1
|
Yadav N, Misra SK. Nitroaromatic Compounds Dictate Electrochemical Properties of Escherichia coli by Manipulating the Cellular Membrane. Mol Pharm 2025; 22:1707-1724. [PMID: 39932503 DOI: 10.1021/acs.molpharmaceut.4c01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Nitroaromatic compounds (NACs) are generally used as starting materials and/or generated as byproducts during the manufacturing of dyes, fertilizers, and therapeutic agents. Though NACs are beneficial when used appropriately, inadequate management, disposal, and application methods have led to their introduction to bacterial ecosystems where NACs act as mutagenic agents and may even contribute to antimicrobial resistance. Many of these bacterial systems are known to have different pathways to adapt to the presence of NACs such as altering the lipid composition of cellular membranes and intracellular degradation of NACs. In general, these processes require sophisticated techniques and skilled human resources to detect the changes by conventional characterization techniques. Hence, alternative methods are needed to investigate the short-term effects of NACs on bacterial cells with better precision. Herein, we report that bacterial cells adapt to the presence of NACs initially by incorporation in the cellular membrane, which can be predicted by further altered electrical and electrochemical properties of the cells. It was observed that the whole cell bacteria were negatively charged entities that could generate varying levels of surface charges on being incubated with model NACs of biomedical importance viz. niclosamide and p-nitrophenol. Such variations were also reflected in dye entrapment assays performed by using lipidic membranes collected from NAC-treated bacterial cells after the cells. Further studies with gel electrophoresis and differential pulse voltammetry revealed the significant alterations in electrochemical properties of NAC-incubated bacterial cells. Overall, results indicate that bacterial adaptation to NACs was found to be closely linked to variations in the electrochemical properties of the bacterial cells. These outcomes advance our understanding of influences imparted by NACs during bacterial infections and might facilitate the way for developing therapies to combat antibacterial resistance in the near future.
Collapse
Affiliation(s)
- Neha Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, U.P. 208016, India
| | - Santosh K Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, U.P. 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, U.P. 208016, India
- Centre of Excellence in Point-of-Care Diagnosis, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, U.P. 208016, India
| |
Collapse
|
2
|
Hu Z, Wood KB. Deciphering population-level response under spatial drug heterogeneity on microhabitat structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638200. [PMID: 40027692 PMCID: PMC11870443 DOI: 10.1101/2025.02.13.638200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacteria and cancer cells live in a spatially heterogeneous environment, where migration shapes the microhabitat structures critical for colonization and metastasis. The interplay between growth, migration, and microhabitat structure complicates the prediction of population responses to drugs, such as clearance or sustained growth, posing a longstanding challenge. Here, we disentangle growth-migration dynamics and identify that population decline is determined by two decoupled terms: a spatial growth variation term and a microhabitat structure term. Notably, the microhabitat structure term can be interpreted as a dynamic-related centrality measure. For fixed spatial drug arrangements, we show that interpreting these centralities reveals how different network structures, even with identical edge densities, microhabitat numbers, and spatial heterogeneity, can lead to distinct population-level responses. Increasing edge density shifts the population response from growth to clearance, supporting an inversed centrality-connectivity relationship, and mirroring the effects of higher migration rates. Furthermore, we derive a sufficient condition for robust population decline across various spatial growth rate arrangements, regardless of spatial-temporal fluctuations induced by drugs. Additionally, we demonstrate that varying the maximum growth-to-death ratio, determined by drug-bacteria interactions, can lead to distinct population decline profiles and a minimal decline phase emerges. These findings address key challenges in predicting population-level responses and provide insights into divergent clinical outcomes under identical drug dosages. This work may offer a new method of interpreting treatment dynamics and potential approaches for optimizing spatially explicit drug dosing strategies.
Collapse
|
3
|
Yi J, Ahn J. Heterogeneous Phenotypic Responses of Antibiotic-Resistant Salmonella Typhimurium to Food Preservative-Related Stresses. Antibiotics (Basel) 2023; 12:1702. [PMID: 38136736 PMCID: PMC10740406 DOI: 10.3390/antibiotics12121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This study was designed to evaluate the response of antibiotic-resistant Salmonella Typhimurium to food preservative-related stresses, such as lactic acid and sodium chloride (NaCl). S. Typhimurium cells were exposed to 1 µg/mL of ciprofloxacin (CIP), 0.2% lactic acid (LA), 6% NaCl, CIP followed by LA (CIP-LA), and CIP followed by NaCl (CIP-NaCl). The untreated S. Typhimurium cells were the control (CON). All treatments were as follows: CON, CIP, LA, NaCl, CIP-LA, and CIP-NaCl. The phenotypic heterogeneity was evaluated by measuring the antimicrobial susceptibility, bacterial fluctuation, cell injury, persistence, and cross-resistance. The CIP, CIP-LA, and CIP-NaCl groups were highly resistant to ciprofloxacin, showing MIC values of 0.70, 0.59, and 0.54 µg/mL, respectively, compared to the CON group (0.014 µg/mL). The susceptibility to lactic acid was not changed after exposure to NaCl, while that to NaCl was decreased after exposure to NaCl. The Eagle phenomenon was observed in the CIP, CIP-LA, and CIP-NaCl groups, showing Eagle effect concentrations (EECs) of more than 8 µg/mL. No changes in the MBCs of lactic acid and NaCl were observed in the CIP, LA, and CIP-LA groups, and the EECs of lactic acid and NaCl were not detected in all treatments. The bacterial fluctuation rates of the CIP-LA and CIP-NaCl groups were considerably increased to 33% and 41%, respectively, corresponding to the injured cell proportions of 82% and 89%. CIP-NaCl induced persister cells as high as 2 log cfu/mL. The LA and NaCl treatments decreased the fitness cost. The CIP-NaCl treatment showed positive cross-resistance to erythromycin (ERY) and tetracycline (TET), while the LA and NaCl treatments were collaterally susceptible to chloramphenicol (CHL), ciprofloxacin (CIP), piperacillin (PIP), and TET. The results provide new insight into the fate of antibiotic-resistant S. Typhimurium during food processing and preservation.
