1
|
Barak N, Brekhman V, Aharonovich D, Lotan T, Sher D. Jellyfish blooms through the microbial lens: temporal changes, cross-species and Jellyfish-water comparisons. ENVIRONMENTAL MICROBIOME 2025; 20:49. [PMID: 40346699 PMCID: PMC12063254 DOI: 10.1186/s40793-025-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Jellyfish blooms have significant ecological and economic impacts, yet the microbial communities associated with these blooms remain poorly understood, despite their potential influence on host fitness and microbial communities in the surrounding water. In this study, we explored temporal and tissue-specific variations in the microbiota of Rhopilema nomadica, the dominant jellyfish species in the Eastern Mediterranean Sea, across winter and summer blooms. During late summer blooms, microbial richness declined, coinciding with an increase in Endozoicomonas and unclassified Rickettsiales, while Tenacibaculum predominantly characterized winter blooms. Tissue-specific analyses revealed bacterial groups that were more consistently associated with different jellyfish tissues (e.g., Bacteroides in the bell and Simkaniaceae in the gonads), suggesting different microbial niches within the host. Furthermore, some key bacteria associated with R. nomadica, including Endozoicomonas, unclassified Rickettsiales, and Bacteroides were detected in the surrounding bloom water but absent from remote seawater, suggesting potential localized transmission dynamics between jellyfish and their immediate marine environment. Finally, a comparative analysis with nine additional jellyfish species identified recurring microbial taxa, including Endozoicomonas, Mycoplasma, and Spiroplasma, though no universal core microbiota was observed. This study represents the first exploration of microbial dynamics within R. nomadica blooms and the most comprehensive analysis of jellyfish-associated microbiomes across bloom stages and tissues to date. Our findings reveal complex relationships between jellyfish species, bloom progression, their microbial communities, and the surrounding seawater.
Collapse
Affiliation(s)
- Noga Barak
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Vera Brekhman
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Tamar Lotan
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| | - Daniel Sher
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
2
|
Epstein HE, Brown T, Akinrinade AO, McMinds R, Pollock FJ, Sonett D, Smith S, Bourne DG, Carpenter CS, Knight R, Willis BL, Medina M, Lamb JB, Thurber RV, Zaneveld JR. Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution. Anim Microbiome 2025; 7:1. [PMID: 39754287 PMCID: PMC11697511 DOI: 10.1186/s42523-024-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea. RESULTS Using a comparative approach, we tested if coral microbiomes correlate with disease susceptibility across 425 million years of coral evolution by conducting a cross-species coral microbiome survey (the "Global Coral Microbiome Project") and combining the results with long-term global disease prevalence and coral trait data. Interpreting these data in their phylogenetic context, we show that microbial dominance predicts disease susceptibility, and traced this dominance-disease association to a single putatively beneficial symbiont genus, Endozoicomonas. Endozoicomonas relative abundance in coral tissue explained 30% of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral genera, while also correlating strongly with high growth rates. CONCLUSIONS These results demonstrate that the evolution of Endozoicomonas symbiosis in corals correlates with both disease prevalence and growth rate, and suggest a mediating role. Exploration of the mechanistic basis for these findings will be important for our understanding of how microbial symbioses influence animal life-history tradeoffs.
Collapse
Affiliation(s)
- Hannah E Epstein
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Tanya Brown
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Biology, University of Texas, Tyler, TX, 75799, USA
| | - Ayọmikun O Akinrinade
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
- Center for Global Health and Infectious Diseases Research, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL, 33612, USA
| | - F Joseph Pollock
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
- Hawai'i & Palmyra Program, The Nature Conservancy, Honolulu, HI, USA
| | - Dylan Sonett
- School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Styles Smith
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Carolina S Carpenter
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - Joleah B Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Jesse R Zaneveld
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
| |
Collapse
|
3
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
4
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. G3 (BETHESDA, MD.) 2024; 14:jkae137. [PMID: 38900914 PMCID: PMC11304949 DOI: 10.1093/g3journal/jkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from 4 stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared with a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M Heinz
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lindsay K Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, USA
| |
Collapse
|
6
|
He X, Zou J, Chen Q, Qin X, Liu Y, Zeng L, Su H. Microbial and transcriptional response of Acropora valida and Turbinaria peltata to Vibrio coralliilyticus challenge: insights into corals disease resistance. BMC Microbiol 2024; 24:288. [PMID: 39095694 PMCID: PMC11295391 DOI: 10.1186/s12866-024-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.
Collapse
Affiliation(s)
- Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jie Zou
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qiqi Chen
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiao Qin
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yuan Liu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lujia Zeng
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573916. [PMID: 38260425 PMCID: PMC10802270 DOI: 10.1101/2024.01.02.573916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared to a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M. Heinz
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission; St. Petersburg, FL 33701, United States
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Computer Science, Johns Hopkins University; Baltimore, MD 21218, United States
- Department of Biostatistics, Johns Hopkins University; Baltimore, MD 21205, United States
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami; Miami, FL 33149, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, United States
| |
Collapse
|
8
|
Clements CS, Pratte ZA, Stewart FJ, Hay ME. Removal of detritivore sea cucumbers from reefs increases coral disease. Nat Commun 2024; 15:1338. [PMID: 38409274 PMCID: PMC10897328 DOI: 10.1038/s41467-024-45730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Coral reefs are in global decline with coral diseases playing a significant role. This is especially true for Acroporid corals that represent ~25% of all Pacific coral species and generate much of the topographic complexity supporting reef biodiversity. Coral diseases are commonly sediment-associated and could be exacerbated by overharvest of sea cucumber detritivores that clean reef sediments and may suppress microbial pathogens as they feed. Here we show, via field manipulations in both French Polynesia and Palmyra Atoll, that historically overharvested sea cucumbers strongly suppress disease among corals in contact with benthic sediments. Sea cucumber removal increased tissue mortality of Acropora pulchra by ~370% and colony mortality by ~1500%. Additionally, farmerfish that kill Acropora pulchra bases to culture their algal gardens further suppress disease by separating corals from contact with the disease-causing sediment-functioning as mutualists rather than parasites despite killing coral bases. Historic overharvesting of sea cucumbers increases coral disease and threatens the persistence of tropical reefs. Enhancing sea cucumbers may enhance reef resilience by suppressing disease.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zoe A Pratte
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Mark E Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Pagenkopp Lohan KM, Gignoux-Wolfsohn SA, Ruiz GM. Biodiversity differentially impacts disease dynamics across marine and terrestrial habitats. Trends Parasitol 2024; 40:106-117. [PMID: 38212198 DOI: 10.1016/j.pt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites. We highlight gaps in knowledge regarding how these six levels of biodiversity impact diseases in marine systems and propose two model systems, the Perkinsus-oyster and Labyrinthula-seagrass systems, to address these gaps.
