1
|
Schwartz PJ, Dagradi F, Giovenzana FLF, Cerea P. Managing long QT syndrome patients, cooking, and common sense. Eur Heart J Suppl 2025; 27:i47-i50. [PMID: 39980792 PMCID: PMC11836685 DOI: 10.1093/eurheartjsupp/suae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
This essay stems from a controversial recommendation present in the 2022 European Guidelines which indicated the appropriateness of considering an implantable cardioverter defibrillator (ICD) implant even for still asymptomatic long QT syndrome (LQTS) patients deemed to be at high risk by the 1-2-3 LQTS score based on QTc and genotype calculated prior to the institution of therapy. As 15 years ago, we also had proposed, but never used, a risk score called M-FACT to identify patients at high risk of an appropriate ICD shock, we felt the responsibility of assessing what would have happened to our patients if we had rigorously used that score. We performed a study recently published in the European Heart Journal which brought to general attention two concepts important for clinical management. One is that all LQTS patients should be seen at least once a year for a reassessment of arrhythmic risk based on standard electrocardiogram, 12-lead 24 h Holter recording and an exercise stress test. The other is that, based on these yearly visits, we perform 'therapy optimization' by adding to the standard β-blocker therapy either left cardiac sympathetic denervation or mexiletine or an ICD implant. On almost 1000 LQTS patients, all genotyped, this dynamic approach was accompanied by not a single death, few events, and out of 142 patients who should have received an ICD based on the score, only 22 did and only 3 had an ICD shock. These data and concepts call for a reconsideration of the recommendation made by the guidelines.
Collapse
Affiliation(s)
- Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Fulvio L F Giovenzana
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Paolo Cerea
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo 22, 20135 Milan, Italy
| |
Collapse
|
2
|
Martini M, Rigato I, Masini M, De Lazzari M, Mattesi G, Pilichou K, Pittorru R, Migliore F, Bauce B. Risk stratification in arrhythmogenic cardiomyopathy: scoring or personalized medicine? Eur Heart J Suppl 2025; 27:i36-i39. [PMID: 39980766 PMCID: PMC11836712 DOI: 10.1093/eurheartjsupp/suae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Almost 40 years after the description of arrhythmogenic cardiomyopathy (ACM), arrhythmic risk stratification remains central to patient management. Antiarrhythmic therapy may involve the use of antiarrhythmic drugs as well as invasive tools such as catheter ablation, with the implantation of an implantable cardioverter defibrillator being of utmost importance. Given the wide phenotypic variability of ACM, the first step in arrhythmic risk stratification requires a thorough assessment of clinical, morphological, and electrical parameters. Moreover, in the last years, genetic testing has become increasingly important, not only for family screening but also in determining prognosis. Finally, data from large series of ACM patients have led to the creation of risk calculators, which are now available online for the medical community. While newly available methods for stratifying arrhythmic risk can be useful, the thoughtful clinical decision-making by clinicians with specific expertise in cardiomyopathies remains of fundamental importance. Additionally, as ACM is a progressive disease, arrhythmic risk stratification should be periodically revised based on newly emerging clinical and instrumental parameters.
Collapse
Affiliation(s)
- Marika Martini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Marta Masini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Giulia Mattesi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Raimondo Pittorru
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, v. Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
3
|
Corrado D, Thiene G, Bauce B, Calore C, Cipriani A, De Lazzari M, Migliore F, Perazzolo Marra M, Pilichou K, Rigato I, Rizzo S, Zorzi A, Basso C. The "Padua classification" of cardiomyopathies: Combining pathobiological basis and morpho-functional remodeling. Int J Cardiol 2025; 418:132571. [PMID: 39306295 DOI: 10.1016/j.ijcard.2024.132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Over the last 20 years, the scientific progresses in molecular biology and genetics in combination with the increasing use in the clinical setting of contrast-enhanced cardiac magnetic resonance (CMR) for morpho-functional imaging and structural myocardial tissue characterization have provided important new insights into our understanding of the distinctive aspects of cardiomyopathy, regarding both the genetic and biologic background and the clinical phenotypic features. This has led to the need of an appropriate revision and upgrading of current nosographic framework and pathobiological categorization of heart muscle disorders. This article proposes a new definition and classification of cardiomyopathies that rely on the combination of the distinctive pathobiological basis (genetics, molecular biology and pathology) and the clinical phenotypic pattern (morpho-functional and structural features), leading to the proposal of three different disease categories, each of either genetic or non-genetic etiology and characterized by a combined designation based on both "anatomic" and "functional" features, i.e., hypertrophic/restrictive (H/RC), dilated/hypokinetic (D/HC) and scarring/arrhythmogenic cardiomyopathy (S/AC). The clinical application of the newly proposed classification approach in the real-world practice appears crucial to design a targeted clinical management and evaluation of outcomes of affected patients. Although current treatment of cardiomyopathies is largely palliative and based on drugs, catheter ablation, device or surgical interventions aimed to prevent and manage heart failure and malignant arrhythmias, better knowledge of basic mechanisms involved in the onset and progression of pathobiologically different heart muscle diseases may allow to the development of disease-specific curative therapy.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy.
