1
|
Wibbe N, Steinbacher T, Tellkamp F, Beckmann N, Brinkmann F, Stecher M, Gerke V, Niessen CM, Ebnet K. RhoGDI1 regulates cell-cell junctions in polarized epithelial cells. Front Cell Dev Biol 2024; 12:1279723. [PMID: 39086660 PMCID: PMC11288927 DOI: 10.3389/fcell.2024.1279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Niklas Beckmann
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Manuel Stecher
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| |
Collapse
|
2
|
Huo ZY, Shi XC, Wang YX, Jiang YH, Zhu GY, Herrera-Balandrano DD, Wang SY, Laborda P. Antifungal and elicitor activities of p-hydroxybenzoic acid for the control of aflatoxigenic Aspergillus flavus in kiwifruit. Food Res Int 2023; 173:113331. [PMID: 37803641 DOI: 10.1016/j.foodres.2023.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Aspergillus flavus not only reduces kiwifruit production but also synthesizes carcinogenic aflatoxins, resulting in a relevant threat to human health. p-Hydroxybenzoic acid (pHBA) is one of the most abundant phenolics in kiwifruit. In this study, pHBA was found to reduce A. flavus mycelial growth by blocking the fungal mitotic exit network (MEN) and cytokinesis and to inhibit the biosynthesis of aflatoxins B1 and B2. The application of pHBA promoted the accumulation of endogenous pHBA and induced oxidative stress in A. flavus-infected kiwifruit, resulting in an increase in H2O2 content and catalase (CAT) and superoxide dismutase (SOD) activities. Preventive and curative treatments with 5 mM pHBA reduced A. flavus advancement by 46.1% and 68.0%, respectively. Collectively, the antifungal and elicitor properties of pHBA were examined for the first time, revealing new insights into the role of pHBA in the defense response of kiwifruit against A. flavus infection.
Collapse
Affiliation(s)
- Zi-Yao Huo
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
3
|
Nguyen LTS, Robinson DN. The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery. J Cell Biol 2022; 221:213504. [PMID: 36165849 PMCID: PMC9523886 DOI: 10.1083/jcb.202202063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/11/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
4
|
Wu Y, Yang D, Chen GY. The role of the Siglec-G ITIM domain during bacterial infection. Cell Mol Biol (Noisy-le-grand) 2022; 67:163-169. [PMID: 35809291 PMCID: PMC11397909 DOI: 10.14715/cmb/2021.67.4.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/16/2023]
Abstract
Siglecs, membrane-bound lectins of the sialic acid-binding immunoglobulin superfamily, inhibit immune responses by recruiting tyrosine phosphatases (e.g., SHP-1 and SHP-2) through their cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM) domain. The role of Siglecs in infection has been extensively studied, but downstream signaling through the ITIM domain remains unclear. Here, we used a GST pull-down assay to identify additional proteins associated with the ITIM domain during bacterial infection. Gdi2 bound to ITIM under normal homeostasis, but Rab1a was recruited to ITIM during bacterial infection. Western blot analysis confirmed the presence of SHP-1 and SHP-2 in eluted ITIM-associated proteins under normal homeostasis. We confirmed the association of ITIM with Gdi2 or Rab1a by transfection of corresponding expression vectors in 293T cells followed by immunoprecipitation-western blot assay. Thus, ITIM's role in the inhibition of the immune response during bacterial infection may be regulated by interaction with Gdi2 and Rab1a in addition to SHP-1 and SHP-2.
Collapse
Affiliation(s)
- Yin Wu
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| | - Darong Yang
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| |
Collapse
|
5
|
Copine A Interacts with Actin Filaments and Plays a Role in Chemotaxis and Adhesion. Cells 2019; 8:cells8070758. [PMID: 31330887 PMCID: PMC6679068 DOI: 10.3390/cells8070758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022] Open
Abstract
Copines make up a family of calcium-dependent, phospholipid-binding proteins found in numerous eukaryotic organisms. Copine proteins consist of two C2 domains at the N-terminus followed by an A domain similar to the von Willebrand A domain found in integrins. We are studying copine protein function in the model organism, Dictyostelium discoideum, which has six copine genes, cpnA-cpnF. Previous research showed that cells lacking the cpnA gene exhibited a cytokinesis defect, a contractile vacuole defect, and developmental defects. To provide insight into the role of CpnA in these cellular processes, we used column chromatography and immunoprecipitation to isolate proteins that bind to CpnA. These proteins were identified by mass spectrometry. One of the proteins identified was actin. Purified CpnA was shown to bind to actin filaments in a calcium-dependent manner in vitro. cpnA− cells exhibited defects in three actin-based processes: chemotaxis, cell polarity, and adhesion. These results suggest that CpnA plays a role in chemotaxis and adhesion and may do so by interacting with actin filaments.
Collapse
|
6
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
7
|
Mathavarajah S, McLaren MD, Huber RJ. Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3559-3573. [PMID: 30251676 DOI: 10.1016/j.bbadis.2018.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3- cells displayed defects in cytokinesis. The recovery of cln3- cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3- cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3- cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.
Collapse
Affiliation(s)
| | - Meagan D McLaren
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
8
|
Yuan J, Zhang X, Liu C, Duan H, Li F, Xiang J. Convergent Evolution of the Osmoregulation System in Decapod Shrimps. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:76-88. [PMID: 28204969 DOI: 10.1007/s10126-017-9729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.
Collapse
Affiliation(s)
- Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Huang HY, Zhang WT, Jiang WY, Chen SZ, Liu Y, Ge X, Li X, Dang YJ, Wen B, Liu XH, Lu HJ, Tang QQ. RhoGDIβ Inhibits Bone Morphogenetic Protein 4 (BMP4)-induced Adipocyte Lineage Commitment and Favors Smooth Muscle-like Cell Differentiation. J Biol Chem 2015; 290:11119-29. [PMID: 25778399 DOI: 10.1074/jbc.m114.608075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 12/23/2022] Open
Abstract
The integration of signals involved in deciding the fate of mesenchymal stem cells is largely unknown. We used proteomics profiling to identify RhoGDIβ, an inhibitor of the small G-protein Rho family, as a component that regulates commitment of C3H10T1/2 mesenchymal stem cells to the adipocyte or smooth muscle cell lineage in response to bone morphogenetic protein 4 (BMP4). RhoGDIβ is notably down-regulated during BMP4-induced adipocytic lineage commitment of C3H10T1/2 mesenchymal stem cells, and this involves the cytoskeleton-associated protein lysyl oxidase. Excess RhoGDIβ completely prevents BMP4-induced commitment to the adipocyte lineage and simultaneously stimulates smooth muscle cell commitment by suppressing the activation of Rac1. Overexpression of RhoGDIβ induces stress fibers of F-actin by a process involving phosphomyosin light chain, indicating that cytoskeletal tension regulated by RhoGDIβ contributes to determining adipocyte versus myocyte commitment. Furthermore, the overexpression of RacV12 (constitutively active form of Rac1) totally rescues the inhibition of adipocyte commitment by RhoGDIβ, simultaneously preventing formation of the smooth muscle-like phenotype and disrupting the stress fibers in cells overexpressing RhoGDIβ. Collectively, these results indicate that RhoGDIβ functions as a novel BMP4 signaling target that regulates adipogenesis and myogensis.