Collapse
Affiliation(s)
- Jiseok Yi
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
4
|
Wade MJ, Sultan SE. Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments. Evol Dev 2023; 25:451-469. [PMID: 37530093 DOI: 10.1111/ede.12452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.
Collapse
Affiliation(s)
- Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
5
|
Ogunlana L, Kaur D, Shaw LP, Jangir P, Walsh T, Uphoff S, MacLean RC. Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings. THE ISME JOURNAL 2023; 17:2058-2069. [PMID: 37723338 PMCID: PMC10579358 DOI: 10.1038/s41396-023-01509-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption.
Collapse
Affiliation(s)
- Lois Ogunlana
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Divjot Kaur
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Pramod Jangir
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Timothy Walsh
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - R C MacLean
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
6
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
7
|
Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. mBio 2021; 12:e0216821. [PMID: 34903061 PMCID: PMC8669471 DOI: 10.1128/mbio.02168-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selection plays a key role in the spread of antibiotic resistance, but the evolutionary drivers of clinically important resistant strains remain poorly understood. Here, we use genomic analyses and competition experiments to study Staphylococcus aureus ST239, a prominent MRSA strain that is thought to have been formed by large-scale recombination between ST8 and ST30. Genomic analyses allowed us to refine the hybrid model for the origin of ST239 and to date the origin of ST239 to 1920 to 1945, which predates the clinical introduction of methicillin in 1959. Although purifying selection has dominated the evolution of ST239, parallel evolution has occurred in genes involved in antibiotic resistance and virulence, suggesting that ST239 has evolved toward an increasingly pathogenic lifestyle. Crucially, ST239 isolates have low competitive fitness relative to both ST8 and ST30 isolates, supporting the idea that fitness costs have driven the demise of this once-dominant pathogen strain.
Collapse
|
8
|
Zhou H, Gebhardt MJ, Czyz DM, Yao Y, Shuman HA. The gigA/gigB Genes Regulate the Growth, Stress Response, and Virulence of Acinetobacter baumannii ATCC 17978 Strain. Front Microbiol 2021; 12:723949. [PMID: 34421881 PMCID: PMC8371402 DOI: 10.3389/fmicb.2021.723949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen of nosocomial infection. Recently, a group of genes, named “gig” (for Growth in Galleria), have been identified in a contemporary multi-drug resistant clinical isolate of A. baumannii—strain AB5075. Among these so-called gig genes, gigA and gigB were found to promote antibiotic resistance, stress survival, and virulence of AB5075 by interacting with the nitrogen phosphotransferase system (PTSNtr). This study aimed to investigate the roles of gigA/gigB, which appear to comprise a stress-signaling pathway (encoding for an atypical two-component system response regulator and a predicted anti-anti-sigma factor, respectively), and the involvement of ptsP (encoding the Enzyme I component of the PTSNtr) in the growth, stress resistance, and virulence of the widely studied A. baumannii strain ATCC 17978. Genetic analyses of strains harboring mutations of gigA and gigB were performed to investigate the roles of these genes in bacterial growth, stress resistance, evading macrophage defense, and killing of Galleria mellonella larva. In contrast with findings from strain AB5075 where gigA and gigB contribute to aminoglycoside resistance, the data presented herein indicate that the loss of gigA/gigB does not impact antibiotic resistance of strain ATCC 17978. Interestingly, however, we found that deletion of gigA/gigB in the ATCC 17978 background imparts a general growth in laboratory medium and also conferred growth and replication defects within murine macrophages and an inability to kill G. mellonella larvae. Importantly, studies as well as the loss of ptsP restored the phenotypes of the gigA/gigB mutant to that of the wild-type. The data presented herein indicate that in A. baumannii ATCC 17978, the gigA/gigB genes play a key role in both growth and virulence traits, but are dispensable for other stress-resistance survival phenotypes, including aminoglycoside resistance. Our findings thus highlight several similarities and also important differences between the gigA/gigB stress-signaling pathway in two commonly studied isolates of this troublesome pathogen.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Microbiology, University of Chicago, Chicago, IL, United States
| | - Michael J Gebhardt
- Department of Microbiology, University of Chicago, Chicago, IL, United States
| | - Daniel M Czyz
- Department of Microbiology, University of Chicago, Chicago, IL, United States.,Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Yake Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Howard A Shuman
- Department of Microbiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Noyes NR, Slizovskiy IB, Singer RS. Beyond Antimicrobial Use: A Framework for Prioritizing Antimicrobial Resistance Interventions. Annu Rev Anim Biosci 2021; 9:313-332. [PMID: 33592160 DOI: 10.1146/annurev-animal-072020-080638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antimicrobial resistance (AMR) is a threat to animal and human health. Antimicrobial use has been identified as a major driver of AMR, and reductions in use are a focal point of interventions to reduce resistance. Accordingly, stakeholders in human health and livestock production have implemented antimicrobial stewardship programs aimed at reducing use. Thus far, these efforts have yielded variable impacts on AMR. Furthermore, scientific advances are prompting an expansion and more nuanced appreciation of the many nonantibiotic factors that drive AMR, as well as how these factors vary across systems, geographies, and contexts. Given these trends, we propose a framework to prioritize AMR interventions. We use this framework to evaluate the impact of interventions that focus on antimicrobial use. We conclude by suggesting that priorities be expanded to include greater consideration of host-microbial interactions that dictate AMR, as well as anthropogenic and environmental systems that promote dissemination of AMR.