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Chiara Calore
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Manuel De Lazzari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Federico Migliore
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Ilaria Rigato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| |
Collapse
|
4
|
Neves R, Crotti L, Bains S, Bos JM, Dagradi F, Musu G, Garmany R, Giovenzana FLF, Cerea P, Giudicessi JR, Schwartz PJ, Ackerman MJ. Frequency of and outcomes associated with nonadherence to guideline-based recommendations for an implantable cardioverter-defibrillator in patients with congenital long QT syndrome. Heart Rhythm 2024:S1547-5271(24)03394-0. [PMID: 39366437 DOI: 10.1016/j.hrthm.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Guideline-directed device therapy for long QT syndrome (LQTS) has evolved during the years, and indications for an implantable cardioverter-defibrillator (ICD) vary between professional cardiac societies. OBJECTIVE We aimed to identify the subset of patients with LQTS who satisfied a class I or class II 2022 European Society of Cardiology guideline-based recommendation for an ICD and to determine the outcomes of those patients who received an ICD compared with those treated without an ICD. METHODS Retrospective analysis was conducted of 2861 patients with LQT1, LQT2, or LQT3 to identify patients meeting contemporary recommendations for guideline-directed device therapy. Basic demographics, clinical characteristics, and frequency/type of breakthrough cardiac events (BCEs) were extracted, and outcomes/complications were compared between patients treated with an ICD and those treated without one. RESULTS Of the 290 patients (approximately 10%) who met a guideline-based recommendation, 53 (18%) satisfied a class I/level B indication for an ICD; 56 (19%), a class I/level C indication; 19 (7%), a class IIa/level C indication; and 162 (56%), a class IIb/level B indication. However, most patients (156/290 [54%]) did not receive an ICD. Of those who received an ICD, 55 of 134 (41%) experienced ≥1 appropriate ventricular fibrillation-terminating ICD therapy, whereas ICD-related complications occurred in 13 patients (10%). Of those who were treated without an ICD, only 6 of 156 patients (4%) had nonlethal BCEs, which was significantly lower compared with the ICD group (P < .001). CONCLUSION With >1200 years of combined follow-up, the experience and evidence from our 2 LQTS specialty centers suggest that many patients who satisfy a recommendation for an ICD based on the latest 2022 European Society of Cardiology guidelines may not need one. This is particularly true when the indication stemmed from a BCE while receiving beta blocker therapy or in asymptomatic patients with an increased 1-2-3-LQTS-Risk score.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Federica Dagradi
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Giulia Musu
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Ramin Garmany
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Fulvio L F Giovenzana
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Paolo Cerea
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - John R Giudicessi
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Divisions of Heart Rhythm Services and Circulatory Failure, Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy.
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Divisions of Heart Rhythm Services and Circulatory Failure, Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
5
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Wilde AAM, van der Werf C. Risk scores in congenital long QT syndrome: friend or foe? Eur Heart J 2024; 45:2657-2659. [PMID: 38982981 DOI: 10.1093/eurheartj/ehae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Affiliation(s)
- Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Christian van der Werf
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Crea F. Spotlight on hot topics: subclinical atrial fibrillation, risk stratification of channelopathies, and cardioprotection. Eur Heart J 2024; 45:2579-2583. [PMID: 39096162 DOI: 10.1093/eurheartj/ehae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2024] Open
Affiliation(s)
- Filippo Crea
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
8
|
Dusi V, Dagradi F, Spazzolini C, Crotti L, Cerea P, Giovenzana FLF, Musu G, Pedrazzini M, Torchio M, Schwartz PJ. Long QT syndrome: importance of reassessing arrhythmic risk after treatment initiation. Eur Heart J 2024; 45:2647-2656. [PMID: 38751064 PMCID: PMC11297500 DOI: 10.1093/eurheartj/ehae289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND AIMS Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (βB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received βBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.