Collapse
Affiliation(s)
- Hai-Yan Huang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Wen-Ting Zhang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Wen-Yan Jiang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Su-Zhen Chen
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Yang Liu
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xin Ge
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xi Li
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Yong-Jun Dang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Bo Wen
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xiao-Hui Liu
- the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao-Jie Lu
- the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| |
Collapse
|
11
|
Caron D, Boutchueng-Djidjou M, Tanguay RM, Faure RL. Annexin A2 is SUMOylated on its N-terminal domain: regulation by insulin. FEBS Lett 2015; 589:985-91. [PMID: 25775977 DOI: 10.1016/j.febslet.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/17/2023]
Abstract
Insulin receptor (IR) endocytosis requires a remodelling of the actin cytoskeleton. We show here that ANXA2 is SUMOylated at the K10 located in a non-consensus SUMOylation motif in the N-terminal domain. The Y24F mutation decreased the SUMOylation signal, whereas insulin stimulation increased ANXA2 SUMOylation. A survey of protein SUMOylation in hepatic Golgi/endosome (G/E) fractions after insulin injections revealed the presence of a SUMOylation pattern and confirmed the SUMOylation of ANXA2. The construction of an IR/ANXA2/SUMO network (IRASGEN) in the G/E context reveals the presence of interacting nodes whereby SUMO1 connects ANXA2 to actin and microtubule-mediated changes in membrane topology. Heritable variants associated with type 2 diabetes represent 41% of the IRASGEN thus pointing out the physio-pathological importance of this subnetwork.
Collapse
Affiliation(s)
- Danielle Caron
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Martial Boutchueng-Djidjou
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Robert M Tanguay
- Institut de Biologie Intégrative et des Système (IBIS), Université Laval, Québec, PQ, Canada; Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, PQ, Canada; PROTEO, Université Laval, Québec, PQ, Canada
| | - Robert L Faure
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
12
|
Phelps DS, Umstead TM, Floros J. Sex differences in the acute in vivo effects of different human SP-A variants on the mouse alveolar macrophage proteome. J Proteomics 2014; 108:427-44. [PMID: 24954098 DOI: 10.1016/j.jprot.2014.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Surfactant protein A (SP-A) is involved in lung innate immunity. Humans have two SP-A genes, SFTPA1 and SFTPA2, each with several variants. We examined the in vivo effects of treatment with specific SP-A variants on the alveolar macrophage (AM) proteome from SP-A knockout (KO) mice. KO mice received either SP-A1, SP-A2, or both. AM were collected and their proteomes examined with 2D-DIGE. We identified 90 proteins and categorized them as related to actin/cytoskeleton, oxidative stress, protease balance/chaperones, regulation of inflammation, and regulatory/developmental processes. SP-A1 and SP-A2 had different effects on the AM proteome and these effects differed between sexes. In males more changes occurred in the oxidative stress, protease/chaperones, and inflammation groups with SP-A2 treatment than with SP-A1. In females most SP-A1-induced changes were in the actin/cytoskeletal and oxidative stress groups. We conclude that after acute SP-A1 and SP-A2 treatment, sex-specific differences were observed in the AM proteomes from KO mice, and that these sex differences differ in response to SP-A1 and SP-A2. Females are more responsive to SP-A1, whereas the gene-specific differences in males were minimal. These observations not only demonstrate the therapeutic potential of exogenous SP-A, but also illustrate sex- and gene-specific differences in the response to it. BIOLOGICAL SIGNIFICANCE This study shows that changes occur in the alveolar macrophage proteome in response to a single in vivo treatment with exogenous SP-A1 and/or SP-A2. We demonstrate that SP-A1 and SP-A2 have different effects on the AM proteome and that sex differences exist in the response to each SP-A1 and SP-A2 gene product. This study illustrates the potential of exogenous SP-A1 and SP-A2 treatment for the manipulation of macrophage function and indicates that the specific SP-A variant used for treatment may vary with sex and with the cellular functions being modified. The observed changes may contribute to sex differences in the incidence of some lung diseases.
Collapse
Affiliation(s)
- David S Phelps
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
13
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Pakes NK, Veltman DM, Williams RSB. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease. Small GTPases 2012; 4:22-7. [PMID: 23247359 PMCID: PMC3620097 DOI: 10.4161/sgtp.22087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Zizimin proteins belong to the Dock (Dedicator of Cytokinesis) superfamily of Guanine nucleotide Exchange Factor (GEF) proteins. This family of proteins plays a role in the regulation of Rho family small GTPases. Together the Rho family of small GTPases and the Dock/Zizimin proteins play a vital role in a number of cell processes including cell migration, apoptosis, cell division and cell adhesion. Our recent studies of Zizimin proteins, using a simple biomedical model, the eukaryotic social amoeba Dictyostelium discoideum, have helped to elucidate the cellular role of these proteins. In this article, we discuss the domain structure of Zizimin proteins from an evolutionary viewpoint. We also compare what is currently known about the mammalian Zizimin proteins to that of related Dock proteins. Understanding the cellular functions of these proteins will provide a better insight into their role in cell signaling, and may help in treating disease pathology associated with mutations in Dock/Zizimin proteins.
Collapse
Affiliation(s)
- Nicholl K Pakes
- Centre for Biomedical Sciences, Royal Holloway University of London, Surrey, UK
| | | | | |
Collapse
|
15
|
Jiang YS, Maeda M, Okamoto M, Fujii M, Fukutomi R, Hori M, Tatsuka M, Ota T. Centrosomal localization of RhoGDIβ and its relevance to mitotic processes in cancer cells. Int J Oncol 2012; 42:460-8. [PMID: 23232495 PMCID: PMC3583720 DOI: 10.3892/ijo.2012.1730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Rho GDP-dissociation inhibitors (RhoGDIs) are regulators of Rho family GTPases. RhoGDIβ has been implicated in cancer progression, but its precise role remains unclear. We determined the subcellular localization of RhoGDIβ and examined the effects of its overexpression and RNAi knockdown in cancer cells. Immunofluorescence staining showed that RhoGDIβ localized to centrosomes in human cancer cells. In HeLa cells, exogenous GFP-tagged RhoGDIβ localized to centrosomes and its overexpression caused prolonged mitosis and aberrant cytokinesis in which the cell shape was distorted. RNAi knockdown of RhoGDIβ led to increased incidence of monopolar spindle mitosis resulting in polyploid cells. These results suggest that RhoGDIβ has mitotic functions, including regulation of cytokinesis and bipolar spindle formation. The dysregulated expression of RhoGDIβ may contribute to cancer progression by disrupting these processes.
Collapse
Affiliation(s)
- Yong-Sheng Jiang
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Phelps DS, Umstead TM, Floros J. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A. Proteome Sci 2012; 10:44. [PMID: 22824420 PMCID: PMC3570446 DOI: 10.1186/1477-5956-10-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023] Open
Abstract
Background Male wild type (WT) C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure) occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A) knockout (KO) mice compared to WT was significantly reduced. Because the alveolar macrophage (AM) is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1) less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2) fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3) more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4) the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta) (CCT2), and Rho GDP alpha dissociation inhibitor. We conclude that sex differences exist in the proteome of AM derived from male and female mice and that SP-A contributes to these sex differences.
