1
|
Wang Z, Chang J, Han J, Yin M, Wang X, Ren Z, Wang L. Genome-Wide Reidentification and Expression Analysis of MADS-Box Gene Family in Cucumber. Int J Mol Sci 2025; 26:3800. [PMID: 40332458 PMCID: PMC12027882 DOI: 10.3390/ijms26083800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
MADS-box transcription factors play a crucial role in plant growth and development. Although previous genome-wide analyses have investigated the MADS-box family in cucumber, this study provides the first comprehensive reannotation of the MADS-box gene family in Cucumis sativus using updated Cucurbitaceae genome data, offering novel insights into the gene family's evolution and functional diversity. The results show that a total of 48 CsMADS-box genes were identified in the V3 version of cucumber, while 3 of the 43 genes identified in the V1 version were duplicated. The V1 version actually has only 40 genes. Additionally, we analyzed the variability in protein sequences and found that the amino acid sequences of 14 genes showed no differences between the two versions of the database, while the amino acid sequences of 29 genes exhibited significant differences. The further analysis of conserved motifs revealed that although the amino acid lengths of 15 genes had changed, their conserved motifs remained unchanged; however, the conserved motifs of 12 genes had altered. Furthermore we found that motif1 and motif2 were present in most proteins, indicating that they are highly conserved. Gene structure analysis revealed that most type I (Mα, Mβ) MADS-box genes lack introns, whereas type II (MIKC) genes exhibit a similar structure with a higher number of introns. Chromosomal localization analysis indicated that CsMADS-box genes are unevenly distributed across the seven chromosomes of cucumber. Promoter region analysis showed that the promoter regions of CsMADS-box genes contain response elements related to plant growth and development, suggesting that CsMADS-box genes may be extensively involved in plant growth and development. Different CsMADS-box genes exhibit specific high expression in roots, stems, leaves, tendrils, male flowers, female flowers, and ovaries, suggesting that these genes play crucial roles in the growth, development, reproduction and morphogenesis of cucumber. Moreover, 26, 18, 8, and 10 CsMADS-box genes were differentially expressed under high temperature, NaCl and/or silicon, downy mildew, and powdery mildew treatments, respectively. Interestingly, CsMADS07 and CsMADS16 responded to all tested stress conditions. These findings provide a reference and basis for further investigation into the function and mechanisms of the MADS-box genes for resistance breeding in cucumber.
Collapse
Affiliation(s)
- Zimo Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Jingshu Chang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Jing Han
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China;
| | - Mengmeng Yin
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Xuehua Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Zhonghai Ren
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Lina Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| |
Collapse
|
2
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. Transcriptome Analysis Reveals Sugar and Hormone Signaling Pathways Mediating Flower Induction in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2025; 26:1250. [PMID: 39941017 PMCID: PMC11818635 DOI: 10.3390/ijms26031250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Flower induction in pitaya (Hylocereus polyrhizus) is regulated by complex gene networks involving multiple signaling pathways that ensure flower bud (FB) formation, but its molecular determinants remain largely unknown. In this study, we aimed to identify key genes and pathways involved in pitaya flower induction by analyzing transcriptomics profiles from differentiating buds. Our results indicate that the flower induction process is driven by a combination of sugar, hormone, transcription factor (TF), and flowering-related genes. We found that during the FB induction period, the levels of sugar, starch, auxin (AUX), cytokinin (CTK) active forms dihydrozeatin riboside (dhZR), zeatin riboside (ZR), N6-isopentenyladenosine (iPA), and brassinosteroid (BR) increase in the late stage (LS), while active gibberellins (GA3, GA4) decrease, signaling a metabolic and hormonal shift essential for flowering. Differential gene expression analysis identified key genes involved in starch and sugar metabolism, AUX, CTK, BR synthesis, and (GA) degradation, with notable differential expression in photoperiod (COL, CDF, TCP), age-related (SPL), and key flowering pathways (FT, FTIP, AGL, SOC1). This study reveals a multidimensional regulatory network for FB formation in pitaya, primarily mediated by the crosstalk between sugar and hormone signaling pathways, providing new insights into the molecular mechanism of FB formation in pitaya.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Otsuka N, Yamaguchi R, Sawa H, Kadofusa N, Kato N, Nomura Y, Yamaguchi N, Nagano AJ, Sato A, Shirakawa M, Ito T. Small molecules and heat treatments reverse vernalization via epigenetic modification in Arabidopsis. Commun Biol 2025; 8:108. [PMID: 39843724 PMCID: PMC11754793 DOI: 10.1038/s42003-025-07553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring. Exposure to high temperatures following vernalization causes devernalization, which cancels the vernalized state, inhibiting flowering and promoting vegetative growth. In this study, we screened over 16,000 chemical compounds and identified five small molecules (devernalizers; DVRs) that induce devernalization in Arabidopsis thaliana at room temperature without requiring a high-temperature treatment. Treatment with DVRs reactivated the expression of FLOWERING LOCUS C (FLC), a master repressor of flowering, by reducing the deposition of repressive histone modifications, thereby delaying flowering time. Three of the DVRs identified shared two structures: a hydantoin-like region and a spiro-like carbon. Treatment with DVR06, which has a simple chemical structure containing these domains, delayed flowering time and reduced the deposition of repressive histone modifications at FLC. RNA-seq and ChIP-seq analyses revealed both shared and specific transcriptomic and epigenetic effects between DVR06- and heat-induced devernalization. Overall, our extensive chemical screening indicated that hydantoin and spiro are key chemical signatures that reduce repressive histone modifications and promote devernalization in plants.
Collapse
Affiliation(s)
- Nana Otsuka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Ryoya Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Hikaru Sawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nanako Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | | | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| |
Collapse
|
4
|
Gramma V, Olas JJ, Zacharaki V, Ponnu J, Musialak-Lange M, Wahl V. Carbon and nitrogen signaling regulate FLOWERING LOCUS C and impact flowering time in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae594. [PMID: 39531643 DOI: 10.1093/plphys/kiae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The timing of flowering in plants is modulated by both carbon (C) and nitrogen (N) signaling pathways. In a previous study, we established a pivotal role of the sucrose-signaling trehalose 6-phosphate pathway in regulating flowering under N-limited short-day conditions. In this work, we show that both wild-type Arabidopsis (Arabidopsis thaliana) plants grown under N-limited conditions and knock-down plants of TREHALOSE PHOSPHATE SYNTHASE 1 induce FLOWERING LOCUS C (FLC) expression, a well-known floral repressor associated with vernalization. When exposed to an extended period of cold, a flc mutant fails to respond to N availability and flowers at the same time under N-limited and full-nutrition conditions. Our data suggest that SUCROSE NON-FERMENTING 1 RELATED KINASE 1-dependent trehalose 6-phosphate-mediated C signaling and a mechanism downstream of N signaling (likely involving NIN-LIKE PROTEIN 7) impact the expression of FLC. Collectively, our data underscore the existence of a multi-factor regulatory system in which the C and N signaling pathways jointly govern the regulation of flowering in plants.
Collapse
Affiliation(s)
- Vladislav Gramma
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Justyna Jadwiga Olas
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Magdalena Musialak-Lange
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
- The James Hutton Institute, Department of Cell and Molecular Sciences, Dundee DD2 5DA, UK
| |
Collapse
|
5
|
Dong T, Zhang M, Wu J, Li J, Liu C, Zhang L. Gene and Its Promoter Cloning, and Functional Validation of JmSOC1 Revealed Its Role in Promoting Early Flowering and the Interaction with the JmSVP Protein. Int J Mol Sci 2024; 25:12932. [PMID: 39684642 DOI: 10.3390/ijms252312932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Juglans mandshurica, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a crucial regulator of flower bud development in Arabidopsis thaliana. In this study, we cloned the coding DNA sequence (CDS) of the JmSOC1 gene, revealing a 705 base pair (bp) sequence that encodes a protein of 234 amino acids. The JmSOC1 protein contains a highly conserved MADS-box domain, indicating its role as a transcription factor, and is predominantly localized in the nucleus. The JmSOC1 gene expressed the highest in flower buds. The peak expression level of JmSOC1 during the physiological differentiation phase occurred earlier in male flower buds of protandry (MPD) on April 10th compared to female flower buds of protandry (FPD) on April 14th; similarly, the peak expression in female flower buds of protogyny (FPG) on April 2nd preceded that in male flower buds of protogyny (MPG) on April 14th. This may be the primary reason for the earlier differentiation of the male flowers in protandry individuals and the female flowers in protogyny individuals. Overexpression of JmSOC1 in wild-type A. thaliana resulted in earlier flowering, accompanied by an upregulation of key flowering-related genes such as LEAFY (LFY), APETALA1 (AP1), and FLOWERING LOCUS T (FT). To further explore the function of JmSOC1, a 782 bp promoter sequence of JmSOC1 gene was cloned, which has been verified to have promoter activity by GUS staining. Furthermore, the interaction between the JmSOC1 gene promoter and its upstream regulatory protein JmSVP was verified using a yeast one-hybrid. These results offer valuable insights into the molecular mechanisms underpinning the promotion of early flowering in J. mandshurica and hold promise for laying a theoretical foundation for the flowering regulation network of this species.