Collapse
Affiliation(s)
- Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Ilya B Slizovskiy
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA;
| |
Collapse
|
10
|
Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2021; 75:3135-3143. [PMID: 32712659 DOI: 10.1093/jac/dkaa305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colistin is an antibiotic that targets the LPS molecules present in the membranes of Gram-negative bacteria. It is used as a last-resort drug to treat infections with MDR strains. Colistin is also used in selective decontamination of the digestive tract (SDD), a prophylactic therapy used in patients hospitalized in ICUs to selectively eradicate opportunistic pathogens in the oropharyngeal and gut microbiota. OBJECTIVES To unravel the mechanisms of acquired colistin resistance in Gram-negative opportunistic pathogens obtained from SDD-treated patients. RESULTS Routine surveillance of 428 SDD-treated patients resulted in 13 strains with acquired colistin resistance (Escherichia coli, n = 9; Klebsiella aerogenes, n = 3; Enterobacter asburiae, n = 1) from 5 patients. Genome sequence analysis showed that these isolates represented multiple distinct colistin-resistant clones but that colistin-resistant strains within the same patient were clonally related. We identified previously described mechanisms that lead to colistin resistance, i.e. a G53 substitution in the response regulator PmrA/BasR and the acquisition of the mobile colistin resistance gene mcr-1.1, but we also observed novel variants of basR with an 18 bp deletion and a G19E substitution in the sensor histidine kinase BasS. We experimentally confirmed that these variants contribute to reduced colistin susceptibility. In a single patient, we observed that colistin resistance in a single E. coli clone evolved through two unique variants in basRS. CONCLUSIONS We show that prophylactic use of colistin during SDD can select for colistin resistance in species that are not intrinsically colistin resistant. This highlights the importance of continued surveillance for strains with acquired colistin resistance in patients treated with SDD.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Wong DW. Carriage of antibiotic resistant bacteria flora and its role in the guidance of clinical decision making. Pathog Dis 2021; 78:5863937. [PMID: 32592391 DOI: 10.1093/femspd/ftaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/26/2020] [Indexed: 11/14/2022] Open
Abstract
There is considerable literature on the threat of antibiotic resistance and its impact on morbidity. However, an under-studied consideration is how carriage of these antibiotic resistant bacteria persist in an individual. The duration that a person harbors a resistant organism is critical in guiding future antimicrobial therapy. Key unexplored questions are the rate of clearance of these organisms and what drives their persistence. This paper attempts to examine these questions and offers some initial answers as well as avenues for further study.
Collapse
Affiliation(s)
- Darren W Wong
- Division of Infectious Diseases, Keck School of Medicine at the University of Southern California (USC), 2020 Zonal Avenue RM 430, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Abstract
Many nonsporulating bacterial species can survive for years within exhausted growth media in a state termed long-term stationary phase (LTSP). We have been carrying out evolutionary experiments aimed at elucidating the dynamics of genetic adaptation under LTSP. We showed that Escherichia coli adapts to prolonged resource exhaustion through the highly convergent acquisition of mutations. In the most striking example of such convergent adaptation, we observed that across all independently evolving LTSP populations, over 90% of E. coli cells carry mutations to one of three specific sites of the RNA polymerase core enzyme (RNAPC). These LTSP adaptations reduce the ability of the cells carrying them to grow once fresh resources are again provided. Here, we examine how LTSP populations recover from costs associated with their adaptation once resources are again provided to them. We demonstrate that due to the ability of LTSP populations to maintain high levels of standing genetic variation during adaptation, costly adaptations are very rapidly purged from the population once they are provided with fresh resources. We further demonstrate that recovery from costs acquired during adaptation under LTSP occurs more rapidly than would be possible if LTSP adaptations had fixed during the time populations spent under resource exhaustion. Finally, we previously reported that under LTSP, some clones develop a mutator phenotype, greatly increasing their mutation accumulation rates. Here, we show that the mechanisms by which populations recover from costs associated with fixed adaptations may depend on mutator status.IMPORTANCE Many bacterial species can survive for decades under starvation, following the exhaustion of external growth resources. We have previously shown that bacteria genetically adapt under these conditions in a manner that reduces their ability to grow once resources again become available. Here, we study how populations that have been subject to very prolonged resource exhaustion recover from costs associated with their adaptation. We demonstrate that rapid adaptations acquired under prolonged starvation tend to be highly transient, rapidly reducing in frequency once bacteria are no longer starved. Our results shed light on the longer-term consequences of bacterial survival under prolonged starvation. More generally, these results may also be applicable to understanding longer-term consequences of rapid adaptation to additional conditions as well.
Collapse
|
13
|
Melnikov SV, Stevens DL, Fu X, Kwok HS, Zhang JT, Shen Y, Sabina J, Lee K, Lee H, Söll D. Exploiting evolutionary trade-offs for posttreatment management of drug-resistant populations. Proc Natl Acad Sci U S A 2020; 117:17924-17931. [PMID: 32661175 PMCID: PMC7395499 DOI: 10.1073/pnas.2003132117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance frequently evolves through fitness trade-offs in which the genetic alterations that confer resistance to a drug can also cause growth defects in resistant cells. Here, through experimental evolution in a microfluidics-based turbidostat, we demonstrate that antibiotic-resistant cells can be efficiently inhibited by amplifying the fitness costs associated with drug-resistance evolution. Using tavaborole-resistant Escherichia coli as a model, we show that genetic mutations in leucyl-tRNA synthetase (that underlie tavaborole resistance) make resistant cells intolerant to norvaline, a chemical analog of leucine that is mistakenly used by tavaborole-resistant cells for protein synthesis. We then show that tavaborole-sensitive cells quickly outcompete tavaborole-resistant cells in the presence of norvaline due to the amplified cost of the molecular defect of tavaborole resistance. This finding illustrates that understanding molecular mechanisms of drug resistance allows us to effectively amplify even small evolutionary vulnerabilities of resistant cells to potentially enhance or enable adaptive therapies by accelerating posttreatment competition between resistant and susceptible cells.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - David L Stevens
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Xian Fu
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jin-Tao Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | | | | | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
14
|
Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nat Ecol Evol 2020; 4:1268-1278. [PMID: 32632259 DOI: 10.1038/s41559-020-1235-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
In the absence of antibiotics, it is essential that antibiotic resistance has a fitness cost for microorganisms if suspending antibiotics treatment is to be a useful strategy for reducing antibiotic resistance. However, the cost of antibiotic resistance within the complex ecosystem of the mammalian gut is not well understood. Here, using mice, we show that the same antibiotic resistance mutation can reduce fitness in one host, while being neutral or even increasing fitness in other hosts. Such antagonistic pleiotropy is shaped by the microbiota because resistance in germ-free mice is consistently costly across all hosts, and the host-specific effect on antibiotic resistance is reduced in hosts with similar microbiotas. Using an eco-evolutionary model of competition for resources, we identify a general mechanism that underlies between-host variation and predicts that the dynamics of compensatory evolution of resistant bacteria should be host specific, a prediction that was supported by experimental evolution in vivo. The microbiome of each human is close to unique, and our results suggest that the short-term cost of resistances and their long-term within-host evolution are also highly personalized, a finding that may contribute to the observed variable outcome of withdrawing antibiotics to reduce resistance levels.
