1
|
Saha N, Chan E, Mendoza RP, Romin Y, Tipping MJ, Nikolov DB. Antibodies targeting ADAM17 reverse neurite outgrowth inhibition by myelin-associated inhibitors. Life Sci Alliance 2025; 8:e202403126. [PMID: 40132887 PMCID: PMC11938383 DOI: 10.26508/lsa.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Upon spinal cord injury, axons attempting to regenerate need to overcome the repulsive actions of myelin-associated inhibitors, including the myelin-associated glycoprotein, Nogo-A, and the oligodendrocyte myelin glycoprotein. These inhibitors bind and signal through a neuronal receptor/co-receptor/transducer complex composed of NgR1, Lingo-1, and p75. Consequently, p75 is cleaved by alpha secretase followed by gamma-secretase, triggering downstream signaling that inhibits axonal regrowth. ADAM10 and ADAM17 are both known to function as alpha secretases in neurons. Here we show that ADAM17, and not ADAM10, is the alpha secretase that recognizes and cleaves p75, when it is a part of a 5-component neuron-myelin signaling complex comprising NgR1, Lingo-1, p75, GT1b, and a myelin inhibitor. Importantly, we demonstrate the ability of inhibitory anti-ADAM17 mAbs to abrogate the cleavage of p75 in a neuroblastoma-glioma cell line and reverse the neurite outgrowth inhibition by myelin-associated inhibitors.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachelle P Mendoza
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen Res 2025; 20:1377-1389. [PMID: 38934397 PMCID: PMC11624870 DOI: 10.4103/nrr.nrr-d-24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
Collapse
Affiliation(s)
- Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Dermody TS, Sutherland DM. mGem: The complexity of viral entry-one virus, many receptors. mBio 2025; 16:e0296424. [PMID: 39932305 PMCID: PMC11898697 DOI: 10.1128/mbio.02964-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Binding to cellular receptors initiates viral replication and dictates sites in the host infected by the virus. As illustrated by mammalian orthoreovirus (reovirus), viruses can bind several types of receptors using distinct capsid components to facilitate the viral entry steps of attachment, internalization, and disassembly. The outer of the two concentric capsids of reovirus virions is formed by four viral proteins, three of which bind receptors. These capsid-receptor interactions mediate stepwise entry of reovirus, dictate viral tropism in infected animals, and expand the viral host range. Engagement of independent receptors by different capsid proteins is a property of many pathogenic viruses and illustrates common themes of receptor use in viral entry and disease.
Collapse
Affiliation(s)
- Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Verrillo CE, Quaglia F, Shields CD, Lin S, Kossenkov AV, Tang HY, Speicher D, Naranjo NM, Testa A, Kelly WK, Liu Q, Leiby B, Musante L, Sossey-Alaoui K, Dogra N, Chen TY, Altieri DC, Languino LR. Expression of the αVβ3 integrin affects prostate cancer sEV cargo and density and promotes sEV pro-tumorigenic activity in vivo through a GPI-anchored receptor, NgR2. J Extracell Vesicles 2024; 13:e12482. [PMID: 39105261 DOI: 10.1002/jev2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVβ3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVβ3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVβ3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVβ3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVβ3 and an αVβ3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVβ3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVβ3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVβ3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVβ3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.
Collapse
Affiliation(s)
- Cecilia E Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew V Kossenkov
- Bioinformatics Shared Resource, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David Speicher
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Luca Musante
- Extracellular Vesicle Core, PennVet, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, School of Medicine MetroHealth Medical Center Rammelkamp Center for Research, Cleveland, Ohio, USA
| | - Navneet Dogra
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tzu-Yi Chen
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
6
|
Sutherland DM, Strebl M, Koehler M, Welsh OL, Yu X, Hu L, dos Santos Natividade R, Knowlton JJ, Taylor GM, Moreno RA, Wörz P, Lonergan ZR, Aravamudhan P, Guzman-Cardozo C, Kour S, Pandey UB, Alsteens D, Wang Z, Prasad BVV, Stehle T, Dermody TS. NgR1 binding to reovirus reveals an unusual bivalent interaction and a new viral attachment protein. Proc Natl Acad Sci U S A 2023; 120:e2219404120. [PMID: 37276413 PMCID: PMC10268256 DOI: 10.1073/pnas.2219404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.
Collapse
Affiliation(s)
- Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Rita dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Jonathan J. Knowlton
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX77030
| | - Gwen M. Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Rodolfo A. Moreno
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Patrick Wörz
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Zachery R. Lonergan
- Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX77030
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Camila Guzman-Cardozo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Sukhleen Kour
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN37232
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA15261
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Children’s Neuroscience Institute, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
- Walloon Excellence in Life Sciences and Biotechnology, 1300Wavre, Belgium
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| |
Collapse
|
7
|
Quagliata M, Nuti F, Real-Fernandez F, Kirilova Kirilova K, Santoro F, Carotenuto A, Papini AM, Rovero P. Glucopeptides derived from myelin-relevant proteins and hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin cross-react with multiple sclerosis specific antibodies: A step forward in the identification of native autoantigens in multiple sclerosis. J Pept Sci 2023:e3475. [PMID: 36597597 DOI: 10.1002/psc.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed β-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Kalina Kirilova Kirilova
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- University of Burgos, Burgos, Spain
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Quaglia F, Krishn SR, Sossey-Alaoui K, Rana PS, Pluskota E, Park PH, Shields CD, Lin S, McCue P, Kossenkov AV, Wang Y, Goodrich DW, Ku SY, Beltran H, Kelly WK, Corey E, Klose M, Bandtlow C, Liu Q, Altieri DC, Plow EF, Languino LR. The NOGO receptor NgR2, a novel αVβ3 integrin effector, induces neuroendocrine differentiation in prostate cancer. Sci Rep 2022; 12:18879. [PMID: 36344556 PMCID: PMC9640716 DOI: 10.1038/s41598-022-21711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVβ3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVβ3 that promotes NE differentiation (NED). This novel pathway requires the expression of a GPI-linked surface molecule, NgR2, also known as Nogo-66 receptor homolog 1. We show here that NgR2 is upregulated by αVβ3, to which it associates; we also show that it promotes NED and anchorage-independent growth, as well as a motile phenotype of PrCa cells. Given our observations that high levels of αVβ3 and, as shown here, of NgR2 are detected in human and mouse NEPrCa, our findings appear to be highly relevant to this aggressive and metastatic subtype of PrCa. This study is novel because NgR2 role has only minimally been investigated in cancer and has instead predominantly been analyzed in neurons. These data thus pave new avenues toward a comprehensive mechanistic understanding of integrin-directed signaling during PrCa progression toward a NE phenotype.
