1
|
Kaplan E, Chaloin L, Guichou J, Berrou K, Rahimova R, Labesse G, Lionne C. APH Inhibitors that Reverse Aminoglycoside Resistance in Enterococcus casseliflavus. ChemMedChem 2025; 20:e202400842. [PMID: 39801466 PMCID: PMC12005471 DOI: 10.1002/cmdc.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules. From a subset of only 14 high-scored molecules tested in vitro, we identified a compound, named here EK3, able to non-competitively inhibit the APH(2'')-IVa, an enzyme mediating clinical gentamicin resistance. Structure-activity relationship (SAR) exploration of this hit compound allowed us to identify a molecule with improved enzymatic inhibition. By measuring bacterial sensitivity, we found that the three best compounds in this series restored bactericidal activity of various aminoglycosides, including gentamicin, without exhibiting toxicity to HeLa cells. This work not only provides a basis to fight aminoglycoside resistance but also highlights a proof-of-concept for the search of allosteric modulators by using in silico methods.
Collapse
Affiliation(s)
- Elise Kaplan
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
- Current address: University of LyonCNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP7 Passage du Vercors69367LyonFrance
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
| | - Jean‐François Guichou
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
| | - Kévin Berrou
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
| | - Rahila Rahimova
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
- Current address: University of Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 71 avenue des MartyrsCS 10090, 38000GrenobleFrance
| | - Gilles Labesse
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
| | - Corinne Lionne
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
- Current address: University of Montpellier, CNRS UMR 5048, INSERM U 1054, CBS, 29 rue de Navacelles34090MontpellierFrance
| |
Collapse
|
2
|
Yuce M, Ates B, Yasar NI, Sungur FA, Kurkcuoglu O. A computational workflow to determine drug candidates alternative to aminoglycosides targeting the decoding center of E. coli ribosome. J Mol Graph Model 2024; 131:108817. [PMID: 38976944 DOI: 10.1016/j.jmgm.2024.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.
Collapse
Affiliation(s)
- Merve Yuce
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Beril Ates
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Nesrin Isil Yasar
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Fethiye Aylin Sungur
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Ozge Kurkcuoglu
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| |
Collapse
|
3
|
Lin N, Sha Y, Zhang G, Song C, Zhang Y, Zhao J, Huang D, Lu J, Bao Q, Pan W. APH(3')-Ie, an aminoglycoside-modifying enzyme discovered in a rabbit-derived Citrobacter gillenii isolate. Front Cell Infect Microbiol 2024; 14:1435123. [PMID: 39139766 PMCID: PMC11320999 DOI: 10.3389/fcimb.2024.1435123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Aminoglycoside-modifying enzymes (AMEs) play an essential role in bacterial resistance to aminoglycoside antimicrobials. With the development of sequencing techniques, more bacterial genomes have been sequenced, which has aided in the discovery of an increasing number of novel resistance mechanisms. Methods The bacterial species was identified by 16S rRNA gene homology and average nucleotide identity (ANI) analyses. The minimum inhibitory concentration (MIC) of each antimicrobial was determined by the agar dilution method. The protein was expressed with the pCold I vector in E. coli BL21, and enzyme kinetic parameters were examined. The whole-genome sequence of the bacterium was obtained via the Illumina and PacBio sequencing platforms. Reconstruction of the phylogenetic tree, identification of conserved functional residues, and gene context analysis were performed using the corresponding bioinformatic techniques. Results A novel aminoglycoside resistance gene, designated aph(3')-Ie, which confers resistance to ribostamycin, kanamycin, sisomicin and paromomycin, was identified in the chromosome of the animal bacterium Citrobacter gillenii DW61, which exhibited a multidrug resistance phenotype. APH(3')-Ie showed the highest amino acid identity of 74.90% with the functionally characterized enzyme APH(3')-Ia. Enzyme kinetics analysis demonstrated that it had phosphorylation activity toward four aminoglycoside substrates, exhibiting the highest affinity (K m, 4.22 ± 0.88 µM) and the highest catalytic efficiency [k cat/K m, (32.27 ± 8.14) × 104] for ribomycin. Similar to the other APH(3') proteins, APH(3')-Ie contained all the conserved functional sites of the APH family. The aph(3')-Ie homologous genes were present in C. gillenii isolates from different sources, including some of clinical significance. Conclusion In this work, a novel chromosomal aminoglycoside resistance gene, designated aph(3')-Ie, conferring resistance to aminoglycoside antimicrobials, was identified in a rabbit isolate C. gillenii DW61. The elucidation of the novel resistance mechanism will aid in the effective treatment of infections caused by pathogens carrying such resistance genes.
Collapse
Affiliation(s)
- Naru Lin
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuning Sha
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guozhi Zhang
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunhan Song
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Yuan Zhang
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingxuan Zhao
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dawei Huang
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Qiyu Bao
- Institute of Bioinformatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
| | - Wei Pan
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
4
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Vang D, Moreira-Souza ACA, Zusman N, Moncada G, Matshik Dakafay H, Asadi H, Ojcius DM, Almeida-da-Silva CLC. Frankincense ( Boswellia serrata) Extract Effects on Growth and Biofilm Formation of Porphyromonas gingivalis, and Its Intracellular Infection in Human Gingival Epithelial Cells. Curr Issues Mol Biol 2024; 46:2991-3004. [PMID: 38666917 PMCID: PMC11049348 DOI: 10.3390/cimb46040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.
Collapse
Affiliation(s)
- David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Aline Cristina Abreu Moreira-Souza
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Nicholas Zusman
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - German Moncada
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Harmony Matshik Dakafay
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Cassio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| |
Collapse
|
6
|
Toh SI, Elaine Keisha J, Wang YL, Pan YC, Jhu YH, Hsiao PY, Liao WT, Chen PY, Ko TM, Chang CY. Discovery and characterization of genes conferring natural resistance to the antituberculosis antibiotic capreomycin. Commun Biol 2023; 6:1282. [PMID: 38114770 PMCID: PMC10730852 DOI: 10.1038/s42003-023-05681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Metagenomic-based studies have predicted an extraordinary number of potential antibiotic-resistance genes (ARGs). These ARGs are hidden in various environmental bacteria and may become a latent crisis for antibiotic therapy via horizontal gene transfer. In this study, we focus on a resistance gene cph, which encodes a phosphotransferase (Cph) that confers resistance to the antituberculosis drug capreomycin (CMN). Sequence Similarity Network (SSN) analysis classified 353 Cph homologues into five major clusters, where the proteins in cluster I were found in a broad range of actinobacteria. We examine the function and antibiotics targeted by three putative resistance proteins in cluster I via biochemical and protein structural analysis. Our findings reveal that these three proteins in cluster I confer resistance to CMN, highlighting an important aspect of CMN resistance within this gene family. This study contributes towards understanding the sequence-structure-function relationships of the phosphorylation resistance genes that confer resistance to CMN.
