1
|
Skibitsky VV, Gutova SR, Fendrikova AV. Potential of Combination Pharmacotherapy in Patients with Arterial Hypertension and Prediabetes: Focus on Organ Protection. KARDIOLOGIIA 2025; 65:26-34. [PMID: 40195776 DOI: 10.18087/cardio.2025.3.n2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
Aim To compare the effects of two combined antihypertensive therapies on indices of the structural and functional state of the left ventricular (LV) myocardium and intrarenal vascular resistance in patients with arterial hypertension (AH) and prediabetes.Material and methods The study included 80 patients with poorly controlled AH and prediabetes who were randomized into two groups: patients in group 1 (n=40) received perindopril at a starting dose of 5 mg/day, sustained-release indapamide 1.5 mg/day, and metformin 1000 mg/day; patients in group 2 (n=40) received perindopril 5 mg/day, moxonidine at a starting dose of 0.2 mg/day, and metformin 1000 mg/day. Subsequently, if necessary, the doses of perindopril and moxonidine were titrated to the maximum permissible ones. Prediabetes was diagnosed based on the results of an oral glucose tolerance test. Ultrasound examination of the heart and renal arteries was performed with a SIEMENS ACUSON X 300 ultrasound apparatus (Korea). Statistical analysis was performed using the Statistica 12.0 software (StatSoft Inc., USA).Results In both groups after 24 weeks of pharmacotherapy, patients who achieved the target blood pressure had statistically significant and comparable improvements in all studied parameters of the structural and functional state of the LV myocardium and intrarenal vascular resistance. In a comparable number of patients in both groups, the treatment was associated with normalization of the LV myocardial geometry and diastolic function. The combination including moxonidine was associated with a significant decrease in fasting plasma insulin that was more pronounced than with the diuretic treatment.Conclusion In patients with AH and prediabetes, the combination therapy including perindopril, metformin and moxonidine provided a significant improvement in the structural and functional state of the LV myocardium and intrarenal vascular resistance comparable to the improvement produced by a combination of perindopril, metformin and sustained-release indapamide. The combination of an ACE inhibitor, biguanide and moxonidine may in some cases be a preferred pharmacotherapy option for patients with AH and early carbohydrate metabolism disorders due to the observed significant metabolic benefits.
Collapse
|
2
|
Mone P, Varzideh F, Rainone A, Kansakar U, Jankauskas SS, Salemme L, Brunese MC, Speziale G, Tesorio T, Santulli G. Metformin treatment in hyperglycemic INOCA patients. Cardiovasc Res 2024:cvae269. [PMID: 39786492 DOI: 10.1093/cvr/cvae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York City, NY, USA
- University of Molise, Campobasso, Italy
- Casa di Cura "Montevergine", Mercogliano (Avellino), Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York City, NY, USA
| | | | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Luigi Salemme
- Casa di Cura "Montevergine", Mercogliano (Avellino), Italy
| | | | - Giuseppe Speziale
- GVM Care & Research, Department of Cardiovascular Surgery, Anthea Hospital, Bari, Italy
| | - Tullio Tesorio
- Casa di Cura "Montevergine", Mercogliano (Avellino), Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York City, NY, USA
- University of Naples "Federico II", Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
3
|
Garza-Ocañas L, Badillo-Castañeda CT, Montoya-Eguía SL, Zanatta-Calderón MT, Sáenz-Chávez PL, Torres-Garza JD, Rodriguez-Vazquez IC, Romero-Antonio Y, Rios-Brito KF, González-Canudas J. Pharmacokinetic Profile and Comparative Bioavailability of an Oral Fixed-Dose Combination of Metformin and Acetylsalicylic Acid (Aspirin). Clin Pharmacol Drug Dev 2024; 13:1245-1252. [PMID: 39037059 DOI: 10.1002/cpdd.1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Patients with diabetes face a 2-4-fold greater cardiovascular risk compared to those without diabetes. Both metformin and acetylsalicylic acid (aspirin) treatment have demonstrated a significant reduction in this risk. This single-center, open-label, sequence randomized, 2 × 2 crossover, single-dose clinical trial evaluated the pharmacokinetics profile and comparative bioavailability of a novel oral fixed-dose combination (FDC) of metformin/acetylsalicylic acid (500/100 mg tablet) versus the reference mono-drugs administered concomitantly, metformin 500 mg tablet and acetylsalicylic acid 100 mg tablet, in 22 healthy Mexican adult volunteers under fasting conditions. Blood samples were collected predose and at specified intervals across a 24-hour period following administration and were analyzed for metformin and salicylic acid using high-performance liquid chromatography coupled with tandem mass spectrometry. Test products were considered to have comparative bioavailability if confidence intervals of natural log-transformed (maximum plasma drug concentration (Cmax), (area under the plasma drug concentration-time curve form 0 up to last sampling time (AUC0 -t), and (area under the plasma drug concentration-time cruve from 0 up to infinity (AUC0 ∞) data were within the range of 80%-125%. The results obtained from the present clinical study demonstrate the comparative bioavailability of the FDC when compared with the coadministration of reference mono-drugs. There were no adverse events or adverse reactions reported throughout the study.
Collapse
Affiliation(s)
- Lourdes Garza-Ocañas
- Pharmacology and Toxicology Department, Autonomous University of Nuevo León, Monterrey, Mexico
| | | | - Sandra L Montoya-Eguía
- Pharmacology and Toxicology Department, Autonomous University of Nuevo León, Monterrey, Mexico
| | | | | | - Julia D Torres-Garza
- Pharmacology and Toxicology Department, Autonomous University of Nuevo León, Monterrey, Mexico
| | | | - Yulia Romero-Antonio
- Research and Development Department, Laboratorios Silanes S.A. de C.V., Mexico City, Mexico
| | - Kevin F Rios-Brito
- Research and Development Department, Laboratorios Silanes S.A. de C.V., Mexico City, Mexico
| | - Jorge González-Canudas
- Research and Development Department, Laboratorios Silanes S.A. de C.V., Mexico City, Mexico
- Mexican Social Security Institute - Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| |
Collapse
|
4
|
Rodríguez-Zavala JS, Zazueta C. Novel drug design and repurposing: An opportunity to improve translational research in cardiovascular diseases? Arch Pharm (Weinheim) 2024; 357:e2400492. [PMID: 39074969 DOI: 10.1002/ardp.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Drug repurposing is defined as the use of approved therapeutic drugs for indications different from those for which they were originally designed. Repositioning diminishes both the time and cost for drug development by omitting the discovery stage, the analysis of absorption, distribution, metabolism, and excretion routes, as well as the studies of the biochemical and physiological effects of a new compound. Besides, drug repurposing takes advantage of the increased bioinformatics knowledge and availability of big data biology. There are many examples of drugs with repurposed indications evaluated in in vitro studies, and in pharmacological, preclinical, or retrospective clinical analyses. Here, we briefly review some of the experimental strategies and technical advances that may improve translational research in cardiovascular diseases. We also describe exhaustive research from basic science to clinical studies that culminated in the final approval of new drugs and provide examples of successful drug repurposing in the field of cardiology.
