1
|
Kubín J, Juráň J. First contours of autecology of freshwater heterotrophic euglenoids - results of two-year research on 18 freshwater bodies. Eur J Protistol 2025; 99:126149. [PMID: 40311443 DOI: 10.1016/j.ejop.2025.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
This study brings the first information about the autecological traits of heterotrophic euglenoids at eighteen localities in South Bohemia (Czech Republic). A number of environmental and landscape parameters including water chemistry and diversity of algae as well as of heterotrophic protists were analyzed over two years in order to assess the effect of environmental parameters on heterotrophic euglenoids. The major diversity of osmotrophs was found in acidic wetlands (i.e., peat bogs), while the majority of phagotrophs were detected in polytrophic sites. This was also illustrated by the correlation of heterotrophic euglenoids with other groups of organisms and other biotic parameters related to the trophic level at the sampling sites. Apparently, habitats with well-developed macrovegetation harboured the highest alpha diversity of heterotrophic euglenoids. Noteworthy, most taxa were found during summer and fall. Additional ecological data on rarely reported taxa observed during this survey (Astasia lagenula var. maxima, Calycimonas quinquecarinata, Euglenopsis vacuolata, Heteronema proteus, Heteronema tremulum, Parmidium circulare) were provided as well.
Collapse
Affiliation(s)
- Jaroslav Kubín
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Josef Juráň
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic; Třeboň Experimental Garden and Gene Pool Collections, Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
2
|
Kassim NS, Lee LK, Hii KS, Mohd Azmi NF, Baharudin SN, Liu M, Gu H, Lim PT, Leaw CP. Molecular diversity of benthic harmful dinoflagellates on a tropical reef: Comparing natural and artificial substrate sampling methods using DNA metabarcoding and morphological analysis. HARMFUL ALGAE 2025; 142:102795. [PMID: 39947852 DOI: 10.1016/j.hal.2024.102795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 05/09/2025]
Abstract
Harmful algal blooms in the benthic system (BHAB) are a major environmental problem that has increased worldwide in the context of global climate change. While systematic cell-based BHAB monitoring for risk assessment and early warning systems have been recommended, implementation of a standardized sampling method is challenging owing to the benthic nature of these harmful microalgal taxa. This study investigated the molecular diversity of benthic harmful dinoflagellates in tropical reefs of Perhentian Islands, Malaysia, using artificial substrate (AS) and sampling natural substrates (NS), combined with environmental DNA (eDNA) analysis and high-throughput amplicon sequencing targeting the small subunit (SSU) and large subunit (LSU) rDNA markers. Our results revealed that the AS method effectively captured a representative subset of the benthic dinoflagellate community, with significant taxonomic overlap between AS and NS. Both markers enabled high-resolution detection of BHAB taxa, particularly of Gambierdiscus and Ostreopsis, which are challenging to identify by light microscopy. The LSU rDNA marker provided finer taxonomic resolution, capturing a broader range of dinoflagellate species. The molecular approach consistently aligned with cell quantification data, supporting AS and DNA metabarcoding as robust methods for BHAB monitoring. The findings highlight the potential of these methods for early detection, especially areas susceptible for ciguatera and BHAB-related poisoning, offering a systematic approach for routine cell-based monitoring.
Collapse
Affiliation(s)
- Nur Syazwani Kassim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Nur Fatihah Mohd Azmi
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Siti Nursyuhada Baharudin
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Minlu Liu
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen 361005, China
| | - Haifeng Gu
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia.
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia.
| |
Collapse
|
3
|
Kubín J, Juráň J. Ecology of free-living freshwater heterotrophic euglenoids: A summarizing review. Eur J Protistol 2024; 96:126127. [PMID: 39644539 DOI: 10.1016/j.ejop.2024.126127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This review aims to compile sparse information on the ecology of freshwater heterotrophic euglenoids and synthesize the main phenomena and hypotheses from published results. Apparently, heterotrophic euglenoids play a very important role in the nutrient flow of water ecosystems and are irreplaceable heterotrophic contributors in benthic communities, as their total biomass is by far the largest among heterotrophic flagellates. Even though they are obviously a very crucial part of the diversity of freshwater heterotrophic protists, and likely the most represented (in terms of biovolume) group of heterotrophic flagellates, there have been only a few attempts to elucidate their ecological preferences, roles, niches, and importance. They exhibit three nutrition modes-bacterivory, eukaryovory, and osmotrophy-which are strategies closely related to their taxonomical groupings and phylogenetic positions. Unfortunately, the phylogeny of the majority of the species remains unknown, similar to their autecology. There are major problems with the quantitative research methodologies, which is a big challenge for future research to improve.
Collapse
Affiliation(s)
- Jaroslav Kubín
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic.
| | - Josef Juráň
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic; Třeboň Experimental Garden and Gene Pool Collections, Institute of Botany of the CAS, Třeboň, Czech Republic
| |
Collapse
|
4
|
Huang X, Li Y, Du H, Chen N. Comparative assessment of the intragenomic variations of dinoflagellate Tripos species through single-cell sequencing. MARINE POLLUTION BULLETIN 2024; 206:116690. [PMID: 39024906 DOI: 10.1016/j.marpolbul.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Tripos is a large dinoflagellate genus widely distributed in the world's oceans. Morphology-based species identification is inconclusive due to high morphological intraspecific variability. Metabarcoding analysis has been demonstrated to be effective for species identification and tracking their spatiotemporal dynamics. However, accumulating evidence suggests high levels of intragenomic variations (IGVs) are common in many algae, leading to concerns about overinterpretation of molecular diversity in metabarcoding studies. In this project, we evaluated and compared IGVs in Tripos species by conducting the first high-throughput sequencing (HTS) of 18S rDNA V4 of Tripos single cells. High numbers of haplotypes (19-172) were identified in each of the 30 Tripos cells. Each cell contained one dominant haplotype with high relative abundance and many haplotypes with lower abundances. Thus, the presence of multiple minor haplotypes substantially overestimate the molecular diversity identified in metabarcoding analysis, which encompass not only interspecific and intraspecific diversities, but high levels of IGVs.
Collapse
Affiliation(s)
- Xianliang Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingchao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haina Du
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Borbee EM, Puspa IA, Gelis ERE, Setiawan F, Maduppa H, Humphries AT, Lane CE. Surface currents shape protist community structure across the Indo-Pacific. JOURNAL OF PHYCOLOGY 2024; 60:816-833. [PMID: 38817114 DOI: 10.1111/jpy.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
Biogeographic structure in marine protist communities is shaped by a combination of dispersal potential and environmental selection. High-throughput sequencing and global sampling efforts have helped better resolve the composition and functions of these communities in the world's oceans using both molecular and visual methods. However, molecular barcoding data are critically lacking across the Indo-Pacific, a region widely considered the epicenter of marine biodiversity. To fill this gap, we characterized protist communities in four sampling regions across Indonesia that represent the latitudinal, longitudinal, and human population gradients of the region: Lombok, Wakatobi, Misool, and Waigeo. We show high spatial structuring in marine protist communities across Indonesia, and biotic factors appear to play little role in driving this observed structure. Our results appear to be driven by abiotic factors linked to surface current patterns across the Indo-Pacific as a result of: (1) a choke point in circulation at the Indonesian Throughflow leading to low diatom diversity in Lombok, Wakatobi, and Misool; (2) an increase in nutrient availability at the edge of the Halmahera Eddy in Waigeo, leading to an increase in diatom diversity; and/or (3) seasonal variations in protist communities in line with shifts in velocity of the Indonesian Throughflow. Overall, our results highlight the importance of abiotic factors in shaping protist communities on broad geographic scales over biotic, top-down pressures, such as grazing from higher trophic levels.