Collapse
|
15
|
Hoque MN, Istiaq A, Clement RA, Gibson KM, Saha O, Islam OK, Abir RA, Sultana M, Siddiki AMAMZ, Crandall KA, Hossain MA. Insights Into the Resistome of Bovine Clinical Mastitis Microbiome, a Key Factor in Disease Complication. Front Microbiol 2020; 11:860. [PMID: 32582039 PMCID: PMC7283587 DOI: 10.3389/fmicb.2020.00860] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine clinical mastitis (CM) is one of the most prevalent diseases caused by a wide range of resident microbes. The emergence of antimicrobial resistance in CM bacteria is well-known, however, the genomic resistance composition (the resistome) at the microbiome-level is not well characterized. In this study, we applied whole metagenome sequencing (WMS) to characterize the resistome of the CM microbiome, focusing on antibiotics and metals resistance, biofilm formation (BF), and quorum sensing (QS) along with in vitro resistance assays of six selected pathogens isolated from the same CM samples. The WMS generated an average of 21.13 million reads (post-processing) from 25 CM samples that mapped to 519 bacterial strains, of which 30.06% were previously unreported. We found a significant (P = 0.001) association between the resistomes and microbiome composition with no association with cattle breed, despite significant differences in microbiome diversity among breeds. The in vitro investigation determined that 76.2% of six selected pathogens considered "biofilm formers" actually formed biofilms and were also highly resistant to tetracycline, doxycycline, nalidixic acid, ampicillin, and chloramphenicol and remained sensitive to metals (Cr, Co, Ni, Cu, Zn) at varying concentrations. We also found bacterial flagellar movement and chemotaxis, regulation and cell signaling, and oxidative stress to be significantly associated with the pathophysiology of CM. Thus, identifying CM microbiomes, and analyzing their resistomes and genomic potentials will help improve the optimization of therapeutic schemes involving antibiotics and/or metals usage in the prevention and control of bovine CM.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Arif Istiaq
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rebecca A. Clement
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Keylie M. Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Ovinu Kibria Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - AMAM Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
16
|
Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:AAC.02142-19. [PMID: 32071060 DOI: 10.1128/aac.02142-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Collapse
|
17
|
Projecting the impact of variable MDR-TB transmission efficiency on long-term epidemic trends in South Africa and Vietnam. Sci Rep 2019; 9:18099. [PMID: 31792289 PMCID: PMC6889300 DOI: 10.1038/s41598-019-54561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Whether multidrug-resistant tuberculosis (MDR-TB) is less transmissible than drug-susceptible (DS-)TB on a population level is uncertain. Even in the absence of a genetic fitness cost, the transmission potential of individuals with MDR-TB may vary by infectiousness, frequency of contact, or duration of disease. We used a compartmental model to project the progression of MDR-TB epidemics in South Africa and Vietnam under alternative assumptions about the relative transmission efficiency of MDR-TB. Specifically, we considered three scenarios: consistently lower transmission efficiency for MDR-TB than for DS-TB; equal transmission efficiency; and an initial deficit in the transmission efficiency of MDR-TB that closes over time. We calibrated these scenarios with data from drug resistance surveys and projected epidemic trends to 2040. The incidence of MDR-TB was projected to expand in most scenarios, but the degree of expansion depended greatly on the future transmission efficiency of MDR-TB. For example, by 2040, we projected absolute MDR-TB incidence to account for 5% (IQR: 4–9%) of incident TB in South Africa and 14% (IQR: 9–26%) in Vietnam assuming consistently lower MDR-TB transmission efficiency, versus 15% (IQR: 8–27%)and 41% (IQR: 23–62%), respectively, assuming shrinking transmission efficiency deficits. Given future uncertainty, specific responses to halt MDR-TB transmission should be prioritized.
Collapse
|
18
|
Steering Phages to Combat Bacterial Pathogens. Trends Microbiol 2019; 28:85-94. [PMID: 31744662 DOI: 10.1016/j.tim.2019.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|
19
|
Tepekule B, Abel Zur Wiesch P, Kouyos RD, Bonhoeffer S. Quantifying the impact of treatment history on plasmid-mediated resistance evolution in human gut microbiota. Proc Natl Acad Sci U S A 2019; 116:23106-23116. [PMID: 31666328 PMCID: PMC6859334 DOI: 10.1073/pnas.1912188116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To understand how antibiotic use affects the risk of a resistant infection, we present a computational model of the population dynamics of gut microbiota including antibiotic resistance-conferring plasmids. We then describe how this model is parameterized based on published microbiota data. Finally, we investigate how treatment history affects the prevalence of resistance among opportunistic enterobacterial pathogens. We simulate treatment histories and identify which properties of prior antibiotic exposure are most influential in determining the prevalence of resistance. We find that resistance prevalence can be predicted by 3 properties, namely the total days of drug exposure, the duration of the drug-free period after last treatment, and the center of mass of the treatment pattern. Overall this work provides a framework for capturing the role of the microbiome in the selection of antibiotic resistance and highlights the role of treatment history for the prevalence of resistance.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland;
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Centre for Molecular Medicine Norway, 0318 Oslo, Norway
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
The mutational landscape of quinolone resistance in Escherichia coli. PLoS One 2019; 14:e0224650. [PMID: 31689338 PMCID: PMC6830822 DOI: 10.1371/journal.pone.0224650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
The evolution of antibiotic resistance is influenced by a variety of factors, including the availability of resistance mutations, and the pleiotropic effects of such mutations. Here, we isolate and characterize chromosomal quinolone resistance mutations in E. coli, in order to gain a systematic understanding of the rate and consequences of resistance to this important class of drugs. We isolated over fifty spontaneous resistance mutants on nalidixic acid, ciprofloxacin, and levofloxacin. This set of mutants includes known resistance mutations in gyrA, gyrB, and marR, as well as two novel gyrB mutations. We find that, for most mutations, resistance tends to be higher to nalidixic acid than relative to the other two drugs. Resistance mutations had deleterious impacts on one or more growth parameters, suggesting that quinolone resistance mutations are generally costly. Our findings suggest that the prevalence of specific gyrA alleles amongst clinical isolates are driven by high levels of resistance, at no more cost than other resistance alleles.