Collapse
Affiliation(s)
- José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| |
Collapse
|
5
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
6
|
Stone C, Sabe SA, Harris DD, Broadwin M, Kant RJ, Kanuparthy M, Abid MR, Sellke FW. Metformin Preconditioning Augments Cardiac Perfusion and Performance in a Large Animal Model of Chronic Coronary Artery Disease. Ann Surg 2024; 280:547-556. [PMID: 39041226 DOI: 10.1097/sla.0000000000006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To test the efficacy of metformin (MET) during the induction of coronary ischemia on myocardial performance in a large animal model of coronary artery disease (CAD) and metabolic syndrome (MS), with or without concomitant extracellular vesicular (EV) therapy. BACKGROUND Although surgical and endovascular revascularization are durably efficacious for many patients with CAD, up to one-third are poor candidates for standard therapies. For these patients, many of whom have comorbid MS, adjunctive strategies are needed. EV therapy has shown promise in this context, but its efficacy is attenuated by MS. We investigated whether MET pretreatment could ameliorate therapeutic decrements associated with MS. METHODS Yorkshire swine (n = 29) were provided a high-fat diet to induce MS, whereupon an ameroid constrictor was placed to induce CAD. Animals were initiated on 1000 mg oral MET or placebo; all then underwent repeat thoracotomy for intramyocardial injection of EVs or saline. Swine were maintained for 5 weeks before the acquisition of functional and perfusion data immediately before terminal myocardial harvest. Immunoblotting and immunofluorescence were performed on the most ischemic tissue from all groups. RESULTS Regardless of EV administration, animals that received MET exhibited significantly improved ejection fraction, cardiac index, and contractility at rest and during rapid myocardial pacing, improved perfusion to the most ischemic myocardial region at rest and during pacing, and markedly reduced apoptosis. CONCLUSIONS MET administration reduced apoptotic cell death, improved perfusion, and augmented both intrinsic and load-dependent myocardial performance in a highly translatable large animal model of chronic myocardial ischemia and MS.
Collapse
Affiliation(s)
- Christopher Stone
- Department of Surgery, Division of Cardiothoracic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
8
|
Tsygankova OV, Apartseva NE, Latyntseva LD, Ryabikov AN. Extended-release metformin in patients with prediabetes, chronic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters. DIABETES MELLITUS 2024; 27:357-367. [DOI: 10.14341/dm13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND: Considering the role of visceral adipose tissue deposition in the pathogenesis of heart failure with preserved ejection fraction (HFpEF) and the positive effect of metformin on weight loss, the effect of this drug on adipose tissue compartments in patients with HFpEF is interest.AIM: To study the effect of extended-release metformin (XR) on various fat depots and parameters of insulin-glucose homeostasis in patients with HFpEF, prediabetes and abdominal obesity (AO).MATERIALS AND METHODS: Study design: single-center, open-ended, randomized, prospective, controlled. The registration numbers of the study in the NARNIS register RNI.25.004. The study included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal HFpEF therapy. In group A (n=32), metformin XR 1000–1500 mg/day was additionally prescribed. All patients underwent general clinical examination, calculation of insulin resistance indices, ultrasound lipometry to determine the thickness of epicardial, preperitoneal and subcutaneous fat initially and after 6 months.RESULTS: In group A patients, there was a decrease in waist circumference by 0.9% (p=0.002), hip circumference by 1.25% (p=0.001), body weight by 4.7% (p<0.0001), body mass index by 1.8% (p=0.001) compared with baseline. In the control group, the anthropometric parameters of the dynamics did not change. Also, in the metformin XR group, glucose levels decreased by 4.6% (p=0.009), glycated hemoglobin by 3.3% (p=0.047), insulin by 12.5% (p=0.024) and insulin resistance indices: HOMA-IR by 19.8% (p=0.009), FIRI by 19.8% (p=0.009). In contrast, patients from group B had an increase in fasting plasma insulin levels by 33.6% (p=0.035), with an increase in HOMA-IR indices by 27.4% (p=0.026) and FIRI by 26.9% (p=0.025). The dynamics of ultrasound lipometry parameters was observed only in group A: the thickness of the preperitoneal fat decreased by 14.5% (p<0.0001), the thickness of the subcutaneous fat decreased by 12.3% (p<0.0001).CONCLUSION: In patients with prediabetes, HFpEF and AO, taking metformin XR 1000-1500 mg/day for 6 months against the background of optimal basic HFpEF therapy was associated with a decrease in subcutaneous and preperitoneal fat, also had a beneficial effect on glucose metabolism parameters compared with the control group.
Collapse
Affiliation(s)
- O. V. Tsygankova
- Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - N. E. Apartseva
- Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - L. D. Latyntseva
- Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - A. N. Ryabikov
- Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
9
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Chaudhary S, Kulkarni A. Metformin: Past, Present, and Future. Curr Diab Rep 2024; 24:119-130. [PMID: 38568468 DOI: 10.1007/s11892-024-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE OF REVIEW This review provides the most recent update of metformin, a biguanide oral antihyperglycemic drug used as a first-line treatment in type 2 diabetes mellitus. RECENT FINDINGS Metformin continues to dominate in the world of antidiabetics, and its use will continue to rise because of its high efficiency and easy availability. Apart from type 2 diabetes, research is exploring its potential in other conditions such as cancer, memory loss, bone disorders, immunological diseases, and aging. Metformin is the most prescribed oral antidiabetic worldwide. It has been in practical use for the last six decades and continues to be the preferred drug for newly diagnosed type 2 diabetes mellitus. It reduces glucose levels by decreasing hepatic glucose production, reducing intestinal glucose absorption, and increasing insulin sensitivity. It can be used as monotherapy or combined with other antidiabetics like sulfonylureas, DPP-4 inhibitors, SGLT-2 inhibitors, or insulin, improving its efficacy. Metformin can be used once or twice daily, depending on requirements. Prolonged usage of metformin may lead to abdominal discomfort, deficiency of Vitamin B12, or lactic acidosis. It should be used carefully in patients with renal impairment. Recent studies have explored additional benefits of metformin in polycystic ovarian disease, gestational diabetes mellitus, cognitive disorders, and immunological diseases. However, more extensive studies are needed to confirm these additional benefits.
Collapse
|
12
|
Nikolaidou A, Ventoulis I, Karakoulidis G, Anastasiou V, Daios S, Papadopoulos SF, Didagelos M, Parissis J, Karamitsos T, Kotsa K, Ziakas A, Kamperidis V. Hypoglycemic Drugs in Patients with Diabetes Mellitus and Heart Failure: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:912. [PMID: 38929529 PMCID: PMC11205945 DOI: 10.3390/medicina60060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Over the last few years, given the increase in the incidence and prevalence of both type 2 diabetes mellitus (T2DM) and heart failure (HF), it became crucial to develop guidelines for the optimal preventive and treatment strategies for individuals facing these coexisting conditions. In patients aged over 65, HF hospitalization stands out as the predominant reason for hospital admissions, with their prognosis being associated with the presence or absence of T2DM. Historically, certain classes of glucose-lowering drugs, such as thiazolidinediones (rosiglitazone), raised concerns due to an observed increased risk of myocardial infarction (MI) and cardiovascular (CV)-related mortality. In response to these concerns, regulatory agencies started requiring CV outcome trials for all novel antidiabetic agents [i.e., dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and sodium-glucose cotransporter-2 inhibitors (SGLT2is)] with the aim to assess the CV safety of these drugs beyond glycemic control. This narrative review aims to address the current knowledge about the impact of glucose-lowering agents used in T2DM on HF prevention, prognosis, and outcome.