Collapse
Affiliation(s)
- Tianyi Dong
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Mengmeng Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingwen Wu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingze Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Chunping Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang 110866, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| |
Collapse
|
6
|
Yamamoto N, Xiang G, Tong W, Lv B, Guo Y, Wu Y, Peng Z, Yang Z. Over-expression of a plant-type phosphoenolpyruvate carboxylase derails Arabidopsis stamen formation. Gene 2024; 927:148749. [PMID: 38969247 DOI: 10.1016/j.gene.2024.148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We examined whether plant-type phosphoenolpyruvate carboxylase (PEPC) is involved in flower organ formation or not by over-expression in Arabidopsis. A wheat PEPC isogene Tappc3A, belonging to the ppc3 group, was targeted due to its preferential expression pattern in pistils and stamens. Transgenic Arabidopsis over-expressing Tappc3A exhibited irregular stamen formation, i.e., a lesser number of stamens per flower and shorter filaments in T2 and T3 generations. Irregular stamens were frequently observed in homozygous T4 lines, but no morphological change was observed in other floral organs. High-degree gene co-expression of Tappc3 isogenes with wheat SEEDSTICKs but not with other homeotic transcription factor genes for flower formation implicates that Tappc3 is under control by the class D genes of the ABCDE model to flower development. In addition, the conservation of CArG box sequences on the Tappc3 promoters supported the developmentally programmed gene expression of ppc3 in wheat flowering organs. Thus, this study provides the first experimental evidence for the critical regulation of plant-type PEPC for flower formation.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Guili Xiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Wurina Tong
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Bingbing Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yuhuan Guo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yichao Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang College, Xichang, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.
| |
Collapse
|
7
|
Yu R, Hou Q, Deng H, Xiao L, Liu K, Wu Y, Qiao G. Molecular identification and expression patterns of sweet cherry HIPPs and functional analysis of PavHIPP16 in cold stress. PLANTA 2024; 260:134. [PMID: 39505755 DOI: 10.1007/s00425-024-04567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION The HIPP proteins are involved in low-temperature stress, the growth of sweet cherry, and may be potential targets for genetic improvement. PavHIPP16 improved cold resistance in Arabidopsis. In response to abiotic stressors, the heavy metal-associated isoprenylated plant protein (HIPP) proteins play a crucial regulatory role. Although the function of HIPP has been identified in some plants, there have been fewer systematic studies conducted on sweet cherry (Prunus avium L.). Therefore, we performed a comprehensive analysis and expression profiling of PavHIPPs using bioinformatics, RT-PCR, and qRT-PCR techniques. Our findings revealed that 28 PavHIPP genes were unevenly distributed across eight chromosomes. We predicted nine motifs in PavHIPP proteins and observed similar gene structures among highly homologous proteins. The promoter sequences of PavHIPPs contained numerous regulatory elements associated with an adversity of stress. The expression levels of some members showed varying degrees of change under low-temperature treatment. These genes were differentially expressed during flower and fruit development. Arabidopsis overexpressing the PavHIPP16 (OE) gene showed significantly lower relative conductivity and malondialdehyde (MDA) content compared with the wild-type (WT) plants under cold environment. Conversely, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and proline content were significantly higher in OE Arabidopsis than in WT plants. Overall, our results suggest that PavHIPP16 OE Arabidopsis thaliana exhibited enhanced adaptability compared to WT plants under cold conditions. This study provides a foundation for future investigations of the pathways regulating sweet cherry growth and development mediated by the HIPP genes.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yawei Wu
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
8
|
Duan SF, Yu JC, Baldwin TC, Yuan Y, Xiang GS, Cui R, Zhao Y, Mo XC, Lu YC, Liang YL. Genome-wide identification of a MADS-box transcription factor family and their expression during floral development in Coptis teeta wall. BMC PLANT BIOLOGY 2024; 24:1023. [PMID: 39468440 PMCID: PMC11520390 DOI: 10.1186/s12870-024-05714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND MADS-box transcription factors have been shown to be involved in multiple developmental processes, including the regulation of floral organ formation and pollen maturation. However, the role of the MADS-box gene family in floral development of the alpine plant species Coptis teeta Wall, which is widely used in Traditional Chinese Medicine (TCM), is unknown. RESULTS Sixty-six MADS-box genes were identified in the C. teeta genome. These genes were shown to be unevenly distributed throughout the genome of C. teeta. The majority of which (49) were classified as type I MADS-box genes and were further subdivided into four groups (Mα, Mβ, Mγ and Mδ). The remainder were identified as belonging to the type II MADS-box gene category. It was observed that four pairs of segmental and tandem duplication had occurred in the C. teeta MADS-box gene family, and that the ratios of Ka/Ks were less than 1, suggesting that these genes may have experienced purifying selection during evolution. Gene expression profiling analysis revealed that 38 MADS-box genes displayed differential expression patterns between the M and F floral phenotypes. Sixteen of these MADS-box genes were further verified by RT-qPCR. The 3D structure of each subfamily gene was predicted, further indicating that MADS-box genes of the same type possess structural similarities to the known template. CONCLUSIONS These data provide new insights into the molecular mechanism of dichogamy and herkogamy formation in C. teeta and establish a solid foundation for future studies of the MADS-box genes family in this medicinal plant species.
Collapse
Affiliation(s)
- Shao-Feng Duan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ji-Chen Yu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Yuan Yuan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gui-Sheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xin-Chun Mo
- Department of Applied Technology, Lijiang Normal University, Lijiang, Yunnan, 674100, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| |
Collapse
|
9
|
Long Y, Zheng P, Anderson JV, Horvath DP, Sthapit J, Li X, Rahman M, Chao WS. A novel strategy to map a locus associated with flowering time in canola (Brassica napus L.). Mol Genet Genomics 2024; 299:95. [PMID: 39379673 PMCID: PMC11461549 DOI: 10.1007/s00438-024-02191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Flowering time is an important agronomic trait for canola breeders, as it provides growers with options for minimizing exposure to heat stress during flowering and to more effectively utilize soil moisture. Plants have evolved various systems to control seasonal rhythms in reproductive phenology including an internal circadian clock that responds to environmental signals. In this study, we used canola cultivar 'Westar' as a recurrent parent and canola cultivar 'Surpass 400' as the donor parent to generate a chromosome segment substitution line (CSSL) and to map a flowering time locus on chromosome A10 using molecular marker-assisted selection. This CSSL contains an introgressed 4.6 mega-bases (Mb) segment (between 13 and 17.6 Mb) of Surpass 400, which substantially delayed flowering compared with Westar. To map flowering time gene(s) within this locus, eight introgression lines (ILs) were developed carrying a series of different lengths of introgressed chromosome A10 segments using five co-dominant polymorphic markers located at 13.5, 14.0, 14.5, 15.0, 15.5, and 16.0 Mb. Eight ILs were crossed with Westar reciprocally and flowering time of resultant 16 F1 hybrids and parents were evaluated in a greenhouse (2021 and 2022). Four ILs (IL005, IL017, IL035, and IL013) showed delayed flowering compared to Westar (P < 0.0001), and their reciprocal crosses displayed a phenotype intermediate in flowering time of both homozygote parents. These results indicated that flowering time is partial or incomplete dominance, and the flowering time locus mapped within a 1 Mb region between two co-dominant polymorphic markers at 14.5-15.5 Mb on chromosome A10. The flowering time locus was delineated to be between 14.60 and 15.5 Mb based on genotypic data at the crossover site, and candidate genes within this region are associated with flowering time in canola and/or Arabidopsis. The co-dominant markers identified on chromosome A10 should be useful for marker assisted selection in breeding programs but will need to be validated to other breeding populations or germplasm accessions of canola.