Collapse
Affiliation(s)
- Shu-Ing Toh
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Johan Elaine Keisha
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yi-Chi Pan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yu-Heng Jhu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Po-Yun Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Wen-Ting Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Po-Yuan Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Tai-Ming Ko
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Hsinchu, 80708, Taiwan, ROC.
| |
Collapse
|
7
|
Yeung W, Zhou Z, Mathew L, Gravel N, Taujale R, O’Boyle B, Salcedo M, Venkat A, Lanzilotta W, Li S, Kannan N. Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies. Brief Bioinform 2023; 24:bbac619. [PMID: 36642409 PMCID: PMC9851311 DOI: 10.1093/bib/bbac619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023] Open
Abstract
Protein language models, trained on millions of biologically observed sequences, generate feature-rich numerical representations of protein sequences. These representations, called sequence embeddings, can infer structure-functional properties, despite protein language models being trained on primary sequence alone. While sequence embeddings have been applied toward tasks such as structure and function prediction, applications toward alignment-free sequence classification have been hindered by the lack of studies to derive, quantify and evaluate relationships between protein sequence embeddings. Here, we develop workflows and visualization methods for the classification of protein families using sequence embedding derived from protein language models. A benchmark of manifold visualization methods reveals that Neighbor Joining (NJ) embedding trees are highly effective in capturing global structure while achieving similar performance in capturing local structure compared with popular dimensionality reduction techniques such as t-SNE and UMAP. The statistical significance of hierarchical clusters on a tree is evaluated by resampling embeddings using a variational autoencoder (VAE). We demonstrate the application of our methods in the classification of two well-studied enzyme superfamilies, phosphatases and protein kinases. Our embedding-based classifications remain consistent with and extend upon previously published sequence alignment-based classifications. We also propose a new hierarchical classification for the S-Adenosyl-L-Methionine (SAM) enzyme superfamily which has been difficult to classify using traditional alignment-based approaches. Beyond applications in sequence classification, our results further suggest NJ trees are a promising general method for visualizing high-dimensional data sets.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Zhongliang Zhou
- School of Computing, University of Georgia, 30602, Georgia, USA
| | - Liju Mathew
- Department of Microbiology, University of Georgia, 30602, Georgia, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Mariah Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Sheng Li
- School of Data Science, University of Virginia, 22903, Virginia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| |
Collapse
|
8
|
Takemoto JY, Altenberg GA, Poudyal N, Subedi YP, Chang CWT. Amphiphilic aminoglycosides: Modifications that revive old natural product antibiotics. Front Microbiol 2022; 13:1000199. [PMID: 36212866 PMCID: PMC9537547 DOI: 10.3389/fmicb.2022.1000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Widely-used Streptomyces-derived antibacterial aminoglycosides have encountered challenges because of antibiotic resistance and toxicity. Today, they are largely relegated to medicinal topical applications. However, chemical modification to amphiphilic aminoglycosides can revive their efficacy against bacterial pathogens and expand their targets to other pathogenic microbes and disorders associated with hyperactive connexin hemichannels. For example, amphiphilic versions of neomycin and neamine are not subject to resistance and have expanded antibacterial spectra, and amphiphilic kanamycins are effective antifungals and have promising therapeutic uses as connexin hemichannel inhibitors. With further research and discoveries aimed at improved formulations and delivery, amphiphilic aminoglycosides may achieve new horizons in pharmacopeia and agriculture for Streptomyces aminoglycosides beyond just serving as topical antibacterials.
Collapse
Affiliation(s)
- Jon Y. Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Yagya P. Subedi
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
- *Correspondence: Cheng-Wei T. Chang,
| |
Collapse
|
9
|
Zieliński M, Blanchet J, Hailemariam S, Berghuis AM. Structural elucidation of substrate-bound aminoglycoside acetyltransferase (3)-IIIa. PLoS One 2022; 17:e0269684. [PMID: 35921328 PMCID: PMC9348671 DOI: 10.1371/journal.pone.0269684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Canonical aminoglycosides are a large group of antibiotics, where the part of chemical diversity stems from the substitution of the neamine ring system on positions 5 and 6. Certain aminoglycoside modifying enzymes can modify a broad range of 4,5- and 4,6-disubstituted aminoglycosides, with some as many as 15. This study presents the structural and kinetic results describing a promiscuous aminoglycoside acetyltransferase AAC(3)-IIIa. This enzyme has been crystallized in ternary complex with coenzyme A and 4,5- and 4,6-disubstituted aminoglycosides. We have followed up this work with kinetic characterization utilizing a panel of diverse aminoglycosides, including a next-generation aminoglycoside, plazomicin. Lastly, we observed an alternative binding mode of gentamicin in the aminoglycoside binding site, which was proven to be a crystallographic artifact based on mutagenesis.
Collapse
Affiliation(s)
- Michał Zieliński
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Jonathan Blanchet
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Sophia Hailemariam
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Albert M. Berghuis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill Antimicrobial Resistance Centre, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
10
|
Bastian AA, Bastian M, Jäger M, Loznik M, Warszawik EM, Yang X, Tahiri N, Fodran P, Witte MD, Thoma A, Köhler J, Minnaard AJ, Herrmann A. Late-Stage Modification of Aminoglycoside Antibiotics Overcomes Bacterial Resistance Mediated by APH(3') Kinases. Chemistry 2022; 28:e202200883. [PMID: 35388562 PMCID: PMC9321007 DOI: 10.1002/chem.202200883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 12/25/2022]
Abstract
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3'-position by O-phosphotransferases [APH(3')s]. Structural alteration of these antibiotics at the 3'-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3')s, we introduce a novel regioselective modification of aminoglycosides in the 3'-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3')s-mediated resistance employing only four synthetic steps.