Collapse
Affiliation(s)
- Anastasia Nikolaidou
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Keptse Area, 50200 Ptolemaida, Greece;
| | - Georgios Karakoulidis
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Vasileios Anastasiou
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Stylianos Daios
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Spyridon-Filippos Papadopoulos
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Matthaios Didagelos
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - John Parissis
- Emergency Medicine Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 10679 Athens, Greece;
| | - Theodoros Karamitsos
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism, Diabetes Center, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| | - Vasileios Kamperidis
- 1st Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.N.); (G.K.); (V.A.); (S.D.); (S.-F.P.); (M.D.); (T.K.); (A.Z.)
| |
Collapse
|
13
|
Xu M, Li LP, He X, Lu XZ, Bi XY, Li Q, Xue XR. Metformin induction of heat shock factor 1 activation and the mitochondrial unfolded protein response alleviate cardiac remodeling in spontaneously hypertensive rats. FASEB J 2024; 38:e23654. [PMID: 38717442 DOI: 10.1096/fj.202400070r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Li-Peng Li
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xing-Zhu Lu
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, Shaanxi, China
| | - Xue-Yuan Bi
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Li
- Department of Science and Education, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, China
| | - Xiao-Rong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Tan W, Wang X, Sun Y, Wang X, He J, Zhong L, Jiang X, Sun Y, Tian E, Li Z, He L, Hao Y, Tang B, Hua W, Ma X, Yang J. Roxadustat reduces left ventricular mass index compared to rHuEPO in haemodialysis patients in a randomized controlled trial. J Intern Med 2024; 295:620-633. [PMID: 38343089 DOI: 10.1111/joim.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is highly prevalent in haemodialysis (HD) patients and is associated with an increased risk of death. Roxadustat and recombinant human erythropoietin (rHuEPO, abbreviated as EPO) are the main treatment strategies for renal anaemia in HD patients, but it has not been clear whether there is a difference in their effect on LVH. METHODS In this multi-centre, prospective, randomized trial of 12-month duration, study participants were randomized in a 1:1 ratio to the roxadustat group or the EPO group. The doses of both treatment regimens were adjusted so that the patients had a haemoglobin level of 10.0-12.0 g per dL. The primary study endpoint was the change from baseline to 12 months in the left ventricular mass index (LVMI, g/m2) measured by echocardiography. RESULTS In total, 114 patients were enrolled. The mean age was 50 years, and the median dialysis duration was 33 months. Sixty-one patients were men, and 24 were diabetic. LVMI decreased from 116.18 ± 27.84 to 110.70 ± 25.74 g/m2 in the roxadustat group. However, it increased from 109.35 ± 23.41 to 114.99 ± 28.46 g/m2 in the EPO group, with a significant difference in the change in LVMI between the two groups [-5.48 (-11.60 to 0.65) vs. 5.65 (0.74 to 10.55), p < 0.05]. Changes in left ventricular mass, end-diastolic volume and 6-min walk test seemed superior in the roxadustat group. There were no significant differences in other cardiac geometry, biochemical parameters and major adverse cardiovascular events between the two groups. CONCLUSIONS Compared to EPO, roxadustat is more helpful in the regression of LVH in HD patients.
Collapse
Affiliation(s)
- Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Xiang Wang
- Department of Ultrasound, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Yudong Sun
- Department of Nephrology, Armed Police Chongqing Corps Hospital, Chongqing, China
| | - Xiaohui Wang
- Department of Nephrology, Jiulongpo's Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Jin He
- Department of Nephrology, Chonggang General Hospital, Chongqing, China
| | - Ling Zhong
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianhong Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Sun
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - En Tian
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Zhuoying Li
- Department of Nephrology, Armed Police Chongqing Corps Hospital, Chongqing, China
| | - Liangping He
- Department of Nephrology, Jiulongpo's Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Ying Hao
- Department of Nephrology, Chonggang General Hospital, Chongqing, China
| | - Bin Tang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Hua
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
15
|
Huang X, Hu L, Long Z, Wang X, Wu J, Cai J. Hypertensive Heart Disease: Mechanisms, Diagnosis and Treatment. Rev Cardiovasc Med 2024; 25:93. [PMID: 39076964 PMCID: PMC11263885 DOI: 10.31083/j.rcm2503093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 07/31/2024] Open
Abstract
Hypertensive heart disease (HHD) presents a substantial global health burden, spanning a spectrum from subtle cardiac functional alterations to overt heart failure. In this comprehensive review, we delved into the intricate pathophysiological mechanisms governing the onset and progression of HHD. We emphasized the significant role of neurohormonal activation, inflammation, and metabolic remodeling in HHD pathogenesis, offering insights into promising therapeutic avenues. Additionally, this review provided an overview of contemporary imaging diagnostic tools for precise HHD severity assessment. We discussed in detail the current potential treatments for HHD, including pharmacologic, lifestyle, and intervention devices. This review aimed to underscore the global importance of HHD and foster a deeper understanding of its pathophysiology, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Lizhi Hu
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Zhuojun Long
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Xinyao Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| |
Collapse
|
16
|
Higashikuni Y, Liu W, Sata M. Nocturnal blood pressure and left ventricular hypertrophy in patients with diabetes mellitus. Hypertens Res 2024; 47:819-822. [PMID: 38148349 DOI: 10.1038/s41440-023-01562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Wenhao Liu
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| |
Collapse
|
17
|
Kamel AM, Ismail B, Abdel Hafiz G, Sabry N, Farid S. Effect of Metformin on Oxidative Stress and Left Ventricular Geometry in Nondiabetic Heart Failure Patients: A Randomized Controlled Trial. Metab Syndr Relat Disord 2024; 22:49-58. [PMID: 37816240 DOI: 10.1089/met.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Introduction: There is an increasing interest in using metformin in cardiovascular diseases and its potential new roles. Only two randomized controlled trials investigated the effect of metformin in nondiabetic heart failure (HF) patients. However, none of these studies assess the role of metformin in reducing oxidative stress. We hypothesized that metformin might improve oxidative stress and left ventricular remodeling in nondiabetic HF patients with reduced ejection fraction (HFrEF). Methods and Methods: Seventy HFrEF patients (EF 37% ± 8%; median age 66 years) were randomized to metformin (n = 35) or standard of care (SOC) for HF (n = 35) for 6 months in addition to standard therapy. Outcomes included the difference in the change (Δ) in total antioxidant capacity (TAC) and malondialdehyde (MDA), both assessed colorimetrically and left ventricular mass index (LVMI) assessed through transthoracic echocardiography. Results: Compared with the SOC, metformin treatment increased TAC [Δ = 0.12 mmol/L, confidence intervals (95% CIs): 0.03-0.21; P = 0.007]. TAC increased significantly only in the metformin group (0.90 ± 0.08 mmol/L at baseline vs. 1.04 ± 0.99 mmol/L at 6 months, P < 0.05). Metformin therapy preserved LVMI (Δ = -23 g/m2, 95% CI: -42.91 to -4.92; P = 0.014) and reduced fasting plasma glucose (Δ = -6.16, 95% CI: -12.31 to -0.02, P = 0.047) compared with the SOC. Results did not change after adjusting for baseline values. Changes in MDA left ventricular ejection fraction (LVEF) and blood pressure were not significantly different between groups. Conclusion: Metformin treatment in HF patients with reduced LVEF improved TAC and prevented the increase in LVMI compared with the SOC. These effects of metformin warrant further research in HF patients without diabetes to explore the potential benefits of metformin. Trial Registration Number: This protocol was registered in ClinicalTrials.gov under the number NCT05177588.