Collapse
Affiliation(s)
- Veronica Dusi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Carla Spazzolini
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Paolo Cerea
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Fulvio L F Giovenzana
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Giulia Musu
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Matteo Pedrazzini
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Margherita Torchio
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| |
Collapse
|
9
|
Sarquella-Brugada G, Martínez-Barrios E, Cesar S, Toro R, Cruzalegui J, Greco A, Díez-Escuté N, Cerralbo P, Chipa F, Arbelo E, Diez-López C, Grazioli G, Balderrábano N, Campuzano O. A narrative review of inherited arrhythmogenic syndromes in young population: role of genetic diagnosis in exercise recommendations. BMJ Open Sport Exerc Med 2024; 10:e001852. [PMID: 38975025 PMCID: PMC11227825 DOI: 10.1136/bmjsem-2023-001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Sudden cardiac death is a rare but socially devastating event, especially if occurs in young people. Usually, this unexpected lethal event occurs during or just after exercise. One of the leading causes of sudden cardiac death is inherited arrhythmogenic syndromes, a group of genetic entities characterised by incomplete penetrance and variable expressivity. Exercise can be the trigger for malignant arrhythmias and even syncope in population with a genetic predisposition, being sudden cardiac death as the first symptom. Due to genetic origin, family members must be clinically assessed and genetically analysed after diagnosis or suspected diagnosis of a cardiac channelopathy. Early identification and adoption of personalised preventive measures is crucial to reduce risk of arrhythmias and avoid new lethal episodes. Despite exercise being recommended by the global population due to its beneficial effects on health, particular recommendations for these patients should be adopted considering the sport practised, level of demand, age, gender, arrhythmogenic syndrome diagnosed but also genetic diagnosis. Our review focuses on the role of genetic background in sudden cardiac death during exercise in child and young population.
Collapse
Affiliation(s)
- Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
| | - Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - José Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Andrea Greco
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Nuria Díez-Escuté
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Patricia Cerralbo
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Fredy Chipa
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Elena Arbelo
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carles Diez-López
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL) Hospitalet de Llobregat, Barcelona, Spain
- Advanced Heart Failure and Heart Transplant Unit, Department of Cardiology, Bellvitge University Hospital Hospitalet de Llobregat, Barcelona, Spain
| | | | - Norma Balderrábano
- Cardiology Department, Children Hospital of Mexico Federico Gómez, México D.F, Mexico
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdiques de Girona (IDIBGI), Salt-Girona, Spain
| |
Collapse
|
10
|
Triposkiadis F, Xanthopoulos A, Drakos SG, Boudoulas KD, Briasoulis A, Skoularigis J, Tsioufis K, Boudoulas H, Starling RC. Back to the basics: The need for an etiological classification of chronic heart failure. Curr Probl Cardiol 2024; 49:102460. [PMID: 38346611 DOI: 10.1016/j.cpcardiol.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The left ventricular (LV) ejection fraction (LVEF), despite its severe limitations, has had an epicentral role in heart failure (HF) classification, management, and risk stratification for decades. The major argument favoring the LVEF based HF classification has been that it defines groups of patients in which treatment is effective. However, this reasoning has recently collapsed, since medical treatment with neurohormonal inhibitors, has proved beneficial in most HF patients regardless of the LVEF. In addition, there has been compelling evidence, that the LVEF provides poor guidance for device treatment of chronic HF (implantation of cardioverter defibrillator, cardiac resynchronization therapy) since sudden cardiac death may occur and cardiac dyssynchronization may be disastrous in all HF patients. The same holds true for LV assist device implantation, in which the LVEF has been used as a surrogate for LV size. In this review article we update the evidence questioning the use of LVEF-based HF classification and argue that guidance of chronic HF treatment should transition to more contemporary concepts. Specifically, we propose an etiologic chronic HF classification predominantly based on epidemiological data, which will be foundational for further higher resolution phenotyping in the emerging era of precision medicine.
