1
|
Garrido-Bazán V, Guzmán-Ocampo DC, Domínguez L, Aguirre J. Filamentous actin destabilization by H 2O 2 favors DnmA aggregation, with crucial roles of cysteines 450 and 776 in mitochondrial and peroxisomal division in Aspergillus nidulans. mBio 2023; 14:e0282223. [PMID: 38014993 PMCID: PMC10746283 DOI: 10.1128/mbio.02822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Mitochondria constitute major sources of H2O2 and other reactive oxygen species in eukaryotic cells. The division of these organelles is crucial for multiple processes in cell biology and relies on highly regulated mechano-GTPases that are oligomerization dependent and belong to the dynamin-related protein family, like A. nidulans DnmA. Our previous work demonstrated that H2O2 induces mitochondrial constriction, division, and remodeling of the outer membrane. Here, we show that H2O2 also induces a DnmA aggregation consistent with higher-order oligomerization and its recruitment to mitochondria. The study of this response uncovered that H2O2 induces the depolymerization and reorganization of actin as well as the critical role that cysteines 450 and 776 play in DnmA function. Our results provide new insights into the mechanisms of reactive oxygen species cell signaling and how they can regulate the dynamics of the actin cytoskeleton and the division of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Dulce C. Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Domínguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
2
|
Alkafaas SS, Loutfy SA, Diab T, Hessien M. Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/Akt inhibition in luminal A breast cancer cells. Med Oncol 2023; 40:35. [PMID: 36460880 PMCID: PMC9718716 DOI: 10.1007/s12032-022-01889-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Breast cancer cells abnormally express vasopressin (AVP) and its receptors. The effect of AVP is largely orchestrated through its downstream signaling and by receptor-mediated endocytosis (RME), in which Dynamin 2 (Dyn2) plays an integral role in vesicle closure. In this work, luminal A breast cancer cells were treated with AVP, and then Dynasore (DYN) was employed to inhibit Dyn2 to explore the combined effect of AVP and Dyn2 inhibition on the survival of breast cancer cells. The results revealed that DYN alone demonstrated a concentration-dependent cytotoxic effect in AVP untreated cells. Apoptosis developed in 29.7 and 30.3% of cells treated with AVP or AVP+DYN, respectively, compared to 32.5% in cells treated with Wortmannin (Wort, a selective PI3K pathway inhibitor). More apoptosis was observed when cells were treated with DYN+Wort in presence or absence of exogenous AVP. Besides, 2 or 4- fold increases in the expression of Bax and Caspase-3, were observed in cells exposed to AVP in absence or presence of DYN, respectively. This was associated with higher levels of the autophagy marker (LC3II protein). Meanwhile, the activation of Akt protein, sequentially decreased in the same pattern. Cell's invasion decreased when they were exposed to AVP alone or combined with DYN or/and Wort. Conclusively, although many reports suggested the proliferative effect of AVP, the results predict the antiproliferative and antimetastatic effects of 100 nM AVP in luminal A breast cancer cells. However, the hormone did not enhance the cytotoxic effect of Dyn 2 or PI3K pathway inhibition. Summary of the Dynamin 2 independent AVP antiproliferative effects. Breast cancer cells expresses AVP as a Prohormone (A). At high dose of AVP, the hormone is liganded with AVP receptor (B) to initiate RME, where the endosomed complex (C) is degraded through the endosome-lysosome system, as a part of signal management. These events consume soluble Dyn2 in neck closure and vesicle fission (D). This makes the cells more substitutable to the direct apoptotic effect of DYN (E). Alternatively, at lower AVP doses the liganded AVP may initiate cAMP-mediated downstream signaling (F) and cellular proliferation. In parallel, Wort inhibits PIP2-PIP3 conversion (G) and the subsequent inhibition of PI3K/Akt/mTOR pathway leading to cell death.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- grid.412258.80000 0000 9477 7793Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| | - Samah A. Loutfy
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt ,grid.440862.c0000 0004 0377 5514Nanotechnology Research Center, British University, Cairo, Egypt
| | - Thoria Diab
- grid.412258.80000 0000 9477 7793Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| | - Mohamed Hessien
- grid.412258.80000 0000 9477 7793Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| |
Collapse
|
3
|
Katic A, Hüsler D, Letourneur F, Hilbi H. Dictyostelium Dynamin Superfamily GTPases Implicated in Vesicle Trafficking and Host-Pathogen Interactions. Front Cell Dev Biol 2021; 9:731964. [PMID: 34746129 PMCID: PMC8565484 DOI: 10.3389/fcell.2021.731964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
The haploid social amoeba Dictyostelium discoideum is a powerful model organism to study vesicle trafficking, motility and migration, cell division, developmental processes, and host cell-pathogen interactions. Dynamin superfamily proteins (DSPs) are large GTPases, which promote membrane fission and fusion, as well as membrane-independent cellular processes. Accordingly, DSPs play crucial roles for vesicle biogenesis and transport, organelle homeostasis, cytokinesis and cell-autonomous immunity. Major progress has been made over the last years in elucidating the function and structure of mammalian DSPs. D. discoideum produces at least eight DSPs, which are involved in membrane dynamics and other processes. The function and structure of these large GTPases has not been fully explored, despite the elaborate genetic and cell biological tools available for D. discoideum. In this review, we focus on the current knowledge about mammalian and D. discoideum DSPs, and we advocate the use of the genetically tractable amoeba to further study the role of DSPs in cell and infection biology. Particular emphasis is put on the virulence mechanisms of the facultative intracellular bacterium Legionella pneumophila.