Collapse
Affiliation(s)
- Katrina M Pagenkopp Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.
| | - Sarah A Gignoux-Wolfsohn
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA; Current address: Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Gregory M Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
10
|
Xiong J, Shi Z. Editorial: Environments-pathogens-the gut microbiota and host diseases. Front Microbiol 2024; 14:1357125. [PMID: 38260887 PMCID: PMC10800979 DOI: 10.3389/fmicb.2023.1357125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Shaw CG, Pavloudi C, Crow RS, Saw JH, Smith LC. Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus. BMC Microbiol 2024; 24:11. [PMID: 38172649 PMCID: PMC10765733 DOI: 10.1186/s12866-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Christina Pavloudi
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris, France
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
12
|
Dungan AM, Geissler L, Williams AS, Gotze CR, Flynn EC, Blackall LL, van Oppen MJH. DNA from non-viable bacteria biases diversity estimates in the corals Acropora loripes and Pocillopora acuta. ENVIRONMENTAL MICROBIOME 2023; 18:86. [PMID: 38062479 PMCID: PMC10704692 DOI: 10.1186/s40793-023-00541-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 06/30/2024]
Abstract
BACKGROUND Nucleic acid-based analytical methods have greatly expanded our understanding of global prokaryotic diversity, yet standard metabarcoding methods provide no information on the most fundamental physiological state of bacteria, viability. Scleractinian corals harbour a complex microbiome in which bacterial symbionts play critical roles in maintaining health and functioning of the holobiont. However, the coral holobiont contains both dead and living bacteria. The former can be the result of corals feeding on bacteria, rapid swings from hyper- to hypoxic conditions in the coral tissue, the presence of antimicrobial compounds in coral mucus, and an abundance of lytic bacteriophages. RESULTS By combining propidium monoazide (PMA) treatment with high-throughput sequencing on six coral species (Acropora loripes, A. millepora, A. kenti, Platygyra daedalea, Pocillopora acuta, and Porites lutea) we were able to obtain information on bacterial communities with little noise from non-viable microbial DNA. Metabarcoding of the 16S rRNA gene showed significantly higher community evenness (85%) and species diversity (31%) in untreated compared with PMA-treated tissue for A. loripes only. While PMA-treated coral did not differ significantly from untreated samples in terms of observed number of ASVs, > 30% of ASVs were identified in untreated samples only, suggesting that they originated from cell-free/non-viable DNA. Further, the bacterial community structure was significantly different between PMA-treated and untreated samples for A. loripes and P. acuta indicating that DNA from non-viable microbes can bias community composition data in coral species with low bacterial diversity. CONCLUSIONS Our study is highly relevant to microbiome studies on coral and other host organisms as it delivers a solution to excluding non-viable DNA in a complex community. These results provide novel insights into the dynamic nature of host-associated microbiomes and underline the importance of applying versatile tools in the analysis of metabarcoding or next-generation sequencing data sets.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Laura Geissler
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda S Williams
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Emily C Flynn
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
13
|
Vollmer SV, Selwyn JD, Despard BA, Roesel CL. Genomic signatures of disease resistance in endangered staghorn corals. Science 2023; 381:1451-1454. [PMID: 37769073 DOI: 10.1126/science.adi3601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
White band disease (WBD) has caused unprecedented declines in the Caribbean Acropora corals, which are now listed as critically endangered species. Highly disease-resistant Acropora cervicornis genotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76 A. cervicornis genotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks of A. cervicornis across the Caribbean.
Collapse
Affiliation(s)
- Steven V Vollmer
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Jason D Selwyn
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Brecia A Despard
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Charles L Roesel
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| |
Collapse
|
14
|
Schul MD, Anastasious DE, Spiers LJ, Meyer JL, Frazer TK, Brown AL. Concordance of microbial and visual health indicators of white-band disease in nursery reared Caribbean coral Acropora cervicornis. PeerJ 2023; 11:e15170. [PMID: 37361046 PMCID: PMC10290447 DOI: 10.7717/peerj.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/13/2023] [Indexed: 06/28/2023] Open
Abstract
Background Coral diseases are one of the leading causes of declines in coral populations. In the Caribbean, white band disease (WBD) has led to a substantial loss of Acropora corals. Although the etiologies of this disease have not been well described, characterizing the coral microbiome during the transition from a healthy to diseased state is critical for understanding disease progression. Coral nurseries provide unique opportunities to further understand the microbial changes associated with diseased and healthy corals, because corals are monitored over time. We characterized the microbiomes before and during an outbreak of WBD in Acropora cervicornis reared in an ocean nursery in Little Cayman, CI. We asked (1) do healthy corals show the same microbiome over time (before and during a disease outbreak) and (2) are there disease signatures on both lesioned and apparently healthy tissues on diseased coral colonies? Methods Microbial mucus-tissue slurries were collected from healthy coral colonies in 2017 (before the disease) and 2019 (during the disease onset). Diseased colonies were sampled at two separate locations on an individual coral colony: at the interface of Disease and ∼10 cm away on Apparently Healthy coral tissue. We sequenced the V4 region of the 16S rRNA gene to characterize bacterial and archaeal community composition in nursery-reared A. cervicornis. We assessed alpha diversity, beta diversity, and compositional differences to determine differences in microbial assemblages across health states (2019) and healthy corals between years (2017 and 2019). Results Microbial communities from healthy A. cervicornis from 2017 (before disease) and 2019 (after disease) did not differ significantly. Additionally, microbial communities from Apparently Healthy samples on an otherwise diseased coral colony were more similar to Healthy colonies than to the diseased portion on the same colony for both alpha diversity and community composition. Microbial communities from Diseased tissues had significantly higher alpha diversity than both Healthy and Apparently Healthy tissues but showed no significant difference in beta-diversity dispersion. Our results show that at the population scale, Healthy and Apparently Healthy coral tissues are distinct from microbial communities associated with Diseased tissues. Furthermore, our results suggest stability in Little Cayman nursery coral microbiomes over time. We show healthy Caymanian nursery corals had a stable microbiome over a two-year period, an important benchmark for evaluating coral health via their microbiome.