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| | - Batool Ismail
- Ministry of Interior, Agouza Police Hospital, Cairo, Egypt
| | | | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Zhang GH, Liu H, Liu MH, Liu YC, Wang JQ, Wang Y, Wang X, Xiang Z, Liu W. Network Toxicology Prediction and Molecular Docking-based Strategy to Explore the Potential Toxicity Mechanism of Metformin Chlorination Byproducts in Drinking Water. Comb Chem High Throughput Screen 2024; 27:101-117. [PMID: 37170985 DOI: 10.2174/1386207326666230426105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Metformin (MET), a worldwide used drug for treating type 2 diabetes but not metabolized by humans, has been found with the largest amount in the aquatic environment. Two MET chlorination byproducts, including Y and C, were transformed into drinking water during chlorination. However, the potential toxicity of the byproducts in hepatotoxicity and reproduction toxicity remains unclear. METHODS The TOPKAT database predicted the toxicological properties of metformin disinfection by-products. The targets of metformin disinfection by-products were mainly obtained from the PharmMapper database, and then the targets of hepatotoxicity and reproductive toxicity were screened from GeneCards. The overlapping targets of toxic component targets and the hepatotoxicity or reproduction toxicity targets were regarded as the key targets. Then, the STRING database analyzed the key target to construct a protein-protein interaction network (PPI) and GO, and KEGG analysis was performed by the DAVID platform. Meanwhile, the PPI network and compound- target network were constructed by Cytoscape 3.9.1. Finally, Discovery Studio 2019 software was used for molecular docking verification of the two toxic compounds and the core genes. RESULTS Y and C exhibited hepatotoxicity, carcinogenicity, and mutagenicity evaluated by TOPKAT. There were 22 potential targets relating to compound Y and hepatotoxicity and reproduction toxicity and 14 potential targets relating to compound C and hepatotoxicity and reproduction toxicity. PPI network analysis showed that SRC, MAPK14, F2, PTPN1, IL2, MMP3, HRAS, and RARA might be the key targets; the KEGG analysis indicated that compounds Y and C caused hepatotoxicity through Hepatitis B, Pathways in cancer, Chemical carcinogenesis-reactive oxygen species, Epstein-Barr virus infection; compound Y and C caused reproduction toxicity through GnRH signaling pathway, Endocrine resistance, Prostate cancer, Progesterone-mediated oocyte maturation. Molecular docking results showed that 2 compounds could fit in the binding pocket of the 7 hub genes. CONCLUSION This study preliminarily revealed the potential toxicity and possible toxicity mechanism of metformin disinfection by-products and provided a new idea for follow-up research.
Collapse
Affiliation(s)
- Gui-Hong Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Mei-Hua Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Yang-Cheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Jia-Qi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Yang Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
19
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
20
|
Zhu H, Jia Z, Li YR, Danelisen I. Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin Exp Med 2023; 23:2941-2951. [PMID: 37016064 PMCID: PMC10072049 DOI: 10.1007/s10238-023-01051-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Metformin is among the most widely used antidiabetic drugs. Studies over the past few years have identified multiple novel molecular targets and pathways that metformin acts on to exert its beneficial effects in treating type 2 diabetes as well as other disorders involving dysregulated inflammation and redox homeostasis. In this mini-review, we discuss the latest cutting-edge research discoveries on novel molecular targets of metformin in glycemic control, cardiovascular protection, cancer intervention, anti-inflammation, antiaging, and weight control. Identification of these novel targets and pathways not only deepens our understanding of the molecular mechanisms by which metformin exerts diverse beneficial biological effects, but also provides opportunities for developing new mechanistically based drugs for human diseases.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology and Pathophysiology, Jerry M. Wallace School of Osteopathic Medicine, Campbell University SOM, Buies Creek, NC, USA.
| | - Zhenquan Jia
- Department of Biology, College of Arts and Sciences, University of North Carolina, Greensboro, NC, USA
| | - Yunbo Robert Li
- Department of Pharmacology, Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, USA
| | - Igor Danelisen
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
21
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Zhou Q, Yang J, Tang H, Guo Z, Dong W, Wang Y, Meng X, Zhang K, Wang W, Shao C, Hua X, Tang YD. High triglyceride-glucose (TyG) index is associated with poor prognosis of heart failure with preserved ejection fraction. Cardiovasc Diabetol 2023; 22:263. [PMID: 37775762 PMCID: PMC10541699 DOI: 10.1186/s12933-023-02001-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The impact of insulin resistance on the prognosis of heart failure with preserved ejection fraction (HFpEF) remains unknown. This study aimed to investigate the association between the triglyceride-glucose (TyG) index, an easily calculated marker of insulin resistance, and the long-term prognosis of HFpEF. METHODS A total of 823 patients with HFpEF were enrolled in the study. The TyG index was determined using the formula ln(fasting triglycerides [mg/dL] × fasting glucose [mg/dL]/2). The primary endpoint was all-cause death. The secondary endpoints were cardiovascular (CV) death and heart failure (HF) rehospitalization. Restricted cubic spline, multivariate Cox proportional hazard models, and competing risk models were used for analyses. RESULTS During a median follow-up period of 3.16 years, 147 (17.8%) all-cause deaths, 139 (16.8%) CV deaths, and 222 (27.0%) HF rehospitalizations occurred. Restricted cubic spline analysis revealed a J-shaped association between the TyG index and the mortality and rehospitalization rates. In the multivariate Cox proportional hazard models, compared with those in the lowest TyG index tertile, patients in the highest tertile exhibited the greatest susceptibility to all-cause death (HR 1.53, 95% CI 1.19-1.98) and CV death (HR 1.52, 95% CI 1.19-1.96). In the competing risk model, a significant association between the TyG index and HF rehospitalization was observed (HR 1.31, 95% CI, 1.07-1.61). CONCLUSION A high TyG index is associated with an increased risk of mortality and rehospitalization in patients with HFpEF. The TyG index may serve as a promising prognostic marker for patients with HFpEF.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Graduate School of Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Jie Yang
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Hongyi Tang
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100034, China
| | - Zexuan Guo
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Wenyue Dong
- School of Basic Medical Sciences, Peking University, Beijing, 100091, China
| | - Yiting Wang
- School of Basic Medical Sciences, Peking University, Beijing, 100091, China
| | - Xiangbin Meng
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Kuo Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Graduate School of Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Wenyao Wang
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Chunli Shao
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China
| | - Xinwei Hua
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China.
| | - Yi-Da Tang
- Department of Cardiology, Institute of Vascular Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Peking University, Peking University, Beijing, 100191, China.
| |
Collapse
|
23
|
Song W, Zhang C, Tang J, Li Y, Jiao T, Lin X, Wang Y, Fang J, Sha J, Ding T, Cheng J, Li J. Hypersensitive C-reactive protein as a potential indicator for predicting left ventricular hypertrophy in elderly community-dwelling patients with hypertension. BMC Cardiovasc Disord 2023; 23:480. [PMID: 37759159 PMCID: PMC10537845 DOI: 10.1186/s12872-023-03509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the relationship between Hypersensitive C-reactive protein (hs-CRP) and left ventricular hypertrophy (LVH) in elderly community-dwelling patients with hypertension. METHODS A cross-sectional study was conducted, involving the recruitment of 365 elderly hypertensive residents ≥ 65 years of age from five communities. The participants were divided into two groups: an LVH group (n = 134) and a non-LVH group (n = 231), based on the left ventricular mass index (LVMI) determined by echocardiography. Spearman correlation analysis was used to assess the relationship between hs-CRP and LVH. Univariate and Multivariate analysis was performed to detect variables associated with LVH. The diagnostic value of hs-CRP for LVH was expressed as the area under the receiver operating characteristic (ROC) curve. RESULTS The incidence of LVH in elderly hypertension patients in the community was 36.7%. The hs-CRP levels were significantly higher in subjects with LVH compared to those without LVH (1.9 [0.8, 2.9] vs. 0.7 [0.4, 1.4], P = 0.002). Spearman correlation analysis demonstrated a positive correlation between hs-CRP and LVMI (r = 0.246, P < 0.001), as well as with IVST (r = 0.225, P < 0.001) and LVPWT (r = 0.172, P = 0.001). Among elderly hypertensive residents in the community, the cut-off value of hs-CRP for diagnosing LVH was 1.25 mg/L (sensitivity: 57.5%; specificity: 78.4%), and the area under the ROC curve for hs-CRP to predict LVH was 0.710 (95%CI: 0.654-0.766; P < 0.001). In the final model, hs-CRP ≥ 1.25 mg/L (OR = 3.569; 95%CI, 2.153-5.916; P<0.001) emerged as an independent risk factor for LVH. This association remained significant even after adjusting for various confounding factors (adjusted OR = 3.964; 95%CI, 2.323-6.765; P < 0.001). CONCLUSIONS This community-based cohort of elderly hypertensive individuals demonstrates a strong association between hs-CRP levels and the presence of LVH. The hs-CRP ≥ 1.25 mg/L may serve as an independent predictor for LVH in hypertensive subjects and exhibit good diagnostic efficacy for LVH.