Collapse
Affiliation(s)
- Yunming Long
- Department of Plant Sciences, North Dakota State University, Dept. 7670, PO Box 6050, Fargo, ND, 58108-6050, USA
| | - Puying Zheng
- Department of Plant Sciences, North Dakota State University, Dept. 7670, PO Box 6050, Fargo, ND, 58108-6050, USA
| | - James V Anderson
- USDA/ARS, Weed and Insect Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - David P Horvath
- USDA/ARS, Weed and Insect Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA
| | - Jinita Sthapit
- USDA/ARS, Weed and Insect Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Dept. 7670, PO Box 6050, Fargo, ND, 58108-6050, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Dept. 7670, PO Box 6050, Fargo, ND, 58108-6050, USA
| | - Wun S Chao
- USDA/ARS, Weed and Insect Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA
| |
Collapse
|
10
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Jin S, Youn G, Kim SY, Kang T, Shin HY, Jung JY, Seo PJ, Ahn JH. The CUL3A-LFH1-UBC15 ubiquitin ligase complex mediates SHORT VEGETATIVE PHASE degradation to accelerate flowering at high ambient temperature. PLANT COMMUNICATIONS 2024; 5:100814. [PMID: 38213026 PMCID: PMC11009155 DOI: 10.1016/j.xplc.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Ambient temperature affects flowering time in plants, and the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a crucial role in the response to changes in ambient temperature. SVP protein stability is regulated by the 26S proteasome pathway and decreases at high ambient temperature, but the details of SVP degradation are unclear. Here, we show that SVP degradation at high ambient temperature is mediated by the CULLIN3-RING E3 ubiquitin ligase (CRL3) complex in Arabidopsis thaliana. We identified a previously uncharacterized protein that interacts with SVP at high ambient temperature and contains a BTB/POZ domain. We named this protein LATE FLOWERING AT HIGH TEMPERATURE 1 (LFH1). Single mutants of LFH1 or CULLIN3A (CUL3A) showed late flowering specifically at 27°C. LFH1 protein levels increased at high ambient temperature. We found that LFH1 interacts with CUL3A in the cytoplasm and is important for SVP-CUL3A complex formation. Mutations in CUL3A and/or LFH1 led to increased SVP protein stability at high ambient temperature, suggesting that the CUL3-LFH1 complex functions in SVP degradation. Screening E2 ubiquitin-conjugating enzymes (UBCs) using RING-BOX PROTEIN 1 (RBX1), a component of the CRL3 complex, as bait identified UBC15. ubc15 mutants also showed late flowering at high ambient temperature. In vitro and in vivo ubiquitination assays using recombinant CUL3A, LFH1, RBX1, and UBC15 showed that SVP is highly ubiquitinated in an ATP-dependent manner. Collectively, these results indicate that the degradation of SVP at high ambient temperature is mediated by a CRL3 complex comprising CUL3A, LFH1, and UBC15.
Collapse
Affiliation(s)
- Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sun Young Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Taewook Kang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun-Young Shin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Castañón-Suárez CA, Arrizubieta M, Castelán-Muñoz N, Sánchez-Rodríguez DB, Caballero-Cordero C, Zluhan-Martínez E, Patiño-Olvera SC, Arciniega-González J, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. The MADS-box genes SOC1 and AGL24 antagonize XAL2 functions in Arabidopsis thaliana root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1331269. [PMID: 38576790 PMCID: PMC10994003 DOI: 10.3389/fpls.2024.1331269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.
Collapse
Affiliation(s)
- Claudio A. Castañón-Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Diana Belén Sánchez-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carolina Caballero-Cordero
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sandra C. Patiño-Olvera
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - J.Arturo Arciniega-González
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
13
|
Shi Y, Zhang S, Gui Q, Qing H, Li M, Yi C, Guo H, Chen H, Xu J, Ding F. The SOC1 gene plays an important role in regulating litchi flowering time. Genomics 2024; 116:110804. [PMID: 38307485 DOI: 10.1016/j.ygeno.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Litchi (Litchi chinensis Sonn.) is a valuable subtropical fruit tree with high-quality fruit. However, its economic benefits and sustainable development are restrained by a number of challenges. One major challenge is the lack of extremely early and late maturing high-quality varieties due to limited availability of varieties suitable for commercial cultivation and outdated breeding methods, resulting in an imbalanced supply and low price of litchi. Flowering time is a crucial genetic factor influencing the maturation period of litchi. Our previous research has highlighted the pivotal role of the LcFT1 gene in regulating the flowering time of litchi and identified a gene associated with LcFT1 (named as LcSOC1) based on RNA-Seq and weight gene co-expression network (WGCNA) analysis. This study further investigated the function of LcSOC1. Subcellular localization analysis revealed that LcSOC1 is primarily localized in the nucleus, where it acts as a transcription factor. LcSOC1 overexpression in Nicotiana tabacum and Arabidopsis thaliana resulted in significant early flowering. Furthermore, LcSOC1 was found to be expressed in various tissues, with the highest expression in mature leaves. Analysis of spatial and temporal expression patterns of LcSOC1 in litchi varieties with different flowering time under low temperature treatment and across an annual cycle demonstrated that LcSOC1 is responsive to low temperature induction. Interestingly, early maturing varieties exhibited higher sensitivity to low temperature, with significantly premature induction of LcSOC1 expression relative to late maturing varieties. Activation of LcSOC1 triggered the transition of litchi into the flowering phase. These findings demonstrate that LcSOC1 plays a pivotal role in regulating the flowering process and determining the flowering time in litchi. Overall, this study provides theoretical guidance and important target genes for molecular breeding to regulate litchi production period.
Collapse
Affiliation(s)
- Yuyu Shi
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Shuwei Zhang
- Guangxi Key Laboratory of Genetic Improvement of Crops, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Qiulin Gui
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Haowei Qing
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Ming Li
- Guangxi Key Laboratory of Genetic Improvement of Crops, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Chenxin Yi
- Guangxi Key Laboratory of Genetic Improvement of Crops, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Huiqin Guo
- Guangxi Key Laboratory of Genetic Improvement of Crops, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Houbin Chen
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jiongzhi Xu
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Ding
- Guangxi Key Laboratory of Genetic Improvement of Crops, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| |
Collapse
|
14
|
Jones DM, Hepworth J, Wells R, Pullen N, Trick M, Morris RJ. A transcriptomic time-series reveals differing trajectories during pre-floral development in the apex and leaf in winter and spring varieties of Brassica napus. Sci Rep 2024; 14:3538. [PMID: 38347020 PMCID: PMC10861513 DOI: 10.1038/s41598-024-53526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Oilseed rape (Brassica napus) is an important global oil crop, with spring and winter varieties grown commercially. To understand the transcriptomic differences between these varieties, we collected transcriptomes from apex and leaf tissue from a spring variety, Westar, and a winter variety, Tapidor, before, during, and after vernalisation treatment, until the plants flowered. Large transcriptomic differences were noted in both varieties during the vernalisation treatment because of temperature and day length changes. Transcriptomic alignment revealed that the apex transcriptome reflects developmental state, whereas the leaf transcriptome is more closely aligned to the age of the plant. Similar numbers of copies of genes were expressed in both varieties during the time series, although key flowering time genes exhibited expression pattern differences. BnaFLC copies on A2 and A10 are the best candidates for the increased vernalisation requirement of Tapidor. Other BnaFLC copies show tissue-dependent reactivation of expression post-cold, with these dynamics suggesting some copies have retained or acquired a perennial nature. BnaSOC1 genes, also related to the vernalisation pathway, have expression profiles which suggest tissue subfunctionalisation. This understanding may help to breed varieties with more consistent or robust vernalisation responses, of special importance due to the milder winters resulting from climate change.