Collapse
Affiliation(s)
- Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, School of Medicine, MetroHealth Medical Center, Rammelkamp Center for Research, Case Western Reserve University, Cleveland, OH, USA
| | - Priyanka Shailendra Rana
- Department of Medicine, School of Medicine, MetroHealth Medical Center, Rammelkamp Center for Research, Case Western Reserve University, Cleveland, OH, USA
| | - Elzbieta Pluskota
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pyung Hun Park
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Yanqing Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Maja Klose
- Institute of Neurochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Bandtlow
- Institute of Neurochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Edward F Plow
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Vaccaro G, Dumoulin A, Zuñiga NR, Bandtlow CE, Stoeckli ET. The Nogo-66 Receptors NgR1 and NgR3 Are Required for Commissural Axon Pathfinding. J Neurosci 2022; 42:4087-4100. [PMID: 35437280 PMCID: PMC9121835 DOI: 10.1523/jneurosci.1390-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Nogo-66 receptors (NgR1-3) are glycosylphosphatidyl inositol-linked proteins that belong to the leucine-rich repeat superfamily. Through binding to myelin-associated inhibitors, NgRs contribute to the inhibition of axonal regeneration after spinal cord injury. Their role in limiting synaptic plasticity and axonal outgrowth in the adult CNS has been described previously, but not much is known about their role during the development of the nervous system. Here, we show that NgR1 and NgR3 mRNAs are expressed during spinal cord development of the chicken embryo. In particular, they are expressed in the dI1 subpopulation of commissural neurons during the time when their axons navigate toward and across the floorplate, the ventral midline of the spinal cord. To assess a potential role of NgR1 and NgR3 in axon guidance, we downregulated them using in ovo RNAi and analyzed the trajectory of commissural axons by tracing them in open-book preparations of spinal cords. Our results show that loss of either NgR1 or NgR3 causes axons to stall in the midline area and to interfere with the rostral turn of postcrossing axons. In addition, we also show that NgR1, but not NgR3, requires neuronal PlexinA2 for the regulation of commissural axon guidance.SIGNIFICANCE STATEMENT Over the last decades, many studies have focused on the role of NgRs, particularly NgR1, in axonal regeneration in the injured adult CNS. Here, we show a physiological role of NgRs in guiding commissural axons during early development of the chicken spinal cord in vivo Both NgR1 and NgR3 are required for midline crossing and subsequent turning of postcrossing axons into the longitudinal axis of the spinal cord. NgR1, but not NgR3, forms a receptor complex with PlexinA2 during axon guidance. Overall, these findings provide a link between neural regenerative mechanisms and developmental processes.
Collapse
Affiliation(s)
- Giuseppe Vaccaro
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Nikole R Zuñiga
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Christine E Bandtlow
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Esther T Stoeckli
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
10
|
Aravamudhan P, Guzman-Cardozo C, Urbanek K, Welsh OL, Konopka-Anstadt JL, Sutherland DM, Dermody TS. The Murine Neuronal Receptor NgR1 Is Dispensable for Reovirus Pathogenesis. J Virol 2022; 96:e0005522. [PMID: 35353001 PMCID: PMC9044964 DOI: 10.1128/jvi.00055-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.
Collapse
Affiliation(s)
- Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Camila Guzman-Cardozo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Wu S, Romero-Ramírez L, Mey J. Retinoic acid increases phagocytosis of myelin by macrophages. J Cell Physiol 2020; 236:3929-3945. [PMID: 33165955 PMCID: PMC7984038 DOI: 10.1002/jcp.30137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022]
Abstract
Traumatic injuries of the central nervous system (CNS) are followed by the accumulation of cellular debris including proteins and lipids from myelinated fiber tracts. Insufficient phagocytic clearance of myelin debris influences the pathological process because it induces inflammation and blocks axonal regeneration. We investigated whether ligands of nuclear receptor families retinoic acid receptors (RARs), retinoid X receptors, peroxisome proliferator-activated receptors, lipid X receptors, and farnesoid X receptors increase myelin phagocytosis by murine bone marrow-derived macrophages and Raw264.7 cells. Using in vitro assays with 3,3'-dioctadecyloxacarbocyanine perchlorate- and pHrodo-labeled myelin we found that the transcriptional activator all-trans retinoic acid (RA)enhanced endocytosis of myelin involving the induction of tissue transglutaminase-2. The RAR-dependent increase of phagocytosis was not associated with changes in gene expression of receptors FcγR1, FcγR2b, FcγR3, TREM2, DAP12, CR3, or MerTK. The combination of RA and myelin exposure significantly reduced the expression of M1 marker genes inducible nitric oxide synthase and interleukin-1β and increased expression of transmembrane proteins CD36 and ABC-A1, which are involved in lipid transport and metabolism. The present results suggest an additional mechanism for therapeutic applications of RA after CNS trauma. It remains to be studied whether endogenous RA-signaling regulates phagocytosis in vivo.
Collapse
Affiliation(s)
- Siyu Wu
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Romero-Ramírez
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Jörg Mey
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Nogo receptor-vimentin interaction: a novel mechanism for the invasive activity of glioblastoma multiforme. Exp Mol Med 2019; 51:1-15. [PMID: 31649250 PMCID: PMC6813361 DOI: 10.1038/s12276-019-0332-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Nogo receptor (NgR) has been shown to inhibit the migration and invasion of human glioma cells. However, little is known regarding the regulatory mechanisms of NgR in glioblastoma multiforme (GBM). In this study, we propose a novel mechanism that regulates the maturation process of NgR through an interaction with vimentin. The inhibition of TGFβ1 activity by LY2109761 attenuated the migration/invasion of GBM cells by upregulating cell-surface NgR. Conversely, the treatment of GBM cells with TGFβ1 suppressed NgR maturation. We showed that NgR and vimentin interact, which could be a possible mechanism for the suppression of NgR maturation. The knockdown of vimentin suppressed the migration/invasion of GBM cells through the increased maturation of NgR. Finally, TCGA (The Cancer Genome Atlas) analysis also supported the association of NgR and vimentin. The maturation of NgR is regulated by the interaction of vimentin and NgR, which attenuates the invasive activity of GBM, and might be a potential therapeutic target for brain cancer. A mechanism that prevents the maturation of a protective cell surface protein during the spread of brain cancer could be a therapeutic target. Aggressive glioblastoma multiforme tumors spread quickly, lowering survival chances. The transforming growth factor-beta 1 (TGFβ1) protein is implicated in the rapid spread of cancer cells through the brain’s white matter fibers. However, cancer spread can be limited by the mature form of a protein receptor called nogo receptor (NgR), which is expressed on white matter cell surfaces. Using human glioblastoma cell cultures, Seung-Hoon Lee and Myung-Shin Lee at Eulji University School of Medicine, Daejeon, South Korea, and co-workers demonstrated how the interaction between NgR and another protein enhances TGFβ1 pathway activity and prevents NgR maturing. When the team inhibited TGFβ1, the interaction was disrupted, allowing NgR maturation and preventing tumor spread.