Collapse
Affiliation(s)
- Wei Song
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Chunsheng Zhang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiamei Tang
- Department of Ultrasound, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yan Li
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xueqi Lin
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jialiang Fang
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jingjing Sha
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Tongjiu Ding
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jiayue Cheng
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai, 200120, China.
| |
Collapse
|
24
|
Forman DE, Kuchel GA, Newman JC, Kirkland JL, Volpi E, Taffet GE, Barzilai N, Pandey A, Kitzman DW, Libby P, Ferrucci L. Impact of Geroscience on Therapeutic Strategies for Older Adults With Cardiovascular Disease: JACC Scientific Statement. J Am Coll Cardiol 2023; 82:631-647. [PMID: 37389519 PMCID: PMC10414756 DOI: 10.1016/j.jacc.2023.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
Geroscience posits that cardiovascular disease (CVD) and other chronic diseases result from progressive erosion of the effectiveness of homeostatic mechanisms that oppose age-related accumulation of molecular damage. This hypothetical common root to chronic diseases explains why patients with CVD are often affected by multimorbidity and frailty and why older age negatively affects CVD prognosis and treatment response. Gerotherapeutics enhance resilience mechanisms that counter age-related molecular damage to prevent chronic diseases, frailty, and disability, thereby extending healthspan. Here, we describe the main resilience mechanisms of mammalian aging, with a focus on how they can affect CVD pathophysiology. We next present novel gerotherapeutic approaches, some of which are already used in management of CVD, and explore their potential to transform care and management of CVD. The geroscience paradigm is gaining traction broadly in medical specialties, with potential to mitigate premature aging, reduce health care disparities, and improve population healthspan.
Collapse
Affiliation(s)
- Daniel E Forman
- Department of Medicine (Geriatrics and Cardiology) University of Pittsburgh, Pittsburgh, Pennsylvania, USA; GRECC, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA.
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato California, USA; Division of Geriatrics, University of California San Francisco, San Francisco, California, USA
| | - James L Kirkland
- Division of General Internal Medicine, Department of Medicine and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, USA
| | - George E Taffet
- Department of Medicine (Geriatrics and Cardiovascular Sciences), Baylor College of Medicine, Houston, Texas, USA
| | - Nir Barzilai
- Einstein Institute for Aging Research, Bronx, New York, USA; Einstein-NSC and Glenn Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dalane W Kitzman
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Cardiovascular Medicine and Geriatrics, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
25
|
Forteath C, Mordi I, Nisr R, Gutierrez-Lara EJ, Alqurashi N, Phair IR, Cameron AR, Beall C, Bahr I, Mohan M, Wong AKF, Dihoum A, Mohammad A, Palmer CNA, Lamont D, Sakamoto K, Viollet B, Foretz M, Lang CC, Rena G. Amino acid homeostasis is a target of metformin therapy. Mol Metab 2023; 74:101750. [PMID: 37302544 PMCID: PMC10328998 DOI: 10.1016/j.molmet.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVE Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect. METHODS We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics. Findings were then cross-validated with electronic health records and other data from human material. RESULTS In cell studies, we observed diminished uptake/incorporation of amino acids following metformin treatment of liver cells and cardiac myocytes. Supplementation of media with amino acids attenuated known effects of the drug, including on glucose production, providing a possible explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics identified that SNAT2, which mediates tertiary control of BCAA uptake, was the most strongly suppressed amino acid transporter in liver cells following metformin treatment. Other transporters were affected to a lesser extent. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. CONCLUSIONS Metformin restricts tertiary control of BCAA cellular uptake. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of the drug.
Collapse
Affiliation(s)
- Calum Forteath
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Ify Mordi
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Raid Nisr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Erika J Gutierrez-Lara
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Noor Alqurashi
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Iain R Phair
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Amy R Cameron
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Ibrahim Bahr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Aaron K F Wong
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Adel Dihoum
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Anwar Mohammad
- Public Health and Epidemiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| | - Graham Rena
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
26
|
Bakhashab S, Megantara HP, Mahaputra DK, O’Neill J, Phowira J, Weaver JU. Decoding of miR-7-5p in Colony Forming Unit-Hill Colonies as a Biomarker of Subclinical Cardiovascular Disease-A MERIT Study. Int J Mol Sci 2023; 24:11977. [PMID: 37569355 PMCID: PMC10418446 DOI: 10.3390/ijms241511977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Colony forming unit-Hill (CFU-Hill) colonies were established to serve as a sensitive biomarker for vascular health. In animals, the overexpression of miR-7-5p was shown to be pro-atherogenic and associated with increased cardiovascular disease (CVD) risk. In a MERIT study, we aimed to explore the role of miR-7-5p expression in CFU-Hill colonies in type 1 diabetes mellitus (T1DM) and the effect of metformin in subclinical CVD. The expression of miR-7-5p in CFU-Hill colonies in 29 T1DM subjects without CVD and 20 healthy controls (HC) was measured. Metformin was administered to T1DM subjects for eight weeks. MiR-7-5p was upregulated in T1DM whereas metformin reduced it to HC levels. MiR-7-5p was positively correlated with c-reactive protein, and C-X-C motif chemokine ligand 10. The receiver operating characteristic curve revealed miR-7-5p as a biomarker of CVD, and upregulated miR-7-5p, defining subclinical CVD at a HbA1c level of 44.3 mmol/mol. Ingenuity pathway analysis predicted miR-7-5p to inhibit the mRNA expression of Krüppel-like factor 4, epidermal growth factor receptor, insulin-like growth factor 1 receptor, v-raf-1 murine leukemia viral oncogene homolog 1 and insulin receptor substrate ½, and insulin receptor, while metformin activated these miRNAs via transforming growth factor-β1 and Smad2/3. We proved the pro-atherogenic effect of miR-7-5p that maybe used as a prognostic biomarker.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 2189, Saudi Arabia
| | - Hamzah Pratama Megantara
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dimas Kirana Mahaputra
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
| | - Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
27
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
28
|
Li JZ, Li YR. Cardiovascular Protection by Metformin: Latest Advances in Basic and Clinical Research. Cardiology 2023; 148:374-384. [PMID: 37307806 DOI: 10.1159/000531432] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Metformin is among the most frequently prescribed antidiabetic drugs worldwide and remains the first-line therapy for type 2 diabetes due to its well-established glucose-lowering efficacy and favorable safety profile. SUMMARY Studies over the past decades show that metformin also exerts many other beneficial effects independent of its glucose-lowering effect both in experimental models and human subjects. Among them, the most notable is its cardiovascular protective effect. In this review, we discuss the latest cutting-edge research findings on metformin's cardiovascular protection from both preclinical studies and randomized clinical trials. We focus on describing novel basic research discoveries reported in influential journals and discussing their implications in the context of latest clinical trial findings related to common cardiovascular and metabolic disorders, including atherosclerosis and dyslipidemia, myocardial injury, and heart failure. KEY MESSAGES While substantial preclinical and clinical evidence suggests metformin as a potential cardiovascular protectant, large-scale randomized controlled trials are warranted to establish its clinical efficacy in treating patients with atherosclerotic cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Jason Z Li
- MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Y Robert Li
- Department of Pharmacology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, North Carolina, USA
| |
Collapse
|
29
|
Li X, Wang J, Niu L, Tan Z, Ma J, He L, Yu P, Liu X, Li J. Prevalence estimates of the insulin resistance and associated prevalence of heart failure among United Status adults. BMC Cardiovasc Disord 2023; 23:294. [PMID: 37301866 PMCID: PMC10257843 DOI: 10.1186/s12872-023-03294-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The triglyceride glucose (TyG) index, a metric for estimating insulin resistance (IR), is linked with cardiovascular disease (CVD) morbidity and mortality among the population regardless of diabetic status. However, IR prevalence and the association between the TyG index and heart failure (HF) in Americans is unclear. METHODS The Nation Health and Nutrition Examination Survey (NHANES) (2009-2018) dataset was used. IR was defined by homeostatic model assessment of insulin resistance (HOMA-IR) > 2.0 and 1.5. The TyG index was calculated as Ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. A weighted logistic regression was applied to evaluate the association between the TyG index and the prevalence of HF. RESULTS This study comprised 12,388 people, including 322 (2.6%) individuals with HF. The average prevalence of IR was found to be 13.9% and 22.7% for cutoff values greater than 2.0 and 1.5, respectively. HOMA-IR and the TyG index showed a moderate correlation (r = 0.30). There is a significant positive association between the TyG index and HF prevalence (per 1-unit increment; adjusted OR [aOR]: 1.34; 95% confidence interval [CI]: 1.02-1.76). Patients with higher TyG values were associated with a prevalence of HF (OR:1.41; 95% CI: 1.01,1.95) (quartiles 4 vs 1-3). The TyG index is associated with a higher prevalence of dyslipidemia, coronary heart disease, and hypertension but not a stroke (cerebrovascular disease). CONCLUSIONS Our results show that IR does not considerably increase from 2008 to 2018 in American adults. A moderate correlation is noted between HOMA-IR and the TyG index. TyG index is associated with the prevalence of HF, as were other cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaozhong Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jihong Wang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Liyan Niu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ziqi Tan
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ling He
- Department of Geriatrics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Peng Yu
- Department of Endocrinology Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, Guangdong, China.