Collapse
|
21
|
Rovira P, McAllister T, Lakin SM, Cook SR, Doster E, Noyes NR, Weinroth MD, Yang X, Parker JK, Boucher C, Booker CW, Woerner DR, Belk KE, Morley PS. Characterization of the Microbial Resistome in Conventional and "Raised Without Antibiotics" Beef and Dairy Production Systems. Front Microbiol 2019; 10:1980. [PMID: 31555225 PMCID: PMC6736999 DOI: 10.3389/fmicb.2019.01980] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Metagenomic investigations have the potential to provide unprecedented insights into microbial ecologies, such as those relating to antimicrobial resistance (AMR). We characterized the microbial resistome in livestock operations raising cattle conventionally (CONV) or without antibiotic exposures (RWA) using shotgun metagenomics. Samples of feces, wastewater from catchment basins, and soil where wastewater was applied were collected from CONV and RWA feedlot and dairy farms. After DNA extraction and sequencing, shotgun metagenomic reads were aligned to reference databases for identification of bacteria (Kraken) and antibiotic resistance genes (ARGs) accessions (MEGARes). Differences in microbial resistomes were found across farms with different production practices (CONV vs. RWA), types of cattle (beef vs. dairy), and types of sample (feces vs. wastewater vs. soil). Feces had the greatest number of ARGs per sample (mean = 118 and 79 in CONV and RWA, respectively), with tetracycline efflux pumps, macrolide phosphotransferases, and aminoglycoside nucleotidyltransferases mechanisms of resistance more abundant in CONV than in RWA feces. Tetracycline and macrolide–lincosamide–streptogramin classes of resistance were more abundant in feedlot cattle than in dairy cow feces, whereas the β-lactam class was more abundant in dairy cow feces. Lack of congruence between ARGs and microbial communities (procrustes analysis) suggested that other factors (e.g., location of farms, cattle source, management practices, diet, horizontal ARGs transfer, and co-selection of resistance), in addition to antimicrobial use, could have impacted resistome profiles. For that reason, we could not establish a cause–effect relationship between antimicrobial use and AMR, although ARGs in feces and effluents were associated with drug classes used to treat animals according to farms’ records (tetracyclines and macrolides in feedlots, β-lactams in dairies), whereas ARGs in soil were dominated by multidrug resistance. Characterization of the “resistance potential” of animal-derived and environmental samples is the first step toward incorporating metagenomic approaches into AMR surveillance in agricultural systems. Further research is needed to assess the public-health risk associated with different microbial resistomes.
Collapse
Affiliation(s)
- Pablo Rovira
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Steven M Lakin
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Enrique Doster
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Noelle R Noyes
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Maggie D Weinroth
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Xiang Yang
- Department of Animal Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer K Parker
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, AB, Canada
| | - Dale R Woerner
- Department of Animal and Food Sciences, College of Agricultural Sciences & Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Keith E Belk
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Paul S Morley
- VERO - Veterinary Education, Research, and Outreach Program, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| |
Collapse
|
22
|
Roope LSJ, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, Butler CC, Tan PS, Walker AS, Robotham JV, Wordsworth S. The challenge of antimicrobial resistance: What economics can contribute. Science 2019; 364:364/6435/eaau4679. [DOI: 10.1126/science.aau4679] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As antibiotic consumption grows, bacteria are becoming increasingly resistant to treatment. Antibiotic resistance undermines much of modern health care, which relies on access to effective antibiotics to prevent and treat infections associated with routine medical procedures. The resulting challenges have much in common with those posed by climate change, which economists have responded to with research that has informed and shaped public policy. Drawing on economic concepts such as externalities and the principal–agent relationship, we suggest how economics can help to solve the challenges arising from increasing resistance to antibiotics. We discuss solutions to the key economic issues, from incentivizing the development of effective new antibiotics to improving antibiotic stewardship through financial mechanisms and regulation.
Collapse
|
23
|
Brockhurst MA, Harrison F, Veening JW, Harrison E, Blackwell G, Iqbal Z, Maclean C. Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat Ecol Evol 2019; 3:515-517. [DOI: 10.1038/s41559-019-0854-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Nogueira T, David PHC, Pothier J. Antibiotics as both friends and foes of the human gut microbiome: The microbial community approach. Drug Dev Res 2018; 80:86-97. [PMID: 30370682 DOI: 10.1002/ddr.21466] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
The exposure of the human gut to antibiotics can have a great impact on human health. Antibiotics pertain to the preservation of human health and are useful tools for fighting bacterial infections. They can be used for curing infections and can play a critical role in immunocompromised or chronic patients, or in fighting childhood severe malnutrition. Yet, the genomic and phylogenetic diversity of the human gut changes under antibiotic exposure. Antibiotics can also have severe side effects on human gut health, due to the spreading of potential antibiotic resistance genetic traits and to their correlation with virulence of some bacterial pathogens. They can shape, and even disrupt, the composition and functioning diversity of the human gut microbiome. Traditionally bacterial antibiotic resistances have been evaluated at clone or population level. However, the understanding of these two apparently disparate perspectives as both friends and foes may come from the study of microbiomes as a whole and from the evaluation of both positive and negative effects of antibiotics on microbial community dynamics and diversity. In this review we present some metagenomic tools and databases that enable the studying of antibiotic resistance in human gut metagenomes, promoting the development of personalized medicine strategies, new antimicrobial therapy protocols and patient follow-up.