Collapse
Affiliation(s)
- D Marc Jones
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Synthace, The WestWorks, 195 Wood Lane, 4th Floor, London, W12 7FQ, UK.
| | - Jo Hepworth
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Rachel Wells
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nick Pullen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J Morris
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
15
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Li X, Lai M, Li K, Yang L, Liao J, Gao Y, Wang Y, Gao C, Shen W, Luo M, Yang C. FLZ13 interacts with FLC and ABI5 to negatively regulate flowering time in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:1334-1347. [PMID: 38053494 DOI: 10.1111/nph.19445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023]
Abstract
The transition from vegetative to reproductive growth, known as flowering, is a critical developmental process in flowering plants to ensure reproductive success. This process is strictly controlled by various internal and external cues; however, the underlying molecular regulatory mechanisms need to be further characterized. Here, we report a plant-specific protein, FCS-LIKE ZINC FINGER PROTEIN 13 (FLZ13), which functions as a hitherto unknown negative modulator of flowering time in Arabidopsis thaliana. Biochemical analysis showed that FLZ13 directly interacts with FLOWERING LOCUS C (FLC), a major flowering repressor, and that FLZ13 largely depends on FLC to repress the transcription of two core flowering integrators: FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. In addition, FLZ13 works together with ABSCISIC ACID INSENSITIVE 5 to activate FLC expression to delay flowering. Taken together, our findings suggest that FLZ13 is an important component of the gene regulatory network for flowering time control in plants.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minyi Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingmiao Gao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Yuan C, Hu Y, Liu Q, Xu J, Zhou W, Yu H, Shen L, Qin C. MED8 regulates floral transition in Arabidopsis by interacting with FPA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1234-1247. [PMID: 37565662 DOI: 10.1111/tpj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Success in plant reproduction is highly dependent on the correct timing of the floral transition, which is tightly regulated by the flowering pathways. In the model plant Arabidopsis thaliana, the central flowering repressor FLOWERING LOCUS C (FLC) is precisely regulated by multiple flowering time regulators in the vernalization pathway and autonomous pathway, including FPA. Here we report that Arabidopsis MEDIATOR SUBUNIT 8 (MED8) promotes floral transition in Arabidopsis by recruiting FPA to the FLC locus to repress FLC expression. Loss of MED8 function leads to a significant late-flowering phenotype due to increased FLC expression. We further show that MED8 directly interacts with FPA in the nucleus and recruits FPA to the FLC locus. Moreover, MED8 is indispensable for FPA's function in controlling flowering time and regulating FLC expression. Our study thus reveals a flowering mechanism by which the Mediator subunit MED8 represses FLC expression by facilitating the binding of FPA to the FLC locus to ensure appropriate timing of flowering for reproductive success.
Collapse
Affiliation(s)
- Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yikai Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
18
|
Zuo D, Hu M, Zhou W, Lei F, Zhao J, Gu L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107900. [PMID: 37482029 DOI: 10.1016/j.plaphy.2023.107900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with severe impacts on plant growth and development. Although a multitude of plants have acquired strong tolerance to Cd stress, the underlying molecular mechanism has not been fully elucidated. Here, we identified a Agamous-like MADS-box gene (EcAGL) from Erigeron canadensis. The expression of EcAGL was obviously raised under Cd stress and subcellular localization indicated EcAGL was localized in the nucleus. Overexpression of EcAGL in Arabidopsis thaliana showed marked alleviation of the Cd-induced reduction; Compared to wild-type lines, the antioxidant enzymes activities were increased in EcAGL overexpressing lines under Cd stress. The roots Cd content of transgenic lines was not different with the control plants, whereas significant reduction in shoots Cd content was detected in the transgenic lines, indicating that this gene can enhance Cd tolerance by reducing Cd accumulation in Arabidopsis. Moreover, the expression levels of heavy metal ATPase (AtHMA2 and AtHMA3) and natural resistance-associated macrophage protein (AtNRAMP5) genes in the root of transgenic lines decreased under Cd stress, indicating that EcAGL likely hampered the Cd transport pathway. Gene expression profiles in shoot showed that EcAGL likely modulates the expression of 1-aminocyclopropane-1-carboxylic acid synthase gene (AtACS2), which is involved in the ethylene synthesis pathway, to strengthen the tolerance to Cd. Collectively, these results indicate that EcAGL plays a significant role in regulating Cd tolerance in E. canadensis by alleviating oxidative stress, Cd transport and affecting the ethylene biosynthesis pathway, providing new insight into the molecular mechanism underlying plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Wenwen Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Wu J, Yang Y, Wang J, Wang Y, Yin L, An Z, Du K, Zhu Y, Qi J, Shen WH, Dong A. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 239:189-207. [PMID: 37129076 DOI: 10.1111/nph.18940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.
Collapse
Affiliation(s)
- Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Youchao Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cédex, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Ahsan MU, Barbier F, Hayward A, Powell R, Hofman H, Parfitt SC, Wilkie J, Beveridge CA, Mitter N. Molecular Cues for Phenological Events in the Flowering Cycle in Avocado. PLANTS (BASEL, SWITZERLAND) 2023; 12:2304. [PMID: 37375929 DOI: 10.3390/plants12122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado are not fully understood or documented. In this study, we investigated the potential molecular cues regulating the yearly flowering cycle in avocado for two consecutive crop cycles. Homologues of flowering-related genes were identified and assessed for their expression profiles in various tissues throughout the year. Avocado homologues of known floral genes FT, AP1, LFY, FUL, SPL9, CO and SEP2/AGL4 were upregulated at the typical time of floral induction for avocado trees growing in Queensland, Australia. We suggest these are potential candidate markers for floral initiation in these crops. In addition, DAM and DRM1, which are associated with endodormancy, were downregulated at the time of floral bud break. In this study, a positive correlation between CO activation and FT in avocado leaves to regulate flowering was not seen. Furthermore, the SOC1-SPL4 model described in annual plants appears to be conserved in avocado. Lastly, no correlation of juvenility-related miRNAs miR156, miR172 with any phenological event was observed.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosanna Powell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen Hofman
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - Siegrid Carola Parfitt
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - John Wilkie
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | | | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Dong X, Zhang LP, Tang YH, Yu D, Cheng F, Dong YX, Jiang XD, Qian FM, Guo ZH, Hu JY. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. PLANT PHYSIOLOGY 2023; 192:154-169. [PMID: 36721922 PMCID: PMC10152661 DOI: 10.1093/plphys/kiad058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Hua Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fang Cheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Xin Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fu-Ming Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| |
Collapse
|
23
|
Pavani G, Malhotra PK, Verma SK. Flowering in sugarcane-insights from the grasses. 3 Biotech 2023; 13:154. [PMID: 37138783 PMCID: PMC10149435 DOI: 10.1007/s13205-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Flowering is a crucial phase for angiosperms to continue their species propagation and is highly regulated. In the current review, flowering in sugarcane and the associated mechanisms are elaborately presented. In sugarcane, flowering has two effects, wherein it is a beneficial factor from the breeder's perspective and crucial for crop improvement, but commercially, it depletes the sucrose reserves from the stalks; hence, less value is assigned. Different species of Saccharum genus are spread across geographical latitudes, thereby proving their ability to grow in multiple inductive daylengths of different locations according in the habituated zone. In general, sugarcane is termed an intermediate daylength plant with quantitative short-day behaviour as it requires reduction in daylength from 12 h 55 min to 12 h or 12 h 30 min. The prime concern in sugarcane flowering is its erratic flowering nature. The transition to reproductive stage which reverts to vegetative stage if there is any deviation from ambient temperature and light is also an issue. Spatial and temporal gene expression patterns during vegetative to reproductive stage transition and after reverting to vegetative state could possibly reveal how the genetic circuits are being governed. This review will also shed a light on potential roles of genes and/or miRNAs in flowering in sugarcane. Knowledge of transcriptomic background of circadian, photoperiod, and gibberellin pathways in sugarcane will enable us to better understand of variable response in floral development.