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
30
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
31
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
32
|
Michaelidou M, Pappachan JM, Jeeyavudeen MS. Management of diabesity: Current concepts. World J Diabetes 2023; 14:396-411. [PMID: 37122433 PMCID: PMC10130896 DOI: 10.4239/wjd.v14.i4.396] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
The global prevalence of obesity is increasing rapidly with an exponential rise in incidence of type 2 diabetes mellitus in recent years. 'Diabesity', the term coined to show the strong interlink between obesity and diabetes, is the direct cons-equence of the obesity pandemic, and poses significant challenges in the management of the disease. Without addressing the clinical and mechanistic complications of obesity such as metabolic-associated fatty liver disease and obstructive sleep apnoea, a rational management algorithm for diabesity cannot be developed. Several classes of anti-diabetic medications including insulins, sulphonylureas, thiazolidinediones and meglitinides are associated with the risk of weight gain and may potentially worsen diabesity. Therefore, appropriate selection of antidiabetic drug regimen is crucial in the medical management of diabesity. The role of non-pharmacological measures such as dietary adjustments, exercise interventions and bariatric procedures should also be emphasised. Unfortunately, the importance of appropriate and optimal management of diabesity is often overlooked by medical professionals when achieving adequate glycemic control which results in inappropriate management of the disease and its complications. This review provides a narrative clinical update on the evidence behind the management of diabesity.
Collapse
Affiliation(s)
- Maria Michaelidou
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mohammad Sadiq Jeeyavudeen
- Department of Endocrinology & Metabolism, University Hospitals of Edinburgh, Edinburgh EH16 4SA, United Kingdom
| |
Collapse
|
33
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
34
|
Dihoum A, Rena G, Pearson ER, Lang CC, Mordi IR. Metformin: evidence from preclinical and clinical studies for potential novel applications in cardiovascular disease. Expert Opin Investig Drugs 2023; 32:291-299. [PMID: 36972373 DOI: 10.1080/13543784.2023.2196010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION For a long time, metformin has been the first-line treatment for glycaemic control in type 2 diabetes, however, the results of recent cardiovascular outcome trials of sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1 receptor agonists have caused many to question metformin's position in the guidelines. Although there are several plausible mechanisms by which metformin might have beneficial cardiovascular effects, for example its anti-inflammatory effects and metabolic properties, and numerous observational data suggesting improved cardiovascular outcomes with metformin use, the main randomised clinical trial data for metformin was published over 20 years ago. Nevertheless, the overwhelming majority of participants in contemporary type 2 diabetes trials were prescribed metformin. AREAS COVERED In this review we will summarise the potential mechanisms of cardiovascular benefit with metformin, before discussing clinical data in individuals with or without diabetes. EXPERT OPINION Metformin may have some cardiovascular benefit in patients with and without diabetes, however the majority of clinical trials were small and are before the use SGLT2 inhibitors and GLP1-RAs. Larger contemporary randomised trials with metformin evaluating its cardiovascular benefit are warranted.
Collapse
Affiliation(s)
- Adel Dihoum
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Ewan R Pearson
- Division of Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
35
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
36
|
Cziraki A, Nemeth Z, Szabados S, Nagy T, Szántó M, Nyakas C, Koller A. Morphological and Functional Remodeling of the Ischemic Heart Correlates with Homocysteine Levels. J Cardiovasc Dev Dis 2023; 10:jcdd10030122. [PMID: 36975886 PMCID: PMC10056082 DOI: 10.3390/jcdd10030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Homocysteine (Hcy) is involved in various methylation processes, and its plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morphological and functional changes in the ischemic hearts of humans. Methods: Concentration of total homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were determined by echocardiography, and LV mass was calculated (cLVM). Results: Positive correlations were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001), which was ~10 fold higher than the normal level. Conclusions: We propose that homocysteine is an important cardiac biomarker and may have an important role in the development of cardiac remodeling and dysfunction in chronic myocardial ischemia in humans.
Collapse
Affiliation(s)
- Attila Cziraki
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Zoltan Nemeth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Sandor Szabados
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Tamas Nagy
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Márk Szántó
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Csaba Nyakas
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Akos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: ; Tel.: +1-914-594-4085 or +36-70-902-0681
| |
Collapse
|
37
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
38
|
Phair IR, Nisr RB, Howden AJM, Sovakova M, Alqurashi N, Foretz M, Lamont D, Viollet B, Rena G. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol Metab 2023; 68:101661. [PMID: 36586434 PMCID: PMC9842865 DOI: 10.1016/j.molmet.2022.101661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Previous mechanistic studies on immunometabolism have focused on metabolite-based paradigms of regulation, such as itaconate. Here, we, demonstrate integration of metabolite and kinase-based immunometabolic control by AMP kinase. METHODS We combined whole cell quantitative proteomics with gene knockout of AMPKα1. RESULTS Comparing macrophages with AMPKα1 catalytic subunit deletion with wild-type, inflammatory markers are largely unchanged in unstimulated cells, but with an LPS stimulus, AMPKα1 knockout leads to a striking M1 hyperpolarisation. Deletion of AMPKα1 also resulted in increased expression of rate-limiting enzymes involved in itaconate synthesis, metabolism of glucose, arginine, prostaglandins and cholesterol. Consistent with this, we observed functional changes in prostaglandin synthesis and arginine metabolism. Selective AMPKα1 activation also unlocks additional regulation of IL-6 and IL-12 in M1 macrophages. CONCLUSIONS Together, our results validate AMPK as a pivotal immunometabolic regulator in macrophages.