Collapse
Affiliation(s)
- Ana Katic
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
4
|
Sun B, Zhang QY, Yuan H, Gao W, Han B, Zhang M. PDV1 and PDV2 Differentially Affect Remodeling and Assembly of the Chloroplast DRP5B Ring. PLANT PHYSIOLOGY 2020; 182:1966-1978. [PMID: 32005784 PMCID: PMC7140913 DOI: 10.1104/pp.19.01490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Chloroplasts divide by binary fission, which is driven by a ring-like multiprotein complex spanning the inner and outer envelope membranes (OEMs) at the division site. The cytosolic DYNAMIN-RELATED PROTEIN 5B (DRP5B/ARC5) is a mechanochemical GTPase involved in binary fission of the chloroplast membrane in Arabidopsis (Arabidopsis thaliana), but the dynamics of its interactions with the chloroplast membranes and their regulation by guanine nucleotides and protein effectors remain poorly characterized. Using an Arabidopsis phot2 mutant with defects in chloroplast photorelocation movement, we determined that the ring structures of DRP5B at the chloroplast division site underwent subunit exchange with a cytosolic DRP5B pool. Mutant DRP5B proteins with impaired GTPase activity retained the ability to self-assemble at the constriction sites of chloroplasts, but did not rescue the chloroplast division defects in the Arabidopsis drp5B mutant. Our in vivo kinetic measurements of the DRP5B mutant T82D suggested that turnover of the DRP5B ring at the chloroplast division site is coupled to GTP hydrolysis. Furthermore, we established that DRP5B targeting to the chloroplast surface and assembly into a ring structure at the division site are specifically determined by the chloroplast outer OEM protein PLASTID DIVISION2 (PDV2), and that DRP5B-OEM dissociation is mainly mediated by PDV1, a paralog of PDV2. Thus, this study suggests that the mechanochemical properties of DRP5B on the chloroplast surface are dynamically regulated by its GTPase activity and major binding partners.
Collapse
Affiliation(s)
- Bing Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qi-Yang Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huan Yuan
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bo Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Min Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Ford MGJ, Chappie JS. The structural biology of the dynamin-related proteins: New insights into a diverse, multitalented family. Traffic 2019; 20:717-740. [PMID: 31298797 DOI: 10.1111/tra.12676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Dynamin-related proteins are multidomain, mechanochemical GTPases that self-assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X-ray crystallography and cryo-electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.
Collapse
Affiliation(s)
- Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
6
|
Raftery N, Stevenson NJ. Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. Cell Mol Life Sci 2017; 74:2525-2535. [PMID: 28432378 PMCID: PMC7079803 DOI: 10.1007/s00018-017-2520-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new "treasure trove" of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.
Collapse
Affiliation(s)
- Nicola Raftery
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nigel J Stevenson
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proc Natl Acad Sci U S A 2017. [PMID: 28645896 DOI: 10.1073/pnas.1620959114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamin-like proteins (DLPs) mediate various membrane fusion and fission processes within the cell, which often require the polymerization of DLPs. An IFN-inducible family of DLPs, the guanylate-binding proteins (GBPs), is involved in antimicrobial and antiviral responses within the cell. Human guanylate-binding protein 1 (hGBP1), the founding member of GBPs, is also engaged in the regulation of cell adhesion and migration. Here, we show how the GTPase cycle of farnesylated hGBP1 (hGBP1F) regulates its self-assembly and membrane interaction. Using vesicles of various sizes as a lipid bilayer model, we show GTP-dependent membrane binding of hGBP1F In addition, we demonstrate nucleotide-dependent tethering ability of hGBP1F Furthermore, we report nucleotide-dependent polymerization of hGBP1F, which competes with membrane binding of the protein. Our results show that hGBP1F acts as a nucleotide-controlled molecular switch by modulating the accessibility of its farnesyl moiety, which does not require any supportive proteins.
Collapse
|
8
|
Daumke O, Praefcke GJK. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers 2016; 105:580-93. [PMID: 27062152 PMCID: PMC5084822 DOI: 10.1002/bip.22855] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/29/2022]
Abstract
Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016.