Collapse
|
15
|
Can We Design a Nogo Receptor-Dependent Cellular Therapy to Target MS? Cells 2018; 8:cells8010001. [PMID: 30577457 PMCID: PMC6357095 DOI: 10.3390/cells8010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
The current landscape of therapeutics designed to treat multiple sclerosis (MS) and its pathological sequelae is saturated with drugs that modify disease course and limit relapse rates. While these small molecules and biologicals are producing profound benefits to patients with reductions in annualized relapse rates, the repair or reversal of demyelinated lesions with or without axonal damage, remains the principle unmet need for progressive forms of the disease. Targeting the extracellular pathological milieu and the signaling mechanisms that drive neurodegeneration are potential means to achieve neuroprotection and/or repair in the central nervous system of progressive MS patients. The Nogo-A receptor-dependent signaling mechanism has raised considerable interest in neurological disease paradigms since it can promulgate axonal transport deficits, further demyelination, and extant axonal dystrophy, thereby limiting remyelination. If specific therapeutic regimes could be devised to directly clear the Nogo-A-enriched myelin debris in an expedited manner, it may provide the necessary CNS environment for neurorepair to become a clinical reality. The current review outlines novel means to achieve neurorepair with biologicals that may be directed to sites of active demyelination.
Collapse
|
16
|
Kawakami Y, Kurihara Y, Saito Y, Fujita Y, Yamashita T, Takei K. The Soluble Form of LOTUS inhibits Nogo Receptor-Mediated Signaling by Interfering with the Interaction Between Nogo Receptor Type 1 and p75 Neurotrophin Receptor. J Neurosci 2018; 38:2589-2604. [PMID: 29440387 PMCID: PMC6705898 DOI: 10.1523/jneurosci.0953-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/25/2023] Open
Abstract
Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. Previously, we have shown that lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its coreceptor, p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, whereas olfactory bulb neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling, possibly by interfering with the interaction between NgR1 and p75NTR Therefore, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENT Nogo receptor type 1 (NgR1) is a receptor well known to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of lateral olfactory tract usher substance (LOTUS) antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse, and neurite outgrowth inhibition and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1 and, therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yu Saito
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yuki Fujita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| |
Collapse
|
17
|
Pronker MF, Tas RP, Vlieg HC, Janssen BJC. Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:860-876. [DOI: 10.1107/s2059798317013791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022]
Abstract
The Nogo Receptor (NgR) is a glycophosphatidylinositol-anchored cell-surface protein and is a receptor for three myelin-associated inhibitors of regeneration: myelin-associated glycoprotein, Nogo66 and oligodendrocyte myelin glycoprotein. In combination with different co-receptors, NgR mediates signalling that reduces neuronal plasticity. The available structures of the NgR ligand-binding leucine-rich repeat (LRR) domain have an artificial disulfide pattern owing to truncated C-terminal construct boundaries. NgR has previously been shown to self-associateviaits LRR domain, but the structural basis of this interaction remains elusive. Here, crystal structures of the NgR LRR with a longer C-terminal segment and a native disulfide pattern are presented. An additional C-terminal loop proximal to the C-terminal LRR cap is stabilized by two newly formed disulfide bonds, but is otherwise mostly unstructured in the absence of any stabilizing interactions. NgR crystallized in six unique crystal forms, three of which share a crystal-packing interface. NgR crystal-packing interfaces from all eight unique crystal forms are compared in order to explore how NgR could self-interact on the neuronal plasma membrane.
Collapse
|
18
|
Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017; 80:S9-S22. [PMID: 28350947 DOI: 10.1093/neuros/nyw080] [Citation(s) in RCA: 566] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injuries (SCI) have devastating consequences for the physical, financial, and psychosocial well-being of patients and their caregivers. Expediently delivering interventions during the early postinjury period can have a tremendous impact on long-term functional recovery. PATHOPHYSIOLOGY This is largely due to the unique pathophysiology of SCI where the initial traumatic insult (primary injury) is followed by a progressive secondary injury cascade characterized by ischemia, proapoptotic signaling, and peripheral inflammatory cell infiltration. Over the subsequent hours, release of proinflammatory cytokines and cytotoxic debris (DNA, ATP, reactive oxygen species) cyclically adds to the harsh postinjury microenvironment. As the lesions mature into the chronic phase, regeneration is severely impeded by the development of an astroglial-fibrous scar surrounding coalesced cystic cavities. Addressing these challenges forms the basis of current and upcoming treatments for SCI. MANAGEMENT This paper discusses the evidence-based management of a patient with SCI while emphasizing the importance of early definitive care. Key neuroprotective therapies are summarized including surgical decompression, methylprednisolone, and blood pressure augmentation. We then review exciting neuroprotective interventions on the cusp of translation such as Riluzole, Minocycline, magnesium, therapeutic hypothermia, and CSF drainage. We also explore the most promising neuroregenerative strategies in trial today including Cethrin™, anti-NOGO antibody, cell-based approaches, and bioengineered biomaterials. Each section provides a working knowledge of the key preclinical and patient trials relevant to clinicians while highlighting the pathophysiologic rationale for the therapies. CONCLUSION We conclude with our perspectives on the future of treatment and research in this rapidly evolving field.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| | - Satoshi Nori
- Department of Genetics and Development, University of Toronto, Toronto, Canada
| | | | - Jefferson Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada
| | - Brian Kwon
- Vancouver Spine Institute, Vancouver General Hospital, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada
| | - James Harrop
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - David Choi
- National Hospital for Neurology and Neurosurgery, University College London, London, England
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Nori S, Ahuja CS, Fehlings MG. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery 2017; 64:119-128. [DOI: 10.1093/neuros/nyx217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Satoshi Nori
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
| | - Christopher S. Ahuja
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Genetic variation is associated with RTN4R expression and working memory processing in healthy humans. Brain Res Bull 2017; 134:162-167. [PMID: 28755979 DOI: 10.1016/j.brainresbull.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 02/01/2023]
Abstract
The Nogo receptor (NgR) is implicated in neurodevelopmental processes and it participates in inhibiting axonal growth. Consistent with its high levels of expression in the prefrontal cortex, animal studies indicate that NgR is relevant for prefrontal-related cognitive processing. Given that genetic variation may alter mechanisms of gene expression impacting molecular and systems-level phenotypes, we investigated the association of genetic variation with the expression of the NgR coding gene (RTN4R), as well as with prefrontal correlates at progressively greater biological distance from gene effects. First, we studied the association of single nucleotide polymorphisms (SNPs) with RTN4R mRNA expression in postmortem prefrontal cortex of humans without psychiatric illnesses. Then, we probed in peripheral blood mononuclear cells (PBMCs) the association that we found in prefrontal tissue. Thus, we investigated whether functional genetic variation affecting RTN4R expression is also associated with prefrontal activity during working memory. We found that rs696884 (A/G) predicted these phenotypes. Specifically, the AA genotype was associated with lower RTN4R mRNA expression levels in the prefrontal cortex and PBMCs and inefficient prefrontal activity during working memory compared to the GG genotype. These results suggest that genetic variation associated with RTN4R mRNA expression influences prefrontal physiology in healthy individuals. Furthermore, they highlight the need for further investigations of the role of NgR in the pathophysiology of brain disorders associated with prefrontal dysfunction.