Collapse
Affiliation(s)
- Monica D. Schul
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States of America
| | - Dagny-Elise Anastasious
- Little Cayman Research Center, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Lindsay J. Spiers
- School of Fisheries, University of Florida, Gainesville, FL, United States of America
- Fish & Wildlife Research Institute, Florida Fish & Wildlife Conservation Commission, Marathon, FL, United States of America
| | - Julie L. Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States of America
| | - Thomas K. Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Anya L. Brown
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
- Bodega Marine Lab, Department of Evolution and Ecology, University of California, Davis, Bodega Bay, CA, United States of America
| |
Collapse
|
15
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
16
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
17
|
Microbiome Restructuring: Dominant Coral Bacterium Endozoicomonas Species Respond Differentially to Environmental Changes. mSystems 2022; 7:e0035922. [PMID: 35703535 PMCID: PMC9426584 DOI: 10.1128/msystems.00359-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, “Candidatus Endozoicomonas penghunesis” 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel “Ca. Endozoicomonas penghunesis” 4G, to respond to change in the environment following a reciprocal transplant experiment.
Collapse
|
18
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Evans JS, Paul VJ, Ushijima B, Kellogg CA. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol Methods Protoc 2022; 7:bpac007. [PMID: 35187265 PMCID: PMC8848328 DOI: 10.1093/biomethods/bpac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 08/29/2023] Open
Abstract
The causative agents of most coral diseases today remain unknown, complicating disease response and restoration efforts. Pathogen identifications can be hampered by complex microbial communities naturally associated with corals and seawater, which create complicating "background noise" that can potentially obscure a pathogen's signal. Here, we outline an approach to investigate waterborne coral diseases that use a combination of coral mesocosms, tangential flow filtration, and size fractionation to reduce the impact of this background microbial diversity, compensate for unknown infectious dose, and further narrow the suspect pool of potential pathogens. As proof of concept, we use this method to compare the bacterial communities shed into six Montastraea cavernosa coral mesocosms and demonstrate this method effectively detects differences between diseased and healthy coral colonies. We found several amplicon sequence variants (ASVs) in the diseased mesocosms that represented 100% matches with ASVs identified in prior studies of diseased coral tissue, further illustrating the effectiveness of our approach. Our described method is an effective alternative to using coral tissue or mucus to investigate waterborne coral diseases of unknown etiology and can help more quickly narrow the pool of possible pathogens to better aid in disease response efforts. Additionally, this versatile method can be easily adapted to characterize either the entire microbial community associated with a coral or target-specific microbial groups, making it a beneficial approach regardless of whether a causative agent is suspected or is completely unknown.
Collapse
Affiliation(s)
- James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
| | | | - Blake Ushijima
- Smithsonian Marine Station, Ft. Pierce, FL 34949, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
| |
Collapse
|
20
|
Wang JT, Wang YT, Chen CA, Meng PJ, Tew KS, Chiang PW, Tang SL. Extra high superoxide dismutase in host tissue is associated with improving bleaching resistance in "thermal adapted" and Durusdinium trenchii-associating coral. PeerJ 2022; 10:e12746. [PMID: 35070504 PMCID: PMC8760857 DOI: 10.7717/peerj.12746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Global warming threatens reef-building corals with large-scale bleaching events; therefore, it is important to discover potential adaptive capabilities for increasing their temperature resistance before it is too late. This study presents two coral species (Platygyra verweyi and Isopora palifera) surviving on a reef having regular hot water influxes via a nearby nuclear power plant that exhibited completely different bleaching susceptibilities to thermal stress, even though both species shared several so-called "winner" characteristics (e.g., containing Durusdinium trenchii, thick tissue, etc.). During acute heating treatment, algal density did not decline in P. verweyi corals within three days of being directly transferred from 25 to 31 °C; however, the same treatment caused I. palifera to lose < 70% of its algal symbionts within 24 h. The most distinctive feature between the two coral species was an overwhelmingly higher constitutive superoxide dismutase (ca. 10-fold) and catalase (ca. 3-fold) in P. verweyi over I. palifera. Moreover, P. verweyi also contained significantly higher saturated and lower mono-unsaturated fatty acids, especially a long-chain saturated fatty acid (C22:0), than I. palifera, and was consistently associated with the symbiotic bacteria Endozoicomonas, which was not found in I. palifera. However, antibiotic treatment and inoculation tests did not support Endozoicomonas having a direct contribution to thermal resistance. This study highlights that, besides its association with a thermally tolerable algal symbiont, a high level of constitutive antioxidant enzymes in the coral host is crucial for coral survivorship in the more fluctuating and higher temperature environments.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Ting Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | - Pei-Jei Meng
- General Education Center, National Dong Hwa University, Hualien, Taiwan,National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kwee Siong Tew
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan,Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Campos AB, Cavalcante LC, de Azevedo AR, Loiola M, Silva AET, Ara A, Meirelles PM. CPR and DPANN Have an Overlooked Role in Corals' Microbial Community Structure. MICROBIAL ECOLOGY 2022; 83:252-255. [PMID: 33758981 DOI: 10.1007/s00248-021-01737-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Understanding how microbial communities are structured in coral holobionts is important to estimate local and global impacts and provide efficient environment management strategies. Several studies investigated the relationship between corals and their microbial communities, including the environmental drivers of shifts in this relationship, associated with diseases and coral cover loss. However, these studies are often geographically or taxonomically restricted and usually focused on the most abundant microbial groups, neglecting the rare biosphere, including archaea in the group DPANN and the recently discovered bacterial members of the candidate phyla radiation (CPR). Although it is known that rare microbes can play essential roles in several environments, we still lack understanding about which taxa comprise the rare biosphere of corals' microbiome. Here, we investigated the host-related and technical factors influencing coral microbial community structure and the importance of CPR and DPANN in this context by analyzing more than a hundred coral metagenomes from independent studies worldwide. We show that coral genera are the main biotic factor shaping coral microbial communities. We also detected several CPR and DPANN phyla comprising corals' rare biosphere for the first time and showed that they significantly contribute to shaping coral microbial communities.
Collapse
Affiliation(s)
- Amanda Barreto Campos
- Institute of Biology, Federal University of Bahia, Salvador, Brazil
- National Institute for Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Salvador, Brazil
| | | | - Arthur R de Azevedo
- Institute of Mathematics and Statistics, Federal University of Bahia, Salvador, Brazil
| | - Miguel Loiola
- Institute of Biology, Federal University of Bahia, Salvador, Brazil
| | - Amaro Emiliano Trindade Silva
- National Institute for Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Salvador, Brazil
| | - Anderson Ara
- Institute of Mathematics and Statistics, Federal University of Bahia, Salvador, Brazil
| | - Pedro Milet Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Brazil.