Collapse
Affiliation(s)
- Gongati Pavani
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Pawan Kumar Malhotra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Bypass Road, Kailod Kartal, Indore, Madhya Pradesh 452020 India
| |
Collapse
|
24
|
Camoirano A, Alem AL, Gonzalez DH, Viola IL. The N-terminal region located upstream of the TCP domain is responsible for the antagonistic action of the Arabidopsis thaliana TCP8 and TCP23 transcription factors on flowering time. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111571. [PMID: 36535527 DOI: 10.1016/j.plantsci.2022.111571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
TCP proteins (TCPs) are plant-exclusive transcription factors that exert effects on multiple aspects of plant development, from germination to flower and fruit formation. TCPs are divided into two main classes, I and II. In this study, we found that the Arabidopsis thaliana class I TCP transcription factor TCP8 is a positive regulator of flowering time. TCP8 mutation and constitutive expression delayed and accelerated flowering, respectively. Accordingly, TCP8 mutant plants showed a delay in the maximum expression of FT and reduced SOC1 transcript levels, while plants overexpressing TCP8 presented increased transcript levels of both genes. Notably, the related class I protein TCP23 showed the opposite behavior, since TCP23 mutation and overexpression accelerated and retarded flowering, respectively. To elucidate the molecular basis of these differences, we analyzed TCP8 and TCP23 comparatively. We found that both proteins are able to physically interact and bind class I TCP motifs, but only TCP8 shows transcriptional activation activity when expressed in plants, which is negatively affected by TCP23. From the analysis of plants expressing different chimeras between the TCPs, we found that the N-terminal region located upstream of the TCP domain is responsible for the opposite effect that TCP8 and TCP23 exert over flowering time and regulation of FT and SOC1 expression. These results suggest that structural features outside the TCP domain modulate the specificity of action of class I TCPs.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
25
|
Mitsui Y, Yokoyama H, Nakaegawa W, Tanaka K, Komatsu K, Koizuka N, Okuzaki A, Matsumoto T, Takahara M, Tabei Y. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. AOB PLANTS 2023; 15:plac066. [PMID: 36751367 PMCID: PMC9893874 DOI: 10.1093/aobpla/plac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Brassicaceae crops, which underwent whole-genome triplication during their evolution, have multiple copies of flowering-related genes. Interactions among multiple gene copies may be involved in flowering time regulation; however, this mechanism is poorly understood. In this study, we performed comprehensive, high-throughput RNA sequencing analysis to identify candidate genes involved in the extremely late-bolting (LB) trait in radish. Then, we examined the regulatory roles and interactions of radish FLOWERING LOCUS C (RsFLC) paralogs, the main flowering repressor candidates. Seven flowering integrator genes, five vernalization genes, nine photoperiodic/circadian clock genes and eight genes from other flowering pathways were differentially expressed in the early-bolting (EB) cultivar 'Aokubinagafuto' and LB radish cultivar 'Tokinashi' under different vernalization conditions. In the LB cultivar, RsFLC1 and RsFLC2 expression levels were maintained after 40 days of cold exposure. Bolting time was significantly correlated with the expression rates of RsFLC1 and RsFLC2. Using the EB × LB F2 population, we performed association analyses of genotypes with or without 1910- and 1627-bp insertions in the first introns of RsFLC1 and RsFLC2, respectively. The insertion alleles prevented the repression of their respective FLC genes under cold conditions. Interestingly, genotypes homozygous for RsFLC2 insertion alleles maintained high RsFLC1 and RsFLC3 expression levels under cold conditions, and two-way analysis of variance revealed that RsFLC1 and RsFLC3 expression was influenced by the RsFLC2 genotype. Our results indicate that insertions in the first introns of RsFLC1 and RsFLC2 contribute to the late-flowering trait in radish via different mechanisms. The RsFLC2 insertion allele conferred a strong delay in bolting by inhibiting the repression of all three RsFLC genes, suggesting that radish flowering time is determined by epistatic interactions among multiple FLC gene copies.
Collapse
Affiliation(s)
| | - Hinano Yokoyama
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Wataru Nakaegawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenji Komatsu
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Ayako Okuzaki
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takashi Matsumoto
- Faculty of Applied Biology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Manabu Takahara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
26
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
28
|
Ma J, Chen X, Han F, Song Y, Zhou B, Nie Y, Li Y, Niu S. The long road to bloom in conifers. FORESTRY RESEARCH 2022; 2:16. [PMID: 39525411 PMCID: PMC11524297 DOI: 10.48130/fr-2022-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 11/16/2024]
Abstract
More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth's terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers.
Collapse
Affiliation(s)
- Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, PR China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Biao Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
29
|
Li Y, Wang C, Guo Q, Song C, Wang X, Guo L, Hou X. Characteristics of PoVIN3, a Key Gene of Vernalization Pathway, Affects Flowering Time. Int J Mol Sci 2022; 23:ijms232214003. [PMID: 36430482 PMCID: PMC9697302 DOI: 10.3390/ijms232214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The tree peony (Paeonia section Moutan DC.) is the candidate flower in China, with abundant germplasm resources and high ornamental value. However, the short and concentrated flowering period severely restricted the improvement of the economic value of tree peonies. Based on the full-length transcriptome database of tree peonies, the PoVIN3 (GenBank ID: OP341879), involved in the flowering regulation of tree peonies were identified and cloned for the first time. The PoVIN3 was also characterized by bioinformatics methods, quantitative real-time PCR (qRT-PCR), and the establishment of a transgenic system. The expression levels of PoVIN3 in seven different petals developmental stages were the highest at the initial flowering stage of the variant cultivar of Paeonia ostii 'Fengdan,' the initial decay stage of the normal flowering Paeonia ostii 'Fengdan,' and the half opening stage of the late flowering Paeonia suffruticosa 'Lianhe.' Tissue-specific expression analysis showed that the relative expression levels of PoVIN3 were the highest in sepals of both normal flowering Paeonia ostii 'Fengdan' and the late flowering Paeonia suffruticosa 'Lianhe,' and the highest expression was in stamens of early flowering mutant Paeonia ostii 'Fengdan.' In addition, the flowering time of pCAMBIA2300-PoVIN3 transgenic plants was significantly earlier than that of the wild-type, indicating that PoVIN3 could promote plant flowering. The results provide a theoretical basis for exploring the role of PoVIN3 in the regulation of flowering in tree peonies.
Collapse
Affiliation(s)
- Yuying Li
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Can Wang
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Qi Guo
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengwei Song
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohui Wang
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China
| | - Lili Guo
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaogai Hou
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: ; Tel.: +86-136-5387-3065
| |
Collapse
|
30
|
Crick J, Corrigan L, Belcram K, Khan M, Dawson JW, Adroher B, Li S, Hepworth SR, Pautot V. Floral organ abscission in Arabidopsis requires the combined activities of three TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6150-6169. [PMID: 35689803 DOI: 10.1093/jxb/erac255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Floral organ abscission is a separation process in which sepals, petals, and stamens detach from the plant at abscission zones. Here, we investigated the collective role of three amino-acid-loop-extension (TALE) homeobox genes ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), KNAT6 (for KNOTTED LIKE from Arabidopsis thaliana) and KNAT2, which form a module that patterns boundaries under the regulation of BLADE-ON-PETIOLE 1 and 2 (BOP1/2) co-activators. These TALE homeodomain transcription factors were shown to maintain boundaries in the flower, functioning as a unit to coordinate the growth, patterning, and activity of abscission zones. Together with BOP1 and BOP2, ATH1 and its partners KNAT6 and KNAT2 collectively contribute to the differentiation of lignified and separation layers of the abscission zone. The genetic interactions of BOP1/2 and ATH1 with INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) were also explored. We showed that BOP1/2 co-activators and ATH1 converge with the IDA signalling pathway to promote KNAT6 and KNAT2 expression in the abscission zone and cell separation. ATH1 acts as a central regulator in floral organ abscission as it controls the expression of other TALE genes in abscission zone cells.
Collapse
Affiliation(s)
- Jennifer Crick
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura Corrigan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jeff W Dawson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sibei Li
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Véronique Pautot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
31
|
Yang Z, Yan H, Wang J, Nie G, Feng G, Xu X, Li D, Huang L, Zhang X. DNA hypermethylation promotes the flowering of orchardgrass during vernalization. PLANT PHYSIOLOGY 2022; 190:1490-1505. [PMID: 35861426 PMCID: PMC9516772 DOI: 10.1093/plphys/kiac335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization, influenced by environmental factors, is an essential process associated with the productivity of temperate crops, during which epigenetic regulation of gene expression plays an important role. Although DNA methylation is one of the major epigenetic mechanisms associated with the control of gene expression, global changes in DNA methylation in the regulation of gene expression during vernalization-induced flowering of temperate plants remain largely undetermined. To characterize vernalization-associated DNA methylation dynamics, we performed whole-genome bisulfite-treated sequencing and transcriptome sequencing in orchardgrass (Dactylis glomerata) during vernalization. The results revealed that increased levels of genome DNA methylation during the early vernalization of orchardgrass were associated with transcriptional changes in DNA methyltransferase and demethylase genes. Upregulated expression of vernalization-related genes during early vernalization was attributable to an increase in mCHH in the promoter regions of these genes. Application of an exogenous DNA methylation accelerator or overexpression of orchardgrass NUCLEAR POLY(A) POLYMERASE (DgPAPS4) promoted earlier flowering, indicating that DNA hypermethylation plays an important role in vernalization-induced flowering. Collectively, our findings revealed that vernalization-induced hypermethylation is responsible for floral primordium initiation and development. These observations provide a theoretical foundation for further studies on the molecular mechanisms underlying the control of vernalization in temperate grasses.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | | |
Collapse
|
32
|
Brassinosteroid Signaling Downstream Suppressor BIN2 Interacts with SLFRIGIDA-LIKE to Induce Early Flowering in Tomato. Int J Mol Sci 2022; 23:ijms231911264. [PMID: 36232562 PMCID: PMC9570299 DOI: 10.3390/ijms231911264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroid (BR) signaling is very important in plant developmental processes. Its various components interact to form a signaling cascade. These components are widely studied in Arabidopsis; however, very little information is available on tomatoes. Brassinosteroid Insensitive 2 (BIN2), the downstream suppressor of BR signaling, plays a critical role in BR signal pathway, while FRIGIDA as a key suppressor of Flowering Locus C with overexpression could cause early flowering; however, how the BR signaling regulates FRIGIDA homologous protein to adjust flowering time is still unknown. This study identified 12 FRIGIDA-LIKE proteins with a conserved FRIGIDA domain in tomatoes. Yeast two-hybrid and BiFC confirmed that SlBIN2 interacts with 4 SlFRLs, which are sub-cellularly localized in the nucleus. Tissue-specific expression of SlFRLs was observed highly in young roots and flowers. Biological results revealed that SlFRLs interact with SlBIN2 to regulate early flowering. Further, the mRNA level of SlBIN2 also increased in SlFRL-overexpressed lines. The relative expression of SlCPD increased upon SlFRL silencing, while SlDWF and SlBIN2 were decreased, both of which are important for BR signaling. Our research firstly provides molecular evidence that BRs regulate tomato flowering through the interaction between SlFRLs and SlBIN2. This study will promote the understanding of the specific pathway essential for floral regulation.