Collapse
|
21
|
Kurihara Y, Saito Y, Takei K. Blockade of chondroitin sulfate proteoglycans-induced axonal growth inhibition by LOTUS. Neuroscience 2017; 356:265-274. [PMID: 28571719 DOI: 10.1016/j.neuroscience.2017.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are axon growth inhibitors in the glial scar, and restrict axon regeneration following damage to the adult mammalian central nervous system. CSPGs have recently been identified as functional ligands for Nogo receptor-1 (NgR1), which is the common receptor for Nogo proteins, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp) and B lymphocyte stimulator (BLyS). We have previously reported that through its binding to NgR1, lateral olfactory tract usher substance (LOTUS) suppresses Nogo, MAG, OMgp, and BLyS-induced axon growth inhibition. However, it remains unknown whether LOTUS also exerts this suppressive action on CSPG-induced axon growth inhibition. LOTUS overexpression rescued CSPG-induced growth cone collapse and neurite outgrowth inhibition in cultured dorsal root ganglion neurons, which only weakly express endogenous LOTUS. In cultured olfactory bulb neurons, which endogenously express LOTUS, the growth cone was insensitive to CSPG-induced collapse, but was sensitive to collapse induced by CSPGs in lotus-deficient mice. Our data demonstrate that LOTUS suppresses CSPG-induced axon growth inhibition, suggesting that LOTUS may represent a promising therapeutic agent for promoting axon regeneration.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Yu Saito
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan.
| |
Collapse
|
22
|
Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol 2017; 55:1831-1846. [PMID: 28229330 DOI: 10.1007/s12035-017-0433-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.
Collapse
Affiliation(s)
- Anthony G Boghdadi
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia.
| |
Collapse
|
23
|
Paracuellos P, Kalamajski S, Bonna A, Bihan D, Farndale RW, Hohenester E. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin. Matrix Biol 2017; 63:106-116. [PMID: 28215822 PMCID: PMC5618690 DOI: 10.1016/j.matbio.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~ 2.2 Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking. The crystal structures of fibromodulin and chondroadherin have been determined. Fibromodulin and chondroadherin are monomeric in solution. Chondroadherin binds to a unique site in type II collagen that contains the sequence GAOGPSGFQGLOGPOGPO (O, hydroxyproline). In collagen fibres, the chondroadherin binding site is adjacent to the cross-linking site, KGHR.
Collapse
Affiliation(s)
| | | | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
24
|
Roppongi RT, Karimi B, Siddiqui TJ. Role of LRRTMs in synapse development and plasticity. Neurosci Res 2016; 116:18-28. [PMID: 27810425 DOI: 10.1016/j.neures.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
Abstract
Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) are a family of four synapse organizing proteins critical for the development and function of excitatory synapses. The genes encoding LRRTMs and their binding partners, neurexins and HSPGs, are strongly associated with multiple psychiatric disorders. Here, we review the literature covering their structural features, expression patterns in the developing and adult brains, evolutionary origins, and discovery as synaptogenic proteins. We also discuss their role in the development and plasticity of excitatory synapses as well as their disease associations.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada
| | - Benyamin Karimi
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada
| | - Tabrez J Siddiqui
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada.
| |
Collapse
|
25
|
Theotokis P, Touloumi O, Lagoudaki R, Nousiopoulou E, Kesidou E, Siafis S, Tselios T, Lourbopoulos A, Karacostas D, Grigoriadis N, Simeonidou C. Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination. J Neuroinflammation 2016; 13:265. [PMID: 27724971 PMCID: PMC5057208 DOI: 10.1186/s12974-016-0730-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nogo-A and its putative receptor NgR are considered to be among the inhibitors of axonal regeneration in the CNS. However, few studies so far have addressed the issue of local NgR complex multilateral localization within inflammation in an MS mouse model of autoimmune demyelination. METHODS Chronic experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. Analyses were performed on acute (days 18-22) and chronic (day 50) time points and compared to controls. The temporal and spatial expression of the Nogo receptor complex (NgR and coreceptors) was studied at the spinal cord using epifluorescent and confocal microscopy or real-time PCR. Data are expressed as cells/mm2, as mean % ± SEM, or as arbitrary units of integrated density. RESULTS Animals developed a moderate to severe EAE without mortality, followed by a progressive, chronic clinical course. NgR complex spatial expression varied during the main time points of EAE. NgR with coreceptors LINGO-1 and TROY was increased in the spinal cord in the acute phase whereas LINGO-1 and p75 signal seemed to be dominant in the chronic phase, respectively. NgR was detected on gray matter NeuN+ neurons of the spinal cord, within the white matter inflammatory foci (14.2 ± 4.3 % NgR+ inflammatory cells), and found to be colocalized with GAP-43+ axonal growth cones while no β-TubIII+, SMI-32+, or APP+ axons were found as NgR+. Among the NgR+ inflammatory cells, 75.6 ± 9.0 % were microglial/macrophages (lectin+), 49.6 ± 14.2 % expressed CD68 (phagocytic ED1+ cells), and no cells were Mac-3+. Of these macrophages/monocytes, only Arginase-1+/NgR+ but not iNOS+/NgR+ were present in lesions both in acute and chronic phases. CONCLUSIONS Our data describe in detail the expression of the Nogo receptor complex within the autoimmune inflammatory foci and suggest a possible immune action for NgR apart from the established inhibitory one on axonal growth. Its expression by inflammatory macrophages/monocytes could signify a possible role of these cells on axonal guidance and clearance of the lesioned area during inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Arginase/metabolism
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Freund's Adjuvant/immunology
- Freund's Adjuvant/toxicity
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Nerve Tissue Proteins/metabolism
- Nogo Proteins/genetics
- Nogo Proteins/metabolism
- Nogo Receptors/genetics
- Nogo Receptors/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Signal Transduction/physiology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Paschalis Theotokis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Olga Touloumi
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Roza Lagoudaki
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Nousiopoulou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Kesidou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Spyridon Siafis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Theodoros Tselios
- Department of Chemistry, University of Patras, Rion, 265 04 Patras, Greece
| | - Athanasios Lourbopoulos
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
- Institute for Stroke and Dementia Research (ISD), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Dimitrios Karacostas
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Constantina Simeonidou
- Department of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Central Macedonia Greece
| |
Collapse
|
26
|
Liu G, Ni J, Mao L, Yan M, Pang T, Liao H. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury. Brain Res 2015; 1627:41-51. [PMID: 26367446 DOI: 10.1016/j.brainres.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 01/18/2023]
Abstract
As the receptor of myelin associated inhibitory factors Nogo receptor 1 (NgR1) plays an important role in central nervous system (CNS) injury and regeneration. It is found that NgR1 complex acts in neurons to transduce the signals intracelluarly including induction of growth cone collapse, inhibition of axonal regeneration and regulation of nerve inflammation. In recent studies, NgR1 has also been found to be expressed in the microglia. However, NgR1 expressed in microglia in the developing nervous systems and following CNS injury have not been widely investigated. In this study, we detected the expression and cellular localization of NgR1 in microglia during development and following traumatic brain injury (TBI) in mice. The results showed that NgR1 was mainly expressed in microglia during embryonic and postnatal periods. The expression levels peaked at P4 and decreased thereafter into adulthood, while increased significantly with aging representatively at 17 mo. On the other hand, there was no significant difference in the number of double positive NgR1(+)Iba1(+) cells between normal and TBI group. In summary, we first detected the expression of NgR1 in microglia during development and found that NgR1 protein expression increased significantly in microglia with aging. These findings will contribute to make a foundation for subsequent study about the role of NgR1 expressed in microglia on the CNS disorders.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/cytology
- Brain/embryology
- Brain/growth & development
- Brain Injuries/pathology
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Functional Laterality
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Microglia/metabolism
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Nogo Receptor 1
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
Collapse
Affiliation(s)
- Gaoxiang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Ni
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Nanjing 210000, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS. The Nogo receptor NgR1 mediates infection by mammalian reovirus. Cell Host Microbe 2015; 15:681-91. [PMID: 24922571 DOI: 10.1016/j.chom.2014.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Neurotropic viruses, including mammalian reovirus, must disseminate from an initial site of replication to the central nervous system (CNS), often binding multiple receptors to facilitate systemic spread. Reovirus engages junctional adhesion molecule A (JAM-A) to disseminate hematogenously. However, JAM-A is dispensable for reovirus replication in the CNS. We demonstrate that reovirus binds Nogo receptor NgR1, a leucine-rich repeat protein expressed in the CNS, to infect neurons. Expression of NgR1 confers reovirus binding and infection of nonsusceptible cells. Incubating reovirus virions with soluble NgR1 neutralizes infectivity. Blocking NgR1 on transfected cells or primary cortical neurons abrogates reovirus infection. Concordantly, reovirus infection is ablated in primary cortical neurons derived from NgR1 null mice. Reovirus virions bind to soluble JAM-A and NgR1, while infectious disassembly intermediates (ISVPs) bind only to JAM-A. These results suggest that reovirus uses different capsid components to bind distinct cell-surface molecules, engaging independent receptors to facilitate spread and tropism.