Collapse
Affiliation(s)
- Teresa Nogueira
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro H C David
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joël Pothier
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum National d'Histoire naturelle, CNRS, EPHE, CP, Paris, France
| |
Collapse
|
25
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
26
|
Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect 2018; 7:98. [PMID: 29872078 PMCID: PMC5988693 DOI: 10.1038/s41426-018-0101-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/13/2023]
Abstract
Compensatory mutations have been suggested to promote multidrug-resistant tuberculosis (MDR-TB) transmission, but their role in facilitating the recent transmission of MDR-TB is unclear. To investigate the epidemiological significance of compensatory mutations, we analyzed a four-year population-based collection of MDR-TB strains from Shanghai (the most populous city in China) and 1346 published global MDR-TB strains. We report that MDR-TB strains with compensatory mutations in the rpoA, rpoB, or rpoC genes were neither more frequently clustered nor found in larger clusters than those without compensatory mutations. Our results suggest that compensatory mutations are not a major contributor to the current epidemic of MDR-TB.
Collapse
|
27
|
Leale AM, Kassen R. The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime. Evol Lett 2018; 2:134-143. [PMID: 30283671 PMCID: PMC6121846 DOI: 10.1002/evl3.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a growing global threat that, in the absence of new antibiotics, requires effective management of existing drugs. Here, we use experimental evolution of the opportunistic human pathogen Pseudomonas aeruginosa to explore how changing patterns of drug delivery modulates the spread of resistance in a population. Resistance evolves readily under both temporal and spatial variation in drug delivery and fixes rapidly under temporal, but not spatial, variation. Resistant and sensitive genotypes coexist in spatially varying conditions due to a resistance‐growth rate trade‐off which, when coupled to dispersal, generates negative frequency‐dependent selection and a quasi‐protected polymorphism. Coexistence is ultimately lost, however, because resistant types with improved growth rates in the absence of drug spread through the population. These results suggest that spatially variable drug prescriptions can delay but not prevent the spread of resistance and provide a striking example of how the emergence and eventual demise of biodiversity is underpinned by evolving fitness trade‐offs.
Collapse
Affiliation(s)
- Alanna M Leale
- Department of Biology University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Rees Kassen
- Department of Biology University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
28
|
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals (Basel) 2018; 11:ph11010014. [PMID: 29389876 PMCID: PMC5874710 DOI: 10.3390/ph11010014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/16/2022] Open
Abstract
Persistence is a phenomenon during which a small fraction of a total bacterial population survives treatment with high concentrations of antibiotics for an extended period of time. In conjunction with biofilms, antibiotic persisters represent a major cause of recalcitrant and recurring infections, resulting in significant morbidity and mortality. In this review, we discuss the clinical significance of persister cells and the central role of bacterial metabolism in their formation, specifically with respect to carbon catabolite repression, sugar metabolism, and growth regulation. Additionally, we will examine persister formation as an evolutionary strategy used to tolerate extended periods of stress and discuss some of the response mechanisms implicated in their formation. To date, the vast majority of the mechanistic research examining persistence has been conducted in artificial in vitro environments that are unlikely to be representative of host conditions. Throughout this review, we contextualize the existing body of literature by discussing how in vivo conditions may create ecological niches that facilitate the development of persistence. Lastly, we identify how the development of next-generation sequencing and other “big data” tools may enable researchers to examine persistence mechanisms within the host to expand our understanding of their clinical importance.
Collapse
|
29
|
Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, Schoenrock A, Pitre S, Wong A. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biol Evol 2018; 10:667-679. [PMID: 29432584 PMCID: PMC5817949 DOI: 10.1093/gbe/evy030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. Although studies of single resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extraintestinal clinical isolates of Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics. Whole-genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between resistance and growth. However, this relationship is sometimes weak and depends on the environment in which growth rates are measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects, resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore, our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes.
Collapse
Affiliation(s)
- Prabh Basra
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ahlam Alsaadi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Bryn Hazlett
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Yang Q, Li M, Spiller OB, Andrey DO, Hinchliffe P, Li H, MacLean C, Niumsup P, Powell L, Pritchard M, Papkou A, Shen Y, Portal E, Sands K, Spencer J, Tansawai U, Thomas D, Wang S, Wang Y, Shen J, Walsh T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 2017; 8:2054. [PMID: 29233990 PMCID: PMC5727292 DOI: 10.1038/s41467-017-02149-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022] Open
Abstract
MCR-1 is a lipid A modifying enzyme that confers resistance to the antibiotic colistin. Here, we analyse the impact of MCR-1 expression on E. coli morphology, fitness, competitiveness, immune stimulation and virulence. Increased expression of mcr-1 results in decreased growth rate, cell viability, competitive ability and significant degradation in cell membrane and cytoplasmic structures, compared to expression of catalytically inactive MCR-1 (E246A) or MCR-1 soluble component. Lipopolysaccharide (LPS) extracted from mcr-1 strains induces lower production of IL-6 and TNF, when compared to control LPS. Compared to their parent strains, high-level colistin resistance mutants (HLCRMs) show reduced fitness (relative fitness is 0.41-0.78) and highly attenuated virulence in a Galleria mellonella infection model. Furthermore, HLCRMs are more susceptible to most antibiotics than their respective parent strains. Our results show that the bacterium is challenged to find a delicate equilibrium between expression of MCR-1-mediated colistin resistance and minimalizing toxicity and thus ensuring cell survival.