Collapse
Affiliation(s)
- Filippos Triposkiadis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece.
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Stavros G Drakos
- University of Utah Health and School of Medicine and Salt Lake VA Medical Center, Salt Lake City, UT 84108, USA
| | | | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens 15772, Greece
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, Hippokration Hospital, University of Athens, Athens 115 27, Greece
| | | | - Randall C Starling
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Schwartz PJ, Cerea P. A paradigm change in sudden cardiac death risk prediction: 'static' goes out, 'dynamic' comes in. Eur Heart J 2024; 45:820-822. [PMID: 38320251 DOI: 10.1093/eurheartj/ehae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Paolo Cerea
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| |
Collapse
|
12
|
Roy P, Sah V, Deb N, Jaiswal V. Navigating the path of TOF- A Literature review unveiling maternal-fetal dynamics, treatment strategies and psychological dimensions. Dis Mon 2024; 70:101659. [PMID: 37951837 DOI: 10.1016/j.disamonth.2023.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Tetralogy of Fallot (TOF) is a complex congenital heart defect that poses unique challenges for both mothers and their unborn children. This comprehensive review, aims to provide a holistic exploration of the maternal-fetal dynamics, treatment strategies, and psychological dimensions involved in navigating the path of TOF during pregnancy. It delves into the physiological changes that occur during pregnancy in TOF patients, including pulmonary regurgitation, right ventricular hypertrophy, and the overriding aorta. By understanding these dynamics, healthcare professionals can tailor treatment strategies to optimize maternal and fetal outcomes. The review further investigates the treatment strategies employed in managing TOF during pregnancy, encompassing medical interventions, cardiac monitoring, and multidisciplinary care. It explores the role of advanced imaging techniques, such as echocardiography and cardiac magnetic resonance imaging, in assessing TOF severity and guiding treatment decisions. The psychological factors influencing maternal adaptation, coping strategies, and the long-term implications on the child's psychological development are also examined. The integration of multidisciplinary approaches, including cardiac care, psychosocial support, and mental health interventions, can orchestrate a harmonious symphony of maternal-fetal well-being in the challenging journey of TOF pregnancies. Future research endeavours should continue to explore these dimensions, further refining treatment strategies and enhancing the understanding of TOF pregnancies for improved outcomes.
Collapse
Affiliation(s)
- Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, India
| | - Viraj Sah
- Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai
| | - Novonil Deb
- Department of Medicine, North Bengal Medical College and Hospital, India.
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| |
Collapse
|
13
|
Corrado D, Anastasakis A, Basso C, Bauce B, Blomström-Lundqvist C, Bucciarelli-Ducci C, Cipriani A, De Asmundis C, Gandjbakhch E, Jiménez-Jáimez J, Kharlap M, McKenna WJ, Monserrat L, Moon J, Pantazis A, Pelliccia A, Perazzolo Marra M, Pillichou K, Schulz-Menger J, Jurcut R, Seferovic P, Sharma S, Tfelt-Hansen J, Thiene G, Wichter T, Wilde A, Zorzi A. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395:131447. [PMID: 37844667 DOI: 10.1016/j.ijcard.2023.131447] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy.