Collapse
Affiliation(s)
- Andreas A. Bastian
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
- AGILeBiotics B.V.De Mudden 149747 AVGroningen (TheNetherlands
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Maria Bastian
- AGILeBiotics B.V.De Mudden 149747 AVGroningen (TheNetherlands
| | - Manuel Jäger
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Mark Loznik
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Eliza M. Warszawik
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- Department of Biomedical Engineering-FB40W. J. Kolff Institute-FB41Antonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Xintong Yang
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Nabil Tahiri
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Peter Fodran
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Martin D. Witte
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Anne Thoma
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Jens Köhler
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Adriaan J. Minnaard
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Andreas Herrmann
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
11
|
Wang Y, Hanrahan G, Azar FA, Mittermaier A. Binding interactions in a kinase active site modulate background ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140720. [PMID: 34597835 DOI: 10.1016/j.bbapap.2021.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Grace Hanrahan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Frederic Abou Azar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Balaich J, Estrella M, Wu G, Jeffrey PD, Biswas A, Zhao L, Korennykh A, Donia MS. The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature 2021; 600:110-115. [PMID: 34819672 PMCID: PMC10258454 DOI: 10.1038/s41586-021-04091-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/01/2021] [Indexed: 12/26/2022]
Abstract
The human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose1,2, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases3, limiting the ability of the target organism to metabolize complex carbohydrates. Using biochemical assays, X-ray crystallography and metagenomic analyses, we show that microbiome-derived acarbose kinases are specific for acarbose, provide their harbouring organism with a protective advantage against the activity of acarbose, and are widespread in the microbiomes of western and non-western human populations. These results provide an example of widespread microbiome resistance to a non-antibiotic drug, and suggest that acarbose resistance has disseminated in the human microbiome as a defensive strategy against a potential endogenous producer of a closely related molecule.
Collapse
Affiliation(s)
- Jared Balaich
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael Estrella
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Guojun Wu
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, USA
| | - Liping Zhao
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- State Key Laboratory of Microbial Metabolism, Ministry of Education Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Mann A, Nehra K, Rana J, Dahiya T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100030. [PMID: 34841321 PMCID: PMC8610298 DOI: 10.1016/j.crmicr.2021.100030] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a massive problem rising constantly and spreading rapidly since the past decade. The major underlying mechanism responsible for this problem is an overuse or severe misuse of antibiotics. Regardless of this emerging global threat, antibiotics are still being widely used, not only for treatment of human infections, but also to a great extent in agriculture, livestock and animal husbandry. If the current scenario persists, we might enter into a post-antibiotic era where drugs might not be able to treat even the simplest of infections. This review discusses the current status of antibiotic utilization and molecular basis of antibiotic resistance mechanisms acquired by bacteria, along with the modes of transmittance of the resultant resistant genes into human pathogens through their cycling among different ecosystems. The main focus of the article is to provide an insight into the different molecular and other strategies currently being studied worldwide for their use as an alternate to antibiotics with an overall aim to overcome or minimize the global problem of antibiotic resistance.
Collapse
|
14
|
Novel ocotillol-derived lactone derivatives: design, synthesis, bioactive evaluation, SARs and preliminary antibacterial mechanism. Mol Divers 2021; 26:2103-2120. [PMID: 34661800 DOI: 10.1007/s11030-021-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
A new series of ocotillol-derived lactone derivatives were designed and synthesized to consider their antibacterial activity, structure-activity relationships (SARs), antibacterial mechanism and in vivo antibacterial efficacy. Compound 6d, which exhibited broad antibacterial spectrum, was found to be the most active with minimum inhibitory concentrations (MICs) of 1-2 μg/mL against Gram-positive bacteria and 8-16 μg/mL against Gram-negative bacteria. The subsequent synergistic antibacterial tests displayed that 6d had the ability to improve the susceptibility of MRSA USA300, B. subtilis 168, and E. coli DH5α to kanamycin and chloramphenicol. This active molecule 6d also induced bacterial resistance more slowly than norfloxacin and kanamycin. Furthermore, compound 6d was membrane active and low toxic against mammalian cells, and it could rapidly inhibit the growth of MRSA and E. coli and did not obviously trigger bacterial resistance. Compound 6d also displayed strong in vivo antibacterial activity against S. aureus RN4220 in murine corneal infection models. Additionally, absorption, distribution, metabolism, and excretion properties of this type of compounds have shown drug-likeness with good oral absorption and moderate blood-brain barrier permeability. The obtained results demonstrated that ocotillol-derived compounds are a promising class of antibacterial agents worthy of further study.
Collapse
|
15
|
Structural basis for plazomicin antibiotic action and resistance. Commun Biol 2021; 4:729. [PMID: 34117352 PMCID: PMC8195987 DOI: 10.1038/s42003-021-02261-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022] Open
Abstract
The approval of plazomicin broadened the clinical library of aminoglycosides available for use against emerging bacterial pathogens. Contrarily to other aminoglycosides, resistance to plazomicin is limited; still, instances of resistance have been reported in clinical settings. Here, we present structural insights into the mechanism of plazomicin action and the mechanisms of clinical resistance. The structural data reveal that plazomicin exclusively binds to the 16S ribosomal A site, where it likely interferes with the fidelity of mRNA translation. The unique extensions to the core aminoglycoside scaffold incorporated into the structure of plazomicin do not interfere with ribosome binding, which is analogously seen in the binding of this antibiotic to the AAC(2′)-Ia resistance enzyme. The data provides a structural rationale for resistance conferred by drug acetylation and ribosome methylation, i.e., the two mechanisms of resistance observed clinically. Finally, the crystal structures of plazomicin in complex with both its target and the clinically relevant resistance factor provide a roadmap for next-generation drug development that aims to ameliorate the impact of antibiotic resistance. Golkar, Bassenden et al. report two structures of the latest generation aminoglycoside antibiotic plazomicin in complex with the bacterial 70S ribosome as well as in complex with AAC(2’)-la acetyltransferase, an antibiotic modification enzyme (AME). Their study can be useful in the development of newer aminoglycosides that are not modified by AMEs while being capable of targeting the bacterial ribosome.
Collapse
|
16
|
Bhattacharjee S, Mukherjee S, Roy S. DNA-Bound p53-DNA-Binding Domain Interconverts between Multiple Conformations: Implications for Partner Protein Recognition. J Phys Chem B 2021; 125:5832-5837. [PMID: 34042457 DOI: 10.1021/acs.jpcb.1c03794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-protein interaction networks are critical components of cellular regulation. Hub proteins, defined by their ability to interact with numerous protein partners, are the pivots of these networks. A hypothesis that an ensemble of rapidly interconverting conformational states contributes significantly to the ability of hub proteins to interact with diverse partners has been proposed. The master gene regulator p53 is a prototype multidomain hub protein. Its DNA-binding domain alone is involved in interactions with many of its partner proteins. We investigated the dynamics of the p53 DNA-binding domain by 15N-NMR Carr-Purcell-Meiboom-Gill relaxation methods. In the DNA-bound state, we detected conformational exchanges in the domain in the microsecond to millisecond timescale, while dynamics at this timescale was not detectable in the free state. This suggests that the binding of p53 to specific DNA sequences promotes exchange between two or more conformational states, creating a broad conformational repertoire necessary for interacting with many partner proteins.