Collapse
Affiliation(s)
- Oliver Daumke
- Kristallographie, Max-Delbrück Centrum Für Molekulare Medizin, Robert-Rössle-Straße 10, Berlin, 13125, Germany
- Institut Für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Gerrit J K Praefcke
- Abteilung Hämatologie/Transfusionsmedizin, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, Langen, 63225, Germany
| |
Collapse
|
9
|
Gueho A, Bosmani C, Gopaldass N, Molle V, Soldati T, Letourneur F. Dictyostelium EHD associates with Dynamin and participates in phagosome maturation. J Cell Sci 2016; 129:2354-67. [DOI: 10.1242/jcs.182857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
C-terminal EHDs (Eps15 homology-domain-containing proteins) are newly identified key regulators of endosomal membrane trafficking. Here we show that D. discoideum contains a single EHD protein that localizes to endosomal compartments and newly formed phagosomes. We provide the first evidence that EHD regulates phagosome maturation. Deletion of EHD results in defects in intraphagosomal proteolysis and acidification. These defects are linked to early delivery of lysosomal enzymes and fast retrieval of the vacuolar H+-ATPase in maturing phagosomes. We also demonstrate that EHD physically interacts with DymA. Our results indicate that EHD and DymA can associate independently to endomembranes, and yet they share identical kinetics of phagosome recruitment and release during phagosome maturation. Functional analysis of ehd−, dymA−, and double dymA−/ehd− knock-out strains indicate that DymA and EHD play non-redundant and independent functions in phagosome maturation. Finally, we show that the absence of EHD leads to increase tubulation of endosomes, indicating that EHD participates in the scission of endosomal tubules as reported for DymA.
Collapse
Affiliation(s)
- Aurélie Gueho
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
10
|
Abstract
Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.
Collapse
Affiliation(s)
- William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
11
|
Faelber K, Held M, Gao S, Posor Y, Haucke V, Noé F, Daumke O. Structural insights into dynamin-mediated membrane fission. Structure 2013; 20:1621-8. [PMID: 23063009 DOI: 10.1016/j.str.2012.08.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 12/31/2022]
Abstract
Dynamin is a multidomain mechanochemical guanine triphosphatase that catalyzes membrane scission, most notably of clathrin-coated endocytic vesicles. A number of recent publications have provided structural and mechanistic insights into the formation of helical dynamin filaments assembled by dynamic interactions of multiple domains within dynamin. As a prerequisite for membrane scission, this oligomer undergoes nucleotide-triggered large scale dynamic rearrangements. Here, we review these structural findings and discuss how the architecture of dynamin is poised for the assembly into right-handed helical filaments. Based on these data, we propose a structure-based model for dynamin-mediated scission of membranes.
Collapse
Affiliation(s)
- Katja Faelber
- Max-Delbrück-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Faelber K, Gao S, Held M, Posor Y, Haucke V, Noé F, Daumke O. Oligomerization of dynamin superfamily proteins in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:411-43. [PMID: 23663977 DOI: 10.1016/b978-0-12-386931-9.00015-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins of the dynamin superfamily are mechanochemical GTPases, which mediate nucleotide-dependent membrane remodeling events. The founding member dynamin is recruited to the neck of clathrin-coated endocytic vesicles where it oligomerizes into helical filaments. Nucleotide-hydrolysis-induced conformational changes in the oligomer catalyze scission of the vesicle neck. Here, we review recent insights into structure, function, and oligomerization of dynamin superfamily proteins and their roles in human diseases. We describe in detail the molecular mechanisms how dynamin oligomerizes at membranes and introduce a model how oligomerization is linked to membrane fission. Finally, we discuss molecular mechanisms how mutations in dynamin could lead to the congenital diseases, Centronuclear Myopathy and Charcot-Marie Tooth disease.
Collapse
Affiliation(s)
- Katja Faelber
- Max-Delbrück-Centrum for Molecular Medicine, Crystallography, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Replacement of Arg-386 with Gly in dynamin 1 middle domain reduced GTPase activity and oligomer stability in the absence of lipids. Biosci Biotechnol Biochem 2012; 76:2195-200. [PMID: 23221691 DOI: 10.1271/bbb.120462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dynamin plays an important role in membrane fission during endocytosis, and its middle domain is involved in the formation of functional oligomers. In this study, we found that replacement of Arg-386 with Gly in the middle domain region of dynamin 1 did not affect the intermolecular interactions of dynamin 1 in the presence of phosphatidylserine-liposomes. But, unexpectedly, this variant showed lower guanosine 5'-triphosphatase activity in the absence of phosphatidylserine-liposomes and enhanced monomer formation from oligomers. Our results indicate that GTPase activity in the absence of lipids is important in the dissociation of oligomer complexes, i.e., reduced basal dynamin 1 GTPase activity is associated with instability of dynamin oligomers.