- National Institute for Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Salvador, Brazil.
| |
Collapse
|
22
|
Haydon TD, Seymour JR, Raina JB, Edmondson J, Siboni N, Matthews JL, Camp EF, Suggett DJ. Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Front Microbiol 2021; 12:756091. [PMID: 34759906 PMCID: PMC8575411 DOI: 10.3389/fmicb.2021.756091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3°C, pH levels are more acidic (pH < 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (<2 mg/L). Defining the physiological features of these “extreme” corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of “core” bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | | | - Nachshon Siboni
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| |
Collapse
|
23
|
Characterization of the Microbiome of Corals with Stony Coral Tissue Loss Disease along Florida's Coral Reef. Microorganisms 2021; 9:microorganisms9112181. [PMID: 34835306 PMCID: PMC8623284 DOI: 10.3390/microorganisms9112181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) is an emergent and often lethal coral disease that was first reported near Miami, FL (USA) in 2014. Our objective was to determine if coral colonies showing signs of SCTLD possess a specific microbial signature across five susceptible species sampled in Florida’s Coral Reef. Three sample types were collected: lesion tissue and apparently unaffected tissue of diseased colonies, and tissue of apparently healthy colonies. Using 16S rRNA high-throughput gene sequencing, our results show that, for every species, the microbial community composition of lesion tissue was significantly different from healthy colony tissue and from the unaffected tissue of diseased colonies. The lesion tissue of all but one species (Siderastrea siderea) had higher relative abundances of the order Rhodobacterales compared with other types of tissue samples, which may partly explain why S. siderea lesions often differed in appearance compared to other species. The order Clostridiales was also present at relatively high abundances in the lesion tissue of three species compared to healthy and unaffected tissues. Stress often leads to the dysbiosis of coral microbiomes and increases the abundance of opportunistic pathogens. The present study suggests that Rhodobacterales and Clostridiales likely play an important role in SCTLD.
Collapse
|
24
|
Kitamura R, Miura N, Ito M, Takagi T, Yamashiro H, Nishikawa Y, Nishimura Y, Kobayashi K, Kataoka M. Specific Detection of Coral-Associated Ruegeria, a Potential Probiotic Bacterium, in Corals and Subtropical Seawater. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:576-589. [PMID: 34275003 DOI: 10.1007/s10126-021-10047-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Coral microbial flora has been attracting attention because of their potential to protect corals from environmental stresses or pathogens. Although coral-associated bacteria are considered to be acquired from seawater, little is known about the relationships between microbial composition in corals and its surrounding seawater. Here, we tested several methods to identify coral-associated bacteria in coral and its surrounding seawater to detect specific types of Ruegeria species, some of which exhibit growth inhibition activities against the coral pathogen Vibrio coralliilyticus. We first isolated coral-associated bacteria from the reef-building coral Galaxea fascicularis collected at Sesoko Island, Okinawa, Japan, via random colony picking, which showed the existence of varieties of bacteria including Ruegeria species. Using newly constructed primers for colony PCR, several Ruegeria species were successfully isolated from G. fascicularis and seawater. We further investigated the seawater microbiome in association with the distance from coral reefs. By seasonal sampling, it was suggested that the seawater microbiome is more affected by seasonality than the distance from coral reefs. These methods and results may contribute to investigating and understanding the relationships between the presence of corals and microbial diversity in seawater, in addition to the efficient isolation of specific bacterial species from coral or its surrounding seawater.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Michihiro Ito
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, 903-0213, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hideyuki Yamashiro
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, 905-0227, Japan
| | - Yumi Nishikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Yuna Nishimura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Keita Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| |
Collapse
|
25
|
The microbial profile of a tissue necrosis affecting the Atlantic invasive coral Tubastraea tagusensis. Sci Rep 2021; 11:9828. [PMID: 33972618 PMCID: PMC8110780 DOI: 10.1038/s41598-021-89296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
The Southwestern Atlantic rocky reef ecosystems are undergoing significant changes due to sun-corals (Tubastraea tagusensis and T. coccinea) invasion. At Búzios Island, on the northern coast of São Paulo State, where the abundance of T. tagusensis is particularly high, some colonies are displaying tissue necrosis, a phenomenon never reported for this invasive nor any other azooxanthellate coral species. Using next-generation sequencing, we sought to understand the relationship between T. tagusensis tissue necrosis and its microbiota. Thus, through amplicon sequencing, we studied both healthy and diseased coral colonies. Results indicate a wide variety of bacteria associated with healthy colonies and an even higher diversity associated with those corals presenting tissue necrosis, which displayed nearly 25% more microorganisms. Also, as the microbial community associated with the seven healthy colonies did not alter composition significantly, it was possible to verify the microbial succession during different stages of tissue necrosis (i.e., initial, intermediate, and advanced). Comparing the microbiome from healthy corals to those in early tissue necrosis suggests 21 potential pathogens, which might act as the promoters of such disease.
Collapse
|
26
|
Doering T, Wall M, Putchim L, Rattanawongwan T, Schroeder R, Hentschel U, Roik A. Towards enhancing coral heat tolerance: a "microbiome transplantation" treatment using inoculations of homogenized coral tissues. MICROBIOME 2021; 9:102. [PMID: 33957989 PMCID: PMC8103578 DOI: 10.1186/s40168-021-01053-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microbiome manipulation could enhance heat tolerance and help corals survive the pressures of ocean warming. We conducted coral microbiome transplantation (CMT) experiments using the reef-building corals, Pocillopora and Porites, and investigated whether this technique can benefit coral heat resistance while modifying the bacterial microbiome. Initially, heat-tolerant donors were identified in the wild. We then used fresh homogenates made from coral donor tissues to inoculate conspecific, heat-susceptible recipients and documented their bleaching responses and microbiomes by 16S rRNA gene metabarcoding. RESULTS Recipients of both coral species bleached at lower rates compared to the control group when exposed to short-term heat stress (34 °C). One hundred twelve (Pocillopora sp.) and sixteen (Porites sp.) donor-specific bacterial species were identified in the microbiomes of recipients indicating transmission of bacteria. The amplicon sequence variants of the majority of these transmitted bacteria belonged to known, putatively symbiotic bacterial taxa of corals and were linked to the observed beneficial effect on the coral stress response. Microbiome dynamics in our experiments support the notion that microbiome community evenness and dominance of one or few bacterial species, rather than host-species identity, were drivers for microbiome stability in a holobiont context. CONCLUSIONS Our results suggest that coral recipients likely favor the uptake of putative bacterial symbionts, recommending to include these taxonomic groups in future coral probiotics screening efforts. Our study suggests a scenario where these donor-specific bacterial symbionts might have been more efficient in supporting the recipients to resist heat stress compared to the native symbionts present in the control group. These findings urgently call for further experimental investigation of the mechanisms of action underlying the beneficial effect of CMT and for field-based long-term studies testing the persistence of the effect. Video abstract.