Collapse
Affiliation(s)
- Qiue Yang
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Mei Li
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Owen B Spiller
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Diego O Andrey
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva, Switzerland
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Pannika Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lydia Powell
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Manon Pritchard
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrei Papkou
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Yingbo Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Edward Portal
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - David Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Shaolin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
31
|
Allen RC, Engelstädter J, Bonhoeffer S, McDonald BA, Hall AR. Reversing resistance: different routes and common themes across pathogens. Proc Biol Sci 2017; 284:20171619. [PMID: 28954914 PMCID: PMC5627214 DOI: 10.1098/rspb.2017.1619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 11/12/2022] Open
Abstract
Resistance spreads rapidly in pathogen or pest populations exposed to biocides, such as fungicides and antibiotics, and in many cases new biocides are in short supply. How can resistance be reversed in order to prolong the effectiveness of available treatments? Some key parameters affecting reversion of resistance are well known, such as the fitness cost of resistance. However, the population biological processes that actually cause resistance to persist or decline remain poorly characterized, and consequently our ability to manage reversion of resistance is limited. Where do susceptible genotypes that replace resistant lineages come from? What is the epidemiological scale of reversion? What information do we need to predict the mechanisms or likelihood of reversion? Here, we define some of the population biological processes that can drive reversion, using examples from a wide range of taxa and biocides. These processes differ primarily in the origin of revertant genotypes, but also in their sensitivity to factors such as coselection and compensatory evolution that can alter the rate of reversion, and the likelihood that resistance will re-emerge upon re-exposure to biocides. We therefore argue that discriminating among different types of reversion allows for better prediction of where resistance is most likely to persist.
Collapse
Affiliation(s)
- Richard C Allen
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Bruce A McDonald
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| |
Collapse
|
32
|
Moura de Sousa J, Balbontín R, Durão P, Gordo I. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol 2017; 15:e2001741. [PMID: 28419091 PMCID: PMC5395140 DOI: 10.1371/journal.pbio.2001741] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
Mutations conferring resistance to antibiotics are typically costly in the absence of the drug, but bacteria can reduce this cost by acquiring compensatory mutations. Thus, the rate of acquisition of compensatory mutations and their effects are key for the maintenance and dissemination of antibiotic resistances. While compensation for single resistances has been extensively studied, compensatory evolution of multiresistant bacteria remains unexplored. Importantly, since resistance mutations often interact epistatically, compensation of multiresistant bacteria may significantly differ from that of single-resistant strains. We used experimental evolution, next-generation sequencing, in silico simulations, and genome editing to compare the compensatory process of a streptomycin and rifampicin double-resistant Escherichia coli with those of single-resistant clones. We demonstrate that low-fitness double-resistant bacteria compensate faster than single-resistant strains due to the acquisition of compensatory mutations with larger effects. Strikingly, we identified mutations that only compensate for double resistance, being neutral or deleterious in sensitive or single-resistant backgrounds. Moreover, we show that their beneficial effects strongly decrease or disappear in conditions where the epistatic interaction between resistance alleles is absent, demonstrating that these mutations compensate for the epistasis. In summary, our data indicate that epistatic interactions between antibiotic resistances, leading to large fitness costs, possibly open alternative paths for rapid compensatory evolution, thereby potentially stabilizing costly multiple resistances in bacterial populations. Antibiotics target essential cellular functions, such as translation or cell wall biogenesis, and bacteria can become resistant to antibiotics by acquiring mutations in genes encoding those functions. This causes most drug-resistance mutations to be detrimental in the absence of the drug. However, bacteria can reduce this handicap by acquiring additional mutations, known as compensatory mutations. Compensatory evolution is crucial for the maintenance and dissemination of antibiotic resistances in bacterial populations. While compensation for single resistances has been extensively studied, compensatory evolution of multidrug-resistant bacteria remains unexplored. Importantly, interactions between resistance mutations are frequent, and this may cause compensation of multidrug-resistant bacteria to differ significantly from that of single-resistant strains. By comparing compensation of single- and double-drug–resistant E. coli, we found that double-drug–resistant bacteria compensate faster than single-drug–resistant strains. This is due to the acquisition of compensatory mutations with larger effects and possibly driven by the large fitness cost of double-drug resistance. Strikingly, we identified mutations that compensate specifically for the interaction between drug resistances, since they are beneficial only for double-drug–resistant bacteria and in conditions in which the interaction between resistances occurs. In summary, our data indicate that certain interactions between antibiotic-resistance mutations can open alternative paths for rapid compensatory evolution, thereby potentially stabilizing multiple drug resistances in bacterial populations.
Collapse
Affiliation(s)
| | | | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
33
|
Wong A. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol 2017; 8:246. [PMID: 28261193 PMCID: PMC5313483 DOI: 10.3389/fmicb.2017.00246] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The fitness effects of a mutation can depend, sometimes dramatically, on genetic background; this phenomenon is often referred to as “epistasis.” Epistasis can have important practical consequences in the context of antimicrobial resistance (AMR). For example, genetic background plays an important role in determining the costs of resistance, and hence in whether resistance will persist in the absence of antibiotic pressure. Furthermore, interactions between resistance mutations can have important implications for the evolution of multi-drug resistance. I argue that there is a need to better characterize the extent and nature of epistasis for mutations and horizontally transferred elements conferring AMR, particularly in clinical contexts. Furthermore, I suggest that epistasis should be an important consideration in attempts to slow or limit the evolution of AMR.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa ON, Canada
| |
Collapse
|
34
|
McBryde ES, Meehan MT, Doan TN, Ragonnet R, Marais BJ, Guernier V, Trauer JM. The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains. Int J Infect Dis 2017; 56:14-20. [PMID: 28163165 DOI: 10.1016/j.ijid.2017.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Multidrug-resistant tuberculosis (MDR-TB) is a threat to tuberculosis (TB) control. To guide TB control, it is essential to understand the extent to which and the circumstances in which MDR-TB will replace drug-susceptible TB (DS-TB) as the dominant phenotype. The issue was examined by assessing evidence from genomics, pharmacokinetics, and epidemiology studies. This evidence was then synthesized into a mathematical model. METHODS This model considers two TB strains, one with and one without an MDR phenotype. It was considered that intrinsic transmissibility may be different between the two strains, as may the control response including the detection, treatment failure, and default rates. The outcomes were explored in terms of the incidence of MDR-TB and time until MDR-TB surpasses DS-TB as the dominant strain. RESULTS AND CONCLUSIONS The ability of MDR-TB to dominate DS-TB was highly sensitive to the relative transmissibility of the resistant strain; however, MDR-TB could dominate even when its transmissibility was modestly reduced (to between 50% and 100% as transmissible as the DS-TB strain). This model suggests that it may take decades or more for strain replacement to occur. It was also found that while the amplification of resistance is the early cause of MDR-TB, this will rapidly give way to person-to-person transmission.
