1
|
Cuny MAC, Gloder G, Bourne ME, Kalisvaart SN, Verreth C, Crauwels S, Cusumano A, Lievens B, Poelman EH. Parasitoid Calyx Fluid and Venom Affect Bacterial Communities in Their Lepidopteran Host Labial Salivary Glands. MICROBIAL ECOLOGY 2025; 88:33. [PMID: 40266381 PMCID: PMC12018505 DOI: 10.1007/s00248-025-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
The influence of gut and gonad bacterial communities on insect physiology, behaviour, and ecology is increasingly recognised. Parasitism by parasitoid wasps alters many physiological processes in their hosts, including gut bacterial communities. However, it remains unclear whether these changes are restricted to the gut or also occur in other tissues and fluids, and the mechanisms underlying such changes are unknown. We hypothesise that host microbiome changes result from the injection of calyx fluid (that contain symbiotic viruses known as polydnaviruses) and venom during parasitoid oviposition and that these effects vary by host tissue. To test this, we microinjected Pieris brassicae caterpillars with calyx fluid and venom from Cotesia glomerata, using saline solution and natural parasitism by C. glomerata as controls. We analysed changes in the bacterial community composition in the gut, regurgitate, haemolymph, and labial salivary glands of the host insects. Multivariate analysis revealed distinct bacterial communities across tissues and fluids, with high diversity in the salivary glands and haemolymph. Parasitism and injection of calyx fluid and venom significantly altered bacterial communities in the salivary glands. Differential abundance analysis showed that parasitism affected bacterial relative abundance in the haemolymph, and that Wolbachia was only found in the haemolymph of parasitized caterpillars. Altogether, our findings reveal that parasitism influences the host haemolymph microbiome, and both parasitism and injection of calyx fluid and venom drive changes in the bacterial community composition within the host salivary glands. Given that the composition of salivary glands can influence plant response to herbivory, we discuss these results in the broader context of plant-parasitoid interactions.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- CIRAD, UMR CBGP, 34988, Montpellier, France.
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266 A, 8057, Zürich, Switzerland
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Gloder G, Bourne ME, Cuny MAC, Verreth C, Crauwels S, Dicke M, Poelman E, Jacquemyn H, Lievens B. Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition. FEMS Microbiol Ecol 2024; 100:fiae115. [PMID: 39165109 PMCID: PMC11407444 DOI: 10.1093/femsec/fiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
4
|
Gómez-Govea MA, Peña-Carillo KI, Ruiz-Ayma G, Guzmán-Velasco A, Flores AE, Ramírez-Ahuja MDL, Rodríguez-Sánchez IP. Unveiling the Microbiome Diversity in Telenomus (Hymenoptera: Scelionidae) Parasitoid Wasps. INSECTS 2024; 15:468. [PMID: 39057201 PMCID: PMC11277331 DOI: 10.3390/insects15070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Bacterial symbionts in insects constitute a key factor for the survival of the host due to the benefits they provide. Parasitoid wasps are closely associated with viruses, bacteria, and fungi. However, the primary symbionts and their functions are not yet known. This study was undertaken to determine the gut microbiota of six species of the Telenomus genus: T. alecto (Crawford), T. sulculus Johnson, T. fariai Costa Lima, T. remus Nixon, T. podisi Ashmead, and T. lobatus Johnson & Bin. Wasp parasitoids were collected from their hosts in different locations in Mexico. DNA was extracted from gut collection, and sequencing of bacterial 16S rRNA was carried out in Illumina® MiSeq™. Among the six species of wasps, results showed that the most abundant phylum were Proteobacteria (82.3%), Actinobacteria (8.1%), and Firmicutes (7.8%). The most important genera were Delftia and Enterobacter. Seventeen bacteria species were found to be shared among the six species of wasps. The associate microbiota will help to understand the physiology of Telenomus to promote the use of these wasp parasitoids in the management of insect pests and as potential biomarkers to target new strategies to control pests.
Collapse
Affiliation(s)
- Mayra A. Gómez-Govea
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Mexico;
| | - Kenzy I. Peña-Carillo
- Campo Experimental General Terán, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Km 31 Carretera Montemorelos-China, General Terán 67400, Mexico;
| | - Gabriel Ruiz-Ayma
- Laboratorio de Conservación de Vida Silvestre y Desarrollo Sustentable, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Mexico; (G.R.-A.); (A.G.-V.)
| | - Antonio Guzmán-Velasco
- Laboratorio de Conservación de Vida Silvestre y Desarrollo Sustentable, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Mexico; (G.R.-A.); (A.G.-V.)
| | - Adriana E. Flores
- Laboratorio de Entomología Médica, Departamento de Zoología de Invertebrados, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - María de Lourdes Ramírez-Ahuja
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Mexico;
| | - Iram Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Mexico;
| |
Collapse
|
5
|
Gwokyalya R, Herren JK, Weldon CW, Ndlela S, Gichuhi J, Ongeso N, Wairimu AW, Ekesi S, Mohamed SA. Shaping the Microbial Landscape: Parasitoid-Driven Modifications of Bactrocera dorsalis Microbiota. MICROBIAL ECOLOGY 2024; 87:81. [PMID: 38829379 PMCID: PMC11147917 DOI: 10.1007/s00248-024-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa.