Collapse
Affiliation(s)
- Erin M Borbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Inna Ayu Puspa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | | | - Fahkrizal Setiawan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Hawis Maduppa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Austin T Humphries
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
6
|
Wang C, Gu J, Li W, Wang J, Wang Z, Lin Q. Metabarcoding reveals a high diversity and complex eukaryotic microalgal community in coastal waters of the northern Beibu Gulf, China. Front Microbiol 2024; 15:1403964. [PMID: 38903786 PMCID: PMC11188352 DOI: 10.3389/fmicb.2024.1403964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Beibu Gulf is an important semi-enclosed bay located in the northwestern South China Sea, and is famous for its high bio-productivity and rich bio-diversity. The fast development along the Beibu Gulf Economical Rim has brought pressure to the environment, and algal blooms occurred frequently in the gulf. In this study, surface water samples and micro-plankton samples (20-200 μm) were collected in the northern Beibu Gulf coast. Diversity and distribution of eukaryotic planktonic microalgae were analyzed by both metabarcoding and microscopic analyses. Metabarcoding revealed much higher diversity and species richness of microalgae than morphological observation, especially for dinoflagellates. Metabarcoding detected 144 microalgal genera in 8 phyla, while microscopy only detected 40 genera in 2 phyla. The two methods revealed different microalgal community structures. Dinoflagellates dominated in microalgal community based on metabarcoding due to their high copies of 18 s rRNA gene, and diatoms dominated under microscopy. Altogether 48 algal bloom and/or toxic species were detected in this study, 34 species by metabarcoding and 19 species by microscopy. Our result suggested a high potential risk of HABs in the Beibu Gulf. Microalgal community in the surface water samples demonstrated significantly higher OTU/species richness, alpha diversity, and abundance than those in the micro-plankton samples, although more HAB taxa were detected by microscopic observations in the micro-plankton samples. Furthermore, nano-sized taxa, such as those in chlorophytes, haptophytes, and chrysophyceans, occurred more abundantly in the surface water samples. This study provided a comprehensive morphological and molecular description of microalgal community in the northern Beibu Gulf.
Collapse
Affiliation(s)
| | | | | | | | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuqi Lin
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Gross M, Dunthorn M, Mauvisseau Q, Stoeck T. Using digital PCR to predict ciliate abundance from ribosomal RNA gene copy numbers. Environ Microbiol 2024; 26:e16619. [PMID: 38649189 DOI: 10.1111/1462-2920.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
Ciliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour-intensive, time-consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per-cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per-cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.
Collapse
Affiliation(s)
- Megan Gross
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
8
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
9
|
Lax G, Keeling PJ. Molecular phylogenetics of sessile Dolium sedentarium, a petalomonad euglenid. J Eukaryot Microbiol 2023; 70:e12991. [PMID: 37424051 DOI: 10.1111/jeu.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The euglenids are a species-rich group of flagellates with varying modes of nutrition that can be found in diverse habitats. Phagotrophic members of this group gave rise to phototrophs and hold the key to understanding the evolution of euglenids as a whole, including the evolution of complex morphological characters like the euglenid pellicle. Yet to understand the evolution of these characters, a comprehensive sampling of molecular data is needed to correlate morphological and molecular data, and to estimate a basic phylogenetic backbone of the group. While the availability of SSU rDNA and, more recently, multigene data from phagotrophic euglenids has improved, several "orphan" taxa remain without any molecular data whatsoever. Dolium sedentarium is one such taxon: It is a rarely-observed phagotrophic euglenid that inhabits tropical benthic environments and is one of few known sessile euglenids. Based on morphological characters, it has been thought of as part of the earliest branch of euglenids, the Petalomonadida. We report the first molecular sequencing data for Dolium using single-cell transcriptomics, adding another small piece in the puzzle of euglenid evolution. Both SSU rDNA and multigene phylogenies confirm it as a solitary branch within Petalomonadida.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Lax G, Cho A, Keeling PJ. Phylogenomics of novel ploeotid taxa contribute to the backbone of the euglenid tree. J Eukaryot Microbiol 2023; 70:e12973. [PMID: 36912454 DOI: 10.1111/jeu.12973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Euglenids are a diverse group of flagellates that inhabit most environments and exhibit many different nutritional modes. The most prominent euglenids are phototrophs, but phagotrophs constitute the majority of phylogenetic diversity of euglenids. They are pivotal to our understanding of euglenid evolution, yet we are only starting to understand relationships amongst phagotrophs, with the backbone of the tree being most elusive. Ploeotids make up most of this backbone diversity-yet despite their morphological similarities, SSU rDNA analyses and multigene analyses show that they are non-monophyletic. As more ploeotid diversity is sampled, known taxa have coalesced into some subgroups (e.g. Alistosa), but the relationships amongst these are not always supported and some taxa remain unsampled for multigene phylogenetics. Here, we used light microscopy and single-cell transcriptomics to characterize five ploeotid euglenids and place them into a multigene phylogenetic framework. Our analyses place Decastava in Alistosa; while Hemiolia branches with Liburna, establishing the novel clade Karavia. We describe Hemiolia limna, a freshwater-dwelling species in an otherwise marine clade. Intriguingly, two undescribed ploeotids are found to occupy pivotal positions in the tree: Chelandium granulatum nov. gen. nov. sp. branches as sister to Olkasia, and Gaulosia striata nov. gen. nov. sp. remains an orphan taxon.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| |
Collapse
|
11
|
Kalu EI, Reyes-Prieto A, Barbeau MA. Community dynamics of microbial eukaryotes in intertidal mudflats in the hypertidal Bay of Fundy. ISME COMMUNICATIONS 2023; 3:21. [PMID: 36918616 PMCID: PMC10014957 DOI: 10.1038/s43705-023-00226-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Protists (microbial eukaryotes) are a critically important but understudied group of microorganisms. They are ubiquitous, represent most of the genetic and functional diversity among eukaryotes, and play essential roles in nutrient and energy cycling. Yet, protists remain a black box in marine sedimentary ecosystems like the intertidal mudflats in the Bay of Fundy. The harsh conditions of the intertidal zone and high energy nature of tides in the Bay of Fundy provide an ideal system for gaining insights into the major food web players, diversity patterns and potential structuring influences of protist communities. Our 18S rDNA metabarcoding study quantified seasonal variations and vertical stratification of protist communities in Bay of Fundy mudflat sediments. Three 'SAR' lineages were consistently dominant (in terms of abundance, richness, and prevalence), drove overall community dynamics and formed the core microbiome in sediments. They are Cercozoa (specifically thecate, benthic gliding forms), Bacillariophyta (mainly cosmopolitan, typically planktonic diatoms), and Dinophyceae (dominated by a toxigenic, bloom-forming species). Consumers were the dominant trophic functional group and were comprised mostly of eukaryvorous and bacterivorous Cercozoa, and omnivorous Ciliophora, while phototrophs were dominated by Bacillariophyta. The codominance of Apicomplexa (invertebrate parasites) and Syndiniales (protist parasites) in parasite assemblages, coupled with broader diversity patterns, highlighted the combined marine and terrestrial influences on microbial communities inhabiting intertidal sediments. Our findings, the most comprehensive in a hypertidal benthic system, suggest that synergistic interactions of both local and regional processes (notably benthic-pelagic coupling) may drive heterogenous microbial distribution in high-energy coastal systems.
Collapse
Affiliation(s)
- Eke I Kalu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | | | - Myriam A Barbeau
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
12
|
Borbee EM, Ayu IP, Carvalho P, Gelis ERE, Setiawan F, Subhan B, Humphries AT, Madduppa H, Lane CE. Rubble fields shape planktonic protist communities in Indonesia at a local scale. J Eukaryot Microbiol 2023; 70:e12954. [PMID: 36401815 DOI: 10.1111/jeu.12954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
The Coral Triangle encompasses nearly 30% of the world's coral reefs and is widely considered the epicenter of marine biodiversity. Destructive fishing practices and natural disturbances common to this region damage reefs leaving behind fields of coral rubble. While the impacts of disturbances in these ecosystems are well documented on metazoans, we have a poor understanding of their impact on microbial communities at the base of the food web. We use metabarcoding to characterize protist community composition in sites of varying fisheries management schemes and benthic profiles across the island of Lombok, Indonesia. Our study shows that rubble coverage and net primary productivity are the strongest explainers of variation in protist communities across Lombok. More specifically, rubble fields are characterized by increases in small heterotrophic protists, including ciliates and cercozoans. In addition to shifts in heterotrophic protist communities, we also observed increases in diatom relative abundance in rubble fields, which corresponded to sites with higher net primary productivity. These results are the first to characterize protist communities in tropical marine rubble fields and provide insight on environmental factors potentially driving these shifts on a local scale.