Collapse
Affiliation(s)
- Talisa Doering
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Marlene Wall
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Lalita Putchim
- Phuket Marine Biological Center (PMBC), Phuket, Thailand
| | | | | | - Ute Hentschel
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna Roik
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| |
Collapse
|
27
|
Clements CS, Burns AS, Stewart FJ, Hay ME. Parasite-host ecology: the limited impacts of an intimate enemy on host microbiomes. Anim Microbiome 2020; 2:42. [PMID: 33499998 PMCID: PMC7807496 DOI: 10.1186/s42523-020-00061-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Impacts of biotic stressors, such as consumers, on coral microbiomes have gained attention as corals decline worldwide. Corallivore feeding can alter coral microbiomes in ways that contribute to dysbiosis, but feeding strategies are diverse - complicating generalizations about the nature of consumer impacts on coral microbiomes. RESULTS In field experiments, feeding by Coralliophila violacea, a parasitic snail that suppresses coral growth, altered the microbiome of its host, Porites cylindrica, but these impacts were spatially constrained. Alterations in microbial community composition and variability were largely restricted to snail feeding scars; basal or distal areas ~ 1.5 cm or 6-8 cm away, respectively, were largely unaltered. Feeding scars were enriched in taxa common to stressed corals (e.g. Flavobacteriaceae, Rhodobacteraceae) and depauperate in putative beneficial symbionts (e.g. Endozoicomonadaceae) compared to locations that lacked feeding. CONCLUSIONS Previous studies that assessed consumer impacts on coral microbiomes suggested that feeding disrupts microbial communities, potentially leading to dysbiosis, but those studies involved mobile corallivores that move across and among numerous individual hosts. Sedentary parasites like C. violacea that spend long intervals with individual hosts and are dependent on hosts for food and shelter may minimize damage to host microbiomes to assure continued host health and thus exploitation. More mobile consumers that forage across numerous hosts should not experience these constraints. Thus, stability or disruption of microbiomes on attacked corals may vary based on the foraging strategy of coral consumers.
Collapse
Affiliation(s)
- Cody S Clements
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA.
| | - Andrew S Burns
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Stewart
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717-3520, USA
| | - Mark E Hay
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
28
|
Klinges G, Maher RL, Vega Thurber RL, Muller EM. Parasitic 'Candidatus Aquarickettsia rohweri' is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ Microbiol 2020; 22:5341-5355. [PMID: 32975356 PMCID: PMC7820986 DOI: 10.1111/1462-2920.15245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease-resistant and -susceptible Acropora cervicornis coral genotypes (hereafter referred to simply as 'genotypes') before and after high temperature-mediated bleaching. We found that the intracellular bacterial parasite 'Ca. Aquarickettsia rohweri' was strikingly abundant in disease-susceptible genotypes. Disease-resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of 'Ca. Aquarickettsia'. Bleaching caused a dramatic reduction of 'Ca. Aquarickettsia' within disease-susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that 'Ca. Aquarickettsia' species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host-symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.
Collapse
Affiliation(s)
- Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| |
Collapse
|
29
|
Miller N, Maneval P, Manfrino C, Frazer TK, Meyer JL. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 2020; 8:e9635. [PMID: 32913671 PMCID: PMC7456258 DOI: 10.7717/peerj.9635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background The architecturally important coral species Acropora cervicornis and A. palmata were historically common in the Caribbean, but have declined precipitously since the early 1980s. Substantial resources are currently being dedicated to coral gardening and the subsequent outplanting of asexually reproduced colonies of Acropora, activities that provide abundant biomass for both restoration efforts and for experimental studies to better understand the ecology of these critically endangered coral species. Methods We characterized the bacterial and archaeal community composition of A. cervicornis corals in a Caribbean nursery to determine the heterogeneity of the microbiome within and among colonies. Samples were taken from three distinct locations (basal branch, intermediate branch, and branch tip) from colonies of three different coral genotypes. Results Overall, microbial community composition was similar among colonies due to high relative abundances of the Rickettsiales genus MD3-55 (Candidatus Aquarickettsia) in nearly all samples. While microbial communities were not different among locations within the same colony, they were significantly different between coral genotypes. These findings suggest that sampling from any one location on a coral host is likely to provide a representative sample of the microbial community for the entire colony. Our results also suggest that subtle differences in microbiome composition may be influenced by the coral host, where different coral genotypes host slightly different microbiomes. Finally, this study provides baseline data for future studies seeking to understand the microbiome of nursery-reared A. cervicornis and its roles in coral health, adaptability, and resilience.
Collapse
Affiliation(s)
- Nicole Miller
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
| | - Paul Maneval
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America.,Little Cayman Research Center, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Carrie Manfrino
- Little Cayman Research Center, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Thomas K Frazer
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
| | - Julie L Meyer
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
30
|
Lu J, Zhang X, Qiu Q, Chen J, Xiong J. Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa. MICROBIAL ECOLOGY 2020; 80:447-458. [PMID: 32307553 DOI: 10.1007/s00248-020-01511-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
It is now recognized that some diseases of aquatic animals are attributed to polymicrobial pathogens infection. Thus, the traditional view of "one pathogen, one disease" might mislead the identification of multiple pathogens, which in turn impedes the design of probiotics. To address this gap, we explored polymicrobial pathogens based on the origin and timing of increased abundance over shrimp white feces syndrome (WFS) progression. OTU70848 Vibrio fluvialis, OTU35090 V. coralliilyticus, and OTU28721 V. tubiashii were identified as the primary colonizers, whose abundances increased only in individuals that eventually showed disease signs but were stable in healthy subjects over the same timeframe. Notably, the random Forest model revealed that the profiles of the three primary colonizers contributed an overall 91.4% of diagnosing accuracy of shrimp health status. Additionally, NetShift analysis quantified that the three primary colonizers were important "drivers" in the gut microbiotas from healthy to WFS shrimp. For these reasons, the primary colonizers were potential pathogens that contributed to the exacerbation of WFS. By this logic, we further identified a few "drivers" commensals in healthy individuals, such as OUT50531 Demequina sediminicola and OTU_74495 Ruegeria lacuscaerulensis, which directly antagonized the three primary colonizers. The predicted functional pathways involved in energy metabolism, genetic information processing, terpenoids and polyketides metabolism, lipid and amino acid metabolism significantly decreased in diseased shrimp compared with those in healthy cohorts, in concordant with the knowledge that the attenuations of these functional pathways increase shrimp sensitivity to pathogen infection. Collectively, we provide an ecological framework for inferring polymicrobial pathogens and designing antagonized probiotics by quantifying their changed "driver" feature that intimately links shrimp WFS progression. This approach might generalize to the exploring disease etiology for other aquatic animals.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xuechen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
31
|
Abstract
Vibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases. The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens (Vibrio coralliilyticus and Vibrio mediterranei) simultaneously infected the coral O. patagonica, their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis.