Collapse
Affiliation(s)
- Sayan Bhattacharjee
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sujoy Mukherjee
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P1-12, C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
17
|
Bassenden AV, Dumalo L, Park J, Blanchet J, Maiti K, Arya DP, Berghuis AM. Structural and phylogenetic analyses of resistance to next-generation aminoglycosides conferred by AAC(2') enzymes. Sci Rep 2021; 11:11614. [PMID: 34078922 PMCID: PMC8172861 DOI: 10.1038/s41598-021-89446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.
Collapse
Affiliation(s)
- Angelia V Bassenden
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Linda Dumalo
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Jonathan Blanchet
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | | | - Dev P Arya
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- Department of Microbiology and Immunology, McGill University, Duff Medical Building, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
18
|
Shrestha S, Katiyar S, Sanz-Rodriguez CE, Kemppinen NR, Kim HW, Kadirvelraj R, Panagos C, Keyhaninejad N, Colonna M, Chopra P, Byrne DP, Boons GJ, van der Knaap E, Eyers PA, Edison AS, Wood ZA, Kannan N. A redox-active switch in fructosamine-3-kinases expands the regulatory repertoire of the protein kinase superfamily. Sci Signal 2020; 13:eaax6313. [PMID: 32636308 PMCID: PMC8455029 DOI: 10.1126/scisignal.aax6313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant regulation of metabolic kinases by altered redox homeostasis substantially contributes to aging and various diseases, such as diabetes. We found that the catalytic activity of a conserved family of fructosamine-3-kinases (FN3Ks), which are evolutionarily related to eukaryotic protein kinases, is regulated by redox-sensitive cysteine residues in the kinase domain. The crystal structure of the FN3K homolog from Arabidopsis thaliana revealed that it forms an unexpected strand-exchange dimer in which the ATP-binding P-loop and adjoining β strands are swapped between two chains in the dimer. This dimeric configuration is characterized by strained interchain disulfide bonds that stabilize the P-loop in an extended conformation. Mutational analysis and solution studies confirmed that the strained disulfides function as redox "switches" to reversibly regulate the activity and dimerization of FN3K. Human FN3K, which contains an equivalent P-loop Cys, was also redox sensitive, whereas ancestral bacterial FN3K homologs, which lack a P-loop Cys, were not. Furthermore, CRISPR-mediated knockout of FN3K in human liver cancer cells altered the abundance of redox metabolites, including an increase in glutathione. We propose that redox regulation evolved in FN3K homologs in response to changing cellular redox conditions. Our findings provide insights into the origin and evolution of redox regulation in the protein kinase superfamily and may open new avenues for targeting human FN3K in diabetic complications.
Collapse
Affiliation(s)
- Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Carlos E Sanz-Rodriguez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Nolan R Kemppinen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Charalampos Panagos
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Neda Keyhaninejad
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, GA 30602, USA
| | - Maxwell Colonna
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Geert J Boons
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Esther van der Knaap
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Arthur S Edison
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Gupta MN, Alam A, Hasnain SE. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie 2020; 175:50-57. [PMID: 32416199 DOI: 10.1016/j.biochi.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/01/2022]
Abstract
Proteins are supposed to bind to their substrates/ligands in a specific manner via their pre-formed binding sites, according to classical biochemistry. In recent years, several types of deviations from this norm have been observed and called promiscuous behavior. Enzymatic promiscuities allow several biochemical functions to be carried out by the same enzyme. The promiscuous activity can also be the origin of "new proteins" via gene duplication. In more recent years, proteins from prokaryotes, eukaryotes and viruses have been found to have intrinsic disorder and lack a preformed binding site. Intrinsic disorder is exploited in regulatory proteins such as those that are involved in transcription and signal transduction. Such proteins function by folding locally while binding to their ligands or interacting with other proteins. These phenomena have also been classified as examples of protein promiscuity and encompass diverse kinds of ligands that can bind to a protein. Given the significant extent of structural homology in many protein families, it is not surprising that ligands also have been found to display promiscuity. Promiscuous behavior of proteins offers both challenges and opportunities to the drug discovery programs such as drug repurposing. Pathogens when exposed to antibiotics exploit protein promiscuity in several ways to develop resistance to the drug. There is increasing evidence now to support that the disorder in proteins is a major tool used by pathogens for virulence and evade drug action by exploiting protein promiscuity. This review provides a holistic view of this multi-faceted phenomenon called protein promiscuity.
Collapse
Affiliation(s)
- Munishwar N Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Seyed E Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Professor CR Rao Road, Hyderabad, 500046, India.
| |
Collapse
|
20
|
Abu-Saleh AAAA, Sharma S, Yadav A, Poirier RA. Role of Asp190 in the Phosphorylation of the Antibiotic Kanamycin Catalyzed by the Aminoglycoside Phosphotransferase Enzyme: A Combined QM:QM and MD Study. J Phys Chem B 2020; 124:3494-3504. [DOI: 10.1021/acs.jpcb.0c01604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Abd Al-Aziz A. Abu-Saleh
- Chemistry Department, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| | - Sweta Sharma
- Department of Chemistry, University Institute of Engineering & Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering & Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Raymond A. Poirier
- Chemistry Department, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
21
|
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv Pharm Bull 2019; 9:335-347. [PMID: 31592430 PMCID: PMC6773942 DOI: 10.15171/apb.2019.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Antibiotic therapy is among the most important treatments against infectious diseases and has tremendously improved effects on public health. Nowadays, development in using this treatment has led us to the emergence and enhancement of drug-resistant pathogens which can result in some problems including treatment failure, increased mortality as well as treatment costs, reduced infection control efficiency, and spread of resistant pathogens from hospital to community. Therefore, many researches have tried to find new alternative approaches to control and prevent this problem. This study, has been revealed some possible and effective approaches such as using farming practice, natural antibiotics, nano-antibiotics, lactic acid bacteria, bacteriocin, cyclopeptid, bacteriophage, synthetic biology and predatory bacteria as alternatives for traditional antibiotics to prevent or reduce the emergence of drug resistant bacteria.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Alizadeh
- Department of Clinical Sciences (Surgery), Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Alekseeva MG, Boyko KM, Nikolaeva AY, Mavletova DA, Rudakova NN, Zakharevich NV, Korzhenevskiy DA, Ziganshin RH, Popov VO, Danilenko VN. Identification, functional and structural characterization of novel aminoglycoside phosphotransferase APH(3″)-Id from Streptomyces rimosus subsp. rimosus ATCC 10970. Arch Biochem Biophys 2019; 671:111-122. [DOI: 10.1016/j.abb.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/03/2023]
|
23
|
Ullmann IF, Tunsjø HS, Andreassen M, Nielsen KM, Lund V, Charnock C. Detection of Aminoglycoside Resistant Bacteria in Sludge Samples From Norwegian Drinking Water Treatment Plants. Front Microbiol 2019; 10:487. [PMID: 30918503 PMCID: PMC6424899 DOI: 10.3389/fmicb.2019.00487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/25/2019] [Indexed: 02/01/2023] Open
Abstract
Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6′)-Ib, AAC(3′)-II, APH(3′)-II, APH(3′)-III, could only explain the resistance of a few of the isolates selected for testing. aph(3′)-II was detected in 1.6% of total isolates, aac(6′)-Ib and aph(3′)-III in 0.8%, while aac(3′)-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment.