Collapse
Affiliation(s)
- Erin M Borbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Inna Puspa Ayu
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Paul Carvalho
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ester Restiana Endang Gelis
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
- Department of Fisheries, University of Jambi, Jambi, Indonesia
| | - Fahkrizal Setiawan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Beginer Subhan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Austin T Humphries
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hawis Madduppa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
13
|
Wang Z, Liu L, Tang Y, Li A, Liu C, Xie C, Xiao L, Lu S. Phytoplankton community and HAB species in the South China Sea detected by morphological and metabarcoding approaches. HARMFUL ALGAE 2022; 118:102297. [PMID: 36195422 DOI: 10.1016/j.hal.2022.102297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
The southern Chinese coast is one of the most developed regions in China and is an area where harmful algal blooms (HABs) have occurred frequently. In this study, differences in the phytoplankton community between microscopic observations and 18S rDNA metabarcoding were compared in 89 surface water samples collected from the southern Chinese coast and the western South China Sea (SCS). This is the first report investigating the phytoplankton community and HAB species using a combination of morphological and metabarcoding approaches in this sea area. There were substantial differences in phytoplankton community structure detected by the two methods. Microscopic observation revealed diatom predominance in the phytoplankton community, while metabarcoding indicated dinoflagellate dominance. The phytoplankton community structure obtained by microscopic observation better reflects the real situation in the water column. Metabarcoding annotated more species than morphospecies observed by microscopy. Haptophyta and Cryptophyta were the specific phyla detected in metabarcoding but were missed in microscopy due to their small size. Conversely, some taxa were found in microscopic analysis alone, such as species in Dinophysis, Prorocentrum, and Scrippsiella, suggesting some biases during metabarcoding and gaps in sequence databases. Metabarcoding is superior for detecting morphologically cryptic, small-sized and HAB taxa, such as unarmored dinoflagellates, nanosized hatophytes and chlorophytes, as well as multiple species in Alexandrium, Pseudonitzschia, and Chaetoceros in our study. A total of 62 HAB taxa were identified in this study, including blooming and potentially toxic species. Diatom abundances generally decreased southward, while those of dinoflagellates and haptophytes showed the opposite trend. Chlorophytes were mainly distributed in coastal waters, especially in the Pearl River Estuary. Phytoplankton community structures were shaped by nutrients and salinity, and phosphorus was the most limiting factor for phytoplankton growth. The phytoplankton community in the western SCS showed unique characteristics away from those in the coastal sea areas. The results suggest that the combination of morphological and metabarcoding approaches comprehensively reveals the phytoplankton community structure and diversity of HAB species.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Lei Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Monitoring of benthic eukaryotic communities in two tropical coastal lagoons through eDNA metabarcoding: a spatial and temporal approximation. Sci Rep 2022; 12:10089. [PMID: 35710829 PMCID: PMC9203746 DOI: 10.1038/s41598-022-13653-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Tropical coastal lagoons are important ecosystems that support high levels of biodiversity and provide several goods and services. Monitoring of benthic biodiversity and detection of harmful or invasive species is crucial, particularly in relation to seasonal and spatial variation of environmental conditions. In this study, eDNA metabarcoding was used in two tropical coastal lagoons, Chacahua (CH) and Corralero (C) (Southern Mexican Pacific), to describe the benthic biodiversity and its spatial–temporal dynamics. The distribution of benthic diversity within the lagoons showed a very particular pattern evidencing a transition from freshwater to seawater. Although the two lagoon systems are similar in terms of the species composition of metazoans and microeukaryotes, our findings indicate that they are different in taxa richness and structure, resulting in regional partitioning of the diversity with salinity as the driving factor of community composition in CH. Harmful, invasive, non-indigenous species, bioindicators and species of commercial importance were detected, demonstrating the reach of this technique for biodiversity monitoring along with the continued efforts of building species reference libraries.
Collapse
|
15
|
M Sandin M, Romac S, Not F. Intra-genomic rRNA gene variability of Nassellaria and Spumellaria (Rhizaria, Radiolaria) assessed by Sanger, MinION and Illumina sequencing. Environ Microbiol 2022; 24:2979-2993. [PMID: 35621046 PMCID: PMC9545545 DOI: 10.1111/1462-2920.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022]
Abstract
Ribosomal RNA (rRNA) genes are known to be valuable markers for the barcoding of eukaryotic life and its phylogenetic classification at various taxonomic levels. The large-scale exploration of environmental microbial diversity through metabarcoding approaches have been focused mainly on the V4 and V9 regions of the 18S rRNA gene. The accurate interpretation of such environmental surveys is hampered by technical (e.g., PCR and sequencing errors) and biological biases (e.g., intra-genomic variability). Here we explored the intra-genomic diversity of Nassellaria and Spumellaria specimens (Radiolaria) by comparing Sanger sequencing with Illumina and Oxford Nanopore Technologies (MinION). Our analysis determined that intra-genomic variability of Nassellaria and Spumellaria is generally low, yet some Spumellaria specimens showed two different copies of the V4 with <97% similarity. From the different sequencing methods, Illumina showed the highest number of contaminations (i.e., environmental DNA, cross-contamination, tag-jumping), revealed by its high sequencing depth; and MinION showed the highest sequencing rate error (~14%). Yet the long reads produced by MinION (~2900 bp) allowed accurate phylogenetic reconstruction studies. These results highlight the requirement for a careful interpretation of Illumina based metabarcoding studies, in particular regarding low abundant amplicons, and open future perspectives towards full-length rDNA environmental metabarcoding surveys.
Collapse
Affiliation(s)
- Miguel M Sandin
- Sorbonne University, CNRS - UMR7144 - Ecology of Marine Plankton Group - Station Biologique de Roscoff, Roscoff, France.,Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, Uppsala, Sweden
| | - Sarah Romac
- Sorbonne University, CNRS - UMR7144 - Ecology of Marine Plankton Group - Station Biologique de Roscoff, Roscoff, France
| | - Fabrice Not
- Sorbonne University, CNRS - UMR7144 - Ecology of Marine Plankton Group - Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
16
|
Caracciolo M, Rigaut-Jalabert F, Romac S, Mahé F, Forsans S, Gac JP, Arsenieff L, Manno M, Chaffron S, Cariou T, Hoebeke M, Bozec Y, Goberville E, Le Gall F, Guilloux L, Baudoux AC, de Vargas C, Not F, Thiébaut E, Henry N, Simon N. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol 2022; 31:3761-3783. [PMID: 35593305 PMCID: PMC9543310 DOI: 10.1111/mec.16539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 μm) and ribosomal DNA metabarcoding (size fraction >3 μm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009–2016) at the SOMLIT‐Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA‐derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laure Arsenieff
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Samuel Chaffron
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, UMR6004, Université de Nantes, Ecole Centrale de Nantes, 44322, Nantes, France
| | - Thierry Cariou
- Institut de recherche pour le développement (IRD), Délégation Régionale Ouest, IMAGO, Plouzané, France
| | - Mark Hoebeke
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | | - Eric Goberville
- Unité biologie des organismes et écosystèmes aquatiques (BOREA), Muséum National D'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, CP53, 61 rue Buffon 75005, Paris, France
| | | | - Loïc Guilloux
- Sorbonne Université, Roscoff, France.,Mediterranean Institute of Oceanography (MIO), Campus de Luminy case 901, 163 Av. de Luminy, 13288 Marseille cedex 9, France
| | | | - Colomban de Vargas
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | | | - Eric Thiébaut
- Sorbonne Université, Roscoff, France.,Sorbonne Université, CNRS, OSU STAMAR, UMS2017, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Nicolas Henry
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | |
Collapse
|
17
|
Pawlowski J, Bruce K, Panksep K, Aguirre FI, Amalfitano S, Apothéloz-Perret-Gentil L, Baussant T, Bouchez A, Carugati L, Cermakova K, Cordier T, Corinaldesi C, Costa FO, Danovaro R, Dell'Anno A, Duarte S, Eisendle U, Ferrari BJD, Frontalini F, Frühe L, Haegerbaeumer A, Kisand V, Krolicka A, Lanzén A, Leese F, Lejzerowicz F, Lyautey E, Maček I, Sagova-Marečková M, Pearman JK, Pochon X, Stoeck T, Vivien R, Weigand A, Fazi S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151783. [PMID: 34801504 DOI: 10.1016/j.scitotenv.2021.151783] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - K Bruce
- NatureMetrics Ltd, CABI Site, Bakeham Lane, Egham TW20 9TY, UK
| | - K Panksep
- Institute of Technology, University of Tartu, Tartu 50411, Estonia; Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - F I Aguirre
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - L Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Baussant
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Bouchez
- INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - L Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - K Cermakova
- ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - C Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - F O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - S Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - U Eisendle
- University of Salzburg, Dept. of Biosciences, 5020 Salzburg, Austria
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - F Frontalini
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - L Frühe
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - A Haegerbaeumer
- Bielefeld University, Animal Ecology, 33615 Bielefeld, Germany
| | - V Kisand
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - A Krolicka
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - F Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Germany
| | - F Lejzerowicz
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - E Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - I Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - M Sagova-Marečková
- Czech University of Life Sciences, Dept. of Microbiology, Nutrition and Dietetics, Prague, Czech Republic
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - X Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - T Stoeck
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - R Vivien
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - A Weigand
- National Museum of Natural History Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Luxembourg
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy.