Collapse
Affiliation(s)
- David S Phelps
- Center for Host defense, Inflammation, and Lung Disease(CHILD) Research and Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | | | | |
Collapse
|
17
|
Pakes NK, Veltman DM, Rivero F, Nasir J, Insall R, Williams RSB. The Rac GEF ZizB regulates development, cell motility and cytokinesis in Dictyostelium. J Cell Sci 2012; 125:2457-65. [PMID: 22366457 DOI: 10.1242/jcs.100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dock (dedicator of cytokinesis) proteins represent a family of guanine nucleotide exchange factors (GEFs) that include the well-studied Dock180 family and the poorly characterised zizimin family. Our current understanding of Dock180 function is that it regulates Rho small GTPases and thus has a role in a number of cell processes, including cell migration, development and division. Here, we use a tractable model for cell motility research, Dictyostelium discoideum, to help elucidate the role of the related zizimin proteins. We show that gene ablation of zizA causes no change in development, whereas ablation of zizB gives rise to an aberrant developmental morphology and a reduction in cell directionality and velocity, and altered cell shape. Fluorescently labelled ZizA protein associates with the microtubule-organising centre (MTOC), whereas ZizB is enriched in the cortex. Overexpression of ZizB also causes an increase in the number of filopodia and a partial inhibition of cytokinesis. Analysis of ZizB protein binding partners shows that it interacts with Rac1a and a range of actin-associated proteins. In conclusion, our work provides insight into the molecular and cellular functions of zizimin GEF proteins, which are shown to have a role in cell movement, filopodia formation and cytokinesis.
Collapse
Affiliation(s)
- Nicholl K Pakes
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | | | | | | | |
Collapse
|
18
|
Essid M, Gopaldass N, Yoshida K, Merrifield C, Soldati T. Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol Biol Cell 2012; 23:1267-82. [PMID: 22323285 PMCID: PMC3315810 DOI: 10.1091/mbc.e11-06-0576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A molecular dissection of contractile vacuole (CV) discharge shows that Rab8a is recruited to the CV a few seconds before the exocyst. Together they tether it to the plasma membrane and commit it to fusion. GTP hydrolysis is necessary for vacuole detethering, a process in which LvsA, a protein of the Chédiak–Higashi family, plays a crucial role. Water expulsion by the contractile vacuole (CV) in Dictyostelium is carried out by a giant kiss-and-run focal exocytic event during which the two membranes are only transiently connected but do not completely merge. We present a molecular dissection of the GTPase Rab8a and the exocyst complex in tethering of the contractile vacuole to the plasma membrane, fusion, and final detachment. Right before discharge, the contractile vacuole bladder sequentially recruits Drainin, a Rab11a effector, Rab8a, the exocyst complex, and LvsA, a protein of the Chédiak–Higashi family. Rab8a recruitment precedes the nucleotide-dependent arrival of the exocyst to the bladder by a few seconds. A dominant-negative mutant of Rab8a strongly binds to the exocyst and prevents recruitment to the bladder, suggesting that a Rab8a guanine nucleotide exchange factor activity is associated with the complex. Absence of Drainin leads to overtethering and blocks fusion, whereas expression of constitutively active Rab8a allows fusion but blocks vacuole detachment from the plasma membrane, inducing complete fragmentation of tethered vacuoles. An indistinguishable phenotype is generated in cells lacking LvsA, implicating this protein in postfusion detethering. Of interest, overexpression of a constitutively active Rab8a mutant reverses the lvsA-null CV phenotype.
Collapse
Affiliation(s)
- Miriam Essid
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Phelps DS, Umstead TM, Quintero OA, Yengo CM, Floros J. In vivo rescue of alveolar macrophages from SP-A knockout mice with exogenous SP-A nearly restores a wild type intracellular proteome; actin involvement. Proteome Sci 2011; 9:67. [PMID: 22035134 PMCID: PMC3219558 DOI: 10.1186/1477-5956-9-67] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mice lacking surfactant protein-A (SP-A-/-; knockout; KO) exhibit increased vulnerability to infection and injury. Although many bronchoalveolar lavage (BAL) protein differences between KO and wild-type (WT) are rapidly reversed in KO after infection, their clinical course is still compromised. We studied the impact of SP-A on the alveolar macrophage (AM) proteome under basal conditions. Male SP-A KO mice were SP-A-treated (5 micrograms/mouse) and sacrificed in 6 or 18 hr. The AM proteomes of KO, SP-A-treated KO, and WT mice were studied by 2D-DIGE coupled with MALDI-ToF/ToF and AM actin distribution was examined by phalloidon staining. RESULTS We observed: a) significant differences from KO in WT or exogenous SP-A-treated in 45 of 76 identified proteins (both increases and decreases). These included actin-related/cytoskeletal proteins (involved in motility, phagocytosis, endocytosis), proteins of intracellular signaling, cell differentiation/regulation, regulation of inflammation, protease/chaperone function, and proteins related to Nrf2-mediated oxidative stress response pathway; b) SP-A-induced changes causing the AM proteome of the KO to resemble that of WT; and c) that SP-A treatment altered cell size and F-actin distribution. CONCLUSIONS These differences are likely to enhance AM function. The observations show for the first time that acute in vivo SP-A treatment of KO mice, under basal or unstimulated conditions, affects the expression of multiple AM proteins, alters F-actin distribution, and can restore much of the WT phenotype. We postulate that the SP-A-mediated expression profile of the AM places it in a state of "readiness" to successfully conduct its innate immune functions and ensure lung health.
Collapse
Affiliation(s)
- David S Phelps
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
20
|
Cytokinesis and cancer: Polo loves ROCK'n' Rho(A). J Genet Genomics 2010; 37:159-72. [PMID: 20347825 DOI: 10.1016/s1673-8527(09)60034-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.
Collapse
|
21
|
Spiess PC, Morin D, Williams CR, Buckpitt AR. Protein thiol oxidation in murine airway epithelial cells in response to naphthalene or diethyl maleate. Am J Respir Cell Mol Biol 2009; 43:316-25. [PMID: 19843705 DOI: 10.1165/rcmb.2009-0135oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Naphthalene (NA) is a semivolatile aromatic hydrocarbon to which humans are exposed from a variety of sources. NA results in acute cytotoxicity to respiratory epithelium in rodents. Cytochrome P450-dependent metabolic activation to form reactive intermediates and loss of soluble cellular thiols (glutathione) are critical steps in NA toxicity, but the precise mechanisms by which this chemical results in cellular injury remain unclear. Protein thiols are likely targets of reactive NA metabolites. Loss of these, through adduction or thiol oxidation mechanisms, may be important underlying mechanisms for NA toxicity. To address the hypothesis that loss of thiols on specific cellular proteins is critical to NA-induced cytotoxicity, we compared reduced to oxidized thiol ratios in airway epithelial cell proteins isolated from lungs of mice treated with NA or the nontoxic glutathione depletor, diethyl maleate (DEM). At 300 mg/kg doses, NA administration resulted in a greater than 85% loss of glutathione levels in the airway epithelium, which is similar to the loss observed after DEM treatment. Using differential fluorescent maleimide labeling followed by 2DE separation of proteins, we identified more than 35 unique proteins that have treatment-specific differential sulfhydryl oxidation. At doses of NA and DEM that produce similar levels of glutathione depletion, Cy3/Cy5 labeling ratios were statistically different for 16 nonredundant proteins in airway epithelium. Proteins identified include a zinc finger protein, several aldehyde dehydrogenase variants, beta-actin, and several other structural proteins. These studies show distinct patterns of protein thiol alterations with the noncytotoxic DEM and the cytotoxic NA.