Collapse
|
14
|
Affiliation(s)
- Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| |
Collapse
|
15
|
Gopaldass N, Patel D, Kratzke R, Dieckmann R, Hausherr S, Hagedorn M, Monroy R, Krüger J, Neuhaus EM, Hoffmann E, Hille K, Kuznetsov SA, Soldati T. Dynamin A, Myosin IB and Abp1 couple phagosome maturation to F-actin binding. Traffic 2011; 13:120-30. [PMID: 22008230 DOI: 10.1111/j.1600-0854.2011.01296.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of actin, class I myosins and dynamin in endocytic uptake processes is well characterized, but their role during endo-phagosomal membrane trafficking and maturation is less clear. In Dictyostelium, knockout of myosin IB (myoB) leads to a defect in membrane protein recycling from endosomes back to the plasma membrane. Here, we show that actin plays a central role in the morphology and function of the endocytic pathway. Indeed, latrunculin B (LatB) induces endosome tubulation, a phenotype also observed in dynamin A (dymA)-null cells. Knockout of dymA impairs phagosome acidification, whereas knockout of myoB delays reneutralization, a phenotype mimicked by a low dose of LatB. As a read out for actin-dependent processes during maturation, we monitored the capacity of purified phagosomes to bind F-actin in vitro, and correlated this with the presence of actin-binding and membrane-trafficking proteins. Phagosomes isolated from myoB-null cells showed an increased binding to F-actin, especially late phagosomes. In contrast, early phagosomes from dymA-null cells showed reduced binding to F-actin while late phagosomes were unaffected. We provide evidence that Abp1 is the main F-actin-binding protein in this assay and is central for the interplay between DymA and MyoB during phagosome maturation.
Collapse
Affiliation(s)
- Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Faelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D, Haucke V, Noé F, Daumke O. Crystal structure of nucleotide-free dynamin. Nature 2011; 477:556-60. [PMID: 21927000 DOI: 10.1038/nature10369] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/17/2011] [Indexed: 12/18/2022]
Abstract
Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function.
Collapse
Affiliation(s)
- Katja Faelber
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dictyostelium dynamin B modulates cytoskeletal structures and membranous organelles. Cell Mol Life Sci 2010; 68:2751-67. [PMID: 21086149 PMCID: PMC3142549 DOI: 10.1007/s00018-010-0590-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 11/30/2022]
Abstract
Dictyostelium discoideum cells produce five dynamin family proteins. Here, we show that dynamin B is the only member of this group of proteins that is initially produced as a preprotein and requires processing by mitochondrial proteases for formation of the mature protein. Our results show that dynamin B-depletion affects many aspects of cell motility, cell-cell and cell-surface adhesion, resistance to osmotic shock, and fatty acid metabolism. The mature form of dynamin B mediates a wide range and unique combination of functions. Dynamin B affects events at the plasma membrane, peroxisomes, the contractile vacuole system, components of the actin-based cytoskeleton, and cell adhesion sites. The modulating effect of dynamin B on the activity of the contractile vacuole system is unique for the Dictyostelium system. Other functions displayed by dynamin B are commonly associated with either classical dynamins or dynamin-related proteins.
Collapse
|
18
|
Haller O, Gao S, von der Malsburg A, Daumke O, Kochs G. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity. J Biol Chem 2010; 285:28419-24. [PMID: 20538602 DOI: 10.1074/jbc.r110.145839] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible MxA GTPase is a key mediator of cell-autonomous innate immunity against a broad range of viruses such as influenza and bunyaviruses. MxA shares a similar domain structure with the dynamin superfamily of mechanochemical enzymes, including an N-terminal GTPase domain, a central middle domain, and a C-terminal GTPase effector domain. Recently, crystal structures of a GTPase domain dimer of dynamin 1 and of the oligomerized stalk of MxA (built by the middle and GTPase effector domains) were determined. These data provide exciting insights into the architecture and antiviral function of the MxA oligomer. Moreover, the structural knowledge paves the way for the development of novel antiviral drugs against influenza and other highly pathogenic viruses.