| |
Collapse
|
18
|
Balzano S, Sardo A. Bioinformatic prediction of putative metallothioneins in non-ciliate protists. Biol Lett 2022; 18:20220039. [PMID: 35414221 PMCID: PMC9006003 DOI: 10.1098/rsbl.2022.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular ligands that bind heavy metals (HMs) and thereby minimize their detrimental effects to cellular metabolism are attracting great interest for a number of applications including bioremediation and development of HM-biosensors. Metallothioneins (MTs) are short, cysteine-rich, genetically encoded proteins involved in intracellular metal-binding and play a key role in detoxification of HMs. We searched approximately 700 genomes and transcriptomes of non-ciliate protists for novel putative MTs by similarity and structural analyses and found 21 unique proteins playing a potential role as MTs. Most putative MTs derive from heterokonts and dinoflagellates and share common features such as (i) a putative metal-binding domain in proximity of the N-terminus, (ii) two putative MT-specific domains near the C-terminus and (iii) one to three CTCGXXCXCGXXCXCXXC patterns. Although the biological function of these proteins has not been experimentally proven, knowledge of their genetic sequences adds useful information on proteins that are potentially involved in HM-binding and can contribute to the design of future biomolecular assays on HM-microbe interactions and MT-based biosensors.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Department of Ecosustainable Marine Biotechnology, via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy.,NIOZ Royal Netherlands Institute for Sea Research, 1790AB Den Burg, The Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Department of Ecosustainable Marine Biotechnology, via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy.,Istituto di Scienze Applicate e Sistemi Intelligenti - CNR, via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
19
|
Fonseca VG, Kirse A, Giebner H, Vause BJ, Drago T, Power DM, Peck LS, Clark MS. Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach. ISME COMMUNICATIONS 2022; 2:37. [PMID: 37938273 PMCID: PMC9723778 DOI: 10.1038/s43705-022-00118-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 07/04/2023]
Abstract
Marine sediment communities are major contributors to biogeochemical cycling and benthic ecosystem functioning, but they are poorly described, particularly in remote regions such as Antarctica. We analysed patterns and drivers of diversity in metazoan and prokaryotic benthic communities of the Antarctic Peninsula with metabarcoding approaches. Our results show that the combined use of mitochondrial Cox1, and 16S and 18S rRNA gene regions recovered more phyla, from metazoan to non-metazoan groups, and allowed correlation of possible interactions between kingdoms. This higher level of detection revealed dominance by the arthropods and not nematodes in the Antarctic benthos and further eukaryotic diversity was dominated by benthic protists: the world's largest reservoir of marine diversity. The bacterial family Woeseiaceae was described for the first time in Antarctic sediments. Almost 50% of bacteria and 70% metazoan taxa were unique to each sampled site (high alpha diversity) and harboured unique features for local adaptation (niche-driven). The main abiotic drivers measured, shaping community structure were sediment organic matter, water content and mud. Biotic factors included the nematodes and the highly abundant bacterial fraction, placing protists as a possible bridge for between kingdom interactions. Meiofauna are proposed as sentinels for identifying anthropogenic-induced changes in Antarctic marine sediments.
Collapse
Affiliation(s)
- V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK.
| | - A Kirse
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - H Giebner
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - B J Vause
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - T Drago
- Portuguese Institute for Sea and Atmosphere (IPMA), Tavira, Portugal
- Institute Dom Luiz (IDL), University of Lisbon, Lisbon, Portugal
| | - D M Power
- Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - L S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| |
Collapse
|
20
|
Salem R, ElDyasti A, Audette GF. Biomedical Applications of Biomolecules Isolated from Methanotrophic Bacteria in Wastewater Treatment Systems. Biomolecules 2021; 11:1217. [PMID: 34439884 PMCID: PMC8392503 DOI: 10.3390/biom11081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Wastewater treatment plants and other remediation facilities serve important roles, both in public health, but also as dynamic research platforms for acquiring useful resources and biomolecules for various applications. An example of this is methanotrophic bacteria within anaerobic digestion processes in wastewater treatment plants. These bacteria are an important microbial source of many products including ectoine, polyhydroxyalkanoates, and methanobactins, which are invaluable to the fields of biotechnology and biomedicine. Here we provide an overview of the methanotrophs' unique metabolism and the biochemical pathways involved in biomolecule formation. We also discuss the potential biomedical applications of these biomolecules through creation of beneficial biocompatible products including vaccines, prosthetics, electronic devices, drug carriers, and heart stents. We highlight the links between molecular biology, public health, and environmental science in the advancement of biomedical research and industrial applications using methanotrophic bacteria in wastewater treatment systems.
Collapse
Affiliation(s)
- Rana Salem
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
| | - Ahmed ElDyasti
- Department of Civil Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Gerald F. Audette
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- The Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
21
|
Benthic Foraminiferal Indices and Environmental Quality Assessment of Transitional Waters: A Review of Current Challenges and Future Research Perspectives. WATER 2021. [DOI: 10.3390/w13141898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transitional waters straddle the interface between marine and terrestrial biomes and, among others, include fjords, bays, lagoons, and estuaries. These coastal systems are essential for transport and manufacturing industries and suffer extensive anthropogenic exploitation of their ecosystem services for aquaculture and recreational activities. These activities can have negative effects on the local biota, necessitating investigation and regulation. As a result of this, EcoQS (ecological quality status) assessment has garnered great attention as an essential aspect of governmental bodies’ legislative decision-making process. Assessing EcoQS in transitional water ecosystems is problematic because these systems experience high natural variability and organic enrichment and often lack information about their pre-human impact, baseline, or “pristine” reference conditions, knowledge of which is essential to many commonly used assessment methods. Here, foraminifera can be used as environmental sentinels, providing ecological data such as diversity and sensitivity, which can be used as the basis for EcoQS assessment indices. Fossil shells of foraminifera can also provide a temporal aspect to ecosystem assessment, making it possible to obtain reference conditions from the study site itself. These foraminifera-based indices have been shown to correlate not only with various environmental stressors but also with the most common macrofaunal-based indices currently employed by bodies such as the Water Framework Directive (WFD). In this review, we firstly discuss the development of various foraminifera-based indices and address the challenge of how best to implement these synergistically to understand and regulate human environmental impact, particularly in transitional waters, which have historically suffered disproportionate levels of human impact or are difficult to assess with standard EcoQS methods. Further, we present some case studies to exemplify key issues and discuss potential solutions for those. Such key issues include, for example, the disparate performance of multiple indices applied to the same site and a proper assignment of EcoQS class boundaries (threshold values) for each index. Disparate aptitudes of indices to specific geomorphologic and hydrological regimes can be leveraged via the development of a site characteristics catalogue, which would enable the identification of the most appropriate index to apply, and the integration of multiple indices resulting in more representative EcoQS assessment in heterogenous transitional environments. In addition, the difficulty in assigning threshold values to systems without analogous unimpacted reference sites (a common issue among many transitional waters) can be overcome by recording EcoQS as an ecological quality ratio (EQR). Lastly, we evaluate the current status and future potential of an emerging field, genetic biomonitoring, focusing on how these new techniques can be used to increase the accuracy of EcoQS assessment in transitional systems by supplementing more established morphology-based methods.
Collapse
|
22
|
Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr Biol 2021; 31:2682-2689.e7. [PMID: 33887182 DOI: 10.1016/j.cub.2021.03.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
To evaluate the stability and resilience1 of coastal ecosystem communities to perturbations that occurred during the Anthropocene,2 pre-industrial biodiversity baselines inferred from paleoarchives are needed.3,4 The study of ancient DNA (aDNA) from sediments (sedaDNA)5 has provided valuable information about past dynamics of microbial species6-8 and communities9-18 in relation to ecosystem variations. Shifts in planktonic protist communities might significantly affect marine ecosystems through cascading effects,19-21 and therefore the analysis of this compartment is essential for the assessment of ecosystem variations. Here, sediment cores collected from different sites of the Bay of Brest (northeast Atlantic, France) allowed ca. 1,400 years of retrospective analyses of the effects of human pollution on marine protists. Comparison of sedaDNA extractions and metabarcoding analyses with different barcode regions (V4 and V7 18S rDNA) revealed that protist assemblages in ancient sediments are mainly composed of species known to produce resting stages. Heavy-metal pollution traces in sediments were ascribed to the World War II period and coincided with community shifts within dinoflagellates and stramenopiles. After the war and especially from the 1980s to 1990s, protist genera shifts followed chronic contaminations of agricultural origin. Community composition reconstruction over time showed that there was no recovery to a Middle Ages baseline composition. This demonstrates the irreversibility of the observed shifts after the cumulative effect of war and agricultural pollutions. Developing a paleoecological approach, this study highlights how human contaminations irreversibly affect marine microbial compartments, which contributes to the debate on coastal ecosystem preservation and restoration.
