex, its role at the level of transcriptional regulation of relevant target genes and also at the level of posttranslational modification of targeted substrates. We also review the crosstalk of SNF1 complex activity with other key protein kinase pathways such as cAMP-PKA, TORC1, and PAS kinase.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
46
|
Dasgupta B, Chhipa RR. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends Pharmacol Sci 2015; 37:192-206. [PMID: 26711141 DOI: 10.1016/j.tips.2015.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
AMP kinase (AMPK) is an evolutionarily conserved enzyme required for adaptive responses to various physiological and pathological conditions. AMPK executes numerous cellular functions, some of which are often perceived at odds with each other. While AMPK is essential for embryonic growth and development, its full impact in adult tissues is revealed under stressful situations that organisms face in the real world. Conflicting reports about its cellular functions, particularly in cancer, are intriguing and a growing number of AMPK activators are being developed to treat human diseases such as cancer and diabetes. Whether these drugs will have only context-specific benefits or detrimental effects in the treatment of human cancer will be a subject of intense research. Here we review the current state of AMPK research with an emphasis on cancer and discuss the yet unresolved context-dependent functions of AMPK in human cancer.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rishi Raj Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
47
|
Emanuelle S, Hossain MI, Moller IE, Pedersen HL, van de Meene AML, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WGT, Kemp BE, Bacic A, Gooley PR, Stapleton DI. SnRK1 from Arabidopsis thaliana is an atypical AMPK. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:183-92. [PMID: 25736509 DOI: 10.1111/tpj.12813] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 05/05/2023]
Abstract
SNF1-related protein kinase 1 (SnRK1) is the plant orthologue of the evolutionarily-conserved SNF1/AMPK/SnRK1 protein kinase family that contributes to cellular energy homeostasis. Functional as heterotrimers, family members comprise a catalytic α subunit and non-catalytic β and γ subunits; multiple isoforms of each subunit type exist, giving rise to various isoenzymes. The Arabidopsis thaliana genome contains homologues of each subunit type, and, in addition, two atypical subunits, β(3) and βγ, with unique domain architecture, that are found only amongst plants, suggesting atypical heterotrimers. The AtSnRK1 subunit structure was determined using recombinant protein expression and endogenous co-immunoprecipitation, and six unique isoenzyme combinations were identified. Each heterotrimeric isoenzyme comprises a catalytic α subunit together with the unique βγ subunit and one of three non-catalytic β subunits: β(1), β(2) or the plant-specific β(3) isoform. Thus, the AtSnRK1 heterotrimers contain the atypical βγ subunit rather than a conventional γ subunit. Mammalian AMPK heterotrimers are phosphorylated on the T-loop (pThr175/176) within both catalytic a subunits. However, AtSnRK1 is insensitive to AMP and ADP, and is resistant to T-loop dephosphorylation by protein phosphatases, a process that inactivates other SNF1/AMPK family members. In addition, we show that SnRK1 is inhibited by a heat-labile, >30 kDa, soluble proteinaceous factor that is present in the lysate of young rosette leaves. Finally, none of the three SnRK1 carbohydrate-binding modules, located in the β(1), β(2) and βγ subunits, associate with various carbohydrates, including starch, the plant analogue of glycogen to which AMPK binds in vitro. These data clearly demonstrate that AtSnRK1 is an atypical member of the SNF1/AMPK/SnRK1 family.