Collapse
Affiliation(s)
- Page C Spiess
- Department of Molecular Biosciences, University of California, Davis, USA.
| | | | | | | |
Collapse
|
22
|
Vlahou G, Schmidt O, Wagner B, Uenlue H, Dersch P, Rivero F, Weissenmayer BA. Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases. BMC Microbiol 2009; 9:138. [PMID: 19602247 PMCID: PMC2724381 DOI: 10.1186/1471-2180-9-138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 07/14/2009] [Indexed: 01/31/2023] Open
Abstract
Background All human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops). Results The Yersinia pseudotuberculosis virulence factors YopE, YopH, YopM and YopJ were expressed de novo within Dictyostelium and their effects on growth in axenic medium and on bacterial lawns were analyzed. No severe effect was observed for YopH, YopJ and YopM, but expression of YopE, which is a GTPase activating protein for Rho GTPases, was found to be highly detrimental. GFP-tagged YopE expressing cells had less conspicuous cortical actin accumulation and decreased amounts of F-actin. The actin polymerization response upon cAMP stimulation was impaired, although chemotaxis was unaffected. YopE also caused reduced uptake of yeast particles. These alterations are probably due to impaired Rac1 activation. We also found that YopE predominantly associates with intracellular membranes including the Golgi apparatus and inhibits the function of moderately overexpressed RacH. Conclusion The phenotype elicited by YopE in Dictyostelium can be explained, at least in part, by inactivation of one or more Rho family GTPases. It further demonstrates that the social amoeba Dictyostelium discoideum can be used as an efficient and easy-to-handle model organism in order to analyze the function of a translocated GAP protein of a human pathogen.
Collapse
Affiliation(s)
- Georgia Vlahou
- Zentrum für Biochemie und Zentrum für Molekulare Medizin, Medizinische Fakultät, Universität Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sultana H, Neelakanta G, Eichinger L, Rivero F, Noegel AA. Microarray phenotyping places cyclase associated protein CAP at the crossroad of signaling pathways reorganizing the actin cytoskeleton in Dictyostelium. Exp Cell Res 2009; 315:127-40. [DOI: 10.1016/j.yexcr.2008.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/29/2008] [Accepted: 10/14/2008] [Indexed: 01/31/2023]
|
24
|
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2008; 10:76-87. [PMID: 18980612 DOI: 10.1111/j.1600-0854.2008.00851.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within 'Legionella-containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4)P). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila. Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4)P.
Collapse
Affiliation(s)
- Simon Urwyler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
The Cryptococcus neoformans Rho-GDP dissociation inhibitor mediates intracellular survival and virulence. Infect Immun 2008; 76:5729-37. [PMID: 18779335 DOI: 10.1128/iai.00896-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rho-GDP dissociation inhibitors (Rho-GDI) are repressors of Rho-type monomeric GTPases that control fundamental cellular processes, such as cytoskeletal arrangement, vesicle trafficking, and polarized growth. We identified and altered the expression of the gene encoding a Rho-GDI homolog in the human fungal pathogen Cryptococcus neoformans and investigated its impact on pathogenicity in animal models of cryptococcosis. Consistent with its predicted function to inhibit and sequester Rho-type GTPases, overexpression of RDI1 results in cytosolic localization of Cdc42. Likely as a result of this finding, RDI1-overexpressing strains exhibited altered morphology compared to that of the wild type, with apparent defects in maintaining proper cell polarity and cytokinesis. RDI1 deletion resulted in increased vacuole size in tissue culture medium and aberrant cell morphology at neutral pH. Maintenance of normal cell morphology is vital for C. neoformans pathogenicity. Accordingly, the rdi1Delta mutant strain also showed reduced intracellular survival in macrophages and severe attenuation of virulence in two murine models of cryptococcosis. This reduction in virulence of the rdi1Delta mutant occurs in the absence of major growth defects in rich medium and with classical virulence-associated phenotypes.
Collapse
|
26
|
Cloke B, Huhtinen K, Fusi L, Kajihara T, Yliheikkilä M, Ho KK, Teklenburg G, Lavery S, Jones MC, Trew G, Kim JJ, Lam EWF, Cartwright JE, Poutanen M, Brosens JJ. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology 2008; 149:4462-74. [PMID: 18511503 PMCID: PMC5393297 DOI: 10.1210/en.2008-0356] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/beta-catenin, TGFbeta/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.
Collapse
Affiliation(s)
- Brianna Cloke
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tshala-Katumbay D, Monterroso V, Kayton R, Lasarev M, Sabri M, Spencer P. Probing mechanisms of axonopathy. Part I: Protein targets of 1,2-diacetylbenzene, the neurotoxic metabolite of aromatic solvent 1,2-diethylbenzene. Toxicol Sci 2008; 105:134-41. [PMID: 18502740 DOI: 10.1093/toxsci/kfn103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motor neuron axonopathy in diseases such as amyotrophic lateral sclerosis can be modeled and probed with neurotoxic chemicals that induce similar patterns of pathology, such as axonal spheroids that represent focal accumulation of anterogradely transported neurofilaments (NFs). The aromatic gamma-diketone-like 1,2-diacetylbenzene (1,2-DAB), but not its 1,3-DAB isomer, reacts with epsilon-amino- or sulfyhydryl groups of (neuro)proteins, forms adducts, and causes NFs to accumulate at proximal sites of elongate motor axons. We exploit the protein-reactive properties of neurotoxic 1,2-DAB versus the nonprotein-reactive properties of non-neurotoxic 1,3-DAB to unveil proteomic changes associated with this type of pathology. We used two-dimensional differential in-gel electrophoresis (2D-DIGE), matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry to analyze the lumbosacral spinal cord proteome of adult Sprague-Dawley rats treated systemically with 20 mg/kg/day 1,2-DAB, equimolar dose of 1,3-DAB, or equivalent volume of vehicle (saline containing 2% acetone), 5 days a week, for 2 weeks. 1,2-DAB significantly altered the expression of protein disulfide isomerase, an enzyme involved in protein folding, and gelsolin, an actin-capping and -severing protein. Modifications of these two proteins have been incriminated in the pathogenesis of nerve fiber degeneration. Protein-reactive and neurotoxic 1,2-DAB appears to be excellent tool to dissect mechanisms of nerve fiber (axon) degeneration.
Collapse
Affiliation(s)
- Desire Tshala-Katumbay
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 S.W. Jackson Park Road, mail code L606, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Menotta M, Amicucci A, Basili G, Polidori E, Stocchi V, Rivero F. Molecular and functional characterization of a Rho GDP dissociation inhibitor in the filamentous fungus Tuber borchii. BMC Microbiol 2008; 8:57. [PMID: 18400087 PMCID: PMC2362126 DOI: 10.1186/1471-2180-8-57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/09/2008] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Small GTPases of the Rho family function as tightly regulated molecular switches that govern important cellular functions in eukaryotes. Several families of regulatory proteins control their activation cycle and subcellular localization. Members of the guanine nucleotide dissociation inhibitor (GDI) family sequester Rho GTPases from the plasma membrane and keep them in an inactive form. RESULTS We report on the characterization the RhoGDI homolog of Tuber borchii Vittad., an ascomycetous ectomycorrhizal fungus. The Tbgdi gene is present in two copies in the T. borchii genome. The predicted amino acid sequence shows high similarity to other known RhoGDIs. Real time PCR analyses revealed an increased expression of Tbgdi during the phase preparative to the symbiosis instauration, in particular after stimulation with root exudates extracts, that correlates with expression of Tbcdc42. In a translocation assay TbRhoGDI was able to solubilize TbCdc42 from membranes. Surprisingly, TbRhoGDI appeared not to interact with S. cerevisiae Cdc42, precluding the use of yeast as a surrogate model for functional studies. To study the role of TbRhoGDI we performed complementation experiments using a RhoGDI null strain of Dictyostelium discoideum, a model organism where the roles of Rho signaling pathways are well established. For comparison, complementation with mammalian RhoGDI1 and LyGDI was also studied in the null strain. Although interacting with Rac1 isoforms, TbRhoGDI was not able to revert the defects of the D. discoideum RhoGDI null strain, but displayed an additional negative effect on the cAMP-stimulated actin polymerization response. CONCLUSION T. borchii expresses a functional RhoGDI homolog that appears as an important modulator of cytoskeleton reorganization during polarized apical growth that antecedes symbiosis instauration. The specificity of TbRhoGDI actions was underscored by its inability to elicit a growth defect in S. cerevisiae or to compensate the loss of a D. discoideum RhoGDI. Knowledge of the cell signaling at the basis of cytoskeleton reorganization of ectomycorrhizal fungi is essential for improvements in the production of mycorrhized plant seedlings used in timberland extension programs and fruit body production.