Collapse
Affiliation(s)
- Jennifer L Konopka-Anstadt
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bernardo A Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Danica M Sutherland
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yuichi Sekine
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurobiology and Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurobiology and Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Terence S Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Ramasamy S, Yu F, Hong Yu Y, Srivats H, Dawe GS, Ahmed S. NogoR1 and PirB signaling stimulates neural stem cell survival and proliferation. Stem Cells 2015; 32:1636-48. [PMID: 24449409 DOI: 10.1002/stem.1645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Institute of Medical Biology, 8A Biomedical Grove, #05-37 Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Petrie EJ, Lagaida S, Sethi A, Bathgate RAD, Gooley PR. In a Class of Their Own - RXFP1 and RXFP2 are Unique Members of the LGR Family. Front Endocrinol (Lausanne) 2015; 6:137. [PMID: 26441827 PMCID: PMC4561518 DOI: 10.3389/fendo.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine-rich repeat-containing G protein-coupled receptors (LGRs) family consists of three groups: types A, B, and C and all contain a large extracellular domain (ECD) made up of the structural motif - the leucine-rich repeat (LRR). In the LGRs, the ECD binds the hormone or ligand, usually through the LRRs, that ultimately results in activation and signaling. Structures are available for the ECD of type A and B LGRs, but not the type C LGRs. This review discusses the structural features of LRR proteins, and describes the known structures of the type A and B LGRs and predictions that can be made for the type C LGRs. The mechanism of activation of the LGRs is discussed with a focus on the role of the low-density lipoprotein class A (LDLa) module, a unique feature of the type C LGRs. While the LDLa module is essential for activation of the type C LGRs, the molecular mechanism for this process is unknown. Experimental data for the potential interactions of the type C LGR ligands with the LRR domain, the transmembrane domain, and the LDLa module are summarized.
Collapse
Affiliation(s)
- Emma J. Petrie
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Samantha Lagaida
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Paul R. Gooley, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia,
| |
Collapse
|
31
|
Kumari A, Thakur MK. Age-dependent decline of nogo-a protein in the mouse cerebrum. Cell Mol Neurobiol 2014; 34:1131-41. [PMID: 25078756 PMCID: PMC11488935 DOI: 10.1007/s10571-014-0088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/12/2014] [Indexed: 12/19/2022]
Abstract
Nogo-A, a myelin-associated neurite growth inhibitory protein, is implicated in synaptic plasticity. It binds to its receptor namely the Nogo-66 receptor1 (NgR1) and regulates filamentous (F) actin dynamics via small GTPases of the Rho family, RhoA kinase (ROCK), LimK and cofilin. These proteins are associated with the structural plasticity, one of the components of synaptic plasticity, which is known to decline with normal aging. So, the level of Nogo-A and its receptor NgR1 are likely to vary during normal brain aging. However, it is not clearly understood how the levels of Nogo-A and its receptor NgR1 change in the cerebrum during aging. Several studies show an age- and gender-dependent decline in synaptic plasticity. Therefore, the present study was planned to analyze the relative changes in the mRNA and protein levels of Nogo-A and NgR1 in both male and female mice cerebrum during normal aging. Western blot analysis has shown decrease in Nogo-A protein level during aging in both male and female mice cerebrum. This was further confirmed by immunofluorescence analysis. RT-PCR analysis of Nogo-A mRNA showed no significant difference in the above-mentioned groups. This was also supported by in situ hybridization. NgR1 protein and its mRNA expression levels showed no significant alteration with aging in the cerebrum of both male and female mice. Taken together, we speculate that the downregulation of Nogo-A protein might have a role in the altered synaptic plasticity during aging.
Collapse
Affiliation(s)
- Anita Kumari
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - M. K. Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
32
|
Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 2014; 8:338. [PMID: 25374504 PMCID: PMC4205828 DOI: 10.3389/fnins.2014.00338] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
33
|
Wang X, Yigitkanli K, Kim CY, Sekine-Komo T, Wirak D, Frieden E, Bhargava A, Maynard G, Cafferty WBJ, Strittmatter SM. Human NgR-Fc decoy protein via lumbar intrathecal bolus administration enhances recovery from rat spinal cord contusion. J Neurotrauma 2014; 31:1955-66. [PMID: 24964223 DOI: 10.1089/neu.2014.3355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Axonal growth and neurological recovery after traumatic spinal cord injury (SCI) is limited by the presence of inhibitory proteins in myelin, several of which act via the NgR1 protein in neurons. A truncated soluble ligand-binding fragment of NgR1 serves as a decoy and promotes recovery in acute and chronic rodent SCI models. To develop the translational potential of these observations, we created a human sequence-derived NgR1(310)-Fc protein. This protein is active in vitro. When the human NgR1 decoy is administered by continuous intracerebroventricular infusion to rats with a spinal contusion injury at doses of 0.09-0.53 mg/kg/d, neurological recovery is improved. Effective doses double the percentage of rats able to bear weight on their hindlimbs. Next, we considered the half-life and distribution of NgR1(310)-Fc after bolus delivery to the lumbar intrathecal space. The protein is found throughout the neuraxis and has a tissue half-life of approximately 2 days in the rat, and 5 days in the nonhuman primate. At an intermittent, once every 4 day, lumbar bolus dosing schedule of 0.14 mg/kg/d, NgR1(310)-Fc promoted locomotor rat recovery from spinal cord contusion at least as effectively as continuous infusion in open field and grid walking tasks. Moreover, the intermittent lumbar NgR1(310)-Fc treatment increased the growth of raphespinal axons into the lumbar spinal cord after injury. Thus, human NgR1(310)-Fc provides effective treatment for recovery from traumatic SCI in this preclinical model with a simplified administration regimen that facilitates clinical testing.