Collapse
Affiliation(s)
- Iain R Phair
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Raid B Nisr
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Andrew J M Howden
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Magdalena Sovakova
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Noor Alqurashi
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Benoit Viollet
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Graham Rena
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
39
|
Ohira A, Yamakawa T, Iwahashi N, Tanaka S, Sugiyama M, Harada M, Ichikawa M, Akiyama T, Orime K, Terauchi Y. Association of continuous positive airway pressure therapy on cardiac hypertrophy in patients with sleep apnea comorbid with type 2 diabetes mellitus. Endocr J 2023; 70:47-58. [PMID: 36089339 DOI: 10.1507/endocrj.ej22-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous reports indicated the therapeutic effect of chronic continuous positive airway pressure (CPAP) therapy on cardiac hypertrophy due to sleep apnea syndrome. However, little is known for cases involving diabetic complications. This retrospective observational study examined the effects of CPAP therapy on left ventricular hypertrophy (LVH) in patients with obstructive sleep apnea syndrome (OSAS) and type 2 diabetes mellitus (T2DM). For all cases, the observation period was 3 years from the time when the patient was introduced to CPAP therapy. Overall, 123 patients were divided into a good CPAP group (CPAP ≥4 h/day, n = 63) and non-adherence group (CPAP <4 h/day, n = 60). The mean CPAP usage times were 5.58 ± 1.23 and 1.03 ± 1.17 h/day in the good CPAP and non-adherence groups, respectively. Regression tendencies of the thickness of the left ventricular posterior (-0.30 ± 1.19 mm) and interventricular septal walls (-0.48 ± 1.22 mm) were observed in the good CPAP group. Hypertrophic tendencies of the left ventricular posterior wall (+0.59 ± 1.44 mm) and interventricular septal wall thickness (+0.59 ± 1.43) were observed in the non-adherence group. Left ventricular posterior wall thickness (coefficient: -0.254, p = 0.0376) and interventricular septal wall thickness (coefficient: -0.426, p = 0.0006) were more likely to be greater in the non-adherence group than in the good CPAP group. Patients in the non-adherence group with an apnea hypopnea index ≥30 had increased left ventricular posterior wall thickness (coefficient: -0.263, p = 0.0673) and interventricular septal wall thickness (coefficient: -0.450, p = 0.0011). In conclusion, appropriate CPAP therapy is an effective treatment for LVH in patients with T2DM and OSAS, especially for severe cases.
Collapse
Affiliation(s)
- Akeo Ohira
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Tadashi Yamakawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Noriaki Iwahashi
- Division of Cardiology, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | | | - Mai Sugiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Marina Harada
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Masahiro Ichikawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Tomoaki Akiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Kazuki Orime
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
40
|
Oikonomou E, Xenou M, Zakynthinos GE, Tsaplaris P, Lampsas S, Bletsa E, Gialamas I, Kalogeras K, Goliopoulou A, Gounaridi MI, Pesiridis T, Tsatsaragkou A, Vavouranakis M, Siasos G, Tousoulis D. Novel Approaches to the Management of Diabetes Mellitus in Patients with Coronary Artery Disease. Curr Pharm Des 2023; 29:1844-1862. [PMID: 37403390 DOI: 10.2174/1381612829666230703161058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in individuals with diabetes mellitus (DM). Although benefit has been attributed to the strict control of hyperglycemia with traditional antidiabetic treatments, novel antidiabetic medications have demonstrated cardiovascular (CV) safety and benefits by reducing major adverse cardiac events, improving heart failure (HF), and decreasing CVD-related mortality. Emerging data underline the interrelation between diabetes, as a metabolic disorder, and inflammation, endothelial dysfunction, and oxidative stress in the pathogenesis of microvascular and macrovascular complications. Conventional glucose-lowering medications demonstrate controversial CV effects. Dipeptidyl peptidase- 4 inhibitors have not only failed to prove to be beneficial in patients with coronary artery disease, but also their safety is questionable for the treatment of patients with CVD. However, metformin, as the first-line option for type 2 DM (T2DM), shows CVD protective properties for DM-induced atherosclerotic and macrovascular complications. Thiazolidinedione and sulfonylureas have questionable effects, as evidence from large studies shows a reduction in the risk of CV events and deaths, but with an increased rate of hospitalization for HF. Moreover, several studies have revealed that insulin monotherapy for T2DM treatment increases the risk of major CV events and deaths from HF, when compared to metformin, although it may reduce the risk of myocardial infarction. Finally, this review aimed to summarize the mechanisms of action of novel antidiabetic drugs acting as glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors that show favorable effects on blood pressure, lipid levels, and inflammation, leading to reduced CVD risk in T2DM patients.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Tsaplaris
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria I Gounaridi
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dimitris Tousoulis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Cardiology, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Metformin Alleviates Epirubicin-Induced Endothelial Impairment by Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010343. [PMID: 36613786 PMCID: PMC9820471 DOI: 10.3390/ijms24010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.
Collapse
|
42
|
Martins D, Garcia LR, Queiroz DAR, Lazzarin T, Tonon CR, Balin PDS, Polegato BF, de Paiva SAR, Azevedo PS, Minicucci MF, Zornoff L. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants (Basel) 2022; 11:antiox11122371. [PMID: 36552578 PMCID: PMC9774406 DOI: 10.3390/antiox11122371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that clinically manifest as changes in the heart's size, mass, geometry, and function after different stimuli. It is important to emphasize that remodeling plays a pathophysiological role in the onset and progression of ventricular dysfunction and subsequent heart failure. Therefore, strategies to mitigate this process are critical. Different factors, including neurohormonal activation, can regulate the remodeling process and increase cell death, alterations in contractile and regulatory proteins, alterations in energy metabolism, changes in genomics, inflammation, changes in calcium transit, metalloproteases activation, fibrosis, alterations in matricellular proteins, and changes in left ventricular geometry, among other mechanisms. More recently, the role of reactive oxygen species and oxidative stress as modulators of remodeling has been gaining attention. Therefore, this review assesses the role of oxidative stress as a therapeutic target of cardiac remodeling.
Collapse
Affiliation(s)
- Danilo Martins
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Rufino Garcia
- Surgery and Orthopedics Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Diego Aparecido Rios Queiroz
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Carolina Rodrigues Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paola da Silva Balin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Sergio Alberto Rupp de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
- Correspondence:
| |
Collapse
|
43
|
Metformin as a Potential Antitumor Agent. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Some recent findings suggest that metformin, an oral antidiabetic drug, may have antitumor properties. Studies have shown that metformin can alter cell metabolism, both tumor and immune cells, which can greatly influence disease outcome. In this review, we discuss the potential mechanisms in which metformin can directly induce apoptosis of tumor cells as well as mechanisms in which metformin can elicit or enhance antitumor immune response.
Collapse
|
44
|
Martins AF, Neto AC, Rodrigues AR, Oliveira SM, Sousa-Mendes C, Leite-Moreira A, Gouveia AM, Almeida H, Neves D. Metformin Prevents Endothelial Dysfunction in Endometriosis through Downregulation of ET-1 and Upregulation of eNOS. Biomedicines 2022; 10:2782. [PMID: 36359302 PMCID: PMC9687337 DOI: 10.3390/biomedicines10112782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
This study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining. ET-1, nitric oxide synthases-iNOS and eNOS, and VEGF and VEGFR-2 were detected by immunofluorescence. Semi-quantification of ET-1, eNOS, VEGF, NF-kB, Ikβα and KEAP-1 was performed by Western blotting. MIR199a, MIR16-1, MIR18a, MIR20a, MIR155, MIR200a, MIR342, MIR24-1 and MIR320a were quantified by Real-Time qPCR. The interaction of endometriosis and metformin effects was assessed by a two-way ANOVA test. Compared with the other groups, M-treated mice presented a higher cross-sectional area of cardiomyocytes. Heart fibrosis increased with endometriosis. Treatment of endometriosis with metformin in the ME group downregulates ET-1 and upregulates eNOS expression comparatively with the E group. However, metformin failed to mitigate NF-kB expression significantly incremented by endometriosis. The expression of MIR199a, MIR16-1 and MIR18a decreased with endometriosis, whereas MIR20a showed an equivalent trend, altogether reducing cardioprotection. In summary, metformin diminished endometriosis-associated endothelial dysfunction but did not mitigate the increase in NF-kB expression and cardiac fibrosis in mice with endometriosis.