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carina Blomström-Lundqvist
- Department of Cardiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis, Brussel - Vrije Universiteit Brussel, Belgium
| | - Estelle Gandjbakhch
- Sorbonne Universitè, APHP, Centre de Référence des Maladies Cardiaques héréditaires Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Maria Kharlap
- Department of cardiac arrhythmias, National Centre for Therapy and Preventive Medicine, Moscow, Petroverigsky, Russia
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Lorenzo Monserrat
- Cardiovascular Genetics, Medical Department, Dilemma Solutions SL, A Coruña, Spain
| | - James Moon
- CMR Service, Barts Heart Centre, University College London, United Kingdom
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, London, United Kingdom
| | | | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Kalliopi Pillichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Jeanette Schulz-Menger
- Charité, Universitätsmedizin Berlin, Campus Buch - ECRC and Helios Clinics, DZHK Partnersite Berlin, Germany
| | - Ruxandra Jurcut
- Expert Center for Rare Genetic Cardiovascular Diseases, Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", UMF "Carol Davila", Bucharest, Romania
| | - Petar Seferovic
- University of Belgrade, Faculty of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, United Kingdom
| | - Jacob Tfelt-Hansen
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gaetano Thiene
- University of Padua Medical School, ARCA Associazione Ricerche Cardiopatie Aritmiche ETS, Padova, Italy
| | - Thomas Wichter
- Dept. of Internal Medicine / Cardiology, Heart Center Osnabrück - Bad Rothenfelde, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| |
Collapse
|
14
|
Gasperetti A, James CA, Carrick RT, Protonotarios A, te Riele ASJM, Cadrin-Tourigny J, Compagnucci P, Duru F, van Tintelen P, Elliot PM, Calkins H. Arrhythmic risk stratification in arrhythmogenic right ventricular cardiomyopathy. Europace 2023; 25:euad312. [PMID: 37935403 PMCID: PMC10674106 DOI: 10.1093/europace/euad312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable cardiomyopathy characterized by a predominantly arrhythmic presentation. It represents the leading cause of sudden cardiac death (SCD) among athletes and poses a significant morbidity threat in the general population. As a causative treatment for ARVC is still not available, the placement of an implantable cardioverter defibrillator represents the current cornerstone for SCD prevention in this setting. Thanks to international ARVC-dedicated efforts, significant steps have been achieved in recent years towards an individualized, patient-centred risk stratification approach. A novel risk calculator algorithm estimating the 5-year risk of arrhythmias of patients with ARVC has been introduced in clinical practice and subsequently validated. The purpose of this article is to summarize the body of evidence that has allowed the development of this tool and to discuss the best way to implement its use in the care of an individual patient.
Collapse
MESH Headings
- Humans
- Risk Factors
- Arrhythmogenic Right Ventricular Dysplasia/complications
- Arrhythmogenic Right Ventricular Dysplasia/diagnosis
- Arrhythmogenic Right Ventricular Dysplasia/therapy
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/epidemiology
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/complications
- Defibrillators, Implantable/adverse effects
- Risk Assessment
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, The Netherlands
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Richard T Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | | | - Anneline S J M te Riele
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, The Netherlands
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, Marche University Hospital, Ancona, Italy
| | - Firat Duru
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Perry M Elliot
- Department of Cardiology, UCL Institute of Cardiovascular Science, London, UK
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
16
|
Marijon E, Narayanan K, Smith K, Barra S, Basso C, Blom MT, Crotti L, D'Avila A, Deo R, Dumas F, Dzudie A, Farrugia A, Greeley K, Hindricks G, Hua W, Ingles J, Iwami T, Junttila J, Koster RW, Le Polain De Waroux JB, Olasveengen TM, Ong MEH, Papadakis M, Sasson C, Shin SD, Tse HF, Tseng Z, Van Der Werf C, Folke F, Albert CM, Winkel BG. The Lancet Commission to reduce the global burden of sudden cardiac death: a call for multidisciplinary action. Lancet 2023; 402:883-936. [PMID: 37647926 DOI: 10.1016/s0140-6736(23)00875-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 09/01/2023]
Abstract
Despite major advancements in cardiovascular medicine, sudden cardiac death (SCD) continues to be an enormous medical and societal challenge, claiming millions of lives every year. Efforts to prevent SCD are hampered by imperfect risk prediction and inadequate solutions to specifically address arrhythmogenesis. Although resuscitation strategies have witnessed substantial evolution, there is a need to strengthen the organisation of community interventions and emergency medical systems across varied locations and health-care structures. With all the technological and medical advances of the 21st century, the fact that survival from sudden cardiac arrest (SCA) remains lower than 10% in most parts of the world is unacceptable. Recognising this urgent need, the Lancet Commission on SCD was constituted, bringing together 30 international experts in varied disciplines. Consistent progress in tackling SCD will require a completely revamped approach to SCD prevention, with wide-sweeping policy changes that will empower the development of both governmental and community-based programmes to maximise survival from SCA, and to comprehensively attend to survivors and decedents' families after the event. International collaborative efforts that maximally leverage and connect the expertise of various research organisations will need to be prioritised to properly address identified gaps. The Commission places substantial emphasis on the need to develop a multidisciplinary strategy that encompasses all aspects of SCD prevention and treatment. The Commission provides a critical assessment of the current scientific efforts in the field, and puts forth key recommendations to challenge, activate, and intensify efforts by both the scientific and global community with new directions, research, and innovation to reduce the burden of SCD worldwide.