Collapse
Affiliation(s)
- Shane Emanuelle
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry & Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26:569-82. [PMID: 25428989 PMCID: PMC4310746 DOI: 10.1091/mbc.e14-06-1088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023] Open
Abstract
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Bryan D Badal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - J Brady Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Joseph F Anderson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
49
|
Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet 2015; 11:e1004968. [PMID: 25629410 PMCID: PMC4309596 DOI: 10.1371/journal.pgen.1004968] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023] Open
Abstract
Elevated proteasome activity extends lifespan in model organisms such as yeast, worms and flies. This pro-longevity effect might be mediated by improved protein homeostasis, as this protease is an integral module of the protein homeostasis network. Proteasomes also regulate cellular processes through temporal and spatial degradation of signaling pathway components. Here we demonstrate that the regulatory function of the proteasome plays an essential role in aging cells and that the beneficial impact of elevated proteasome capacity on lifespan partially originates from deregulation of the AMPK signaling pathway. Proteasome-mediated lifespan extension activity was carbon-source dependent and cells with enhancement proteasome function exhibited increased respiratory activity and oxidative stress response. These findings suggested that the pro-aging impact of proteasome upregulation might be related to changes in the metabolic state through a premature induction of respiration. Deletion of yeast AMPK, SNF1, or its activator SNF4 abrogated proteasome-mediated lifespan extension, supporting this hypothesis as the AMPK pathway regulates metabolism. We found that the premature induction of respiration in cells with increased proteasome activity originates from enhanced turnover of Mig1, an AMPK/Snf1 regulated transcriptional repressor that prevents the induction of genes required for respiration. Increasing proteasome activity also resulted in partial relocation of Mig1 from the nucleus to the mitochondria. Collectively, the results argue for a model in which elevated proteasome activity leads to the uncoupling of Snf1-mediated Mig1 regulation, resulting in a premature activation of respiration and thus the induction of a mitohormetic response, beneficial to lifespan. In addition, we observed incorrect Mig1 localization in two other long-lived yeast aging models: cells that overexpress SIR2 or deleted for the Mig1-regulator HXK2. Finally, compromised proteasome function blocks lifespan extension in both strains. Thus, our findings suggest that proteasomes, Sir2, Snf1 and Hxk2 form an interconnected aging network that controls metabolism through coordinated regulation of Mig1. Advanced cellular age is associated with decreased efficiency of the proteostasis network. The proteasome, a protease in the cytoplasm and nuclei of eukaryotic cells, is an important component of this network. Recent studies demonstrate that increased proteasome capacity has a positive impact on longevity. The underlying mechanisms, however, have not been fully identified. Here we report that proteasomes are involved in regulating the AMP-activated kinase (AMPK) pathway and thus participate in correct metabolic adaptation. We find that Mig1, a transcriptional repressor downstream of yeast AMPK, Snf1, is a proteasome target and a negative regulator of lifespan. Increased proteasome activity results in enhanced turnover and incorrect localization of Mig1. The reduced Mig1 levels result in the induction of respiration and upregulation of the oxidative stress response. Premature Mig1 inactivation is also observed in two additional long-lived strains that overexpress SIR2 or are deleted for HXK2 and lifespan extension in both strains requires correct proteasome function. Our results uncover an interconnected network comprised of the proteasome, Sir2 and AMPK/Hxk2 signaling that impacts longevity through regulation of Mig1 and modulates respiratory metabolism. Mechanistic information on the cross-communication between these pathways is expected to facilitate the identification of novel pro-aging interventions.
Collapse
Affiliation(s)
- Yanhua Yao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | | | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | | | - Chong He
- Buck Institute, Novato, California, United States of America
| | - Brett Robison
- Buck Institute, Novato, California, United States of America
| | | | - Delana Miller
- Buck Institute, Novato, California, United States of America
| | - Valeria Briones
- Buck Institute, Novato, California, United States of America
| | - Krisztina Tar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Anahi Potrero
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-IFR83, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Brian K. Kennedy
- Buck Institute, Novato, California, United States of America
- * E-mail: (MS); (BKK)
| | - Marion Schmidt
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail: (MS); (BKK)
| |
Collapse
|
50
|
Abstract
Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism. A recent high throughput screen for 2-deoxyglucose resistance identified a much larger set of seemingly unrelated genes. Here, we demonstrate that these newly identified genes do not in fact confer significant resistance to 2-deoxyglucose. Further, we show that the relative toxicity of 2-deoxyglucose is carbon source dependent, as is the resistance conferred by gene deletions. Snf1 kinase, the AMP-activated protein kinase of yeast, is required for 2-deoxyglucose resistance in cells growing on glucose. Mutations in the SNF1 gene that reduce kinase activity render cells hypersensitive to 2-deoxyglucose, while an activating mutation in SNF1 confers 2-deoxyglucose resistance. Snf1 kinase activated by 2-deoxyglucose does not phosphorylate the Mig1 protein, a known Snf1 substrate during glucose limitation. Thus, different stimuli elicit distinct responses from the Snf1 kinase.
Collapse
|