Collapse
Affiliation(s)
- Ingvild F Ullmann
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Hege S Tunsjø
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Monica Andreassen
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Kaare Magne Nielsen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Vidar Lund
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
24
|
Green KD, Fosso MY, Mayhoub AS, Garneau-Tsodikova S. Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives. Bioorg Med Chem Lett 2019; 29:1127-1132. [PMID: 30826292 DOI: 10.1016/j.bmcl.2019.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023]
Abstract
Chloramphenicol nitroreductase (CNR), a drug-modifying enzyme from Haemophilus influenzae, has been shown to be responsible for the conversion of the nitro group into an amine in the antibiotic chloramphenicol (CAM). Since CAM structurally bears a 4-nitrobenzene moiety, we explored the substrate promiscuity of CNR by investigating its nitroreduction of 4-nitrobenzyl derivatives. We tested twenty compounds containing a nitrobenzene core, two nitropyridines, one compound with a vinylogous nitro group, and two aliphatic nitro compounds. In addition, we also synthesized twenty-eight 4-nitrobenzyl derivatives with ether, ester, and thioether substituents and assessed the relative activity of CNR in their presence. We found several of these compounds to be modified by CNR, with the enzyme activity ranging from 1 to 150% when compared to CAM. This data provides insights into two areas: (i) chemoenzymatic reduction of select compounds to avoid harsh chemicals and heavy metals routinely used in reductions of nitro groups and (ii) functional groups that would aid CAM in overcoming the activity of this enzyme.
Collapse
Affiliation(s)
- Keith D Green
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Marina Y Fosso
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Abdelrahman S Mayhoub
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA.
| |
Collapse
|
25
|
Kumar P, Selvaraj B, Serpersu EH, Cuneo MJ. Encoding of Promiscuity in an Aminoglycoside Acetyltransferase. J Med Chem 2018; 61:10218-10227. [PMID: 30347146 DOI: 10.1021/acs.jmedchem.8b01393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aminoglycoside antibiotics are a large family of antibiotics that can be divided into two distinct classes on the basis of the substitution pattern of the central deoxystreptamine ring. Although aminoglycosides are chemically, structurally, and topologically diverse, some aminoglycoside-modifying enzymes (AGMEs) are able to inactivate as many as 15 aminoglycosides from the two main classes, the kanamycin- and neomycin-based antibiotics. Here, we present the crystal structure of a promiscuous AGME, aminoglycoside- N3-acetyltransferase-IIIb (AAC-IIIb), in the apo form, in binary drug (sisomicin, neomycin, and paromomycin) and coenzyme A (CoASH) complexes, and in the ternary neomycin-CoASH complex. These data provide a structural framework for interpretation of the thermodynamics of enzyme-ligand interactions and the role of solvent in the recognition of ligands. In combination with the recent structure of an AGME that does not have broad substrate specificity, these structures allow for the direct determination of how antibiotic promiscuity is encoded in some AGMEs.
Collapse
Affiliation(s)
- Prashasti Kumar
- Graduate School of Genome Science and Technology , The University of Tennessee and Oak Ridge National Laboratory , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States
| | - Brinda Selvaraj
- Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Engin H Serpersu
- Graduate School of Genome Science and Technology , The University of Tennessee and Oak Ridge National Laboratory , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States.,National Science Foundation , 2415 Eisenhower Avenue , Alexandria , Virginia 22314 , United States.,Department of Biochemistry and Cellular and Molecular Biology , The University of Tennessee , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States
| | - Matthew J Cuneo
- Department of Structural Biology , St. Jude Children's Research Hospital , 262 Danny Thomas Place , Memphis , Tennessee 38105 , United States
| |
Collapse
|
26
|
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset. Proc Natl Acad Sci U S A 2018; 115:E7293-E7302. [PMID: 30012610 DOI: 10.1073/pnas.1607817115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (βleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.
Collapse
|
27
|
Holbrook SYL, Gentry MS, Tsodikov OV, Garneau-Tsodikova S. Nucleoside triphosphate cosubstrates control the substrate profile and efficiency of aminoglycoside 3'- O-phosphotransferase type IIa. MEDCHEMCOMM 2018; 9:1332-1339. [PMID: 30151088 DOI: 10.1039/c8md00234g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics that play an important role in the control and treatment of bacterial infections. Despite the great antibacterial potency of AGs, resistance to these antibiotics has limited their clinical applications. The AG 3'-O-phosphotransferase of type IIa (APH(3')-IIa) encoded by the neoR gene is a common bacterial AG resistance enzyme that inactivates AG antibiotics. This enzyme is used as a selection marker in molecular biology research. APH(3')-IIa catalyzes the transfer of the γ-phosphoryl group of ATP to an AG at its 3'-OH group. Although APH(3')-IIa has been reported to utilize exclusively ATP as a cosubstrate, we demonstrate that this enzyme can utilize a broad array of NTPs. By substrate profiling, TLC, and enzyme kinetics experiments, we probe AG phosphorylation by APH(3')-IIa with an extensive panel of substrates and cosubstrates (13 AGs and 10 NTPs) for the purpose of gaining a thorough understanding of this resistance enzyme. We find, for the first time, that the identity of the NTP cosubstrate dictates the set of AGs modified by APH(3')-IIa and the phosphorylation efficiency for different AGs.