Collapse
|
23
|
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, Arndt H. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol 2021; 4:501. [PMID: 33893386 PMCID: PMC8065057 DOI: 10.1038/s42003-021-02012-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Heterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.
Collapse
Affiliation(s)
- Alexandra Schoenle
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany.
| | - Manon Hohlfeld
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Karoline Hermanns
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, Station Biologique de Roscoff, UMR7144, ECOMAP-Ecology of Marine Plankton, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara GOSEE, Paris, France
| | - Frank Nitsche
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Hartmut Arndt
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany.
| |
Collapse
|
24
|
Brandt MI, Pradillon F, Trouche B, Henry N, Liautard-Haag C, Cambon-Bonavita MA, Cueff-Gauchard V, Wincker P, Belser C, Poulain J, Arnaud-Haond S, Zeppilli D. Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. Sci Rep 2021; 11:7856. [PMID: 33846371 PMCID: PMC8041860 DOI: 10.1038/s41598-021-86396-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1-V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.
Collapse
Affiliation(s)
- Miriam I. Brandt
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Florence Pradillon
- grid.4825.b0000 0004 0641 9240Centre Brest, Laboratoire Environnement Profond (REM/EEP/LEP), IFREMER, CS10070, 29280 Plouzané, France
| | - Blandine Trouche
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Nicolas Henry
- grid.462844.80000 0001 2308 1657CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, Sorbonne University, 29680 Roscoff, France
| | - Cathy Liautard-Haag
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Marie-Anne Cambon-Bonavita
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Valérie Cueff-Gauchard
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Patrick Wincker
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Caroline Belser
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Julie Poulain
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Sophie Arnaud-Haond
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Daniela Zeppilli
- grid.4825.b0000 0004 0641 9240Centre Brest, Laboratoire Environnement Profond (REM/EEP/LEP), IFREMER, CS10070, 29280 Plouzané, France
| |
Collapse
|
25
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
26
|
Gu R, Sun P, Wang Y, Yu F, Jiao N, Xu D. Genetic Diversity, Community Assembly, and Shaping Factors of Benthic Microbial Eukaryotes in Dongshan Bay, Southeast China. Front Microbiol 2020; 11:592489. [PMID: 33424795 PMCID: PMC7785585 DOI: 10.3389/fmicb.2020.592489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Microbial eukaryotes are pivotal components of marine ecosystems. However, compared with the pelagic environments, the diversity distribution and the driving mechanisms of microbial eukaryotes in the marine sediments have rarely been explored. In this study, sediment cores were collected along a transect from inner to outer Dongshan Bay, Southeast China. By combining high throughput sequencing of small-subunit (SSU) rRNA gene with measurements on multiple environmental variables, the genetic diversity, community structure and assembly processes, and environmental shaping factors were investigated. Alveolata (mainly Ciliophora and Dinophyceae), Rhizaria (mainly Cercozoa), and Stramenopiles (mainly Bacillariophyta) were the most dominant groups in terms of both relative sequence abundance and operational taxonomic unit (OTU) richness. Grain size composition of the sediment was the primary factor determining the alpha diversity of microbial eukaryotes followed by sediment depth and heavy metal, including chromium (Cr), zinc (Zn), and plumbum (Pb). Geographic distance and water depth surpassed other environmental factors to be the primary factors shaping the microbial eukaryotic communities. Dispersal limitation was the primary driver of the microbial eukaryotic communities, followed by drift and homogeneous selection. Overall, our study shed new light on the spatial distribution patterns and controlling factors of benthic microbial eukaryotes in a subtropical bay which is subjected to increasing anthropogenic pressure.
Collapse
Affiliation(s)
- Rong Gu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Fengling Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Abdala Asbun A, Besseling MA, Balzano S, van Bleijswijk JDL, Witte HJ, Villanueva L, Engelmann JC. Cascabel: A Scalable and Versatile Amplicon Sequence Data Analysis Pipeline Delivering Reproducible and Documented Results. Front Genet 2020; 11:489357. [PMID: 33329686 PMCID: PMC7718033 DOI: 10.3389/fgene.2020.489357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/05/2020] [Indexed: 01/04/2023] Open
Abstract
Marker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase I (CO1) is a popular means to assess microbial communities of the environment, microbiomes associated with plants and animals, as well as communities of multicellular organisms via environmental DNA sequencing. Since this technique is based on sequencing a single gene, or even only parts of a single gene rather than the entire genome, the number of reads needed per sample to assess the microbial community structure is lower than that required for metagenome sequencing. This makes marker gene sequencing affordable to nearly any laboratory. Despite the relative ease and cost-efficiency of data generation, analyzing the resulting sequence data requires computational skills that may go beyond the standard repertoire of a current molecular biologist/ecologist. We have developed Cascabel, a scalable, flexible, and easy-to-use amplicon sequence data analysis pipeline, which uses Snakemake and a combination of existing and newly developed solutions for its computational steps. Cascabel takes the raw data as input and delivers a table of operational taxonomic units (OTUs) or Amplicon Sequence Variants (ASVs) in BIOM and text format and representative sequences. Cascabel is a highly versatile software that allows users to customize several steps of the pipeline, such as selecting from a set of OTU clustering methods or performing ASV analysis. In addition, we designed Cascabel to run in any linux/unix computing environment from desktop computers to computing servers making use of parallel processing if possible. The analyses and results are fully reproducible and documented in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.com/AlejandroAb/CASCABEL.
Collapse
Affiliation(s)
- Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Marc A. Besseling
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Sergio Balzano
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Judith D. L. van Bleijswijk
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Harry J. Witte
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Julia C. Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| |
Collapse
|
28
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Dzhembekova N, Rubino F, Nagai S, Zlateva I, Slabakova N, Ivanova P, Slabakova V, Moncheva S. Comparative analysis of morphological and molecular approaches integrated into the study of the dinoflagellate biodiversity within the recently deposited Black Sea sediments - benefits and drawbacks. Biodivers Data J 2020; 8:e55172. [PMID: 32903988 PMCID: PMC7447646 DOI: 10.3897/bdj.8.e55172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022] Open
Abstract
One of the assets, assigned to the phytoplankton resting stages, is that of serving as the “memory” of the aquatic ecosystems and preserved biodiversity in the course of time. However, an accurate cyst identification proves to be a more difficult and extremely challenging process, even today. In order to gain a better taxonomic coverage of cyst assemblages in the Black Sea, an integrated approach of the classical morphological identification with metabarcoding methods (MySeq sequencing of V7-V9 regions of the 18S rDNA) was applied on thirteen surface sediment samples collected from different sites. A total number of 112 dinoflagellate taxa was detected at the species level and ascribed to 51 genera. In general, it is the molecular analysis that yields a higher number of taxa as compared to those obtained through the morphological taxonomy (66 taxa based on the DNA sequences versus 56 morphologically-identified taxa). Besides, it should be pointed out that the integrated dataset includes 14 potentially toxic dinoflagellate species. Discerned, subsequently, was a good dataset consistency for ten species, followed by some discrepancies as to a number of taxa, identified with one of the methods only, due to specific methodological biases. On the whole, it could be concluded that the combination of morphological and molecular methods is likely to increase the potential for a more reliable taxonomic assessment of phytoplankton diversity in marine sediments which, in turn, proves conclusively the utmost importance of the integrated approach.