Collapse
Affiliation(s)
- Xingxing Wang
- 1 Program in Cellular Neuroscience, Neurodegeneration & Repair, and Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kurihara Y, Iketani M, Ito H, Nishiyama K, Sakakibara Y, Goshima Y, Takei K. LOTUS suppresses axon growth inhibition by blocking interaction between Nogo receptor-1 and all four types of its ligand. Mol Cell Neurosci 2014; 61:211-8. [PMID: 25034269 DOI: 10.1016/j.mcn.2014.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022] Open
Abstract
Axon growth inhibitors such as Nogo proteins, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), and B lymphocyte stimulator (BLyS) commonly bind to Nogo receptor-1 (NgR1), leading to enormous restriction of functional recovery after damage to the adult central nervous system. Recently, we found that lateral olfactory tract usher substance (LOTUS) antagonizes NgR1-mediated Nogo signaling. However, whether LOTUS exerts antagonism of NgR1 when bound by the other three ligands has not been determined. Overexpression of LOTUS together with NgR1 in COS7 cells blocked the binding of MAG, OMgp, and BLyS to NgR1. In cultured dorsal root ganglion neurons in which endogenous LOTUS is only weakly expressed, overexpression of LOTUS suppressed growth cone collapse and neurite outgrowth inhibition induced by these three NgR1 ligands. LOTUS suppressed NgR1 ligand-induced growth cone collapse in cultured olfactory bulb neurons, which endogenously express LOTUS. Growth cone collapse was induced by NgR1 ligands in lotus-deficient mice. These data suggest that LOTUS functions as a potent endogenous antagonist for NgR1 when bound by all four known NgR1 ligands, raising the possibility that LOTUS may protect neurons from NgR1-mediated axonal growth inhibition and thereby may be useful for promoting neuronal regeneration as a potent inhibitor of NgR1.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Masumi Iketani
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Hiromu Ito
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Kuniyuki Nishiyama
- Division of Medical Life Science, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Yusuke Sakakibara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan; Division of Medical Life Science, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan.
| |
Collapse
|
35
|
Structural features of the Nogo receptor signaling complexes at the neuron/myelin interface. Neurosci Res 2014; 87:1-7. [PMID: 24956133 DOI: 10.1016/j.neures.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/23/2014] [Accepted: 06/13/2014] [Indexed: 11/22/2022]
Abstract
Upon spinal cord injury, the central nervous system axons are unable to regenerate, partially due to the repulsive action of myelin inhibitors, such as the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp). These inhibitors bind and signal through a single receptor/co-receptor complex that comprises of NgR1/LINGO-1 and either p75 or TROY, triggering intracellular downstream signaling that impedes the re-growth of axons. Structure-function analysis of myelin inhibitors and their neuronal receptors, particularly the NgRs, have provided novel information regarding the molecular details of the inhibitor/receptor/co-receptor interactions. Structural and biochemical studies have revealed the architecture of many of these proteins and identified the molecular regions important for assembly of the inhibitory signaling complexes. It was also recently shown that gangliosides, such as GT1b, mediate receptor/co-receptor binding. In this review, we highlight these studies and summarize our current understanding of the multi-protein cell-surface complexes mediating inhibitory signaling events at the neuron/myelin interface.
Collapse
|
36
|
Suehiro K, Nakamura Y, Xu S, Uda Y, Matsumura T, Yamaguchi Y, Okamura H, Yamashita T, Takei Y. Ecto-domain phosphorylation promotes functional recovery from spinal cord injury. Sci Rep 2014; 4:4972. [PMID: 24826969 PMCID: PMC4021324 DOI: 10.1038/srep04972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/17/2014] [Indexed: 12/16/2022] Open
Abstract
Inhibition of Nogo-66 receptor (NgR) can promote recovery following spinal cord injury. The ecto-domain of NgR can be phosphorylated by protein kinase A (PKA), which blocks activation of the receptor. Here, we found that infusion of PKA plus ATP into the damaged spinal cord can promote recovery of locomotor function. While significant elongation of cortical-spinal axons was not detectable even in the rats showing enhanced recovery, neuronal precursor cells were observed in the region where PKA plus ATP were directly applied. NgR1 was expressed in neural stem/progenitor cells (NSPs) derived from the adult spinal cord. Both an NgR1 antagonist NEP1-40 and ecto-domain phosphorylation of NgR1 promote neuronal cell production of the NSPs, in vitro. Thus, inhibition of NgR1 in NSPs can promote neuronal cell production, which could contribute to the enhanced recovery of locomotor function following infusion of PKA and ATP.
Collapse
Affiliation(s)
- Kenji Suehiro
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Yuka Nakamura
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shuai Xu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Youichi Uda
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Takafumi Matsumura
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- DDepartment of Systems Biology, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshinori Takei
- Department of Nanobio Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Islam M, Gor J, Perkins SJ, Ishikawa Y, Bächinger HP, Hohenester E. The concave face of decorin mediates reversible dimerization and collagen binding. J Biol Chem 2013; 288:35526-33. [PMID: 24169694 PMCID: PMC3853298 DOI: 10.1074/jbc.m113.504530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/11/2013] [Indexed: 11/08/2022] Open
Abstract
Decorin, the prototypical small leucine-rich proteoglycan, binds to collagen and thereby regulates collagen assembly into fibrils. The crystal structure of the decorin core protein revealed a tight dimer formed by the association of two monomers via their concave faces (Scott, P. G., McEwan, P. A., Dodd, C. M., Bergmann, E. M., Bishop, P. N., and Bella, J. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 15633-15638). Whether decorin binds collagen as a dimer has been controversial. Using analytical ultracentrifugation, we determined a dissociation constant of 1.37 ± 0.30 μm for the mouse decorin dimer. Dimerization could be abolished by engineering glycosylation sites into the dimer interface; other interface mutants remained dimeric. The monomeric mutants were as stable as wild-type decorin in thermal unfolding experiments. Mutations on the concave face of decorin abolished collagen binding regardless of whether the mutant proteins retained the ability to dimerize or not. We conclude that the concave face of decorin mediates collagen binding and that the dimer therefore must dissociate to bind collagen.