Collapse
|
32
|
Clements CS, Burns AS, Stewart FJ, Hay ME. Seaweed-coral competition in the field: effects on coral growth, photosynthesis and microbiomes require direct contact. Proc Biol Sci 2020; 287:20200366. [PMID: 32453990 DOI: 10.1098/rspb.2020.0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A number of tropical reefs have transitioned from coral to macroalgal dominance, but the role of macroalgal competition in coral decline is debated. There is a need to understand the relative roles of direct coral-algal effects versus indirect, microbially mediated effects shaping these interactions, as well as the relevant scales at which interactions operate under natural field, as opposed to laboratory, conditions. We conducted a manipulative field experiment investigating how direct contact versus close proximity (approx. 1.5 cm) with macroalgae (Galaxaura rugosa, Sargassum polycystum) impacted the growth, photosynthetic efficiency, and prokaryotic microbiome of the common Indo-Pacific coral Acropora millepora. Both coral growth and photosynthetic efficiency were suppressed when in direct contact with algae or their inert mimics--but not when in close proximity to corals without direct contact. Coral microbiomes were largely unaltered in composition, variability, or diversity regardless of treatment, although a few uncommon taxa differed in abundance among treatments. Negative impacts of macroalgae were contact dependent, accounted for by physical structure alone and had minimal effects on coral microbiomes. The spatial constraints of these interactions have important implications for understanding and predicting benthic community dynamics as reefs degrade.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Andrew S Burns
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Stewart
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717-3520, USA
| | - Mark E Hay
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
33
|
Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and Rhizobiales Are Associated With Stony Coral Tissue Loss Disease and Its Suspected Sources of Transmission. Front Microbiol 2020; 11:681. [PMID: 32425901 PMCID: PMC7212369 DOI: 10.3389/fmicb.2020.00681] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
In 2014, Stony Coral Tissue Loss Disease (SCTLD) was first detected off the coast of Miami, FL, United States, and continues to persist and spread along the Florida Reef Tractr (FRT) and into the Caribbean. SCTLD can have up to a 61% prevalence in reefs and has affected at least 23 species of scleractinian corals. This has contributed to the regional near-extinction of at least one coral species, Dendrogyra cylindrus. Initial studies of SCTLD indicate microbial community shifts and cessation of lesion progression in response to antibiotics on some colonies. However, the etiology and abiotic sources of SCTLD transmission are unknown. To characterize SCTLD microbial signatures, we collected tissue samples from four affected coral species: Stephanocoenia intersepta, Diploria labyrinthiformis, Dichocoenia stokesii, and Meandrina meandrites. Tissue samples were from apparently healthy (AH) corals, and unaffected tissue (DU) and lesion tissue (DL) on diseased corals. Samples were collected in June 2018 from three zones: (1) vulnerable (ahead of the SCTLD disease boundary in the Lower Florida Keys), (2) endemic (post-outbreak in the Upper Florida Keys), and (3) epidemic (SCTLD was active and prevalent in the Middle Florida Keys). From each zone, sediment and water samples were also collected to identify whether they may serve as potential sources of transmission for SCTLD-associated microbes. We used 16S rRNA gene amplicon high-throughput sequencing methods to characterize the microbiomes of the coral, water, and sediment samples. We identified a relatively higher abundance of the bacteria orders Rhodobacterales and Rhizobiales in DL tissue compared to AH and DU tissue. Also, our results showed relatively higher abundances of Rhodobacterales in water from the endemic and epidemic zones compared to the vulnerable zone. Rhodobacterales and Rhizobiales identified at higher relative abundances in DL samples were also detected in sediment samples, but not in water samples. Our data indicate that Rhodobacterales and Rhizobiales may play a role in SCTLD and that sediment may be a source of transmission for Rhodobacterales and Rhizobiales associated with SCTLD lesions.
Collapse
Affiliation(s)
- Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, United States
| | - Rob R. Ruzicka
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, United States
| | | |
Collapse
|
34
|
Zhou J, Lin ZJ, Cai ZH, Zeng YH, Zhu JM, Du XP. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environ Microbiol 2020; 22:1944-1962. [PMID: 32249540 DOI: 10.1111/1462-2920.15009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zi-Jun Lin
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Earth System Science, Tsinghua University of Education Key Laboratory for Earth System Modeling, Beijing, 100084, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
35
|
Gignoux-Wolfsohn SA, Precht WF, Peters EC, Gintert BE, Kaufman LS. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. DISEASES OF AQUATIC ORGANISMS 2020; 137:217-237. [PMID: 32132275 DOI: 10.3354/dao03441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum. The microscopic anatomy of apparently healthy portions of colonies displaying active disease signs appeared normal except for some tissue atrophy and dissociation of mesenterial filaments deep within the branch. Structural changes were more pronounced in visibly diseased fragments, with atrophy, necrosis, and lysing of surface and basal body wall and polyp structures at the tissue-loss margin. The only bacteria evident microscopically in both diseased and apparently healthy tissues with Giemsa staining was a Rickettsiales-like organism (RLO) occupying mucocytes. Sequencing also identified bacteria belonging to the order Rickettsiales in all fragments. When compared to apparently healthy fragments, diseased fragments had more diverse bacterial communities made up of many previously suggested potential primary pathogens and secondary (opportunistic) colonizers. Interactions between elevated seawater temperatures, the coral host, and pathogenic members of the diseased microbiome all contribute to the coral displaying signs of WBD.