Collapse
Affiliation(s)
- Michele Menotta
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Antonella Amicucci
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Giorgio Basili
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Emanuela Polidori
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino "Carlo Bo," Via I Maggetti 26, 61029 Urbino (PU), Italy
| | - Vilberto Stocchi
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Francisco Rivero
- Center for Biochemistry, Medical Faculty, University of Cologne. Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
29
|
Chen Q, Lakshmikanth GS, Spudich JA, De Lozanne A. The localization of inner centromeric protein (INCENP) at the cleavage furrow is dependent on Kif12 and involves interactions of the N terminus of INCENP with the actin cytoskeleton. Mol Biol Cell 2007; 18:3366-74. [PMID: 17567958 PMCID: PMC1951774 DOI: 10.1091/mbc.e06-10-0895] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The inner centromeric protein (INCENP) and other chromosomal passenger proteins are known to localize on the cleavage furrow and to play a role in cytokinesis. However, it is not known how INCENP localizes on the furrow or whether this localization is separable from that at the midbody. Here, we show that the association of Dictyostelium INCENP (DdINCENP) with the cortex of the cleavage furrow involves interactions with the actin cytoskeleton and depends on the presence of the kinesin-6-related protein Kif12. We found that Kif12 is found on the central spindle and the cleavage furrow during cytokinesis. Kif12 is not required for the redistribution of DdINCENP from centromeres to the central spindle. However, in the absence of Kif12, DdINCENP fails to localize on the cleavage furrow. Domain analysis indicates that the N terminus of DdINCENP is necessary and sufficient for furrow localization and that it binds directly to the actin cytoskeleton. Our data suggest that INCENP moves from the central spindle to the furrow of a dividing cell by a Kif12-dependent pathway. Once INCENP reaches the equatorial cortex, it associates with the actin cytoskeleton where it then concentrates toward the end of cytokinesis.
Collapse
Affiliation(s)
- Qian Chen
- *Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712; and
| | | | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arturo De Lozanne
- *Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712; and
| |
Collapse
|
30
|
Gabr AA, Reed M, Newman DR, Pohl J, Khosla J, Sannes PL. Alterations in cytoskeletal and immune function-related proteome profiles in whole rat lung following intratracheal instillation of heparin. Respir Res 2007; 8:36. [PMID: 17488504 PMCID: PMC1876226 DOI: 10.1186/1465-9921-8-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/08/2007] [Indexed: 01/07/2023] Open
Abstract
Background Heparin has been shown to modify fundamental biologic processes ranging from blood coagulation and cell proliferation to fibrogenesis and asthma. The goal of this study was to identify specific or broad biologic responses of the rat lung to intratracheal instillation of heparin by targeted proteomic analysis. Methods Rats were given either aerosolized 500 μg heparin in 250 μl saline or saline alone. Lungs were harvested at 0, 24, or 96 hours post-treatment and isolated proteins analyzed by two-dimensional gel electrophoresis. Proteins which increased and decreased significantly in treated groups above controls were then selected for identification by mass spectrometry. Results Although heparin treatments resulted in a general reduction in cytosolic protein expression, there were significant increases within members of discrete groups of proteins. At 24 hours, proteins which function in cytoskeletal organization and in calcium signaling were up-regulated between 2- and 27-fold above baseline and untreated controls. Increased proteins include annexins V and VI, septin 2, capping G protein, actin-related protein 3, moesin, RhoGDP dissociation inhibitor, and calcyclin. A group of proteins relating to immune response and tumor suppressor function were either up-regulated (tumor suppressor p30/hyaluronic acid binding protein-1, Parkinson disease protein 7, proteosome 28 subunit/interferon-γ inducible protein, and proteosome subunit macropain α-1) or strongly down-regulated (transgelin). At 96 hours, most proteins that had increased at 24 hours remained elevated but to a much lesser degree. Conclusion These cumulative observations demonstrate that whole lung heparin treatment results in significant up-regulation of selected groups of proteins, primarily those related to cytoskeletal reorganization and immune function, which may prove to be relevant biomarkers useful in analysis of lung exposures/treatments as well as in system biology studies.
Collapse
Affiliation(s)
- Amir A Gabr
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mathew Reed
- Microchemical and Proteomics Facility, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donna R Newman
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jan Pohl
- Microchemical and Proteomics Facility, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jody Khosla
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Philip L Sannes
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
31
|
Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell 2007; 12:699-712. [PMID: 17488622 PMCID: PMC1965589 DOI: 10.1016/j.devcel.2007.03.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 12/21/2006] [Accepted: 03/19/2007] [Indexed: 01/22/2023]
Abstract
Formation of the mitotic cleavage furrow is dependent upon both microtubules and activity of the small GTPase RhoA. GEF-H1 is a microtubule-regulated exchange factor that couples microtubule dynamics to RhoA activation. GEF-H1 localized to the mitotic apparatus in HeLa cells, particularly at the tips of cortical microtubules and the midbody, and perturbation of GEF-H1 function induced mitotic aberrations, including asymmetric furrowing, membrane blebbing, and impaired cytokinesis. The mitotic kinases Aurora A/B and Cdk1/Cyclin B phosphorylate GEF-H1, thereby inhibiting GEF-H1 catalytic activity. Dephosphorylation of GEF-H1 occurs just prior to cytokinesis, accompanied by GEF-H1-dependent GTP loading on RhoA. Using a live cell biosensor, we demonstrate distinct roles for GEF-H1 and Ect2 in regulating Rho activity in the cleavage furrow, with GEF-H1 catalyzing Rho activation in response to Ect2-dependent localization and initiation of cell cleavage. Our results identify a GEF-H1-dependent mechanism to modulate localized RhoA activation during cytokinesis under the control of mitotic kinases.