Collapse
Affiliation(s)
- Otto Haller
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 2010; 465:502-6. [PMID: 20428112 DOI: 10.1038/nature08972] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/25/2010] [Indexed: 12/11/2022]
Abstract
The interferon-inducible dynamin-like myxovirus resistance protein 1 (MxA; also called MX1) GTPase is a key mediator of cell-autonomous innate immunity against pathogens such as influenza viruses. MxA partially localizes to COPI-positive membranes of the smooth endoplasmic reticulum-Golgi intermediate compartment. At the point of infection, it redistributes to sites of viral replication and promotes missorting of essential viral constituents. It has been proposed that the middle domain and the GTPase effector domain of dynamin-like GTPases constitute a stalk that mediates oligomerization and transmits conformational changes from the G domain to the target structure; however, the molecular architecture of this stalk has remained elusive. Here we report the crystal structure of the stalk of human MxA, which folds into a four-helical bundle. This structure tightly oligomerizes in the crystal in a criss-cross pattern involving three distinct interfaces and one loop. Mutations in each of these interaction sites interfere with native assembly, oligomerization, membrane binding and antiviral activity of MxA. On the basis of these results, we propose a structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family.
Collapse
|
20
|
Lackner LL, Nunnari JM. The molecular mechanism and cellular functions of mitochondrial division. Biochim Biophys Acta Mol Basis Dis 2008; 1792:1138-44. [PMID: 19100831 DOI: 10.1016/j.bbadis.2008.11.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/27/2022]
Abstract
Mitochondria are highly dynamic organelles that continuously divide and fuse. These dynamic processes regulate the size, shape, and distribution of the mitochondrial network. In addition, mitochondrial division and fusion play critical roles in cell physiology. This review will focus on the dynamic process of mitochondrial division, which is highly conserved from yeast to humans. We will discuss what is known about how the essential components of the division machinery function to mediate mitochondrial division and then focus on proteins that have been implicated in division but whose functions remain unclear. We will then briefly discuss the cellular functions of mitochondrial division and the problems that arise when division is disrupted.
Collapse
Affiliation(s)
- Laura L Lackner
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
21
|
Abstract
Mitochondria are derived from eubacteria; however, in most eukaryotes, novel mechanisms for the propagation of this organelle and its genome have evolved. This review focuses on what is currently known about the novel molecular machines that divide and fuse mitochondria.
Collapse
Affiliation(s)
- Suzanne Hoppins
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
22
|
Haller O, Staeheli P, Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie 2007; 89:812-8. [PMID: 17570575 DOI: 10.1016/j.biochi.2007.04.015] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/27/2007] [Indexed: 12/13/2022]
Abstract
Mx proteins are key components of the antiviral state induced by interferons in many species. They belong to the class of dynamin-like large guanosine triphosphatases (GTPases) known to be involved in intracellular vesicle trafficking and organelle homeostasis. Mx GTPases share structural and functional properties with dynamin, such as self-assembly and association with intracellular membranes. A unique property of some Mx GTPases is their antiviral activity against a wide range of RNA viruses, including influenza viruses and members of the bunyavirus family. These viruses are inhibited at an early stage in their life cycle, soon after host cell entry and before genome amplification. The mouse Mx1 GTPase accumulates in the cell nucleus where it associates with components of the PML nuclear bodies and inhibits influenza and Thogoto viruses known to replicate in the nucleus. The human MxA GTPase accumulates in the cytoplasm and is partly associated with a COP-I-positive subcompartment of the endoplasmic reticulum. This membrane compartment seems to provide an interaction platform that facilitates viral target recognition. In the case of bunyaviruses, MxA recognizes the viral nucleocapsid protein and interferes with its role in viral genome replication. In the case of Thogoto virus, MxA recognizes the viral nucleoprotein and prevents the incoming viral nucleocapsids from being transported into the nucleus, the site of viral transcription and replication. In both cases, GTP-binding and carboxy-terminal effector functions of MxA are required for target recognition. In general, Mx GTPases appear to detect viral infection by sensing nucleocapsid-like structures. As a consequence, these viral components are trapped and sorted to locations where they become unavailable for the generation of new virus particles.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
23
|
Abstract
BACKGROUND The continuity of chloroplasts is maintained by division of pre-existing chloroplasts. Chloroplasts originated as bacterial endosymbionts; however, the majority of bacterial division factors are absent from chloroplasts and the eukaryotic host has added several new components. For example, the ftsZ gene has been duplicated and modified, and the Min system has retained MinE and MinD but lost MinC, acquiring at least one new component ARC3. Further, the mechanism has evolved to include two members of the dynamin protein family, ARC5 and FZL, and plastid-dividing (PD) rings were most probably added by the eukaryotic host. SCOPE Deciphering how the division of plastids is coordinated and controlled by nuclear-encoded factors is key to our understanding of this important biological process. Through a number of molecular-genetic and biochemical approaches, it is evident that FtsZ initiates plastid division where the coordinated action of MinD and MinE ensures correct FtsZ (Z)-ring placement. Although the classical FtsZ antagonist MinC does not exist in plants, ARC3 may fulfil this role. Together with other prokaryotic-derived proteins such as ARC6 and GC1 and key eukaryotic-derived proteins such as ARC5 and FZL, these proteins make up a sophisticated division machinery. The regulation of plastid division in a cellular context is largely unknown; however, recent microarray data shed light on this. Here the current understanding of the mechanism of chloroplast division in higher plants is reviewed with an emphasis on how recent findings are beginning to shape our understanding of the function and evolution of the components. CONCLUSIONS Extrapolation from the mechanism of bacterial cell division provides valuable clues as to how the chloroplast division process is achieved in plant cells. However, it is becoming increasingly clear that the highly regulated mechanism of plastid division within the host cell has led to the evolution of features unique to the plastid division process.