Collapse
Affiliation(s)
- Selina Y L Holbrook
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| |
Collapse
|
28
|
Plasticity of Aminoglycoside Binding to Antibiotic Kinase APH(2″)-Ia. Antimicrob Agents Chemother 2018; 62:AAC.00202-18. [PMID: 29661878 DOI: 10.1128/aac.00202-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
The APH(2″)-Ia aminoglycoside resistance enzyme forms the C-terminal domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme and confers high-level resistance to natural 4,6-disubstituted aminoglycosides. In addition, reports have suggested that the enzyme can phosphorylate 4,5-disubstituted compounds and aminoglycosides with substitutions at the N1 position. Previously determined structures of the enzyme with bound aminoglycosides have not indicated how these noncanonical substrates may bind and be modified by the enzyme. We carried out crystallographic studies to directly observe the interactions of these compounds with the aminoglycoside binding site and to probe the means by which these noncanonical substrates interact with the enzyme. We find that APH(2″)-Ia maintains a preferred mode of binding aminoglycosides by using the conserved neamine rings when possible, with flexibility that allows it to accommodate additional rings. However, if this binding mode is made impossible because of additional substitutions to the standard 4,5- or 4,6-disubstituted aminoglycoside architecture, as in lividomycin A or the N1-substituted aminoglycosides, it is still possible for these aminoglycosides to bind to the antibiotic binding site by using alternate binding modes, which explains the low rates of noncanonical phosphorylation activities seen in enzyme assays. Furthermore, structural studies of a clinically observed arbekacin-resistant mutant of APH(2″)-Ia revealed an altered aminoglycoside binding site that can stabilize an alternative binding mode for N1-substituted aminoglycosides. This mutation may alter and expand the aminoglycoside resistance spectrum of the wild-type enzyme in response to newly developed aminoglycosides.
Collapse
|
29
|
Subedi YP, AlFindee MN, Takemoto JY, Chang CWT. Antifungal amphiphilic kanamycins: new life for an old drug. MEDCHEMCOMM 2018; 9:909-919. [PMID: 30108980 PMCID: PMC6071784 DOI: 10.1039/c8md00155c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
Classical aminoglycoside antibiotics are obsolete or hampered by the emergence of drug resistant bacteria. Recent discoveries of antifungal amphiphilic kanamycins offer new strategies for reviving and repurposing these old drugs. A simple structural modification turns the clinically obsolete antibacterial kanamycin into an antifungal agent. Structure-activity relationship studies have led to the production of K20, an antifungal kanamycin that can be mass-produced for uses in agriculture as well as in animals. This review delineates the path to the discovery of K20 and other related antifungal amphiphilic kanamycins, determination of its mode of action, and findings in greenhouse and field trials with K20 that could lead to crop disease protection strategies.
Collapse
Affiliation(s)
- Yagya Prasad Subedi
- Department of Chemistry and Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , USA .
| | - Madher N AlFindee
- Department of Chemistry and Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , USA .
| | - Jon Y Takemoto
- Department of Biology , Utah State University , 5305 Old Main Hill , Logan , Utah 84322-5305 , USA
| | - Cheng-Wei Tom Chang
- Department of Chemistry and Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , USA .
| |
Collapse
|
30
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
31
|
Zárate SG, Claure MLDLC, Benito-Arenas R, Revuelta J, Santana AG, Bastida A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules 2018; 23:molecules23020284. [PMID: 29385736 PMCID: PMC6017855 DOI: 10.3390/molecules23020284] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.
Collapse
Affiliation(s)
- Sandra G. Zárate
- Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia;
| | - M. Luisa De la Cruz Claure
- Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia;
| | - Raúl Benito-Arenas
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Julia Revuelta
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Andrés G. Santana
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| | - Agatha Bastida
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| |
Collapse
|
32
|
John T, Voo ZX, Kubeil C, Abel B, Graham B, Spiccia L, Martin LL. Effects of guanidino modified aminoglycosides on mammalian membranes studied using a quartz crystal microbalance. MEDCHEMCOMM 2017; 8:1112-1120. [PMID: 30108822 PMCID: PMC6072410 DOI: 10.1039/c7md00054e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023]
Abstract
The increase in bacterial and viral resistance to current therapeutics has led to intensive research for new antibacterial and antiviral agents. Among these, aminoglycosides and their guanidino derivatives are potent candidates targeting specific RNA sequences. It is necessary that these substances can pass across mammalian membranes in order to reach their intracellular targets. This study investigated the effects of the aminoglycosides kanamycin A and neomycin B and their guanidino derivatives on mammalian mimetic membranes using a quartz crystal microbalance with dissipation monitoring (QCM-D). Lipid bilayers as membrane models were deposited onto gold coated quartz crystals and aminoglycosides added afterwards. Notably, the guanidino derivatives exhibited an initial stiffening of the membrane layer indicating a quick insertion of the planar guanidino groups into the membrane. The guanidino derivatives also reached their maximum binding to the membrane at lower concentrations than the native compounds. Therefore, these modified aminoglycosides are promising agents for the development of new antimicrobial treatments.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Zhi Xiang Voo
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Clemens Kubeil
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Bernd Abel
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Bim Graham
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Leone Spiccia
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Lisandra L Martin
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| |
Collapse
|
33
|
Fong DH, Burk DL, Blanchet J, Yan AY, Berghuis AM. Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance. Structure 2017; 25:750-761.e5. [PMID: 28416110 DOI: 10.1016/j.str.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022]
Abstract
The macrolides are a class of antibiotic, characterized by a large macrocyclic lactone ring that can be inactivated by macrolide phosphotransferase enzymes. We present structures for MPH(2')-I and MPH(2')-II in the apo state, and in complex with GTP analogs and six different macrolides. These represent the first structures from the two main classes of macrolide phosphotransferases. The structures show that the enzymes are related to the aminoglycoside phosphotransferases, but are distinguished from them by the presence of a large interdomain linker that contributes to an expanded antibiotic binding pocket. This pocket is largely hydrophobic, with a negatively charged patch located at a conserved aspartate residue, rationalizing the broad-spectrum resistance conferred by the enzymes. Complementary mutation studies provide insights into factors governing substrate specificity. A comparison with macrolides bound to their natural target, the 50S ribosome, suggests avenues for next-generation antibiotic development.