Collapse
Affiliation(s)
| | - Perihan Nalbant
- The Scripps Research Institute Departments of Immunology and Cell Biology 10550 N. Torrey Pines Road La Jolla, California 92037 Phone (858) 784-8217; Fax (858) 784-8218
| | - Benjamin P. Bohl
- The Scripps Research Institute Departments of Immunology and Cell Biology 10550 N. Torrey Pines Road La Jolla, California 92037 Phone (858) 784-8217; Fax (858) 784-8218
| | | | | | - Gary M. Bokoch
- The Scripps Research Institute Departments of Immunology and Cell Biology 10550 N. Torrey Pines Road La Jolla, California 92037 Phone (858) 784-8217; Fax (858) 784-8218
| |
Collapse
|
32
|
Menotta M, Amicucci A, Basili G, Rivero F, Polidori E, Sisti D, Stocchi V. Molecular characterisation of the small GTPase CDC42 in the ectomycorrhizal fungus Tuber borchii Vittad. PROTOPLASMA 2007; 231:227-37. [PMID: 17762910 DOI: 10.1007/s00709-007-0254-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 11/23/2006] [Indexed: 05/17/2023]
Abstract
The small GTPase CDC42 is ubiquitously expressed in eukaryotes, where it participates in the regulation of the cytoskeleton and a wide range of cellular processes, including cytokinesis, gene expression, cell cycle progression, apoptosis, and tumorigenesis. As very little is known on the molecular level about mycorrhizal morphogenesis and development and these events depend on a tightly regulated reorganisation of the cytoskeleton network in filamentous fungi, we focused on the molecular characterisation of the cdc42 gene in Tuber borchii Vittad., an ascomycetous hypogeous fungus forming ectomycorrhizae. The entire gene was isolated from a T. borchii cDNA library and Southern blot analyses showed that only one copy of cdc42 is present in the T. borchii genome. The predicted amino acid sequence is very similar to those of other known small GTPases and the similar domain structures suggest a similar function. Real-time PCR analyses revealed an increased expression of Tbcdc42 during the phase preparative to the instauration of symbiosis, in particular after stimulation with root exudate extracts. Immunolocalisation experiments revealed an accumulation of CDC42 in the apical tips of the growing hyphae. When a constitutively active Tbcdc42 mutant was expressed in Saccharomyces cerevisiae, morphological changes typical of pseudohyphal growth were observed. Our results suggest a fundamental role of CDC42 in cell polarity development in T. borchii.
Collapse
Affiliation(s)
- M Menotta
- Istituto di Chimica Biologica "G. Fornaini", Università degli Studi di Urbino, Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Somesh BP, Vlahou G, Iijima M, Insall RH, Devreotes P, Rivero F. RacG regulates morphology, phagocytosis, and chemotaxis. EUKARYOTIC CELL 2006; 5:1648-63. [PMID: 16950926 PMCID: PMC1595345 DOI: 10.1128/ec.00221-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RacG is an unusual member of the complex family of Rho GTPases in Dictyostelium. We have generated a knockout (KO) strain, as well as strains that overexpress wild-type (WT), constitutively active (V12), or dominant negative (N17) RacG. The protein is targeted to the plasma membrane, apparently in a nucleotide-dependent manner, and induces the formation of abundant actin-driven filopods. RacG is enriched at the rim of the progressing phagocytic cup, and overexpression of RacG-WT or RacG-V12 induced an increased rate of particle uptake. The positive effect of RacG on phagocytosis was abolished in the presence of 50 microM LY294002, a phosphoinositide 3-kinase inhibitor, indicating that generation of phosphatidylinositol 3,4,5-trisphosphate is required for activation of RacG. RacG-KO cells showed a moderate chemotaxis defect that was stronger in the RacG-V12 and RacG-N17 mutants, in part because of interference with signaling through Rac1. The in vivo effects of RacG-V12 could not be reproduced by a mutant lacking the Rho insert region, indicating that this region is essential for interaction with downstream components. Processes like growth, pinocytosis, exocytosis, cytokinesis, and development were unaffected in Rac-KO cells and in the overexpressor mutants. In a cell-free system, RacG induced actin polymerization upon GTPgammaS stimulation, and this response could be blocked by an Arp3 antibody. While the mild phenotype of RacG-KO cells indicates some overlap with one or more Dictyostelium Rho GTPases, like Rac1 and RacB, the significant changes found in overexpressors show that RacG plays important roles. We hypothesize that RacG interacts with a subset of effectors, in particular those concerned with shape, motility, and phagocytosis.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Vlahou G, Rivero F. Rho GTPase signaling in Dictyostelium discoideum: Insights from the genome. Eur J Cell Biol 2006; 85:947-59. [PMID: 16762450 DOI: 10.1016/j.ejcb.2006.04.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.
Collapse
Affiliation(s)
- Georgia Vlahou
- Center for Biochemistry of the Medical Faculty and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | |
Collapse
|
35
|
Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F. Dictyostelium RacH Regulates Endocytic Vesicular Trafficking and is Required for Localization of Vacuolin. Traffic 2006; 7:1194-212. [PMID: 17004322 DOI: 10.1111/j.1600-0854.2006.00455.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dictyostelium RacH localizes predominantly to membranes of the nuclear envelope, endoplasmic reticulum and Golgi apparatus. To investigate the role of this protein, we generated knockout and overexpressor strains. RacH-deficient cells displayed 50% reduced fluid-phase uptake and a moderate exocytosis defect, but phagocytosis was unaffected. Detailed examination of the endocytic pathway revealed defective acidification of early endosomes and reduced secretion of acid phosphatase in the presence of sucrose. The distribution of the post-lysosomal marker vacuolin was altered, with a high proportion of cells showing a diffuse vesicular pattern in contrast to the wild-type strain, where few intensely stained vacuoles predominate. Cytokinesis, cell motility, chemotaxis and development appeared largely unaffected. In a cell-free system, RacH stimulates actin polymerization, suggesting that this protein is involved in actin-based trafficking of vesicular compartments. We also investigated the determinants of subcellular localization of RacH by expression of green-fluorescent-protein-tagged chimeras in which the C-terminus of RacH and the plasma-membrane-targeted RacG were exchanged, the insert region was deleted or the net positive charge of the hypervariable region was increased. We show that several regions of the molecule, not only the hypervariable region, determine targeting of RacH. Overexpression of mistargeted RacH mutants did not recapitulate the phenotypes of a strain overexpressing nonmutated RacH, indicating that the function of this protein is in great part related to its subcellular localization.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Köln, Germany
| | | | | | | | | |
Collapse
|
36
|
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 2006; 438:1013-6. [PMID: 16355224 DOI: 10.1038/nature04198] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/07/2005] [Indexed: 11/09/2022]
Abstract
Root hairs are cellular protuberances extending from the root surface into the soil; there they provide access to immobile inorganic ions such as phosphate, which are essential for growth. Their cylindrical shape results from a polarized mechanism of cell expansion called tip growth in which elongation is restricted to a small area at the surface of the hair-forming cell (trichoblast) tip. Here we identify proteins that spatially control the sites at which cell growth occurs by isolating Arabidopsis mutants (scn1) that develop ectopic sites of growth on trichoblasts. We cloned SCN1 and showed that SCN1 is a RhoGTPase GDP dissociation inhibitor (RhoGDI) that spatially restricts the sites of growth to a single point on the trichoblast. We showed previously that localized production of reactive oxygen species by RHD2/AtrbohC NADPH oxidase is required for hair growth; here we show that SCN1/AtrhoGDI1 is a component of the mechanism that focuses RHD2/AtrbohC-catalysed production of reactive oxygen species to hair tips during wild-type development. We propose that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase.
Collapse
Affiliation(s)
- Rachel J Carol
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pikzack C, Prassler J, Furukawa R, Fechheimer M, Rivero F. Role of calcium-dependent actin-bundling proteins: characterization of Dictyostelium mutants lacking fimbrin and the 34-kilodalton protein. ACTA ACUST UNITED AC 2006; 62:210-31. [PMID: 16265631 DOI: 10.1002/cm.20098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actin-bundling proteins organize actin filaments into densely packed bundles. In Dictyostelium discoideum two abundant proteins display calcium-regulated bundling activity, fimbrin and the 34-kDa protein (ABP34). Using a GFP fusion we observed transient localization of fimbrin at the phagocytic cup and macropinosomes. The distribution of truncated constructs encompassing the EF hands and the first actin-binding domain (EA1) or both actin-binding domains devoid of EF hands (A1A2) was indistinguishable from that of the full length protein. The role of fimbrin and a possible functional overlap with ABP34 was investigated in fim- and double 34-/fim- mutants. Except for a moderate cell size defect, fim- mutants did not show defects in growth, endocytosis, exocytosis, and chemotaxis. Double mutants were characterized by a small cell size and a defect in morphogenesis resulting in small fruiting bodies and a low spore yield. The cell size defect could not be overcome by expression of fimbrin fragments EA1 or A1A2, suggesting that both bundling activity and regulation by calcium are important. Induction of filopod formation in 34-/fim- cells was not impaired, indicating that both proteins are dispensable for this process. We searched in the Dictyostelium genome database for fimbrin-like proteins that could compensate for the fimbrin defect and identified three unconventional fimbrins and two more proteins with actin-binding domains of the type present in fimbrins.