Collapse
Affiliation(s)
- Nina Dzhembekova
- Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences Varna Bulgaria
| | - Fernando Rubino
- Water Research Institute, Unit Talassografico "A. Cerruti", National Research Council CNR-IRSA, Taranto, Italy Water Research Institute, Unit Talassografico "A. Cerruti", National Research Council CNR-IRSA Taranto Italy
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, Research Center for Aquatic Genomics, Fisheries Research and Education Agency, Yokohama Kanagawa, Japan National Research Institute of Fisheries Science, Research Center for Aquatic Genomics, Fisheries Research and Education Agency Yokohama Kanagawa Japan
| | - Ivelina Zlateva
- Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences Varna Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences Varna Bulgaria
| | - Petya Ivanova
- Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences Varna Bulgaria
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen", Ocean Technologies Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Ocean Technologies Department, Bulgarian Academy of Sciences Varna Bulgaria
| | - Snejana Moncheva
- Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences, Varna, Bulgaria Institute of Oceanology "Fridtjof Nansen", Marine Biology and Ecology Department, Bulgarian Academy of Sciences Varna Bulgaria
| |
Collapse
|
30
|
Reñé A, Auladell A, Reboul G, Moreira D, López-García P. Performance of the melting seawater-ice elution method on the metabarcoding characterization of benthic protist communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:314-323. [PMID: 32157805 DOI: 10.1111/1758-2229.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/18/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Massive amplicon sequencing approaches to characterize the diversity of microbial eukaryotes in sediments are scarce and controls about the effects introduced by different methods to recover DNA are lacking. In this study, we compare the performance of the melting seawater-ice elution method on the characterization of benthic protist communities by 18S rRNA gene metabarcoding with results obtained by direct cell lysis and DNA purification from sediments. Even though the most abundant operational taxonomic units were recovered by both methods, eluted samples yielded higher richness than samples undergoing direct lysis. Both treatments allowed recovering the same taxonomic groups, although we observed significant differences in terms of relative abundance for some of them. Dinoflagellata and Ciliophora strongly dominated the community in eluted samples (> 80% reads). In directly lysed samples, they only represented 37%, while groups like Fungi and Ochrophytes were highly represented (> 20% reads respectively). Our results show that the elution process yields a higher protist richness estimation, most likely as a result of the higher sample volume used to recover organisms as compared to commonly used volumes for direct benthic DNA purification. Motile groups, like dinoflagellates and ciliates, are logically more enriched during the elution process.
Collapse
Affiliation(s)
- Albert Reñé
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guillaume Reboul
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| |
Collapse
|
31
|
Kong J, Wang Y, Warren A, Huang B, Sun P. Diversity Distribution and Assembly Mechanisms of Planktonic and Benthic Microeukaryote Communities in Intertidal Zones of Southeast Fujian, China. Front Microbiol 2019; 10:2640. [PMID: 31803165 PMCID: PMC6872677 DOI: 10.3389/fmicb.2019.02640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/30/2019] [Indexed: 01/07/2023] Open
Abstract
The intertidal zone occupies the shore between the high and low tide marks and is subjected both to natural forces and anthropogenic activities. Compared with the coastal ecosystem, studies comparing diversity and community structure of intertidal planktonic and benthic microeukaryotes are limited. Therefore, the ecological processes mediating their assemblies remain poorly understood. Environmental rRNA from two size fractions (nano- and micro-sized) of plankton and from seasonally collected (spring and summer) benthos, together with water and sediment chemistry and concentrations of heavy metals, were used to explore diversity and community structure of microeukaryotes in intertidal zones of southeast Fujian Province, China. Benthic microeukaryotes harbored significantly higher alpha-diversity than those of the plankton, whereas no distinct patterns of organism size/seasonal distribution were observed for either community. Community compositions differed significantly between planktonic and benthic microeukaryotes, with the former presenting size-fractionated discrepancies and the latter showing seasonal variation. Community turnover between planktonic and benthic microeukaryotes was mainly driven by stramenopiles and alveolates. Distance-decay patterns were found in both communities, with the rate of community turnover being higher for planktonic than benthic microeukaryotes. Among the environmental factors measured, the concentration of Cd and the water content of sediment were closely associated with benthic community variations, whereas none of the factors measured was identified as being responsible for planktonic community variation. Phylogenetic null model analysis indicated that dispersal limitation was the most crucial ecological process mediating community assembly for both planktonic and benthic microeukaryotes in intertidal zones, with heterogeneous selection making a higher contribution to community variation of benthic than planktonic microeukaryotes. Stochastic processes, mainly dispersal limitation, were found to prevail in both communities. This study thus provides new insights into the diversity distribution and assembly mechanism of microeukaryotes in intertidal zones.
Collapse
Affiliation(s)
- Jie Kong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bangqin Huang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Salonen IS, Chronopoulou PM, Leskinen E, Koho KA. Metabarcoding successfully tracks temporal changes in eukaryotic communities in coastal sediments. FEMS Microbiol Ecol 2019; 95:5188675. [PMID: 30452623 DOI: 10.1093/femsec/fiy226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/16/2018] [Indexed: 01/19/2023] Open
Abstract
Metabarcoding is a method that combines high-throughput DNA sequencing and DNA-based identification. Previously, this method has been successfully used to target spatial variation of eukaryote communities in marine sediments, however, the temporal changes in these communities remain understudied. Here, we follow the temporal changes of the eukaryote communities in Baltic Sea surface sediments collected from two coastal localities during three seasons of two consecutive years. Our study reveals that the structure of the sediment eukaryotic ecosystem was primarily driven by annual and seasonal changes in prevailing environmental conditions, whereas spatial variation was a less significant factor in explaining the variance in eukaryotic communities over time. Therefore, our data suggests that shifts in regional climate regime or large-scale changes in the environment are the overdriving factors in shaping the coastal eukaryotic sediment ecosystems rather than small-scale changes in local environmental conditions or heterogeneity in ecosystem structure. More studies targeting temporal changes are needed to further understand the long-term trends in ecosystem stability and response to climate change. Furthermore, this work contributes to the recent efforts in developing metabarcoding applications for environmental biomonitoring, proving a comprehensive option for traditional monitoring approaches.
Collapse
Affiliation(s)
- I S Salonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| | - P-M Chronopoulou
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| | - E Leskinen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, Hanko FI-10900, Finland
| | - K A Koho
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| |
Collapse
|
33
|
Wu W, Huang B. Protist diversity and community assembly in surface sediments of the South China Sea. Microbiologyopen 2019; 8:e891. [PMID: 31218846 PMCID: PMC6813438 DOI: 10.1002/mbo3.891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
Protists are pivotal components of marine ecosystems in terms of their high diversity, but protist communities have been poorly explored in benthic environments. Here, we investigated protist diversity and community assembly in surface sediments in the South China Sea (SCS) at a basin scale. Pyrosequencing of 18S rDNA was performed for a total of six samples taken from the surface seafloor at water depths ranging from 79 to 2,939 m. We found that Cercozoa was the dominant group, accounting for an average of 39.9% and 25.3% of the reads and operational taxonomic units (OTUs), respectively. The Cercozoa taxa were highly diverse, comprising 14 phylogenetic clades, six of which were affiliated with unknown groups belonging to Filosa and Endomyxa. Fungi were also an important group in both read‐ (18.1% on average) and OTU‐derived (9.3% on average) results. Moreover, the turnover patterns of the protist communities were differently explained by species sorting (53.3%), dispersal limitation (33.3%), mass effects (0%), and drift (13.3%). In summary, our findings show that the basin‐wide protist communities in the surface sediments of the SCS are primarily dominated by Cercozoa and are mainly assembled by species sorting and dispersal limitation.
Collapse
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 2019; 20:878-889. [PMID: 29266706 DOI: 10.1111/1462-2920.14034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
Kinetoplastid flagellates comprise basal mostly free-living bodonids and derived obligatory parasitic trypanosomatids, which belong to the best-studied protists. Due to their omnipresence in aquatic environments and soil, the bodonids are of ecological significance. Here, we present the first global survey of marine kinetoplastids and compare it with the strikingly different patterns of abundance and diversity in their sister clade, the diplonemids. Based on analysis of 18S rDNA V9 ribotypes obtained from 124 sites sampled during the Tara Oceans expedition, our results show generally low to moderate abundance and diversity of planktonic kinetoplastids. Although we have identified all major kinetoplastid lineages, 98% of kinetoplastid reads are represented by neobodonids, namely specimens of the Neobodo and Rhynchomonas genera, which make up 59% and 18% of all reads, respectively. Most kinetoplastids have small cell size (0.8-5 µm) and tend to be more abundant in the mesopelagic as compared to the euphotic zone. Some of the most abundant operational taxonomic units have distinct geographical distributions, and three novel putatively parasitic neobodonids were identified, along with their potential hosts.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Shruti Malviya
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julie Poulain
- CEA - GENOSCOPE - Institut François Jacob, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706, Evry, France.,Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Colomban de Vargas
- Station Biologique de Roscoff, Roscoff, France.,Sorbonne Universités, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
35
|
Zingone A, D'Alelio D, Mazzocchi MG, Montresor M, Sarno D, team LTERMC. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30789] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long time-series of observations is the best tool to trace their patterns and variability over multiple scales, ultimately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic and natural environmental changes on pelagic communities. At the same time, a long time-series constitutes a formidable asset for different kinds of research on specific questions that emerge from the observations, whereby the results of these complementary studies provide precious interpretative tools that augment the informative value of the data collected. In this paper, we review more than 140 studies that have been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interactions among species through trophic relationships, parasites and viruses. Overall, the products of this research demonstrate the great value of time series besides the record of fluctuations and trends, and highlight their primary role in the development of the scientific knowledge of plankton much beyond the local scale.