Collapse
Affiliation(s)
- Mehwaesh Islam
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jayesh Gor
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Yoshihiro Ishikawa
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, and
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Hans Peter Bächinger
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, and
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Erhard Hohenester
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
38
|
Gao H, Zhang HL, Shou J, Chen L, Shen Y, Tang Q, Huang J, Zhu J. Towards retinal ganglion cell regeneration. Regen Med 2013; 7:865-75. [PMID: 23164085 DOI: 10.2217/rme.12.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic optic nerve injury and glaucoma are among the leading causes of incurable vision loss across the world. What is worse, neither pharmacological nor surgical interventions are significantly effective in reversing or halting the progression of vision loss. Advances in cell biology offer some hope for the victims of optic nerve damage and subsequent partial or complete visual loss. Retinal ganglion cells (RGCs) travel through the optic nerve and carry all visual signals to the brain. After injury, RGC axons usually fail to regrow and die, leading to irreversible loss of vision. Various kinds of cells and factors possess the ability to support the process of axon regeneration for RGCs. This article summarizes the latest advances in RGC regeneration.
Collapse
Affiliation(s)
- Huasong Gao
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gangloff M, Arnot CJ, Lewis M, Gay NJ. Functional insights from the crystal structure of the N-terminal domain of the prototypical toll receptor. Structure 2013; 21:143-153. [PMID: 23245851 PMCID: PMC3542428 DOI: 10.1016/j.str.2012.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/12/2012] [Accepted: 11/10/2012] [Indexed: 01/30/2023]
Abstract
Drosophila melanogaster Toll is the founding member of an important family of pathogen-recognition receptors in humans, the Toll-like receptor (TLR) family. In contrast, the prototypical receptor is a cytokine-like receptor for Spätzle (Spz) protein and plays a dual role in both development and immunity. Here, we present the crystal structure of the N-terminal domain of the receptor that encompasses the first 201 amino acids at 2.4 Å resolution. To our knowledge, the cysteine-rich cap adopts a novel fold unique to Toll-1 orthologs in insects and that is not critical for ligand binding. However, we observed that an antibody directed against the first ten LRRs blocks Spz signaling in a Drosophila cell-based assay. Supplemented by point mutagenesis and deletion analysis, our data suggests that the region up to LRR 14 is involved in Spz binding. Comparison with mammalian TLRs reconciles previous contradictory findings about the mechanism of Toll activation.
Collapse
Affiliation(s)
- Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | | - Miranda Lewis
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
40
|
Ueda H, Matsunaga H, Olaposi OI, Nagai J. Lysophosphatidic acid: Chemical signature of neuropathic pain. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:61-73. [DOI: 10.1016/j.bbalip.2012.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023]
|
41
|
Pandey S, Alcaro MC, Scrima M, Peroni E, Paolini I, Di Marino S, Barbetti F, Carotenuto A, Novellino E, Papini AM, D'Ursi AM, Rovero P. Designed glucopeptides mimetics of myelin protein epitopes as synthetic probes for the detection of autoantibodies, biomarkers of multiple sclerosis. J Med Chem 2012; 55:10437-47. [PMID: 23167575 DOI: 10.1021/jm301031r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that CSF114(Glc) detects diagnostic autoantibodies in multiple sclerosis sera. We report herein a bioinformatic analysis of myelin proteins and CSF114(Glc), which led to the identification of five sequences. These glucopeptides were synthesized and tested in enzymatic assays, showing a common minimal epitope. Starting from that, we designed an optimized sequence, SP077, showing a higher homology with both CSF114(Glc) and the five sequences selected using the bioinformatic approach. SP077 was synthesized and tested on 50 multiple sclerosis patients' sera, and was able to detect higher antibody titers as compared to CSF114(Glc). Finally, the conformational properties of SP077 were studied by NMR spectroscopy and structure calculations. Thus, the immunological activity of SP077 in the recognition of specific autoantibodies in multiple sclerosis patients' sera may be ascribed to both the optimized design of its epitopic region and the superior surface interacting properties of its C-terminal region.
Collapse
Affiliation(s)
- Shashank Pandey
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry Ugo Schiff, University of Florence, I-50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012; 123:477-90. [PMID: 22906125 PMCID: PMC3472040 DOI: 10.1111/j.1471-4159.2012.07925.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022]
Abstract
Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington's disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a, and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment, and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yong Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William Wood
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emmette Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kevin G. Becker
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
43
|
Wang X, Hasan O, Arzeno A, Benowitz LI, Cafferty WBJ, Strittmatter SM. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Exp Neurol 2012; 237:55-69. [PMID: 22728374 DOI: 10.1016/j.expneurol.2012.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 12/29/2022]
Abstract
Several pharmacological approaches to promote neural repair and recovery after CNS injury have been identified. Blockade of either astrocyte-derived chondroitin sulfate proteoglycans (CSPGs) or oligodendrocyte-derived NogoReceptor (NgR1) ligands reduces extrinsic inhibition of axonal growth, though combined blockade of these distinct pathways has not been tested. The intrinsic growth potential of adult mammalian neurons can be promoted by several pathways, including pre-conditioning injury for dorsal root ganglion (DRG) neurons and macrophage activation for retinal ganglion cells (RGCs). Singly, pharmacological interventions have restricted efficacy without foreign cells, mechanical scaffolds or viral gene therapy. Here, we examined combinations of pharmacological approaches and assessed the degree of axonal regeneration. After mouse optic nerve crush injury, NgR1-/- neurons regenerate RGC axons as extensively as do zymosan-injected, macrophage-activated WT mice. Synergistic enhancement of regeneration is achieved by combining these interventions in zymosan-injected NgR1-/- mice. In rats with a spinal dorsal column crush injury, a preconditioning peripheral sciatic nerve axotomy, or NgR1(310)ecto-Fc decoy protein treatment or ChondroitinaseABC (ChABC) treatment independently support similar degrees of regeneration by ascending primary afferent fibers into the vicinity of the injury site. Treatment with two of these three interventions does not significantly enhance the degree of axonal regeneration. In contrast, triple therapy combining NgR1 decoy, ChABC and preconditioning, allows axons to regenerate millimeters past the spinal cord injury site. The benefit of a pre-conditioning injury is most robust, but a peripheral nerve injury coincident with, or 3 days after, spinal cord injury also synergizes with NgR1 decoy and ChABC. Thus, maximal axonal regeneration and neural repair are achieved by combining independently effective pharmacological approaches.
Collapse
Affiliation(s)
- Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
44
|
Akbik F, Cafferty WBJ, Strittmatter SM. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 2012; 235:43-52. [PMID: 21699896 PMCID: PMC3189418 DOI: 10.1016/j.expneurol.2011.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/26/2011] [Accepted: 06/07/2011] [Indexed: 01/01/2023]
Abstract
In the adult, both neurologic recovery and anatomical growth after a CNS injury are limited. Two classes of growth inhibitors, myelin associated inhibitors (MAIs) and extracellular matrix associated inhibitors, limit both functional recovery and anatomical rearrangements in animal models of spinal cord injury. Here we focus on how MAIs limit a wide spectrum of growth that includes regeneration, sprouting, and plasticity in both the intact and lesioned CNS. Three classic myelin associated inhibitors, Nogo-A, MAG, and OMgp, signal through their common receptors, Nogo-66 Receptor-1 (NgR1) and Paired-Immunoglobulin-like-Receptor-B (PirB), to regulate cytoskeletal dynamics and inhibit growth. Initially described as inhibitors of axonal regeneration, subsequent work has demonstrated that MAIs also limit activity and experience-dependent plasticity in the intact, adult CNS. MAIs therefore represent a point of convergence for plasticity that limits anatomical rearrangements regardless of the inciting stimulus, blurring the distinction between injury studies and more "basic" plasticity studies.