Collapse
|
33
|
Mattioli R, Francioso A, Trovato M. Proline Affects Flowering Time in Arabidopsis by Modulating FLC Expression: A Clue of Epigenetic Regulation? PLANTS 2022; 11:plants11182348. [PMID: 36145748 PMCID: PMC9505445 DOI: 10.3390/plants11182348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Francioso
- Instituto Universitario de Bio-Orgánica Antonio González, 38200 San Cristóbal de La Laguna, Spain
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2411
| |
Collapse
|
34
|
Hung FY, Shih YH, Lin PY, Feng YR, Li C, Wu K. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering. PLANT PHYSIOLOGY 2022; 190:532-547. [PMID: 35708655 PMCID: PMC9434252 DOI: 10.1093/plphys/kiac295] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3' end and the first intron of FLC, respectively, are important for FLC repression under vernalization. However, the molecular mechanism of how COOLAIR and COLDAIR are transcriptionally activated remains elusive. In this study, we found that the group-III WRKY transcription factor WRKY63 can directly activate FLC. wrky63 mutant plants display an early flowering phenotype and are insensitive to vernalization. Interestingly, we found that WRKY63 can activate the expression of COOLAIR and COLDAIR by binding to their promoters.WRKY63 therefore acts as a dual regulator that activates FLC directly under non-vernalization conditions but represses FLC indirectly during vernalization through inducing COOLAIR and COLDAIR. Furthermore, genome-wide occupancy profile analyses indicated that the binding of WRKY63 to vernalization-induced genes increases after vernalization. In addition, WRKY63 binding is associated with decreased levels of the repressive marker Histone H3 Lysine 27 trimethylation (H3K27me3). Collectively, our results indicate that WRKY63 is an important flowering regulator involved in vernalization-induced transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Pei-Yu Lin
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Ru Feng
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
35
|
Chen L, Hu P, Lu Q, Zhang F, Su Y, Ding Y. Vernalization attenuates dehydration tolerance in winter-annual Arabidopsis. PLANT PHYSIOLOGY 2022; 190:732-744. [PMID: 35670724 PMCID: PMC9434170 DOI: 10.1093/plphys/kiac264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
In winter-annual plants, exposure to cold temperatures induces cold tolerance and accelerates flowering in the following spring. However, little is known about plant adaptations to dehydration stress after winter. Here, we found that dehydration tolerance is reduced in winter-annual Arabidopsis (Arabidopsis thaliana) after vernalization. Winter-annual Arabidopsis plants with functional FRIGIDA (FRI) exhibited high dehydration tolerance, with small stomatal apertures and hypersensitivity to exogenous abscisic acid. Dehydration tolerance and FLOWERING LOCUS C (FLC) transcript levels gradually decreased with prolonged cold exposure in FRI plants. FLC directly bound to the promoter of OPEN STOMATA1 (OST1) and activated OST1 expression. Loss of FLC function resulted in decreased dehydration tolerance and reduced OST1 transcript levels. FLC and OST1 act in the same dehydration stress pathway, with OST1 acting downstream of FLC. Our study provides insights into the mechanisms by which FRI modulates dehydration tolerance through the FLC-OST1 module. Our results suggest that winter-annual Arabidopsis integrates dehydration tolerance and flowering time to adapt to environmental changes from winter to spring.
Collapse
Affiliation(s)
| | | | - Qianqian Lu
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | | | | |
Collapse
|
36
|
Wang M, Zhang H, Dai S, Feng S, Gong S, Wang J, Zhou A. AaZFP3, a Novel CCCH-Type Zinc Finger Protein from Adonis amurensis, Promotes Early Flowering in Arabidopsis by Regulating the Expression of Flowering-Related Genes. Int J Mol Sci 2022; 23:ijms23158166. [PMID: 35897742 PMCID: PMC9332444 DOI: 10.3390/ijms23158166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
CCCH-type zinc finger proteins (ZFP) are a large family of proteins that play various important roles in plant growth and development; however, the functions of most proteins in this family are uncharacterized. In this study, a CCCH-type ZFP, AaZFP3, was identified in the floral organ of Adonis amurensis. Quantitative real-time PCR (qPCR) analysis revealed that AaZFP3 was widely expressed in the flowers of A.amurensis. Subcellular localization analysis showed that the AaZFP3 protein was mainly localized to the cytoplasm in tobacco and Arabidopsis. Furthermore, the overexpression of AaZFP3 promoted early flowering in Arabidopsis under both normal and relatively low-temperature conditions. RNA-sequencing and qPCR analyses revealed that the expression of multiple key flowering-time genes was altered in transgenic Arabidopsis overexpressing AaZFP3 compared to wild-type. Of these genes, FLOWERING LOCUS T (AtFT) expression was most significantly up-regulated, whereas FLOWERING LOCUS C (AtFLC) was significantly down-regulated. These results suggest that the overexpression of AaZFP3 promotes early flowering in Arabidopsis by affecting the expression of flowering-time genes. Overall, our study indicates that AaZFP3 may be involved in flowering regulation in A.amurensis and may represent an important genetic resource for improving flowering-time control in other ornamental plants or crops.
Collapse
|
37
|
Cui F, Ye X, Li X, Yang Y, Hu Z, Overmyer K, Brosché M, Yu H, Salojärvi J. Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis. PLANT COMMUNICATIONS 2022; 3:100307. [PMID: 35605198 PMCID: PMC9284290 DOI: 10.1016/j.xplc.2022.100307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
Vaccinium darrowii is a subtropical wild blueberry species that has been used to breed economically important southern highbush cultivars. The adaptive traits of V. darrowii to subtropical climates can provide valuable information for breeding blueberry and perhaps other plants, especially against the background of global warming. Here, we assembled the V. darrowii genome into 12 pseudochromosomes using Oxford Nanopore long reads complemented with Hi-C scaffolding technologies, and we predicted 41 815 genes using RNA-sequencing evidence. Syntenic analysis across three Vaccinium species revealed a highly conserved genome structure, with the highest collinearity between V. darrowii and Vaccinium corymbosum. This conserved genome structure may explain the high fertility observed during crossbreeding of V. darrowii with other blueberry cultivars. Analysis of gene expansion and tandem duplication indicated possible roles for defense- and flowering-associated genes in the adaptation of V. darrowii to the subtropics. Putative SOC1 genes in V. darrowii were identified based on phylogeny and expression analysis. Blueberries are covered in a thick cuticle layer and contain anthocyanins, which confer their powdery blue color. Using RNA sequencing, we delineated the cuticle biosynthesis pathways of Vaccinium species in V. darrowii. This result can serve as a reference for breeding berries whose colors are appealing to customers. The V. darrowii reference genome, together with the unique traits of this species, including its diploid genome, short vegetative phase, and high compatibility in hybridization with other blueberries, make V. darrowii a potential research model for blueberry species.