Collapse
|
24
|
Ingerman E, Meeusen S, Devay R, Nunnari J. In vitro assays for mitochondrial fusion and division. Methods Cell Biol 2007; 80:707-20. [PMID: 17445718 DOI: 10.1016/s0091-679x(06)80032-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Elena Ingerman
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs). They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase and pleckstrin homology domains, and the dynamin-related human guanylate-binding protein. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts, questions the evolutionary origins of dynamins.
Collapse
Affiliation(s)
- Harry H Low
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
26
|
Stertz S, Reichelt M, Krijnse-Locker J, Mackenzie J, Simpson JC, Haller O, Kochs G. Interferon-Induced, Antiviral Human MxA Protein Localizes to a Distinct Subcompartment of the Smooth Endoplasmic Reticulum. J Interferon Cytokine Res 2006; 26:650-60. [PMID: 16978069 DOI: 10.1089/jir.2006.26.650] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis- Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.
Collapse
Affiliation(s)
- Silke Stertz
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Dynamin-related proteins (DRPs) compose a diverse family of proteins that function, through GTPase stimulated self-assembly, to remodel cellular membranes. The molecular mechanism by which DRPs mediate membrane remodeling events and the specific role of their GTPase cycle is still not fully understood. Although DRPs are members of the GTPase superfamily, they possess unique kinetic properties. In particular, they have relatively low affinity for guanine nucleotides and, under conditions that favor self-assembly, they have high rates of GTP turnover. Established fixed time point assays used for the analysis of assembly stimulated GTPase activity are prone to inaccuracies due to substrate depletion and are also limited by lack of time resolution. We describe a simple, continuous, coupled GTP regenerating assay that tackles the limitations of the fixed time point assays and can be used for the kinetic analysis of DRP GTP hydrolysis under unassembled and assembled conditions.
Collapse
Affiliation(s)
- Elena Ingerman
- Section of Molecular and Cellular Biology, Center of Genetics and Development, University of California, Davis, USA
| | | |
Collapse
|
28
|
Praefcke GJK, Kloep S, Benscheid U, Lilie H, Prakash B, Herrmann C. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J Mol Biol 2004; 344:257-69. [PMID: 15504415 DOI: 10.1016/j.jmb.2004.09.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/27/2022]
Abstract
The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Danino D, Moon KH, Hinshaw JE. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J Struct Biol 2004; 147:259-67. [PMID: 15450295 DOI: 10.1016/j.jsb.2004.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/02/2004] [Indexed: 11/27/2022]
Abstract
Dynamin, a large GTPase, is located at the necks of clathrin-coated pits where it facilitates the release of coated vesicles from the plasma membrane upon GTP binding, and hydrolysis. Previously, we have shown by negative stain electron microscopy that wild-type dynamin and a dynamin mutant lacking the C-terminal proline-rich domain, DeltaPRD, form protein-lipid tubes that constrict and vesiculate upon addition of GTP. Here, we show by time-resolved cryo-electron microscopy (cryo-EM) that DeltaPRD dynamin in the presence of GTP rapidly constricts the underlying lipid bilayer, and then gradually disassembles from the lipid. In agreement with the negative stain results, the dynamin tubes constrict from 50 to 40 nm, and their helical pitch decreases from approximately 13 to 9.4 nm. However, in contrast to the previous results, examination by cryo-EM shows that the lipid bilayer remains intact and small vesicles or fragments do not form upon GTP binding and hydrolysis. Therefore, the vesicle formation seen by negative stain may be due to the lack of mobility of the dynamin tubes on the grid during the GTP-induced conformational changes. Our results confirm that dynamin is a mechanochemical enzyme and suggest that during endocytosis dynamin is directly responsible for membrane constriction. In the cell, other proteins may enhance the activity of dynamin or the constraints induced by the surrounding coated pit and plasma membrane during constriction may cause the final membrane fission event.