Collapse
|
36
|
Gaonkar CC, Piredda R, Minucci C, Mann DG, Montresor M, Sarno D, Kooistra WHCF. Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS One 2018; 13:e0208929. [PMID: 30586452 PMCID: PMC6306197 DOI: 10.1371/journal.pone.0208929] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
The species-rich diatom family Chaetocerotaceae is common in the coastal marine phytoplankton worldwide where it is responsible for a substantial part of the primary production. Despite its relevance for the global cycling of carbon and silica, many species are still described only morphologically, and numerous specimens do not fit any described taxa. Nowadays, studies to assess plankton biodiversity deploy high throughput sequencing metabarcoding of the 18S rDNA V4 region, but to translate the gathered metabarcodes into biologically meaningful taxa, there is a need for reference barcodes. However, 18S reference barcodes for this important family are still relatively scarce. We provide 18S rDNA and partial 28S rDNA reference sequences of 443 morphologically characterized chaetocerotacean strains. We gathered 164 of the 216 18S sequences and 244 of the 413 28S sequences of strains from the Gulf of Naples, Atlantic France, and Chile. Inferred phylogenies showed 84 terminal taxa in seven principal clades. Two of these clades included terminal taxa whose rDNA sequences contained spliceosomal and Group IC1 introns. Regarding the commonly used metabarcode markers in planktonic diversity studies, all terminal taxa can be discriminated with the 18S V4 hypervariable region; its primers fit their targets in all but two species, and the V4-tree topology is similar to that of the 18S. Hence V4-metabarcodes of unknown Chaetocerotaceae are assignable to the family. Regarding the V9 hypervariable region, most terminal taxa can be discriminated, but several contain introns in their primer targets. Moreover, poor phylogenetic resolution of the V9 region affects placement of metabarcodes of putative but unknown chaetocerotacean taxa, and hence, uncertainty in taxonomic assignment, even of higher taxa.
Collapse
Affiliation(s)
- Chetan C. Gaonkar
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Roberta Piredda
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carmen Minucci
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - David G. Mann
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, United Kingdom, and Institut de Recerca i Tecnologia Agroalimentaries, Sant Carles de La Ràpita, Catalonia, Spain
| | - Marina Montresor
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diana Sarno
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | |
Collapse
|
37
|
Diatom diversity through HTS-metabarcoding in coastal European seas. Sci Rep 2018; 8:18059. [PMID: 30584235 PMCID: PMC6305388 DOI: 10.1038/s41598-018-36345-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
Diatoms constitute a diverse lineage of unicellular organisms abundant and ecologically important in aquatic ecosystems. Compared to other protists, their biology and taxonomy are well-studied, offering the opportunity to combine traditional approaches and new technologies. We examined a dataset of diatom 18S rRNA- and rDNA- (V4 region) reads from different plankton size-fractions and sediments from six European coastal marine sites, with the aim of identifying peculiarities and commonalities with respect to the whole protistan community. Almost all metabarcodes (99.6%) were assigned to known genera (121) and species (236), the most abundant of which were those already known from classic studies and coincided with those seen in light microscopy. rDNA and rRNA showed comparable patterns for the dominant taxa, but rRNA revealed a much higher diversity particularly in the sediment communities. Peculiar to diatoms is a tight bentho-pelagic coupling, with many benthic or planktonic species colonizing both water column and sediments and the dominance of planktonic species in both habitats. Overall metabarcoding results reflected the marked specificity of diatoms compared to other protistan groups in terms of morphological and ecological characteristics, at the same time confirming their great potential in the description of protist communities.
Collapse
|
38
|
Dzhembekova N, Moncheva S, Ivanova P, Slabakova N, Nagai S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1532816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Nina Dzhembekova
- Marine Biology and Ecology Department, Institute of Oceanology, Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Snejana Moncheva
- Marine Biology and Ecology Department, Institute of Oceanology, Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Petya Ivanova
- Marine Biology and Ecology Department, Institute of Oceanology, Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Nataliya Slabakova
- Marine Biology and Ecology Department, Institute of Oceanology, Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|
39
|
Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci Rep 2018; 8:15500. [PMID: 30341362 PMCID: PMC6195585 DOI: 10.1038/s41598-018-33799-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023] Open
Abstract
One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage.
Collapse
|
40
|
Forster D, Filker S, Kochems R, Breiner HW, Cordier T, Pawlowski J, Stoeck T. A Comparison of Different Ciliate Metabarcode Genes as Bioindicators for Environmental Impact Assessments of Salmon Aquaculture. J Eukaryot Microbiol 2018; 66:294-308. [DOI: 10.1111/jeu.12670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Dominik Forster
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Sabine Filker
- Molecular Ecology; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Rebecca Kochems
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Hans-Werner Breiner
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Tristan Cordier
- Department of Genetics and Evolution; University of Geneva; 1211 Geneva Switzerland
| | - Jan Pawlowski
- Department of Genetics and Evolution; University of Geneva; 1211 Geneva Switzerland
- ID-Gene ecodiagnostics Ltd.; Campus Biotech Innovation Park 1202 Geneva Switzerland
| | - Thorsten Stoeck
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| |
Collapse
|
41
|
Lentendu G, Mahé F, Bass D, Rueckert S, Stoeck T, Dunthorn M. Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists. Mol Ecol 2018; 27:2846-2857. [PMID: 29851187 DOI: 10.1111/mec.14731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests.
Collapse
Affiliation(s)
- Guillaume Lentendu
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| | - David Bass
- Department of Life Sciences, The Natural History Museum London, London, UK.,Centre for Environment, Fisheries & Aquaculture Science (Cefas), Weymouth, Dorset, UK
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
42
|
Discrepancies Between Molecular and Morphological Databases of Soil Ciliates Studied for Temperate Grasslands of Central Europe. Protist 2018; 169:521-538. [PMID: 29936291 DOI: 10.1016/j.protis.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 01/01/2023]
Abstract
By measuring the change in soil protist communities, the effect of human land use on grasslands can be monitored to promote sustainable ecosystem functioning. Protists form the active link in the rhizosphere between the plant roots and higher trophic organisms; however, only few morphological species and their ecological values have yet been described in this context. To investigate the communicability between morphological and molecular databases used in the molecular barcoding of protists and in the biomonitoring of grassland soil, the present high-throughput sequencing (HTS) study (N=150) covered the area of central Europe (mesoscale) known to be well studied for ciliated protists. HTS delivered 2,404 unique reads identifying taxa in all major ciliophoran classes but exact reference matches were few. The study identified clear discrepancies between databases for well-studied taxa, where molecular databases contained multiple gene variants for single morphospecies of dominant taxa. Gene variants presented own biogeography - the eukaryotic microdiversity along gradients (e.g., land-use intensity, soil water). It is possible that many of the so called novel phylogenetic lineages and hidden diversity pointed out in environmental surveys could be evidence for the severe lack of molecular data for already known and morphologically described species, present in morphological databases.
Collapse
|
43
|
Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep 2018; 8:2539. [PMID: 29416071 PMCID: PMC5803224 DOI: 10.1038/s41598-018-20833-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009–2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.