Collapse
Affiliation(s)
- Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - Tan N Doan
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Romain Ragonnet
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia; Centre for Population Health, the Burnet Institute, Melbourne, Victoria, Australia
| | - Ben J Marais
- The Children's Hospital at Westmead and the Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), University of Sydney, Sydney, New South Wales, Australia
| | - Vanina Guernier
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Victorian Tuberculosis Program at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Le Lam TN, Morvan C, Liu W, Bohn C, Jaszczyszyn Y, Bouloc P. Finding sRNA-associated phenotypes by competition assays: An example with Staphylococcus aureus. Methods 2016; 117:21-27. [PMID: 27916561 DOI: 10.1016/j.ymeth.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023] Open
Abstract
Bacteria optimize their fitness in response to a changing environment by tight regulation of gene expression. Regulation can be controlled at both transcriptional and post-transcriptional levels via key players such as sigma factors, regulatory proteins and regulatory RNAs. The identification of phenotypes associated with gene deletions is the established method for finding gene functions but may require testing many conditions for each studied mutant. As regulatory RNAs often contribute to fine-tuning gene expression, phenotypes associated with their inactivation are often weak and difficult to detect. Nevertheless, minor phenotypes conferring modest advantages, may allow bacteria to emerge after some generations under selective pressure. A strategy employing DNA barcodes can be used to perform competition experiments between mutants and to monitor fitness associated with mutations in different growth conditions. We combined this strategy with deep sequencing to study regulatory RNAs in Staphylococcus aureus, a major opportunistic pathogen.
Collapse
Affiliation(s)
- Thao Nguyen Le Lam
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Claire Morvan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wenfeng Liu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chantal Bohn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Qi Q, Toll-Riera M, Heilbron K, Preston GM, MacLean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proc Biol Sci 2016; 283:rspb.2015.2452. [PMID: 26763710 PMCID: PMC4721101 DOI: 10.1098/rspb.2015.2452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings.
Collapse
Affiliation(s)
- Qin Qi
- Department of Zoology, University of Oxford, Oxford, UK Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, UK Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Karl Heilbron
- Department of Zoology, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
37
|
Clint E, Fessler DMT. INSURMOUNTABLE HEAT: THE EVOLUTION AND PERSISTENCE OF DEFENSIVE HYPERTHERMIA. QUARTERLY REVIEW OF BIOLOGY 2016; 91:25-46. [PMID: 27192778 DOI: 10.1086/685302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fever, the rise in body temperature set point in response to infection or injury, is a highly conserved trait among vertebrates, and documented in many arthropods. Fever is known to reduce illness duration and mortality. These observations present an evolutionary puzzle: why has fever continued to be an effective response to fast-evolving pathogenic microbes across diverse phyla, and probably over countless millions of years? Framing fever as part of a more general thermal manipulation strategy that we term defensive hyperthermia, we hypothesize that the solution lies in the independent contributions to pathogen fitness played by virulence and infectivity. A host organism deploying defensive hyperthermia alters the ecological environment of an invading pathogen. To the extent that the pathogen evolves to be able to function effectively at elevated temperatures, it disadvantages itself at infecting the next (thermonormative) host, becoming more likely to be thwarted by that host's immune system and outcompeted by wild ecotype conspecifics (a genetically distinct strain adapted to specific environmental conditions) that, although more vulnerable to elevated temperatures, operate more effectively at the host's normal temperature. We evaluate this hypothesis in light of existing evidence concerning pathogen thermal specialization, and discuss theoretical and translational implications of this model.
Collapse
|
38
|
Gifford DR, Moss E, MacLean RC. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution 2016; 70:725-30. [PMID: 26880677 DOI: 10.1111/evo.12880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
The fitness effects of antibiotic resistance mutations in antibiotic-free conditions play a key role in determining the long-term maintenance of resistance. Although resistance is usually associated with a cost, the impact of environmental variation on the cost of resistance is poorly understood. Here, we test the impact of heterogeneity in temperature and resource availability on the fitness effects of antibiotic resistance using strains of the pathogenic bacterium Pseudomonas aeruginosa carrying clinically important rifampicin resistance mutations. Although the rank order of fitness was generally maintained across environments, fitness effects relative to the wild type differed significantly. Changes in temperature had a profound impact on the fitness effects of resistance, whereas changes in carbon substrate had only a weak impact. This suggests that environmental heterogeneity may influence whether the costs of resistance are likely to be ameliorated by second-site compensatory mutations or by reversion to wild-type rpoB. Our results highlight the need to consider environmental heterogeneity and genotype-by-environment interactions for fitness in models of resistance evolution.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom.
| | - Ethan Moss
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom
| |
Collapse
|
39
|
Xiao KQ, Li B, Ma L, Bao P, Zhou X, Zhang T, Zhu YG. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol Ecol 2016; 92:fiw023. [PMID: 26850156 DOI: 10.1093/femsec/fiw023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022] Open
Abstract
Overuse and arbitrary discarding of antibiotics have expanded antibiotic resistance reservoirs, from gut, waste water and activated sludge, to soil, freshwater and even the ocean. Based on the structured Antibiotic Resistance Genes Database and next generation sequencing, metagenomic analysis was used for the first time to detect and quantify antibiotic resistance genes (ARGs) in paddy soils from South China. A total of 16 types of ARGs were identified, corresponding to 110 ARG subtypes. The abundances and distribution pattern of ARGs in paddy soil were distinctively different from those in activated sludge and pristine deep ocean sediment, but close to those of sediment from human-impacted estuaries. Multidrug resistance genes were the most dominant type (38-47.5%) in all samples, and the ARGs detected encompassed the three major resistance mechanisms, among which extrusion by efflux pumps was predominant. Redundancy analysis (RDA) showed that pH was significantly correlated with the distribution of ARG subtypes (P < 0.05). Our results provided a broad spectrum profile of ARGs in paddy soil, indicating that ARGs are widespread in paddy soils of South China.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bing Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Liping Ma
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Bao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Xue Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|