Collapse
Affiliation(s)
- Eloi Marijon
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France.
| | - Kumar Narayanan
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Medicover Hospitals, Hyderabad, India
| | - Karen Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Silverchain Group, Melbourne, VIC, Australia
| | - Sérgio Barra
- Department of Cardiology, Hospital da Luz Arrábida, Vila Nova de Gaia, Portugal
| | - Cristina Basso
- Cardiovascular Pathology Unit-Azienda Ospedaliera and Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marieke T Blom
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Cardiomyopathy Unit and Laboratory of Cardiovascular Genetics, Department of Cardiology, Milan, Italy
| | - Andre D'Avila
- Department of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Hospital SOS Cardio, Santa Catarina, Brazil
| | - Rajat Deo
- Department of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Florence Dumas
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Emergency Department, Cochin Hospital, Paris, France
| | - Anastase Dzudie
- Cardiology and Cardiac Arrhythmia Unit, Department of Internal Medicine, DoualaGeneral Hospital, Douala, Cameroon; Yaounde Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| | - Audrey Farrugia
- Hôpitaux Universitaires de Strasbourg, France, Strasbourg, France
| | - Kaitlyn Greeley
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France
| | | | - Wei Hua
- Cardiac Arrhythmia Center, FuWai Hospital, Beijing, China
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
| | - Taku Iwami
- Kyoto University Health Service, Kyoto, Japan
| | - Juhani Junttila
- MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Rudolph W Koster
- Heart Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Theresa M Olasveengen
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital and Institute of Clinical Medicine, Oslo, Norway
| | - Marcus E H Ong
- Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's University of London, London, UK
| | | | - Sang Do Shin
- Department of Emergency Medicine at the Seoul National University College of Medicine, Seoul, South Korea
| | - Hung-Fat Tse
- University of Hong Kong, School of Clinical Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zian Tseng
- Division of Cardiology, UCSF Health, University of California, San Francisco Medical Center, San Francisco, California
| | - Christian Van Der Werf
- University of Amsterdam, Heart Center, Amsterdam, Netherlands; Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Fredrik Folke
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Gregers Winkel
- Department of Cardiology, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Steinberg C, Roston TM, van der Werf C, Sanatani S, Chen SRW, Wilde AAM, Krahn AD. RYR2-ryanodinopathies: from calcium overload to calcium deficiency. Europace 2023; 25:euad156. [PMID: 37387319 PMCID: PMC10311407 DOI: 10.1093/europace/euad156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.
Collapse
Affiliation(s)
- Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec G1V 4G5, Canada
| | - Thomas M Roston
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| | - Christian van der Werf
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Arthur A M Wilde
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| |
Collapse
|
18
|
Corrado D, Zorzi A, Cipriani A, Bauce B, Bariani R, Brunetti G, Graziano F, De Lazzari M, Mattesi G, Migliore F, Pilichou K, Rigato I, Rizzo S, Thiene G, Perazzolo Marra M, Basso C. Scarring/arrhythmogenic cardiomyopathy. Eur Heart J Suppl 2023; 25:C144-C154. [PMID: 37125320 PMCID: PMC10132624 DOI: 10.1093/eurheartjsupp/suad017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The designation of 'arrhythmogenic cardiomyopathy' reflects the evolving concept of a heart muscle disease affecting not only the right ventricle (ARVC) but also the left ventricle (LV), with phenotypic variants characterized by a biventricular (BIV) or predominant LV involvement (ALVC). Herein, we use the term 'scarring/arrhythmogenic cardiomyopathy (S/ACM)' to emphasize that the disease phenotype is distinctively characterized by loss of ventricular myocardium due to myocyte death with subsequent fibrous or fibro-fatty scar tissue replacement. The myocardial scarring predisposes to potentially lethal ventricular arrhythmias and underlies the impairment of systolic ventricular function. S/ACM is an 'umbrella term' which includes a variety of conditions, either genetic or acquired (mostly post-inflammatory), sharing the typical 'scarring' phenotypic features of the disease. Differential diagnoses include 'non-scarring' heart diseases leading to either RV dilatation from left-to-right shunt or LV dilatation/dysfunction from a dilated cardiomyopathy. The development of 2020 upgraded criteria ('Padua criteria') for diagnosis of S/ACM reflected the evolving clinical experience with the expanding spectrum of S/ACM phenotypes and the advances in cardiac magnetic resonance (CMR) imaging. The Padua criteria aimed to improve the diagnosis of S/ACM by incorporation of CMR myocardial tissue characterization findings. Risk stratification of S/ACM patients is mostly based on arrhythmic burden and ventricular dysfunction severity, although other ECG or imaging parameters may have a role. Medical therapy is crucial for treatment of ventricular arrhythmias and heart failure. Implantable cardioverter defibrillator (ICD) is the only proven life-saving treatment, despite its significant morbidity because of device-related complications and inappropriate shocks. Selection of patients who can benefit the most from ICD therapy is one of the most challenging issues in clinical practice.