Collapse
Affiliation(s)
- Claudia Pikzack
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | | | | | | | | |
Collapse
|
38
|
Dovas A, Couchman J. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005; 390:1-9. [PMID: 16083425 PMCID: PMC1184558 DOI: 10.1042/bj20050104] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RhoGDI (Rho GDP-dissociation inhibitor) was identified as a down-regulator of Rho family GTPases typified by its ability to prevent nucleotide exchange and membrane association. Structural studies on GTPase-RhoGDI complexes, in combination with biochemical and cell biological results, have provided insight as to how RhoGDI exerts its effects on nucleotide binding, the membrane association-dissociation cycling of the GTPase and how these activities are controlled. Despite the initial negative roles attributed to RhoGDI, recent evidence has come to suggest that it may also act as a positive regulator necessary for the correct targeting and regulation of Rho activities by conferring cues for spatial restriction, guidance and availability to effectors. These potential functions are discussed in the context of RhoGDI-associated multimolecular complexes, the newly emerged shuttling capability and the importance of the particular membrane microenvironment that represents the site of action for GTPases. All these results point to a wider role for RhoGDI than initially perceived, making it a binding partner that can tightly control Rho GTPases, but which also allows them to reach their full spectrum of activities.
Collapse
Affiliation(s)
- Athanassios Dovas
- Division of Biomedical Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - John R. Couchman
- Division of Biomedical Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Zhang B, Zhang Y, Dagher MC, Shacter E. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 2005; 65:6054-62. [PMID: 16024605 DOI: 10.1158/0008-5472.can-05-0175] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GDP dissociation inhibitor (RhoGDI) plays an essential role in control of a variety of cellular functions through interactions with Rho family GTPases, including Rac1, Cdc42, and RhoA. RhoGDI is frequently overexpressed in human tumors and chemo-resistant cancer cell lines, raising the possibility that RhoGDI might play a role in the development of drug resistance in cancer cells. We found that overexpression of RhoGDI increased resistance of cancer cells (MDA-MB-231 human breast cancer cells and JLP-119 lymphoma cells) to the induction of apoptosis by two chemotherapeutic agents: etoposide and doxorubicin. Conversely, silencing of RhoGDI expression by DNA vector-mediated RNA interference (small interfering RNA) sensitized MDA-MB-231 cells to drug-induced apoptosis. Resistance to apoptosis was restored by reintroduction of RhoGDI protein expression. The mechanism for the anti-apoptotic activity of RhoGDI may derive from its ability to inhibit caspase-mediated cleavage of Rac1 GTPase, which is required for maximal apoptosis to occur in response to cytotoxic drugs. Taken together, the data show that RhoGDI is an anti-apoptotic molecule that mediates cellular resistance to these chemotherapy agents.
Collapse
Affiliation(s)
- Baolin Zhang
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
40
|
Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 2005; 22:33-47. [PMID: 15827237 DOI: 10.1152/physiolgenomics.00052.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, is a member of the phylum Echinodermata, which is basal to the phylum Chordata within the deuterostome lineage of the animal kingdom. This relationship makes the analysis of the sea urchin immune system relevant to understanding the evolution of the deuterostome immune system leading to the Vertebrata. Subtractive suppression hybridization was employed to generate cDNA probes for screening high-density arrayed, conventional cDNA libraries to identify genes that were upregulated in coelomocytes responding to lipopolysaccharide. Results from 1,247 expressed sequence tags (ESTs) were used to infer that coelomocytes upregulated genes involved in RNA splicing, protein processing and targeting, secretion, endosomal activities, cell signaling, and alterations to the cytoskeletal architecture including interactions with the extracellular matrix. Of particular note was a set of transcripts represented by 60% of the ESTs analyzed, which encoded a previously uncharacterized family of closely related proteins, provisionally designated as 185/333. These transcripts exhibited a significant level of variation in their nucleotide sequence and evidence of putative alternative splicing that could yield up to 15 translatable elements. On the basis of the striking increase in gene expression in response to lipopolysaccharide and the unexpected level of diversity of the 185/333 messages, we propose that this set of transcripts encodes a family of putative immune response proteins that may represent a major component of an immunological response to bacterial challenge.
Collapse
Affiliation(s)
- Sham V Nair
- Department of Biological Sciences, George Washington University, Washington, District of Columbia 20052, USA
| | | | | | | | | |
Collapse
|
41
|
Betapudi V, Mason C, Licate L, Egelhoff TT. Identification and characterization of a novel alpha-kinase with a von Willebrand factor A-like motif localized to the contractile vacuole and Golgi complex in Dictyostelium discoideum. Mol Biol Cell 2005; 16:2248-62. [PMID: 15728726 PMCID: PMC1087232 DOI: 10.1091/mbc.e04-07-0639] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified a new protein kinase in Dictyostelium discoideum that carries the same conserved class of "alpha-kinase" catalytic domain as reported previously in myosin heavy chain kinases (MHCKs) in this amoeba but that has a completely novel domain organization. The protein contains an N-terminal von Willebrand factor A (vWFA)-like motif and is therefore named VwkA. Manipulation of VwkA expression level via high copy number plasmids (VwkA++ cells) or gene disruption (vwkA null cells) results in an array of cellular defects, including impaired growth and multinucleation in suspension culture, impaired development, and alterations in myosin II abundance and assembly. Despite sequence similarity to MHCKs, the purified protein failed to phosphorylate myosin II in vitro. Autophosphorylation activity, however, was enhanced by calcium/calmodulin, and the enzyme can be precipitated from cellular lysates with calmodulin-agarose, suggesting that VwkA may directly bind calmodulin. VwkA is cytosolic in distribution but enriched on the membranes of the contractile vacuole and Golgi-like structures in the cell. We propose that VwkA likely acts indirectly to influence myosin II abundance and assembly behavior and possibly has broader roles than previously characterized alpha kinases in this organism, which all seem to be MHCKs.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
42
|
Park KC, Rivero F, Meili R, Lee S, Apone F, Firtel RA. Rac regulation of chemotaxis and morphogenesis in Dictyostelium. EMBO J 2004; 23:4177-89. [PMID: 15470506 PMCID: PMC524383 DOI: 10.1038/sj.emboj.7600368] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/27/2004] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis requires localized F-actin polymerization at the site of the plasma membrane closest to the chemoattractant source, a process controlled by Rac/Cdc42 GTPases. We identify Dictyostelium RacB as an essential mediator of this process. RacB is activated upon chemoattractant stimulation, exhibiting biphasic kinetics paralleling F-actin polymerization. racB null cells have strong chemotaxis and morphogenesis defects and a severely reduced chemoattractant-mediated F-actin polymerization and PAKc activation. RacB activation is partly controlled by the PI3K pathway. pi3k1/2 null cells and wild-type cells treated with LY294002 exhibit a significantly reduced second peak of RacB activation, which is linked to pseudopod extension, whereas a PTEN hypomorph exhibits elevated RacB activation. We identify a RacGEF, RacGEF1, which has specificity for RacB in vitro. racgef1 null cells exhibit reduced RacB activation and cells expressing mutant RacGEF1 proteins display chemotaxis and morphogenesis defects. RacGEF1 localizes to sites of F-actin polymerization. Inhibition of this localization reduces RacB activation, suggesting a feedback loop from RacB via F-actin polymerization to RacGEF1. Our findings provide a critical linkage between chemoattractant stimulation, F-actin polymerization, and chemotaxis in Dictyostelium.