Collapse
|
44
|
Harding T, Simpson AGB. Recent Advances in Halophilic Protozoa Research. J Eukaryot Microbiol 2018; 65:556-570. [PMID: 29266533 DOI: 10.1111/jeu.12495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
Most research on microorganisms adapted to hypersaline habitats has focused on Archaea and Bacteria, with microbial eukaryotes receiving much less attention. Over the past 15 yr, our knowledge of phagotrophic microbial eukaryotes, i.e. protozoa, from hypersaline habitats has greatly improved through combinations of microscopy, molecular phylogenetics, environmental sequencing, transcriptomics and growth experiments. High salinity waters from salterns, other landlocked water masses and deep hypersaline anoxic basins contain unique and diverse halophilic protozoan assemblages. These have the potential to exert substantial grazing pressure on prokaryotes and other eukaryotes. They represent many separate evolutionary lineages; species of Heterolobosea, Bicosoecida, and Ciliophora have been most intensively characterized, with several proven to be extreme (or borderline extreme) halophiles. Transcriptomic examinations of the bicosoecid Halocafeteria (and the heteroloboseid Pharyngomonas) indicate that high-salt adaptation is associated with a subtle shift in protein amino acid composition, and involves the differential expression of genes participating in ion homeostasis, signal transduction, stress management, and lipid remodeling. Instances of gene duplication and lateral transfer possibly conferring adaptation have been documented. Indirect evidence suggests that these protozoa use "salt-out" osmoadaptive strategies.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
45
|
Zhao F, Filker S, Xu K, Huang P, Zheng S. Patterns and Drivers of Vertical Distribution of the Ciliate Community from the Surface to the Abyssopelagic Zone in the Western Pacific Ocean. Front Microbiol 2017; 8:2559. [PMID: 29312240 PMCID: PMC5742212 DOI: 10.3389/fmicb.2017.02559] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022] Open
Abstract
The deep sea is one of the largest but least understood ecosystems on earth. Knowledge about the diversity and distribution patterns as well as drivers of microbial eukaryote (including ciliates) along the water column, particularly below the photic zone, is scarce. In this study, we investigated the diversity of pelagic ciliates, the main group of marine microeukaryotes, their vertical distribution from the surface to the abyssopelagic zone, as well as their horizontal distribution over a distance of 1,300 km in the Western Pacific Ocean, using high-throughput DNA and cDNA (complementary DNA) sequencing. No distance-decay relationship could be detected along the horizontal scale; instead, a distinct vertical distribution within the ciliate communities was revealed. The alpha diversity of the ciliate communities in the deep chlorophyll maximum (DCM) and the 200 m layer turned out to be significantly higher compared with the other water layers. The ciliate communities in the 200 m water layer appeared to be more similar to those in deeper layers from 1,000 m to about 5,000 m than to the surface and DCM ciliate communities. Dominant species in the bathypelagic and abyssopelagic zone, particularly some parasites, were also detected in the 200 m layer, but were almost absent in the surface layer. The 200 m layer, therefore, seems to be an important “species bank” for deep ocean layers. Statistical analyses further revealed significant effects of temperature and chlorophyll a on the partitioning of ciliate diversity, indicating that environmental factors are a stronger force in shaping marine pelagic ciliate communities than the geographic distance.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kuidong Xu
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Huang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan Zheng
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
46
|
Chen W, Pan Y, Yu L, Yang J, Zhang W. Patterns and Processes in Marine Microeukaryotic Community Biogeography from Xiamen Coastal Waters and Intertidal Sediments, Southeast China. Front Microbiol 2017; 8:1912. [PMID: 29075237 PMCID: PMC5644358 DOI: 10.3389/fmicb.2017.01912] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Microeukaryotes play key roles in the structure and functioning of marine ecosystems. Little is known about the relative importance of the processes that drive planktonic and benthic microeukaryotic biogeography in subtropical offshore areas. This study compares the microeukaryotic community compositions (MCCs) from offshore waters (n = 12) and intertidal sediments (n = 12) around Xiamen Island, southern China, using high-throughput sequencing of 18S rDNA. This work further quantifies the relative contributions of spatial and environmental variables on the distribution of marine MCCs (including total, dominant, rare and conditionally rare taxa). Our results showed that planktonic and benthic MCCs were significantly different, and the benthic richness (6627 OTUs) was much higher than that for plankton (4044 OTUs) with the same sequencing effort. Further, we found that benthic MCCs exhibited a significant distance-decay relationship, whereas the planktonic communities did not. After removing two unique sites (N2 and N3), however, 72% variation in planktonic community was explained well by stochastic processes. More importantly, both the environmental and spatial factors played significant roles in influencing the biogeography of total and dominant planktonic and benthic microeukaryotic communities, although their relative effects on these community variations were different. However, a high proportion of unexplained variation in the rare taxa (78.1–97.4%) and conditionally rare taxa (49.0–81.0%) indicated that more complex mechanisms may influence the assembly of the rare subcommunity. These results demonstrate that patterns and processes in marine microeukaryotic community assembly differ among the different habitats (coastal water vs. intertidal sediment) and different communities (total, dominant, rare and conditionally rare microeukaryotes), and provide novel insight on the microeukaryotic biogeography and ecological mechanisms in coastal waters and intertidal sediments at local scale.
Collapse
Affiliation(s)
- Weidong Chen
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yongbo Pan
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingyu Yu
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Wenjing Zhang
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Zhao F, Filker S, Stoeck T, Xu K. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean. BMC Microbiol 2017; 17:192. [PMID: 28899339 PMCID: PMC5596958 DOI: 10.1186/s12866-017-1103-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Results Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. Conclusions We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species. Electronic supplementary material The online version of this article (10.1186/s12866-017-1103-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.,Department of Molecular Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Kuidong Xu
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Lanzén A, Lekang K, Jonassen I, Thompson EM, Troedsson C. DNA extraction replicates improve diversity and compositional dissimilarity in metabarcoding of eukaryotes in marine sediments. PLoS One 2017. [PMID: 28622351 PMCID: PMC5473592 DOI: 10.1371/journal.pone.0179443] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human impact on marine benthic communities has traditionally been assessed using visible morphological traits and has focused on the macrobenthos, whereas the ecologically important organisms of the meio- and microbenthos have received less attention. DNA metabarcoding offers an alternative to this approach and enables a larger fraction of the biodiversity in marine sediments to be monitored in a cost-efficient manner. Although this methodology remains poorly standardised and challenged by biases inherent to rRNA copy number variation, DNA extraction, PCR, and limitations related to taxonomic identification, it has been shown to be semi-quantitative and useful for comparing taxon abundances between samples. Here, we evaluate the effect of replicating genomic DNA extraction in order to counteract small scale spatial heterogeneity and improve diversity and community structure estimates in metabarcoding-based monitoring. For this purpose, we used ten technical replicates from three different marine sediment samples. The effect of sequence depth was also assessed, and in silico pooling of DNA extraction replicates carried out in order to maintain the number of reads constant. Our analyses demonstrated that both sequencing depth and DNA extraction replicates could improve diversity estimates as well as the ability to separate samples with different characteristics. We could not identify a “sufficient” replicate number or sequence depth, where further improvements had a less significant effect. Based on these results, we consider replication an attractive alternative to directly increasing the amount of sample used for DNA extraction and strongly recommend it for future metabarcoding studies and routine assessments of sediment biodiversity.
Collapse
Affiliation(s)
- Anders Lanzén
- NEIKER-Tecnalia, Department of Conservation of Natural Resources, Bizkaia Technology Park, Derio, Spain
- * E-mail:
| | - Katrine Lekang
- Department of Biology, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Department of Biology, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | | |
Collapse
|
49
|
Venter PC, Nitsche F, Domonell A, Heger P, Arndt H. The Protistan Microbiome of Grassland Soil: Diversity in the Mesoscale. Protist 2017; 168:546-564. [PMID: 28961455 DOI: 10.1016/j.protis.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
Abstract
Genomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100μm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship. We analyzed environmental DNA from 150 geo-referenced grassland plots representing topographical and land-use ranges typical for Central Europe. High through-put barcoding allowed the identification of operational taxonomic units (OTUs) at species level, with high pairwise identity to reference sequences (≥99.7%), but also the identification of sequences at the genus (≥97%) and class (≥80%) taxonomic level. Species richness analyses revealed, on average, 100 genus level OTUs (332 unique individual read (UIR) and 56 class level OTUs per gram of soil sample in the mesoscale (1-1000km). Database shortfalls were highlighted by increased uncertain taxonomic lineages at lower resolution (≥80% sequence identity). No single barcode occurred ubiquitously across all sites. Taxa-area relationships indicated that OTUs spread over the entire mesoscale were more similar than in the local scale and increased land-use (fertilization, mowing and grazing) promoted taxa-area separation. Only a small fraction of sequences strictly matched reference library sequences, suggesting a large protistan "dark matter" in soil which warrants further research.
Collapse
Affiliation(s)
- Paul Christiaan Venter
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Frank Nitsche
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Anne Domonell
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Peter Heger
- University of Cologne, Department of Biology, Institute for Genetics, Bioinformatics & Population Genetics, Zuelpicher Str. 47a, D-50674 Koeln (Cologne), Germany
| | - Hartmut Arndt
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany.
| |
Collapse
|
50
|
Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 2017; 1:91. [DOI: 10.1038/s41559-017-0091] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022]
|