Collapse
Affiliation(s)
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Giulia Brunetti
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| |
Collapse
|
19
|
Rootwelt-Norberg C, Christensen AH, Skjølsvik ET, Chivulescu M, Vissing CR, Bundgaard H, Aabel EW, Bogsrud MP, Hasselberg NE, Lie ØH, Haugaa KH. Timing of cardioverter-defibrillator implantation in patients with cardiac laminopathies-External validation of the LMNA-risk ventricular tachyarrhythmia calculator. Heart Rhythm 2023; 20:423-429. [PMID: 36494026 DOI: 10.1016/j.hrthm.2022.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND LMNA genotype-positive patients have high risk of experiencing life-threatening ventricular tachyarrhythmias (VTAs). The LMNA-risk VTA calculator published in 2019 has not been externally validated. OBJECTIVE The purpose of this study was to validate the LMNA-risk VTA calculator. METHODS We included LMNA genotype-positive patients without previous VTAs from 2 large Scandinavian centers. Patients underwent electrocardiography, 24-hour Holter monitoring, and echocardiographic examinations at baseline and repeatedly during follow-up. Validation of the LMNA-risk VTA calculator was performed using Harrell's C-statistic derived from multivariable Cox regression analysis. RESULTS We included 118 patients (age 37 years [IQR 27-49 years]; 39 [33%] probands; 65 [55%] women; 100 [85%] with non-missense LMNA variants). Twenty-three patients (19%) experienced VTA during 6.1 years (interquartile range 3.0-9.1 years) follow-up, resulting in 3.0% (95% confidence interval 2.0%-4.5%) yearly incidence rate. Atrioventricular block and reduced left ventricular ejection fraction were independent predictors of VTAs, while nonsustained ventricular tachycardia, male sex, and non-missense LMNA variants were not. The LMNA-risk VTA calculator showed 83% sensitivity and 26% specificity for identifying patients with VTAs during the coming 5 years, and a Harrell's C-statistic of 0.85, when applying ≥7% predicted 5-year VTA risk as threshold. The sensitivity increased to 100% when reevaluating risk at the time of last consultation before VTA. The calculator overestimated arrhythmic risk in patients with mild and moderate phenotype, particularly in men. CONCLUSION Validation of the LMNA-risk VTA calculator showed high sensitivity for subsequent VTAs, but overestimated arrhythmic risk when using ≥7% predicted 5-year risk as threshold. Frequent reevaluation of risk was necessary to maintain the sensitivity of the model.
Collapse
Affiliation(s)
- Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alex Hørby Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Eystein T Skjølsvik
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoffer R Vissing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Nina E Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden; Cardiovascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Wilde AAM, Schwartz PJ. Long QT Syndrome, a Diagnosis That Warrants Expert Opinion and Expert Centers. J Am Coll Cardiol 2023; 81:487-489. [PMID: 36725177 DOI: 10.1016/j.jacc.2022.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur A M Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Member of the European Reference Network for rare, low prevalence and complex diseases of the heart: ERN GUARD-Heart.