Collapse
Affiliation(s)
- Desiree H Fong
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 0B1, Canada
| | - David L Burk
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 0B1, Canada
| | - Jonathan Blanchet
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 0B1, Canada
| | - Amy Y Yan
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 0B1, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Microbiology & Immunology, McGill University, Montréal, QC H3A 2B4, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
34
|
Kinetic characterization and molecular docking of novel allosteric inhibitors of aminoglycoside phosphotransferases. Biochim Biophys Acta Gen Subj 2017; 1861:3464-3473. [DOI: 10.1016/j.bbagen.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
|
35
|
Zhang Q, Alfindee MN, Shrestha JP, Nziko VDPN, Kawasaki Y, Peng X, Takemoto JY, Chang CWT. Divergent Synthesis of Three Classes of Antifungal Amphiphilic Kanamycin Derivatives. J Org Chem 2016; 81:10651-10663. [DOI: 10.1021/acs.joc.6b01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qian Zhang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Madher N. Alfindee
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Jaya P. Shrestha
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Vincent de Paul Nzuwah Nziko
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Yukie Kawasaki
- Department
of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Xinrui Peng
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Jon Y. Takemoto
- Department
of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Cheng-Wei Tom Chang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
36
|
Power BH, Smith N, Downer B, Alisaraie L. Insight into the mechanism of chemical modification of antibacterial agents by antibiotic resistance enzymeO-phosphotransferase-IIIA. Chem Biol Drug Des 2016; 89:84-97. [DOI: 10.1111/cbdd.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Blake Hollett Power
- School of Pharmacy; Memorial University of Newfoundland; St. John's Newfoundland Canada
| | - Nathan Smith
- School of Pharmacy; Memorial University of Newfoundland; St. John's Newfoundland Canada
| | - Brandon Downer
- School of Pharmacy; Memorial University of Newfoundland; St. John's Newfoundland Canada
| | - Laleh Alisaraie
- School of Pharmacy; Memorial University of Newfoundland; St. John's Newfoundland Canada
- Department of Chemistry; Memorial University of Newfoundland; St. John's Newfoundland Canada
| |
Collapse
|
37
|
Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation. Biochem Biophys Res Commun 2016; 477:595-601. [PMID: 27338640 DOI: 10.1016/j.bbrc.2016.06.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3'-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding.
Collapse
|
38
|
Bassenden AV, Rodionov D, Shi K, Berghuis AM. Structural Analysis of the Tobramycin and Gentamicin Clinical Resistome Reveals Limitations for Next-generation Aminoglycoside Design. ACS Chem Biol 2016; 11:1339-46. [PMID: 26900880 DOI: 10.1021/acschembio.5b01070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Widespread use and misuse of antibiotics has allowed for the selection of resistant bacteria capable of avoiding the effects of antibiotics. The primary mechanism for resistance to aminoglycosides, a broad-spectrum class of antibiotics, is through covalent enzymatic modification of the drug, waning their bactericidal effect. Tobramycin and gentamicin are two medically important aminoglycosides targeted by several different resistance factors, including aminoglycoside 2″-nucleotidyltransferase [ANT(2″)], the primary cause of aminoglycoside resistance in North America. We describe here two crystal structures of ANT(2″), each in complex with AMPCPP, Mn(2+), and either tobramycin or gentamicin. Together these structures outline ANT(2″)'s specificity for clinically used substrates. Importantly, these structures complete our structural knowledge for the set of enzymes that most frequently confer clinically observed resistance to tobramycin and gentamicin. Comparison of tobramycin and gentamicin binding to enzymes in this resistome, as well as to the intended target, the bacterial ribosome, reveals surprising diversity in observed drug-target interactions. Analysis of the diverse binding modes informs that there are limited opportunities for developing aminoglycoside analogs capable of evading resistance.
Collapse
Affiliation(s)
- Angelia V. Bassenden
- Department
of Biochemistry, McGill University, McIntyre Medical Building, 3655
Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavilion, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| | - Dmitry Rodionov
- Department
of Biochemistry, McGill University, McIntyre Medical Building, 3655
Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavilion, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| | - Kun Shi
- Department
of Biochemistry, McGill University, McIntyre Medical Building, 3655
Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavilion, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| | - Albert M. Berghuis
- Department
of Biochemistry, McGill University, McIntyre Medical Building, 3655
Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
- Department
of Microbiology and Immunology, McGill University, Duff Medical Building, 3775 University
Street, Montreal, Quebec, Canada, H3A 2B4
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavilion, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| |
Collapse
|
39
|
Caldwell SJ, Huang Y, Berghuis AM. Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia. Structure 2016; 24:935-45. [PMID: 27161980 DOI: 10.1016/j.str.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
APH(2″)-Ia is a widely disseminated resistance factor frequently found in clinical isolates of Staphylococcus aureus and pathogenic enterococci, where it is constitutively expressed. APH(2″)-Ia confers high-level resistance to gentamicin and related aminoglycosides through phosphorylation of the antibiotic using guanosine triphosphate (GTP) as phosphate donor. We have determined crystal structures of the APH(2″)-Ia in complex with GTP analogs, guanosine diphosphate, and aminoglycosides. These structures collectively demonstrate that aminoglycoside binding to the GTP-bound kinase drives conformational changes that bring distant regions of the protein into contact. These changes in turn drive a switch of the triphosphate cofactor from an inactive, stabilized conformation to a catalytically competent active conformation. This switch has not been previously reported for antibiotic kinases or for the structurally related eukaryotic protein kinases. This catalytic triphosphate switch presents a means by which the enzyme can curtail wasteful hydrolysis of GTP in the absence of aminoglycosides, providing an evolutionary advantage to this enzyme.
Collapse
Affiliation(s)
- Shane J Caldwell
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yue Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
40
|
Devamani T, Rauwerdink AM, Lun-zer M, Jones BJ, Mooney JL, Tan MAO, Zhang ZJ, Xu JH, Dean AM, Kazlauskas RJ. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases. J Am Chem Soc 2016; 138:1046-56. [PMID: 26736133 PMCID: PMC5466365 DOI: 10.1021/jacs.5b12209] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases ∼ 100 million years ago. Both enzyme types are α/β-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P < 0.01). Ancestral esterases were more likely to catalyze a lyase reaction than modern esterases, and the ancestral HNL was more likely to catalyze ester hydrolysis than modern HNL's. One ancestral enzyme (HNL1) along the path from esterase to hydroxynitrile lyases was especially promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, γ-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzymes are catalytically promiscuous, but HNL1 is especially so.