Collapse
|
36
|
Hewson I. Technical pitfalls that bias comparative microbial community analyses of aquatic disease Ian Hewson. DISEASES OF AQUATIC ORGANISMS 2019; 137:109-124. [PMID: 31854329 DOI: 10.3354/dao03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accessibility of high-throughput DNA sequencing technologies has attracted the application of comparative microbial analyses to study diseases. These studies present a window into host microbiome diversity and composition that can be used to address ecological theory in the context of host biology and behavior. Recently, comparative microbiome studies have been used to study non-vertebrate aquatic diseases to elucidate microorganisms potentially involved in disease processes or in disease prevention. These investigations suffer from many well-described biases, especially prior to sequence analyses, that could lead to misleading conclusions. Microbiome-focused studies of aquatic metazoan diseases provide valuable documentation of microbial ecology, although, they are only a starting point for establishing disease etiology, which demands quantitative validation through targeted approaches. The microbiome approach to understanding disease is most useful after laboratory diagnostics guided by pathology have failed to identify a causative agent. This opinion piece presents several technical pitfalls which may affect wider interpretation of microbe-host interactions through comparative microbial community analyses and provides recommendations, based on studies in non-aquatic systems, for incorporation into future aquatic disease research.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Rosales SM, Miller MW, Williams DE, Traylor-Knowles N, Young B, Serrano XM. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci Rep 2019; 9:18279. [PMID: 31797896 PMCID: PMC6892807 DOI: 10.1038/s41598-019-54855-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
In recent decades coral gardening has become increasingly popular to restore degraded reef ecosystems. However, the growth and survivorship of nursery-reared outplanted corals are highly variable. Scientists are trying to identify genotypes that show signs of disease resistance and leverage these genotypes in restoring more resilient populations. In a previous study, a field disease grafting assay was conducted on nursery-reared Acropora cervicornis and Acropora palmata to quantify relative disease susceptibility. In this study, we further evaluate this field assay by investigating putative disease-causing agents and the microbiome of corals with disease-resistant phenotypes. We conducted 16S rRNA gene high-throughput sequencing on A. cervicornis and A. palmata that were grafted (inoculated) with a diseased A. cervicornis fragment. We found that independent of health state, A. cervicornis and A. palmata had distinct alpha and beta diversity patterns from one another and distinct dominant bacteria. In addition, despite different microbiome patterns between both inoculated coral species, the genus Sphingomonadaceae was significantly found in both diseased coral species. Additionally, a core bacteria member from the order Myxococcales was found at relatively higher abundances in corals with lower rates of disease development following grafting. In all, we identified Sphingomonadaceae as a putative coral pathogen and a bacterium from the order Myxococcales associated with corals that showed disease resistant phenotypes.
Collapse
Affiliation(s)
- Stephanie M Rosales
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA.
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA.
| | - Margaret W Miller
- SECORE International, Miami, FL, 33145, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Dana E Williams
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Benjamin Young
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Xaymara M Serrano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| |
Collapse
|
38
|
Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract. Front Microbiol 2019; 10:2244. [PMID: 31608047 PMCID: PMC6769089 DOI: 10.3389/fmicb.2019.02244] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
As many as 22 of the 45 coral species on the Florida Reef Tract are currently affected by stony coral tissue loss disease (SCTLD). The ongoing disease outbreak was first observed in 2014 in Southeast Florida near Miami and as of early 2019 has been documented from the northernmost reaches of the reef tract in Martin County down to Key West. We examined the microbiota associated with disease lesions and apparently healthy tissue on diseased colonies of Montastraea cavernosa, Orbicella faveolata, Diploria labyrinthiformis, and Dichocoenia stokesii. Analysis of differentially abundant taxa between disease lesions and apparently healthy tissue identified five unique amplicon sequence variants enriched in the diseased tissue in three of the coral species (all except O. faveolata), namely an unclassified genus of Flavobacteriales and sequences identified as Fusibacter (Clostridiales), Planktotalea (Rhodobacterales), Algicola (Alteromonadales), and Vibrio (Vibrionales). In addition, several groups of likely opportunistic or saprophytic colonizers such as Epsilonbacteraeota, Patescibacteria, Clostridiales, Bacteroidetes, and Rhodobacterales were also enriched in SCTLD disease lesions. This work represents the first microbiological characterization of SCTLD, as an initial step toward identifying the potential pathogen(s) responsible for SCTLD.
Collapse
Affiliation(s)
- Julie L. Meyer
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jessy Castellanos-Gell
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Greta S. Aeby
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Claudia C. Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
39
|
Pogoreutz C, Gore MA, Perna G, Millar C, Nestler R, Ormond RF, Clarke CR, Voolstra CR. Similar bacterial communities on healthy and injured skin of black tip reef sharks. Anim Microbiome 2019; 1:9. [PMID: 33499949 PMCID: PMC7807711 DOI: 10.1186/s42523-019-0011-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Sharks are in severe global decline due to human exploitation. The additional concern of emerging diseases for this ancient group of fish, however, remains poorly understood. While wild-caught and captive sharks may be susceptible to bacterial and transmissible diseases, recent reports suggest that shark skin may harbor properties that prevent infection, such as a specialized ultrastructure or innate immune properties, possibly related to associated microbial assemblages. To assess whether bacterial community composition differs between visibly healthy and insulted (injured) shark skin, we compared bacterial assemblages of skin covering the gills and the back from 44 wild-caught black-tip reef sharks (Carcharhinus melanopterus) from the Amirante Islands (Seychelles) via 16S rRNA gene amplicon sequencing. Results Shark skin-associated bacterial communities were diverse (5971 bacterial taxa from 375 families) and dominated by three families of the phylum Proteobacteria typical of marine organisms and environments (Rhodobacteraceae, Alteromonadaceae, Halomonadaceae). Significant differences in bacterial community composition of skin were observed for sharks collected from different sites, but not between healthy or injured skin samples or skin type (gills vs. back). The core microbiome (defined as bacterial taxa present in ≥50% of all samples) consisted of 12 bacterial taxa, which are commonly observed in marine organisms, some of which may be associated with animal host health. Conclusion The conserved bacterial community composition of healthy and injured shark skin samples suggests absence of severe bacterial infections or substantial pathogen propagation upon skin insult. While a mild bacterial infection may have gone undetected, the overall conserved bacterial community implies that bacterial function(s) may be maintained in injured skin. At present, the contribution of bacteria, besides intrinsic animal host factors, to counter skin infection and support rapid wound healing in sharks are unknown. This represents clear knowledge gaps that should be addressed in future work, e.g. by screening for antimicrobial properties of skin-associated bacterial isolates. Electronic supplementary material The online version of this article (10.1186/s42523-019-0011-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mauvis A Gore
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK.,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK
| | - Gabriela Perna
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Catriona Millar
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK.,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK
| | - Robert Nestler
- Veterinär-Physiologisch-Chemisches Institut, University of Leipzig, 04107 Leipzig, Germany
| | - Rupert F Ormond
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK. .,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK. .,Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
40
|
Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling. Sci Rep 2018; 8:16476. [PMID: 30405146 PMCID: PMC6220307 DOI: 10.1038/s41598-018-34697-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
The recent outbreak of Sea Star Wasting Disease (SSWD) is one of the largest marine epizootics in history, but the host-associated microbial community changes specific to disease progression have not been characterized. Here, we sampled the microbiomes of ochre sea stars, Pisaster ochraceus, through time as animals stayed healthy or became sick and died with SSWD. We found community-wide differences in the microbiomes of sick and healthy sea stars, changes in microbial community composition through disease progression, and a decrease in species richness of the microbiome in late stages of SSWD. Known beneficial taxa (Pseudoalteromonas spp.) decreased in abundance at symptom onset and through disease progression, while known pathogenic (Tenacibaculum spp.) and putatively opportunistic bacteria (Polaribacter spp. and Phaeobacter spp.) increased in abundance in early and late disease stages. Functional profiling revealed microbes more abundant in healthy animals performed functions that inhibit growth of other microbes, including pathogen detection, biosynthesis of secondary metabolites, and degradation of xenobiotics. Changes in microbial composition with disease onset and progression suggest that a microbial imbalance of the host could lead to SSWD or be a consequence of infection by another pathogen. This work highlights the importance of the microbiome in SSWD and also suggests that a healthy microbiome may help confer resistance to SSWD.