Collapse
Affiliation(s)
- Dganit Danino
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | | | | |
Collapse
|
30
|
Zhu PP, Patterson A, Stadler J, Seeburg DP, Sheng M, Blackstone C. Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 2004; 279:35967-74. [PMID: 15208300 DOI: 10.1074/jbc.m404105200] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian Drp1 is a dynamin-like GTPase required for mitochondrial fission. Although it exists primarily as a cytosolic homo-tetramer in vivo, it can also self-assemble into higher order structures on the mitochondrial outer membrane, where it is required for proper mitochondrial division. Functional studies and sequence comparisons have revealed four different structural domains in Drp1, comprising N-terminal GTP-binding, middle, insert B, and C-terminal GTPase effector (GED) domains. Here we describe an intramolecular interaction within Drp1 between the GED and the N-terminal GTP-binding and middle domains. A point mutation (K679A) within the C-terminal GED domain inhibits this intramolecular association, without affecting the formation of Drp1 tetramers or the intermolecular associations among isolated C-terminal domains. Mutant Drp1 K679A exhibits impaired GTPase activity, and when overexpressed in mammalian cells it decreases mitochondrial division. Sedimentation experiments indicate that the K679A mutation either increases Drp1 complex formation or, more likely, decreases complex disassembly as compared with wild-type Drp1. Taken together, these data suggest that the C-terminal GED domain is important for stimulation of GTPase activity, formation and stability of higher order complexes, and efficient mitochondrial division.
Collapse
Affiliation(s)
- Peng-Peng Zhu
- Cellular Neurology Unit, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3704, USA
| | | | | | | | | | | |
Collapse
|
31
|
Praefcke GJK, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004; 5:133-47. [PMID: 15040446 DOI: 10.1038/nrm1313] [Citation(s) in RCA: 1072] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynamins are large GTPases that belong to a protein superfamily that, in eukaryotic cells, includes classical dynamins, dynamin-like proteins, OPA1, Mx proteins, mitofusins and guanylate-binding proteins/atlastins. They are involved in many processes including budding of transport vesicles, division of organelles, cytokinesis and pathogen resistance. With sequenced genomes from Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, yeast species and Arabidopsis thaliana, we now have a complete picture of the members of the dynamin superfamily from different organisms. Here, we review the superfamily of dynamins and their related proteins, and propose that a common mechanism leading to membrane tubulation and/or fission could encompass their many varied functions.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
32
|
Fields SD, Arana Q, Heuser J, Clarke M. Mitochondrial membrane dynamics are altered in cluA- mutants of Dictyostelium. J Muscle Res Cell Motil 2003; 23:829-38. [PMID: 12952081 DOI: 10.1023/a:1024492031696] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In cluA- mutants of Dictyostelium, mitochondria are clustered near the cell center rather than being dispersed throughout the cytoplasm. We have examined two possible mechanisms that could account for this phenotype. First, we sought evidence that the cytoskeleton or a presumptive mitochondrion-cytoskeleton linkage was altered in mutant cells. We found that cytoskeletal structures in cluA- cells appeared normal by immunostaining, and that the distribution of peroxisomes in mutant cells was indistinguishable from that in wild type cells. Treatment of wild type cells with drugs that disrupted microtubules or actin filaments did not mimic the cluA- phenotype. Thus, cytoskeletal defects seemed unlikely to account for the mitochondrial clustering in cluA- cells. Observation of the movement of GFP-tagged mitochondria in wild type cells suggested that mitochondria are transported along microtubules, as in mammalian cells, rather than along actin filaments, as in budding yeast. Therefore, the similar phenotypes of cluA- Dictyostelium cells and clu1delta yeast cells argued against CluA/Clu1p acting as a mitochondrion-cytoskeleton linker. We next examined the ultrastructure of mitochondria in freeze-substituted, thin-sectioned cells. We found that the clustered mitochondria in cluA- cells are interconnected. Often, adjacent mitochondria are linked by narrow membranous strands, although sometimes the mitochondria are partially merged. The presence of narrow constrictions at presumptive division sites argues that the constriction step of division proceeds normally. Our data suggest that cluA- cells may be blocked at a very late step in fission of the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Stephen D Fields
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
33
|
Kang BH, Busse JS, Bednarek SY. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. THE PLANT CELL 2003; 15:899-913. [PMID: 12671086 PMCID: PMC524700 DOI: 10.1105/tpc.009670] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polarized membrane trafficking during plant cytokinesis and cell expansion are critical for plant morphogenesis, yet very little is known about the molecular mechanisms that guide this process. Dynamin and dynamin-related proteins are large GTP binding proteins that are involved in membrane trafficking. Here, we show that two functionally redundant members of the Arabidopsis dynamin-related protein family, ADL1A and ADL1E, are essential for polar cell expansion and cell plate biogenesis. adl1A-2 adl1E-1 double mutants show defects in cell plate assembly, cell wall formation, and plasma membrane recycling. Using a functional green fluorescent protein fusion protein, we show that the distribution of ADL1A is dynamic and that the protein is localized asymmetrically to the plasma membrane of newly formed and mature root cells. We propose that ADL1-mediated membrane recycling is essential for plasma membrane formation and maintenance in plants.