Collapse
Affiliation(s)
- Fuqiang Cui
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Xiaoxue Ye
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaoxiao Li
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yifan Yang
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland.
| |
Collapse
|
38
|
Maruoka T, Gan ES, Otsuka N, Shirakawa M, Ito T. Histone Demethylases JMJ30 and JMJ32 Modulate the Speed of Vernalization Through the Activation of FLOWERING LOCUS C in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:837831. [PMID: 35845667 PMCID: PMC9284024 DOI: 10.3389/fpls.2022.837831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). Among the repressive epigenetic marks, the trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. The deposition of H3K27me3 is mediated by Polycomb Repressive Complex 2 (PRC2). Conversely, the elimination of H3K27me3 is mediated by histone demethylases, Jumonji-C domain-containing protein JMJ30 and its homolog JMJ32. However, the role of JMJ30 and JMJ32 in vernalization is largely unknown. In this study, we found that cold treatment dramatically reduced the expression levels of JMJ30 and did not reduce those of JMJ32. Next, by using the genetic approach, we found that the flowering of jmj30 jmj32 was accelerated under moderate vernalized conditions. Under moderate vernalized conditions, the silencing of FLC occurred more quickly in jmj30 jmj32 than in the wild type. These results suggested that the histone demethylases JMJ30 and JMJ32 brake vernalization through the activation of FLC. Our study suggested that PRC2 and Jumonji histone demethylases act in an opposing manner to regulate flowering time via epigenetic modifications.
Collapse
Affiliation(s)
- Takashi Maruoka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nana Otsuka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
39
|
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:134-148. [PMID: 35442527 DOI: 10.1111/tpj.15783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn. Brassica rapa) ssp. chinensis (pak choi) to screen the ABA-induced pak choi library and identified the transcription activator ABF3 (BrABF3). BrABF3, the expression of which was induced by ABA in pak choi, directly bound to the CO promoter from both pak choi and Arabidopsis. The BrABF3 promoter is specifically active in the Arabidopsis leaf vascular tissue, where CO is mainly expressed. Impaired BrABF3 expression in pak choi decreased BrCO expression levels and delayed flowering, whereas ectopic expression of BrABF3 in Arabidopsis increased CO expression and induced earlier flowering under the long-day conditions. Electrophoretic mobility shift assay analysis showed that BrABF3 was enriched at the canonical ABA-responsive element-ABRE binding factor (ABRE-ABF) binding motifs of the BrCO promoter. The direct binding of BrABF3 to the ABRE elements of CO was further confirmed by chromatin immunoprecipitation quantitative PCR. In addition, the induction of BrCO transcription by BrABF3 could be repressed by BrCDF1 in the morning. Thus, our results suggest that ABA could accelerate the floral transition by directly activating BrCO transcription through BrABF3 in pak choi.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
40
|
Mutation of an Essential 60S Ribosome Assembly Factor MIDASIN 1 Induces Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms23126509. [PMID: 35742952 PMCID: PMC9223865 DOI: 10.3390/ijms23126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Ribosome biogenesis is tightly associated with plant growth and reproduction. Mutations in genes encoding ribosomal proteins (RPs) or ribosome biogenesis factors (RBFs) generally result in retarded growth and delayed flowering. However, the early-flowering phenotype resulting from the ribosome biogenesis defect is rarely reported. We previously identified that the AAA-ATPase MIDASIN 1 (MDN1) functions as a 60S RBF in Arabidopsis. Here, we found that its weak mutant mdn1-1 is early-flowering. Transcriptomic analysis showed that the expression of FLOWERING LOCUS C (FLC) is down-regulated, while that of some autonomous pathway genes and ABSCISIC ACID-INSENSITIVE 5 (ABI5) is up-regulated in mdn1-1. Phenotypic analysis revealed that the flowering time of mdn1-1 is severely delayed by increasing FLC expression, suggesting that the early flowering in mdn1-1 is likely associated with the downregulation of FLC. We also found that the photoperiod pathway downstream of CONSTANTS (CO) and FLOWERING LOCUS T (FT) might contribute to the early flowering in mdn1-1. Intriguingly, the abi5-4 allele completely blocks the early flowering in mdn1-1. Collectively, our results indicate that the ribosome biogenesis defect elicited by the mutation of MDN1 leads to early flowering by affecting multiple flowering regulation pathways.
Collapse
|
41
|
BcSOC1 Promotes Bolting and Stem Elongation in Flowering Chinese Cabbage. Int J Mol Sci 2022; 23:ijms23073459. [PMID: 35408819 PMCID: PMC8998877 DOI: 10.3390/ijms23073459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Flowering Chinese cabbage is one of the most economically important stalk vegetables. However, the molecular mechanisms underlying bolting, which is directly related to stalk quality and yield, in this species remain unknown. Previously, we examined five key stem development stages in flowering Chinese cabbage. Here, we identified a gene, BcSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1), in flowering Chinese cabbage using transcriptome analysis, whose expression was positively correlated with bolting. Exogenous gibberellin (GA3) and low-temperature treatments significantly upregulated BcSOC1 and promoted early bolting and flowering. Additionally, BcSOC1 overexpression accelerated early flowering and stem elongation in both Arabidopsis and flowering Chinese cabbage, whereas its knockdown dramatically delayed bolting and flowering and inhibited stem elongation in the latter; the inhibition of stem elongation was more notable than delayed flowering. BcSOC1 overexpression also induced cell expansion by upregulating genes encoding cell wall structural proteins, such as BcEXPA11 (cell wall structural proteins and enzymes) and BcXTH3 (xyloglucan endotransglycosidase/hydrolase), upon exogenous GA3 and low-temperature treatments. Moreover, the length of pith cells was correlated with stem height, and BcSOC1 interacted with BcAGL6 (AGAMOUS-LIKE 6) and BcAGL24 (AGAMOUS-LIKE 24). Thus, BcSOC1 plays a vital role in bolting and stem elongation of flowering Chinese cabbage and may play a novel role in regulating stalk development, apart from the conserved function of Arabidopsis SOC1 in flowering alone.
Collapse
|
42
|
Cheng J, Zhang G, Xu L, Liu C, Jiang H. Altered H3K27 trimethylation contributes to flowering time variations in polyploid Arabidopsis thaliana ecotypes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1402-1414. [PMID: 34698830 DOI: 10.1093/jxb/erab470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Polyploidy is a widespread phenomenon in flowering plant species. Polyploid plants frequently exhibit considerable transcriptomic alterations after whole-genome duplication (WGD). It is known that the transcriptomic response to tetraploidization is ecotype-dependent in Arabidopsis; however, the biological significance and the underlying mechanisms are unknown. In this study, we found that 4x Col-0 presents a delayed flowering time whereas 4x Ler does not. The expression of FLOWERING LOCUS C (FLC), the major repressor of flowering, was significantly increased in 4x Col-0 but only a subtle change was present in 4x Ler. Moreover, the level of a repressive epigenetic mark, trimethylation of histone H3 at lysine 27 (H3K27me3), was significantly decreased in 4x Col-0 but not in 4x Ler, potentially leading to the differences in FLC transcription levels and flowering times. Hundreds of other genes in addition to FLC showed H3K27me3 alterations in 4x Col-0 and 4x Ler. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and transcription factors required for H3K27me3 deposition presented transcriptional changes between the two ecotypes, potentially accounting for the different H3K27me3 alterations. We also found that the natural 4x Arabidopsis ecotype Wa-1 presented an early flowering time, which was associated with low expression of FLC. Taken together, our results demonstrate a role of H3K27me3 alterations in response to genome duplication in Arabidopsis autopolyploids, and that variation in flowering time potentially functions in autopolyploid speciation.