| | - Peter J Schwartz
- Member of the European Reference Network for rare, low prevalence and complex diseases of the heart: ERN GUARD-Heart; Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
21
|
Smedsrud MK, Chivulescu M, Forså MI, Castrini I, Aabel EW, Rootwelt-Norberg C, Bogsrud MP, Edvardsen T, Hasselberg NE, Früh A, Haugaa KH. Highly malignant disease in childhood-onset arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 2022; 43:4694-4703. [PMID: 36036653 PMCID: PMC9712025 DOI: 10.1093/eurheartj/ehac485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/05/2023] Open
Abstract
AIMS This study aimed to explore the incidence of severe cardiac events in paediatric arrhythmogenic right ventricular cardiomyopathy (ARVC) patients and ARVC penetrance in paediatric relatives. Furthermore, the phenotype in childhood-onset ARVC was described. METHODS Consecutive ARVC paediatric patients and genotype positive relatives ≤18 years of age were followed with electrocardiographic, structural, and arrhythmic characteristics according to the 2010 revised Task Force Criteria. Penetrance of ARVC disease was defined as fulfilling definite ARVC criteria and severe cardiac events were defined as cardiac death, heart transplantation (HTx) or severe ventricular arrhythmias. Childhood-onset disease was defined as meeting definite ARVC criteria ≤12 years of age. RESULTS Among 62 individuals [age 9.8 (5.0-14.0) years, 11 probands], 20 (32%) fulfilled definite ARVC diagnosis, of which 8 (40%) had childhood-onset disease. The incidence of severe cardiac events was 23% (n = 14) by last follow-up and half of them occurred in patients ≤12 years of age. Among the eight patients with childhood-onset disease, five had biventricular involvement needing HTx and three had severe arrhythmic events. Among the 51 relatives, 6% (n = 3) met definite ARVC criteria at time of genetic diagnosis, increasing to 18% (n = 9) at end of follow-up. CONCLUSIONS In a paediatric ARVC cohort, there was a high incidence of severe cardiac events and half of them occurred in children ≤12 years of age. The ARVC penetrance in genotype positive paediatric relatives was 18%. These findings of a high-malignant phenotype in childhood-onset ARVC indicate a need for ARVC family screening at younger age than currently recommended.
Collapse
Affiliation(s)
- Marit Kristine Smedsrud
- Department of Paediatric Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway,ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Marianne Inngjerdingen Forså
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
| | - Isotta Castrini
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
| | - Eivind Westrum Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Kirkeveien 166, 0424 Oslo, Norway
| | - Thor Edvardsen
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
| | - Nina Eide Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Andreas Früh
- Department of Paediatric Cardiology, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | | |
Collapse
|
22
|
Crea F. The challenge of predicting sudden cardiac death: complementary role of risk scores, genetic testing, and clinical judgement. Eur Heart J 2022; 43:3001-3004. [DOI: 10.1093/eurheartj/ehac451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
23
|
Zhou Z, Liu C, Xu S, Wang J, Guo F, Duan S, Deng Q, Sun J, Yu F, Zhou Y, Wang M, Wang Y, Zhou L, Jiang H, Yu L. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Res Cardiol 2022; 117:34. [PMID: 35819552 DOI: 10.1007/s00395-022-00939-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
The stellate ganglia play an important role in cardiac remodeling after myocardial infarction (MI). This study aimed to investigate whether adiponectin (APN), an adipokine mainly secreted by adipose tissue, could modulate the left stellate ganglion (LSG) and exert cardioprotective effects through the sympathetic nervous system (SNS) in a canine model of MI. APN microinjection and APN overexpression with recombinant adeno-associated virus vector in the LSG were performed in acute and chronic MI models, respectively. The results showed that acute APN microinjection decreased LSG function and neural activity, and suppressed ischemia-induced ventricular arrhythmia. Chronic MI led to a decrease in the effective refractory period and action potential duration at 90% and deterioration in echocardiography performance, all of which was blunted by APN overexpression. Moreover, APN gene transfer resulted in favorable heart rate variability alteration, and decreased cardiac SNS activity, serum noradrenaline and neuropeptide Y, which were augmented after MI. APN overexpression also decreased the expression of nerve growth factor and growth associated protein 43 in the LSG and peri-infarct myocardium, respectively. Furthermore, RNA sequencing of LSG indicated that 4-week MI up-regulated the mRNA levels of macrophage/microglia activation marker Iba1, chemokine ligands (CXCL10, CCL20), chemokine receptor CCR5 and pro-inflammatory cytokine IL6, and downregulated IL1RN and IL10 mRNA, which were reversed by APN overexpression. Our results reveal that APN inhibits cardiac sympathetic remodeling and mitigates cardiac remodeling after MI. APN-mediated gene therapy may provide a potential therapeutic strategy for the treatment of MI.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Chengzhe Liu
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Saiting Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Fu Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China. .,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China. .,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China. .,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China. .,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|