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph Gichuhi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Anne W Wairimu
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
6
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
7
|
Wang Y, Gao P, Zheng J, Li H, Meng L, Li B. Effects of parasitism by a parasitoid wasp on the gut microbiota in a predaceous lady beetle host. PEST MANAGEMENT SCIENCE 2023; 79:4501-4507. [PMID: 37418555 DOI: 10.1002/ps.7652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The gut microbiota has an intimate relationship with insect hosts and this relationship can become complicated with parasitic organisms being involved with the host. To date there has been limited evidence for the relevance of parasitism of the host by parasitoids to host gut microbiota, especially in host insect predators. Here, our study examined gut microbiotas in larvae of the predaceous lady beetle, Coccinella septempunctata, in response to their parasitism by Homalotylus eytelweinii regarding the development progress of offspring parasitoids. RESULTS Overall 58.5% of gut bacterial operational taxonomic units (OTUs) in the parasitized lady beetle were different from those in the unparasitized host. The phylum Proteobacteria abundance increased while Firmicutes decreased in parasitized hosts compared to the unparasitized. The abundance of genus Aeribacillus decreased substantially in the parasitized lady beetle across all stages of the offspring development compared to the unparasitized host. The α-diversity of the gut microbiota in a parasitized lady beetle larva increased at the early stage of offspring parasitoids and then returned over the intermediate and later stages. Analyses of β-diversity indicated that the gut microbial community in a parasitized lady beetle was distinct from that in an unparasitized one and different between early or middle and late stages of offspring parasitoids in parasitized hosts. CONCLUSION Our results provide evidence for the relevance of the gut microbiota to interactions between a lady beetle host and its parasitoid. Our study provides a starting point for further investigations of the role the gut microbiota may play in host-parasitoid interactions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Towett-Kirui S, Morrow JL, Close S, Royer JE, Riegler M. Bacterial Communities Are Less Diverse in a Strepsipteran Endoparasitoid than in Its Fruit Fly Hosts and Dominated by Wolbachia. MICROBIAL ECOLOGY 2023; 86:2120-2132. [PMID: 37103495 PMCID: PMC10497669 DOI: 10.1007/s00248-023-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial communities of the tephritid hosts. The strepsipteran's microbiome was dominated by Pseudomonadota (formerly Proteobacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation on host bacterial communities.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Shannon Close
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jane E Royer
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
9
|
Li F, Zhu Q, Dai M, Shu Q, Li X, Guo X, Wang Y, Wei J, Liu W, Dai Y, Li B. Tachinid parasitoid Exorista japonica affects the utilization of diet by changing gut microbial composition in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22011. [PMID: 36938839 DOI: 10.1002/arch.22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 05/16/2023]
Abstract
Changes in both intake and digestion of feed have been demonstrated in the host following parasitization. However, its regulatory mechanism has not been clarified. In this study, silkworms and Exorista japonica were used as research objects to analyze the effect of parasitism on the midgut immune system of the silkworm. After being parasitized, the expressions of antimicrobial peptide (AMP) genes of silkworms showed a fluctuating trend of first upregulation and then downregulation, while phenoloxidase and lysozyme activities were inhibited. To study the possible impact of the downregulation of AMP genes on intestinal microorganisms, the characteristics of the intestinal microbial population of silkworms on the third day of parasitism were analyzed. The relative abundance of Firmicutes, Proteobacteria, and Bacteroidota decreased, while that of Actinobacteriota increased. The increased abundance of conditionally pathogenic bacteria Serratia and Staphylococcus might lead to a decrease in the amount of silkworm ingestion. Meanwhile, the abundance of Acinetobacter, Bacillus, Pseudomonas, and Enterobacter promotes an increase in the digestion of nutrients. This study indicated that the imbalance of intestinal microbial homeostasis caused by parasitism may affect the absorption and digestion of nutrients by the host. Collectively, our findings provided a new clue for further exploring the mechanism of nutrient transport among the host, parasitoid, and intestinal microorganisms.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Liu
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Yan Dai
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Oliveira NC, Rodrigues PAP, Cônsoli FL. Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. MICROBIAL ECOLOGY 2023; 85:1552-1563. [PMID: 35426077 DOI: 10.1007/s00248-022-02008-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named "rice" and "corn" strains. Our goal was to identify the occurrence of core members in the gut bacterial community of fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains nor was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain. Further investigations are required for a deeper understanding of the nature of this relationship.
Collapse
Affiliation(s)
- Nathalia C Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro A P Rodrigues
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando L Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
11
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
12
|
Gloder G, Bourne ME, Verreth C, Wilberts L, Bossaert S, Crauwels S, Dicke M, Poelman EH, Jacquemyn H, Lievens B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim Microbiome 2021; 3:73. [PMID: 34654483 PMCID: PMC8520287 DOI: 10.1186/s42523-021-00135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/01/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Mitchel E. Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|