Collapse
Affiliation(s)
- Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Guiqian Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
43
|
Shen L, Zhang Y, Sawettalake N. A Molecular switch for FLOWERING LOCUS C activation determines flowering time in Arabidopsis. THE PLANT CELL 2022; 34:818-833. [PMID: 34850922 PMCID: PMC8824695 DOI: 10.1093/plcell/koab286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Plants have evolved sophisticated mechanisms to ensure flowering in favorable conditions for reproductive success. In the model plant Arabidopsis thaliana, FLOWERING LOCUS C (FLC) acts as a central repressor of flowering and the major determinant for winter cold requirement for flowering. FLC is activated in winter annuals by the FRIGIDA (FRI) activator complex containing FRI, FLC EXPRESSOR (FLX), and FLX-LIKE 4 (FLX4), among which FLX and FLX4 are also essential for establishing basal FLC expression in summer annuals. Here we show that a plant RNA polymerase II C-terminal domain phosphatase, C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), interacts with and dephosphorylates FLX4 through their scaffold protein FLX to inhibit flowering. CPL3-mediated dephosphorylation of FLX4 serves as a key molecular switch that enables binding of dephosphorylated FLX4 to the FLC locus to promote FLC expression, thus repressing flowering in both winter and summer annuals of Arabidopsis. Our findings reveal a molecular switch underlying the activation of FLC for flowering time control.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|
44
|
Yang J, Xu Y, Wang J, Gao S, Huang Y, Hung FY, Li T, Li Q, Yue L, Wu K, Yang S. The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:835-847. [PMID: 34545936 DOI: 10.1093/jxb/erab430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 05/13/2023]
Abstract
BRAHMA (BRM) is the ATPase of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex, which is indispensable for transcriptional inhibition and activation, associated with vegetative and reproductive development in Arabidopsis thaliana. Here, we show that BRM directly binds to the chromatin of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which integrates multiple flowering signals to regulate floral transition, leading to flowering. In addition, genetic and molecular analysis showed that BRM interacts with GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM INVOLVED), a GATA transcription factor that represses flowering by directly repressing SOC1 expression. Furthermore, BRM is recruited by GNC to directly bind to the chromatin of SOC1. The transcript level of SOC1 is elevated in brm-3, gnc, and brm-3/gnc mutants, which is associated with increased histone H3 lysine 4 tri-methylation (H3K4Me3) but decreased DNA methylation. Taken together, our results indicate that BRM associates with GNC to regulate SOC1 expression and flowering time.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sujuan Gao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agrobiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
45
|
Yi X, Gao H, Yang Y, Yang S, Luo L, Yu C, Wang J, Cheng T, Zhang Q, Pan H. Differentially Expressed Genes Related to Flowering Transition between Once- and Continuous-Flowering Roses. Biomolecules 2021; 12:biom12010058. [PMID: 35053206 PMCID: PMC8773502 DOI: 10.3390/biom12010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Roses are the most important cut flower crops and widely used woody ornamental plants in gardens throughout the world, and they are model plants for studying the continuous-flowering trait of woody plants. To analyze the molecular regulation mechanism of continuous flowering, comparative transcriptome data of once- and continuous-flowering roses in our previous study were used to conduct weighted gene co-expression network analysis (WGCNA) to obtain the candidate genes related to flowering transitions. The expression patterns of candidate genes at different developmental stages between Rosa chinensis “Old Blush” (continuous-flowering cultivar) and R. “Huan Die” (once-flowering cultivar) were investigated, and the relationship of the key gene with the endogenous hormone was analyzed. The results showed that the expression trends of VIN3-LIKE 1 (VIL1), FRIGIDA- LIKE 3 (FRI3), APETALA 2- LIKE (AP2-like) and CONSTANS-LIKE 2 (CO-like 2) genes were significantly different between “Old Blush” and “Huan Die”, and the expression trends of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and CO-like 2 were consistent in the flowering transition of “Old Blush” under different environments. The changes in cytokinin and gibberellic acid (GA3) content were different in the two rose cultivars. The overall change trend of the abscisic acid and GA3 in the flowering transition of “Old Blush” under different environments was consistent. The promoter sequence of CO-like 2 contained a P-box element associated with gibberellin response, as well as binding sites for transcription factors. In a word, we found CO-like 2 associated with continuous flowering and some factors that may synergistically regulate continuous flowering. The results provided a reference for elucidating the molecular regulatory mechanisms of continuous-flowering traits in roses.
Collapse
|
46
|
Kinmonth-Schultz H, Lewandowska-Sabat A, Imaizumi T, Ward JK, Rognli OA, Fjellheim S. Flowering Times of Wild Arabidopsis Accessions From Across Norway Correlate With Expression Levels of FT, CO, and FLC Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:747740. [PMID: 34790213 PMCID: PMC8591261 DOI: 10.3389/fpls.2021.747740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joy K. Ward
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
47
|
Yuan C, Xu J, Chen Q, Liu Q, Hu Y, Jin Y, Qin C. C-terminal domain phosphatase-like 1 (CPL1) is involved in floral transition in Arabidopsis. BMC Genomics 2021; 22:642. [PMID: 34482814 PMCID: PMC8418720 DOI: 10.1186/s12864-021-07966-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA polymerase II plays critical roles in transcription in eukaryotic organisms. C-terminal Domain Phosphatase-like 1 (CPL1) regulates the phosphorylation state of the C-terminal domain of RNA polymerase II subunit B1, which is critical in determining RNA polymerase II activity. CPL1 plays an important role in miRNA biogenesis, plant growth and stress responses. Although cpl1 mutant showes delayed-flowering phenotype, the molecular mechanism behind CPL1's role in floral transition is still unknown. RESULTS To study the role of CPL1 during the floral transition, we first tested phenotypes of cpl1-3 mutant, which harbors a point-mutation. The cpl1-3 mutant contains a G-to-A transition in the second exon, which results in an amino acid substitution from Glu to Lys (E116K). Further analyses found that the mutated amino acid (Glu) was conserved in these species. As a result, we found that the cpl1-3 mutant experienced delayed flowering under both long- and short-day conditions, and CPL1 is involved in the vernalization pathway. Transcriptome analysis identified 109 genes differentially expressed in the cpl1 mutant, with 2 being involved in floral transition. Differential expression of the two flowering-related DEGs was further validated by qRT-PCR. CONCLUSIONS Flowering genetic pathways analysis coupled with transciptomic analysis provides potential genes related to floral transition in the cpl1-3 mutant, and a framework for future studies of the molecular mechanisms behind CPL1's role in floral transition.
Collapse
Affiliation(s)
- Chen Yuan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Jingya Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qianqian Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qinggang Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yikai Hu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yicheng Jin
- Division of Research and Development, Oriomics Inc, 310018, Hangzhou, China
| | - Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| |
Collapse
|
48
|
Ma JJ, Chen X, Song YT, Zhang GF, Zhou XQ, Que SP, Mao F, Pervaiz T, Lin JX, Li Y, Li W, Wu HX, Niu SH. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. PLANT PHYSIOLOGY 2021; 187:247-262. [PMID: 34618133 PMCID: PMC8418398 DOI: 10.1093/plphys/kiab250] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gui-Fang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xian-Qing Zhou
- Qigou State-Owned Forest Farm, Pingquan, Hebei Province 067509, PR China
| | - Shu-Peng Que
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Fei Mao
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
49
|
Han Q, Sakaguchi S, Wakabayashi T, Setoguchi H. Association between RsFT, RsFLC and RsCOL5 ( A&B) expression and flowering regulation in Japanese wild radish. AOB PLANTS 2021; 13:plab039. [PMID: 34285794 PMCID: PMC8286712 DOI: 10.1093/aobpla/plab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/19/2021] [Indexed: 04/14/2023]
Abstract
Flowering is an important step in the life cycle of plants and indicates adaptability to external climatic cues such as temperature and photoperiod. We investigated the expression patterns of core genes related to flowering-time regulation in Japanese wild radish (Raphanus sativus var. raphanistroides) with different vernalization requirements (obligate and facultative) and further identified climatic cues that may act as natural selective forces. Specifically, we analysed flowering-time variation under different cold and photoperiod treatments in Japanese wild radish collected from the Hokkaido (northern lineage) and Okinawa (southern lineage) islands, which experience contrasting climatic cues. The cultivation experiment verified the obligate and facultative vernalization requirements of the northern and southern wild radish accessions, respectively. The expression of major genes involved in flowering time indicated that RsFLC and RsCOL5 (A&B) may interact to regulate flowering time. Notably, floral initiation in the northern lineage was strongly correlated with RsFLC expression, whereas flowering in the southern linage was correlated with induction of RsCOL5-A expression, despite high RsFLC transcript levels. These results suggested that the northern accessions are more sensitive to prolonged cold exposure, whereas the southern accessions are more sensitive to photoperiod. These different mechanisms ultimately confer an optimal flowering time in natural populations in response to locally contrasting climatic cues. This study provides new insights into the variant mechanisms underlying floral pathways in Japanese wild radish from different geographic locations.
Collapse
Affiliation(s)
- Qingxiang Han
- College of Life Sciences, Zaozhuang University, Zaozhuang City, Shandong Province, 277160, China
- Corresponding author e-mail address:
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomomi Wakabayashi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
50
|
Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, Gimenez C, Prunet N, Farcot E, Kater MM, Bradley D, Madueño F, Godin C, Parcy F. Cauliflower fractal forms arise from perturbations of floral gene networks. Science 2021; 373:192-197. [PMID: 34244409 DOI: 10.1126/science.abg5999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Marie Le Masson
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Carlos Gimenez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nathanaël Prunet
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Desmond Bradley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France.
| | - Francois Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France.
| |
Collapse
|