Collapse
Affiliation(s)
- Titu Devamani
- University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Alissa M. Rauwerdink
- University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Mark Lun-zer
- University of Minnesota, Department of Ecology, Evolution & Behavior and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Bryan J. Jones
- University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Joanna L. Mooney
- University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | | | - Zhi-Jun Zhang
- East China University of Science and Technology, School of Biotechnology, Meilong Road 130, Shanghai 200237 P. R. China
| | - Jian-He Xu
- East China University of Science and Technology, School of Biotechnology, Meilong Road 130, Shanghai 200237 P. R. China
| | - Antony M. Dean
- University of Minnesota, Department of Ecology, Evolution & Behavior and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
- Sun Yat-sen University, Institute of Ecology and Evolution, No.135, Xinggang West Road, Guangzhou, 510275 P. R. China
| | - Romas J. Kazlauskas
- University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| |
Collapse
|
41
|
Bacot-Davis VR, Bassenden AV, Berghuis AM. Drug-target networks in aminoglycoside resistance: hierarchy of priority in structural drug design. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00384a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug-target network analysis for advancing next-generation aminoglycoside therapies that combat antibiotic resistant infections.
Collapse
Affiliation(s)
- Valjean R. Bacot-Davis
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Groupes de recherche GRASP et PROTEO
| | - Angelia V. Bassenden
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Groupes de recherche GRASP et PROTEO
| | - Albert M. Berghuis
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Department of Microbiology & Immunology
| |
Collapse
|
42
|
Maianti JP, Hanessian S. Structural hybridization of three aminoglycoside antibiotics yields a potent broad-spectrum bactericide that eludes bacterial resistance enzymes. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00429b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematically blending structural features from obsolete aminoglycosides gleaned from X-ray co-crystal models rendered a promising antibiotic inert to enzymatic modification.
Collapse
|
43
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
44
|
Fosso MY, Zhu H, Green KD, Garneau-Tsodikova S, Fredrick K. Tobramycin Variants with Enhanced Ribosome-Targeting Activity. Chembiochem 2015; 16:1565-70. [PMID: 26033429 DOI: 10.1002/cbic.201500256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/16/2023]
Abstract
With the increased evolution of aminoglycoside (AG)-resistant bacterial strains, the need to develop AGs with 1) enhanced antimicrobial activity, 2) the ability to evade resistance mechanisms, and 3) the capability of targeting the ribosome with higher efficiency is more and more pressing. The chemical derivatization of the naturally occurring tobramycin (TOB) by attachment of 37 different thioether groups at the 6''-position led to the identification of generally poorer substrates of TOB-targeting AG-modifying enzymes (AMEs). Thirteen of these displayed better antibacterial activity than the parent TOB while retaining ribosome-targeting specificity. Analysis of these compounds in vitro shed light on the mechanism by which they act and revealed three with clearly enhanced ribosome-targeting activity.
Collapse
Affiliation(s)
- Marina Y Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA)
| | - Hongkun Zhu
- Department of Microbiology, Center for RNA Biology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210-1292 (USA)
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA)
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA).
| | - Kurt Fredrick
- Department of Microbiology, Center for RNA Biology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210-1292 (USA).
| |
Collapse
|
45
|
Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI. mBio 2014; 5:e01972-14. [PMID: 25336457 PMCID: PMC4212838 DOI: 10.1128/mbio.01972-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a −35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.
Collapse
|
46
|
Smith CA, Toth M, Bhattacharya M, Frase H, Vakulenko SB. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1561-71. [PMID: 24914967 PMCID: PMC4051501 DOI: 10.1107/s1399004714005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 01/04/2023]
Abstract
The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
47
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
48
|
Smith AME, Brennan JD. Simultaneous inhibition assay for human and microbial kinases via MALDI-MS/MS. Chembiochem 2014; 15:587-94. [PMID: 24478228 DOI: 10.1002/cbic.201300739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 11/05/2022]
Abstract
Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI-MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3'IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI-MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3'IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z'-factors of 0.55 for APH3'IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase-directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non-selective inhibitor following mixture deconvolution.
Collapse
Affiliation(s)
- Anne Marie E Smith
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8 (Canada), Homepage: brennanlab.ca; biointerfaces.mcmaster.ca
| | | |
Collapse
|
49
|
Woegerbauer M, Zeinzinger J, Springer B, Hufnagl P, Indra A, Korschineck I, Hofrichter J, Kopacka I, Fuchs R, Steinwider J, Fuchs K, Nielsen KM, Allerberger F. Prevalence of the aminoglycoside phosphotransferase genes aph(3')-IIIa and aph(3')-IIa in Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. J Med Microbiol 2013; 63:210-217. [PMID: 24194558 DOI: 10.1099/jmm.0.065789-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aminoglycoside phosphotransferase aph(3')-IIa primarily inactivates kanamycin and neomycin, whilst aph(3')-IIIa also inactivates amikacin. The aim of this study was to determine the frequency of both resistance genes in major human pathogens to obtain their baseline prevalence in the gene pool of these bacterial populations in Austria. In total, 10 541 Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates were collected representatively without selection bias between 2008 and 2011. Isolates were analysed by aph(3')-IIIa/nptIII- and aph(3')-IIa/nptII-specific TaqMan real-time PCR. For positive strains, MICs using Etests were performed and resistance gene sequences were determined. The overall prevalence of aph(3')-IIIa/nptIII was 1.62 % (95 % confidence interval: 1.38-1.88 %). In Escherichia coli, enterococci, Staphylococcus aureus, P. aeruginosa and Salmonella spp., the aph(3')-IIIa/nptIII prevalence was 0.47 % (0-1.47 %), 37.53 % (32.84-42.40 %), 2.90 % (1.51-5.02 %), 0 % (0-0.32 %) and 0 % (0-0.037 %), respectively. Eleven of a total of 169 carriers showed single-nucleotide polymorphisms in the resistance allele. The overall prevalence of aph(3')-IIa/nptII was 0.0096 % (0-0.046 %). Escherichia coli (0-0.70 %), enterococci (0-0.75 %), Staphylococcus aureus (0-0.73 %) and P. aeruginosa (0-0.32 %) did not carry aph(3')-IIa. A single Salmonella isolate was positive, resulting in an aph(3')-IIa prevalence of 0.013 % (0-0.058 %). aph(3')-IIIa/nptIII carriers were moderately prevalent in the strains tested except for in enterococci, which appeared to be an important reservoir for aph(3')-IIIa. aph(3')-IIa/nptII genes were detected at clinically irrelevant frequencies and played no significant role in the aminoglycoside resistance gene pool during the observation period.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Josef Zeinzinger
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Burkhard Springer
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Peter Hufnagl
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Alexander Indra
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | | | - Johannes Hofrichter
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Ian Kopacka
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Reinhard Fuchs
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Johann Steinwider
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Klemens Fuchs
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | | | - Franz Allerberger
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| |
Collapse
|
50
|
Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem J 2013; 454:191-200. [PMID: 23758273 DOI: 10.1042/bj20130317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.
Collapse
|