Collapse
|
41
|
Muller EM, Bartels E, Baums IB. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife 2018; 7:35066. [PMID: 30203745 PMCID: PMC6133546 DOI: 10.7554/elife.35066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
Determining the adaptive potential of foundation species, such as reef-building corals, is urgent as the oceans warm and coral populations decline. Theory predicts that corals may adapt to climate change via selection on standing genetic variation. Yet, corals face not only rising temperatures but also novel diseases. We studied the interaction between two major stressors affecting colonies of the threatened coral, Acropora cervicornis: white-band disease and high water temperature. We determined that 27% of A. cervicornis were disease resistant prior to a thermal anomaly. However, disease resistance was largely lost during a bleaching event because of more compromised coral hosts or increased pathogenic dose/virulence. There was no tradeoff between disease resistance and temperature tolerance; disease susceptibility was independent of Symbiodinium strain. The present study shows that susceptibility to temperature stress creates an increased risk in disease-associated mortality, and only rare genets may maintain or gain infectious disease resistance under high temperature. We conclude that A. cervicornis populations in the lower Florida Keys harbor few existing genotypes that are resistant to both warming and disease. The staghorn coral was once prevalent throughout the Florida Reef Tract. However, the last few decades have seen a substantial reduction in the coral population because of disease outbreaks and increasing ocean temperatures. The staghorn coral shows no evidence of natural recovery, and so has been the focus of restoration efforts throughout much of the Florida region. Why put the time and effort into growing corals that are unlikely to survive within environmental conditions that continue to deteriorate? One reason is that the genetic make-up – the genotype – of some corals makes them more resilient to certain threats. However, there could be tradeoffs associated with these resilient traits. For example, a coral may be able to tolerate heat, but may easily succumb to disease. Previous studies have identified some staghorn coral genotypes that are resistant to an infection called white-band disease. The influence of high water temperatures on the ability of the coral to resist this disease was not known. There also remained the possibility that more varieties of coral might show similar disease resistance. To investigate Muller et al. conducted two experiments exposing staghorn coral genotypes to white-band diseased tissue before and during a coral bleaching event. Approximately 25% of the population of staghorn tested was resistant to white-band disease before the bleaching event. When the corals were exposed to white-band disease during bleaching, twice as much of the coral died. Two out of the 15, or 13%, of the coral genotypes tested were resistant to the disease even while bleached. Additionally, the level of bleaching within the coral genotypes was not related to how easily they developed white-band disease, suggesting that there are no direct tradeoffs between heat tolerance and disease resistance. These results suggest that there are very hardy corals, created by nature, already in existence. Incorporating these traits thoughtfully into coral restoration plans may increase the likelihood of population-based recovery. The Florida Reef Tract is estimated to be worth over six billion dollars to the state economy, providing over 70,000 jobs and attracting millions of tourists into Florida each year. However, much of these ecosystem services will be lost if living coral is not restored within the reef tract. The results presented by Muller et al. emphasize the need for maintaining high genetic diversity while increasing resiliency when restoring coral. They also emphasize that disease resistant corals, even when bleached, already exist and may be an integral part of the recovery of Florida’s reef tract.
Collapse
Affiliation(s)
- Erinn M Muller
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, United States
| | - Erich Bartels
- Coral Reef Monitoring and Assessment Program, Mote Marine Laboratory, Florida, United States
| | - Iliana B Baums
- Department of Biology, Pennsylvania State University, Pennsylvania, United States
| |
Collapse
|
42
|
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 2018; 8:2240-2252. [PMID: 29468040 PMCID: PMC5817147 DOI: 10.1002/ece3.3830] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 01/04/2023] Open
Abstract
The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host-microbe associations under adverse environmental conditions. To gain insight into the stability of coral host-microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora-associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Astrid Gärdes
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian Wild
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
43
|
Certner RH, Vollmer SV. Inhibiting bacterial quorum sensing arrests coral disease development and disease‐associated microbes. Environ Microbiol 2017; 20:645-657. [DOI: 10.1111/1462-2920.13991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Rebecca H. Certner
- Department of Marine and Environmental SciencesNortheastern University, 430 Nahant RoadNahantMA 01908 USA
| | - Steven V. Vollmer
- Department of Marine and Environmental SciencesNortheastern University, 430 Nahant RoadNahantMA 01908 USA
| |
Collapse
|
44
|
Mera H, Bourne DG. Disentangling causation: complex roles of coral-associated microorganisms in disease. Environ Microbiol 2017; 20:431-449. [DOI: 10.1111/1462-2920.13958] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hanaka Mera
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
| | - David G. Bourne
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
- Australian Institute of Marine Science; PMB 3, Townsville, Queensland 4810 Australia
| |
Collapse
|