Collapse
Affiliation(s)
- Feras Akbik
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| | - William B. J. Cafferty
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
45
|
Increasing the X-ray diffraction power of protein crystals by dehydration: the case of bovine serum albumin and a survey of literature data. Int J Mol Sci 2012; 13:3782-3800. [PMID: 22489183 PMCID: PMC3317743 DOI: 10.3390/ijms13033782] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
Serum albumin is one of the most widely studied proteins. It is the most abundant protein in plasma with a typical concentration of 5 g/100 mL and the principal transporter of fatty acids in plasma. While the crystal structures of human serum albumin (HSA) free and in complex with fatty acids, hemin, and local anesthetics have been characterized, no crystallographic models are available on bovine serum albumin (BSA), presumably because of the poor diffraction power of existing hexagonal BSA crystals. Here, the crystallization and diffraction data of a new BSA crystal form, obtained by the hanging drop method using MPEG 5K as precipitating agent, are presented. The crystals belong to space group C2, with unit-cell parameters a = 216.45 Å, b = 44.72 Å, c = 140.18 Å, β = 114.5°. Dehydration was found to increase the diffraction limit of BSA crystals from ~8 Å to 3.2 Å, probably by improving the packing of protein molecules in the crystal lattice. These results, together with a survey of more than 60 successful cases of protein crystal dehydration, confirm that it can be a useful procedure to be used in initial screening as a method of improving the diffraction limits of existing crystals.
Collapse
|
46
|
Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 2012; 15:703-12. [PMID: 22406547 PMCID: PMC3337880 DOI: 10.1038/nn.3070] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/06/2012] [Indexed: 12/17/2022]
Abstract
In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin–associated inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been implicated in neuronal inhibition. Here we show that NgR1 and NgR3 bind with high–affinity to the glycosaminoglycan moiety of proteoglycans and participate in CSPG inhibition in cultured neurons. Nogo receptor triple mutants (NgR123−/−), but not single mutants, show enhanced axonal regeneration following retro–orbital optic nerve crush injury. The combined loss of NgR1 and NgR3 (NgR13−/−), but not NgR1 and NgR2 (NgR12−/−), is sufficient to mimic the NgR123−/− regeneration phenotype. Regeneration in NgR13−/− mice is further enhanced by simultaneous ablation of RPTPσ, a known CSPG receptor. Collectively, these results identify NgR1 and NgR3 as novel CSPG receptors, demonstrate functional redundancy among CSPG receptors, and provide unexpected evidence for shared mechanisms of MAI and CSPG inhibition.
Collapse
Affiliation(s)
- Travis L Dickendesher
- Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ, Strittmatter SM, Dirnagl U, Schwab JM. Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res 2012; 349:119-32. [PMID: 22350947 DOI: 10.1007/s00441-012-1334-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/16/2012] [Indexed: 01/16/2023]
Abstract
Limited axonal plasticity within the central nervous system (CNS) is a major restriction for functional recovery after CNS injury. The small GTPase RhoA is a key molecule of the converging downstream cascade that leads to the inhibition of axonal re-growth. The Rho-pathway integrates growth inhibitory signals derived from extracellular cues, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein, Ephrins and repulsive guidance molecule-A, into the damaged axon. Consequently, the activation of RhoA results in growth cone collapse and finally outgrowth failure. In turn, the inhibition of RhoA-activation blinds the injured axon to its growth inhibitory environment resulting in enhanced axonal sprouting and plasticity. This has been demonstrated in various CNS-injury models for direct RhoA-inhibition and for downstream/upstream blockade of the RhoA-associated pathway. In addition, RhoA-inhibition reduces apoptotic cell death and secondary damage and improves locomotor recovery in clinically relevant models after experimental spinal cord injury (SCI). Unexpectedly, a subset of "small molecules" from the group of non-steroid anti-inflammatory drugs, particularly the FDA-approved ibuprofen, has recently been identified as (1) inhibiting RhoA-activation, (2) enhancing axonal sprouting/regeneration, (3) protecting "tissue at risk" (neuroprotection) and (4) improving motor recovery confined to realistic therapeutical time-frames in clinically relevant SCI models. Here, we survey the effect of small-molecule-induced RhoA-inhibition on axonal plasticity and neurofunctional outcome in CNS injury paradigms. Furthermore, we discuss the body of preclinical evidence for a possible clinical translation with a focus on ibuprofen and illustrate putative risks and benefits for the treatment of acute SCI.
Collapse
Affiliation(s)
- M A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res 2012; 349:105-17. [PMID: 22311207 DOI: 10.1007/s00441-012-1332-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.
Collapse
|
49
|
Kern F, Sarg B, Stasyk T, Hess D, Lindner H. The Nogo receptor 2 is a novel substrate of Fbs1. Biochem Biophys Res Commun 2012; 417:977-81. [PMID: 22206664 PMCID: PMC3269754 DOI: 10.1016/j.bbrc.2011.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 11/15/2022]
Abstract
Members of the Nogo66 receptor family (NgR) are closely associated with nerve growth inhibition and plasticity in the CNS. All three members, NgR1, NgR2 and NgR3, are GPI anchored and highly glycosylated proteins. The binding and signaling properties of NgR1 are well described, but largely unknown for NgR2. At present the only known ligands are myelin associated glycoprotein (MAG) and amyloid beta precursor protein (APP). Despite the requirement of co-receptors for signaling no other binding partner has been uncovered. To learn more about the interactome of NgR2 we performed pull down experiments and were able to identify F-box protein that recognizes sugar chain 1 (Fbs1) as binding partner. We confirmed this finding with co-immunoprecipitations and in vitro binding assays and showed that the binding is mediated by the substrate recognition domain of Fbs1. As a substrate recognition protein of the SCF complex, Fbs1 binding leads to polyubiquitination and finally degradation of its substrates. This is the first time a member of the Nogo receptor family has been connected with an intracellular degradation pathway, which has not only implications for its production, but also for amyloid deposition in Alzheimer’s disease.
Collapse
Affiliation(s)
- Florian Kern
- Neurobiochemistry - Biocenter, Innsbruck Medical University, Austria.
| | | | | | | | | |
Collapse
|
50
|
Wu X, Luo Y, Liu S, Li K. Experience-dependent expression of Nogo-A and Nogo receptor in the developing rat visual cortex. Neural Regen Res 2012; 7:13-7. [PMID: 25806052 PMCID: PMC4354109 DOI: 10.3969/j.issn.1673-5374.2012.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA or protein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers II-III and IV in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experience- dependent visual cortical plasticity.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China,
Corresponding author: Xiaoying Wu, Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China (N20110225002/WLM)
| | - Yulin Luo
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Shuangzhen Liu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Kuanshu Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|