Collapse
Affiliation(s)
- Ana Filipa Martins
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Sandra Marisa Oliveira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| |
Collapse
|
45
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body's response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5' AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review's objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin's efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
46
|
Xu Z, Zhang H, Wu C, Zheng Y, Jiang J. Effect of metformin on adverse outcomes in T2DM patients: Systemic review and meta-analysis of observational studies. Front Cardiovasc Med 2022; 9:944902. [PMID: 36211585 PMCID: PMC9539433 DOI: 10.3389/fcvm.2022.944902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background The cardiovascular protection effect of metformin on patients with type 2 diabetes mellitus (T2DM) remains inconclusive. This systemic review and meta-analysis were to estimate the effect of metformin on mortality and cardiovascular events among patients with T2DM. Methods A search of the Pubmed and EMBASE databases up to December 2021 was performed. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled by a random-effects model with an inverse variance method. Results A total of 39 studies involving 2473009 T2DM patients were adopted. Compared to non-metformin therapy, the use of metformin was not significantly associated with a reduced risk of major adverse cardiovascular event (MACE) (HR = 1.06, 95%CI 0.91–1.22; I2 = 82%), hospitalization (HR = 0.85, 95%CI 0.64–1.13; I2 = 98%), heart failure (HR = 0.86, 95%CI 0.60–1.25; I2 = 99%), stroke (HR = 1.16, 95%CI 0.88–1.53; I2 = 84%), and risk of AMI (HR = 0.88, 95%CI 0.69–1.14; I2 = 88%) in T2DM patients. Metformin was also not associated with significantly lowered risk of MACE compared to dipeptidyl peptidase-4 inhibitor (DPP-4i) in T2DM patients (HR = 0.95, 95%CI 0.73–1.23; I2 = 84%). Conclusions The effect of metformin on some cardiovascular outcomes was not significantly better than the non-metformin therapy or DPP-4i in T2DM patients based on observational studies.
Collapse
Affiliation(s)
- Zhicheng Xu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Zhicheng Xu
| | - Haidong Zhang
- Department of Nephrology, Peking University Third Hospital, Bejing, China
- Haidong Zhang
| | - Chenghui Wu
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Jiang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Jingzhou Jiang
| |
Collapse
|
47
|
Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: a meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2022; 22:405. [PMID: 36088302 PMCID: PMC9464374 DOI: 10.1186/s12872-022-02845-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy is a common finding in patients with ischemic heart disease and is associated with mortality in patients with cardiovascular disease (CVD). Metformin, an antidiabetic drug, has been shown to reduce oxidative stress and left ventricular mass index (LVMI) in animal hypertrophy models. We summarized evidence regarding the effect of metformin on LVMI and LVEF. METHODS Electronic databases were searched for randomized clinical trials (RCTs) that used metformin in non-diabetic patients with or without pre-existing CVD. The standardized mean change using change score standardization (SMCC) was calculated for each study. The random-effects model was used to pool the SMCC across studies. Meta-regression analysis was used to assess the association of heart failure (HF), metformin dose, and duration with the SMCC. RESULTS Data synthesis from nine RCTs (754 patients) showed that metformin use resulted in higher reduction in LVMI after 12 months (SMCC = -0.63, 95% CI - 1.23; - 0.04, p = 0.04) and an overall higher reduction in LVMI (SMCC = -0.5, 95% CI - 0.84; - 0.16, p < 0.01). These values equate to absolute values of 11.3 (95% CI 22.1-0.72) and 8.97 (95% CI 15.06-2.87) g/m2, respectively. The overall improvement in LVEF was also higher in metformin users after excluding one outlier (SMCC = 0.26, 95% CI 0.03-0.49, P = 0.03) which translates to a higher absolute improvement of 2.99% (95% CI 0.34; 5.63). Subgroup analysis revealed a favorable effect for metformin on LVEF in patients who received > 1000 mg/day (SMCC = 0.28, 95% CI 0.04; 0.52, P = 0.04), and patients with HF (SMCC = 0.23; 95% CI 0.1; 0.36; P = 0.004). These values translate to a higher increase of 2.64% and 3.21%, respectively. CONCLUSION Results suggest a favorable effect for metformin on LVMI and LVEF in patients with or without pre-existing CVD. Additional trials are needed to address the long-term effect of metformin. Registration The study was registered on the PROSPERO database with the registration number CRD42021239368 ( https://www.crd.york.ac.uk/prospero ).
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
48
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
49
|
From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23179738. [PMID: 36077136 PMCID: PMC9456496 DOI: 10.3390/ijms23179738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a common cause of cardiovascular disease, which, in turn, is often fatal. Today, we know a lot about the pathogenesis of atherosclerosis. However, the main knowledge is that the disease is extremely complicated. The development of atherosclerosis is associated with more than one molecular mechanism, each making a significant contribution. These mechanisms include endothelial dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, and lipid metabolism disorders. This complexity inevitably leads to difficulties in treatment and prevention. One of the possible therapeutic options for atherosclerosis and its consequences may be metformin, which has already proven itself in the treatment of diabetes. Both diabetes and atherosclerosis are complex metabolic diseases, the pathogenesis of which involves many different mechanisms, including those common to both diseases. This makes metformin a suitable candidate for investigating its efficacy in cardiovascular disease. In this review, we highlight aspects such as the mechanisms of action and targets of metformin, in addition to summarizing the available data from clinical trials on the effective reduction of cardiovascular risks.
Collapse
|
50
|
Huang R, Lin Y, Ye X, Zhong X, Xie P, Li M, Zhuang X, Liao X. Triglyceride-glucose index in the development of heart failure and left ventricular dysfunction: analysis of the ARIC study. Eur J Prev Cardiol 2022; 29:1531-1541. [PMID: 35512245 DOI: 10.1093/eurjpc/zwac058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
AIMS We aimed to investigate whether the triglyceride-glucose (TyG) index, an easy-calculated and reliable surrogate of insulin resistance, was associated with the development of heart failure (HF) and left ventricular (LV) dysfunction. METHODS AND RESULTS A total of 12 374 participants (mean age: 54.1 ± 5.7 years, male: 44.7%) free of history of HF and coronary heart disease at baseline from the Atherosclerosis Risk in Communities study were included. The TyG index was calculated as ln[fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2]. The long-term TyG index was calculated as the updated cumulative average TyG index using all available TyG index from baseline to the events of HF or the end of follow-up. We evaluated the associations of both the baseline and the long-term TyG index with incident HF using Cox regression analysis. We also analysed the effect of the TyG index on LV structure and function among 4889 participants with echocardiographic data using multivariable linear regression analysis. There were 1958 incident HF cases over a median follow-up of 22.5 years. After adjusting for potential confounders, 1-SD (0.60) increase in the baseline TyG index was associated with a 15% higher risk of HF development [hazard ratio (HR): 1.15, 95% confidence interval (CI): 1.10-1.21]. Compared with participants in the lowest quartile of the baseline TyG index, those in the highest quartile had a greater risk of incident HF [HR (95% CI): 1.25 (1.08-1.45)]. In terms of LV structure and function, a greater baseline TyG index was associated with adverse LV remodelling and LV dysfunction. Similar results were found for the long-term TyG index. CONCLUSION In a community-based cohort, we found that a greater TyG index was significantly associated with a higher risk of incident HF and impaired LV structure and function.
Collapse
Affiliation(s)
- Rihua Huang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Yifen Lin
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Xiangbin Zhong
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Peihan Xie
- Department of Ultrasonography, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Miaohong Li
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Zhuang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|