Collapse
Affiliation(s)
- Kyung Chan Park
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Francisco Rivero
- Zentrum für Biochemie der Medizinischen Fakultät, Universität zu Köln, Köln, Germany
| | - Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Susan Lee
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Fabio Apone
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
- University of California, Natural Sciences Building, Room 6316, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA. Tel.: +1 858 534 2788; Fax: +1 858 822 5900; E-mail:
| |
Collapse
|
43
|
Zhou X, Suto S, Ota T, Tatsuka M. Nuclear Translocation of Cleaved LyGDI Dissociated from Rho and Rac during Trp53-Dependent Ionizing Radiation-Induced Apoptosis of Thymus CellsIn Vitro. Radiat Res 2004; 162:287-95. [PMID: 15332996 DOI: 10.1667/rr3220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
LyGDI inhibits the dissociation of GDP from Rho family GTPases and is found in abundance in hematopoietic cells. Here we report truncation of LyGDI after irradiation in mouse 3SB thymus cells. A 21-kDa fragment of LyGDI, resulting from activated caspase 3-induced cleavage at an N-terminal consensus site following the Asp(18) residue, accumulated at peak quantities between 5 and 12 h after irradiation. Cleavage of LyGDI was inhibited by the caspase inhibitor benzoyloxycarbonyl-Val-Asp-fluoromethylketone. Subcellular fractionation and immunofluorescence revealed the truncated 21-kDa fragment of LyGDI within the nuclear fraction of irradiated 3SB cells, whereas full-length LyGDI was found only in the cytoplasmic fraction. Truncated LyGDI within the nucleus had no association with the Rho family proteins RhoA and Rac1, since these proteins were observed only in the cytoplasmic fractions. These data demonstrate that regulation of Rho family GTPases by LyGDI is disrupted during apoptosis, suggesting that fragmentation of LyGDI implicates the transmission of a signal from the cytoplasm to the nucleus during Trp53-dependent apoptosis of thymus cells after irradiation.
Collapse
Affiliation(s)
- Xinwen Zhou
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | |
Collapse
|
44
|
Utsubo R, Sonoda Y, Takahashi R, Iijima S, Aizu-Yokota E, Kasahara T. Proteome Analysis of Focal Adhesion Kinase (FAK)-Overexpressing Cells. Biol Pharm Bull 2004; 27:1735-41. [PMID: 15516715 DOI: 10.1248/bpb.27.1735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established several focal adhesion kinase (FAK) cDNA-transfected cells and found that FAK-transfected HL-60 (HL-60/FAK) cells are resistant to apoptosis induced with hydrogen peroxide, etoposide and radiation compared with the parental HL-60 or the vector-transfected (HL-60/Vect) cells. We carried out proteome analysis to study the mechanism of resistance to apoptosis in HL-60/FAK cells. Among 300 spots resolved in two-dimensional gels, ca. 10% of them were significantly increased in HL-60/FAK cells compared with HL-60/Vect cells, whereas ca. 2% of them were decreased or disappeared. These proteins were performed for further analysis by Western blots or N-terminal sequencing or mass spectrometry. Increased proteins included stress proteins such as hsp90, ribosomal proteins, and antioxidant enzymes such as peroxyredoxin 2. Some of these proteins are assumed to contribute to the antiapoptotic action of FAK.
Collapse
Affiliation(s)
- Ryoko Utsubo
- Department of Biochemistry, Kyoritsu University of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Faix J. The actin-bundling protein cortexillin is the downstream target of a Rac1-signaling pathway required for cytokinesis. J Muscle Res Cell Motil 2003; 23:765-72. [PMID: 12952074 DOI: 10.1023/a:1024427712131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the process of cytokinesis by which eukaryotic cells constrict and divide in two, multiple cellular activities have to be precisely coordinated in space and time to guarantee equal distribution of chromosomes and cytoplasm to the emerging daughter cells. Eventually, constriction of the cleavage furrow leads to the complete separation of the daughter cells. Since the basic observation of cell division some 100 years ago, the principal challenge has been to unravel the detailed molecular mechanisms and signaling events leading to cytokinesis. Regulation of this fundamental cellular process is still poorly understood yet a central issue in modern cell biology. In the recent past it became evident that small GTPases of the Ras super family play a major role during this process. This review is focused on a Rho family GTPase-mediated signaling pathway that is required for cleavage furrow assembly and cytokinesis by the actin-bundling protein cortexillin of D. discoideum cells.
Collapse
Affiliation(s)
- J Faix
- A. Butenandt-Institut für Zellbiologie, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 München, Germany.
| |
Collapse
|
46
|
Rivero F, Somesh BP. Signal transduction pathways regulated by Rho GTPases in Dictyostelium. J Muscle Res Cell Motil 2003; 23:737-49. [PMID: 12952072 DOI: 10.1023/a:1024423611223] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound state. Activation enables Rho GTPases to interact with a multitude of effectors that relay upstream signals to cytoskeletal and other components, eliciting rearrangements of the actin cytoskeleton and diverse other cellular responses. In Dictyostelium the Rho family comprises 15 members. Some of them (Rac1a/b/c, RacF1/F2, RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily, however the Rho and Cdc42 subfamilies are not represented. Dictyostelium Rho GTPases regulate actin polymerization, cell morphology, endocytosis, cytokinesis, cell polarity and chemotaxis. Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) modulate the activation/inactivation cycle of the GTPases. In addition, guanine nucleotide-dissociation inhibitors (GDIs) regulate cycling of the GTPases between membranes and cytosol. Members of these three classes of regulatory molecules along with some effectors have been identified in Dictyostelium during the last years and their role in Rho signaling pathways has been investigated.
Collapse
Affiliation(s)
- Francisco Rivero
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| | | |
Collapse
|
47
|
Mollinari C, Reynaud C, Martineau-Thuillier S, Monier S, Kieffer S, Garin J, Andreassen PR, Boulet A, Goud B, Kleman JP, Margolis RL. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev Cell 2003; 5:295-307. [PMID: 12919680 DOI: 10.1016/s1534-5807(03)00205-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Passenger proteins migrate from inner centromeres to the spindle midzone during late mitosis, and those described to date are essential both for proper chromosome segregation and for completion of cell cleavage. We have purified and cloned the human passenger protein TD-60, and we here report that it is a member of the RCC1 family and that it binds preferentially the nucleotide-free form of the small G protein Rac1. Using siRNA, we further demonstrate that the absence of TD-60 substantially suppresses overall spindle assembly, blocks cells in prometaphase, and activates the spindle assembly checkpoint. These defects suggest TD-60 may have a role in global spindle assembly or may be specifically required to integrate kinetochores into the mitotic spindle. The latter is consistent with a TD-60 requirement for recruitment of the passenger proteins survivin and Aurora B, and suggests that like other passenger proteins, TD-60 is involved in regulation of cell cleavage.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Institut de Biologie Structurale J-P Ebel, CEA-CNRS, 41 rue Jules Horowitz, 38027 Cedex 1, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|