Collapse
Affiliation(s)
- Byung-Ho Kang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
34
|
Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A 2003; 100:4328-33. [PMID: 12642673 PMCID: PMC153092 DOI: 10.1073/pnas.0530206100] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 01/13/2003] [Indexed: 12/30/2022] Open
Abstract
Chloroplast division in plant cells is orchestrated by a complex macromolecular machine with components positioned on both the inner and outer envelope surfaces. The only plastid division proteins identified to date are of endosymbiotic origin and are localized inside the organelle. Employing positional cloning methods in Arabidopsis in conjunction with a novel strategy for pinpointing the mutant locus, we have identified a gene encoding a new chloroplast division protein, ARC5. Mutants of ARC5 exhibit defects in chloroplast constriction, have enlarged, dumbbell-shaped chloroplasts, and are rescued by a wild-type copy of ARC5. The ARC5 gene product shares similarity with the dynamin family of GTPases, which mediate endocytosis, mitochondrial division, and other organellar fission and fusion events in eukaryotes. Phylogenetic analysis showed that ARC5 is related to a group of dynamin-like proteins unique to plants. A GFP-ARC5 fusion protein localizes to a ring at the chloroplast division site. Chloroplast import and protease protection assays indicate that the ARC5 ring is positioned on the outer surface of the chloroplast. Thus, ARC5 is the first cytosolic component of the chloroplast division complex to be identified. ARC5 has no obvious counterparts in prokaryotes, suggesting that it evolved from a dynamin-related protein present in the eukaryotic ancestor of plants. These results indicate that the chloroplast division apparatus is of mixed evolutionary origin and that it shares structural and mechanistic similarities with both the cell division machinery of bacteria and the dynamin-mediated organellar fission machineries of eukaryotes.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
35
|
Schlosser A, Klockow B, Manstein DJ, Lehmann WD. Analysis of post-translational modification and characterization of the domain structure of dynamin A from Dictyostelium discoideum. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:277-282. [PMID: 12644989 DOI: 10.1002/jms.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The post-translational modifications of the 96 kDa protein dynamin A from Dictyostelium discoideum were analyzed using Q-TOF mass spectrometry. The accurate molecular mass of the intact protein revealed a covalent modification causing an additional mass of 42 Da. The modification could be identified as N-terminal acetylation by tandem mass spectrometry. Extracted ion chromatograms for the a(1) and b(1) ion of the tryptic T1 peptide were used to detect the acetylated peptide within 54 nanoelectrospray ionization tandem mass spectra. Owing to the accurate molecular mass of the intact protein, additional covalent modifications could be excluded. In addition to the covalent modification, the domain structure of dynamin A was determined by applying a combination of limited proteolysis, sodium dodecylsulfate polyacrylamide gel electrophoresis, automated tandem mass spectrometry and protein database searching.
Collapse
Affiliation(s)
- Andreas Schlosser
- Central Spectroscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
Mx proteins are interferon-induced GTPases that belong to the dynamin superfamily of large GTPases. Similarities include a high molecular weight, a propensity to self-assemble, a relatively low affinity for GTP, and a high intrinsic rate of GTP hydrolysis. A unique property of Mx GTPases is their antiviral activity against a wide range of RNA viruses, including bunya- and orthomyxoviruses. The human MxA GTPase accumulates in the cytoplasm of interferon-treated cells, partly associating with the endoplasmic reticulum. In the case of bunyaviruses, MxA interferes with transport of the viral nucleocapsid protein (N) to the Golgi compartment, the site of virus assembly. In the case of Thogoto virus (an orthomyxovirus), MxA prevents the incoming viral nucleocapsids from being transported into the nucleus, the site of viral transcription and replication. In both cases, the GTP-binding and carboxy-terminal effector functions of MxA are required for target recognition. In general, Mx GTPases appear to detect viral infection by sensing nucleocapsid-like structures. As a consequence, these viral components are trapped and sorted to locations where they become unavailable for the generation of new virus particles.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | |
Collapse
|
37
|
Abstract
The GTPase dynamin is essential for endocytosis, but its mechanism of action remains uncertain. Structures of its GTPase domain, as well as that of assembled dynamin, have led to major advances in understanding the structural basis of its mode of action. Novel data point more clearly than ever towards a role for this protein in the actin cytoskeleton, mitogen-activated protein kinase signaling and apoptosis, suggesting that dynamin might be a signaling GTPase.
Collapse
Affiliation(s)
- Sanja Sever
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana-Farber Cancer Institute, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Farsad K, De Camilli P. Neurotransmission and the synaptic vesicle cycle. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2002; 75:261-84. [PMID: 14580108 PMCID: PMC2588819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Khashayar Farsad
- Howard Hughes Medical Institute, Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | |
Collapse
|