1
|
Kim HW, Lee JW, Yoon HS, Park HW, Lee YI, Lee SK, Whang J, Kim JS. Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of Mycobacterium abscessus in macrophages. Virulence 2025; 16:2454323. [PMID: 39828906 PMCID: PMC11749347 DOI: 10.1080/21505594.2025.2454323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.
Collapse
Affiliation(s)
- Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| | | | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Devlin KL, Leach DT, Stratton KG, Lamichhane G, Lin VS, Beatty KE. Proteomic characterization of Mycobacterium tuberculosis subjected to carbon starvation. mSystems 2025; 10:e0153024. [PMID: 40231840 PMCID: PMC12090744 DOI: 10.1128/msystems.01530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), the leading cause of infectious disease-related deaths worldwide. TB infections present on a spectrum from active to latent disease. In the human host, Mtb faces hostile environments, such as nutrient deprivation, hypoxia, and low pH. Under these conditions, Mtb can enter a dormant, but viable, state characterized by a lack of cell replication and increased resistance to antibiotics. Dormant Mtb poses a major challenge to curing infections and eradicating TB globally. We subjected Mtb mc26020 (ΔlysA and ΔpanCD), a double auxotrophic strain, to carbon starvation (CS), a culture condition that induces growth stasis and mimics environmental conditions associated with dormancy in vivo. We provide a detailed analysis of the proteome in CS compared to replicating samples. We observed extensive proteomic reprogramming, with 36% of identified proteins significantly altered in CS. Many enzymes involved in oxidative phosphorylation and lipid metabolism were retained or more abundant in CS. The cell wall biosynthetic machinery was present in CS, although numerous changes in the abundance of peptidoglycan, arabinogalactan, and mycolic acid biosynthetic enzymes likely result in pronounced remodeling of the cell wall. Many clinically approved anti-TB drugs target cell wall biosynthesis, and we found that these enzymes were largely retained in CS. Lastly, we compared our results to those of other dormancy models and propose that CS produces a physiologically distinct state of stasis compared to hypoxia in Mtb.IMPORTANCETuberculosis is a devastating human disease that kills over 1.2 million people a year. This disease is caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb). Mtb excels at surviving in the human host by entering a non-replicating, dormant state. The current work investigated the proteomic changes that Mtb undergoes in response to carbon starvation, a culture condition that models dormancy. The authors found broad effects of carbon starvation on the proteome, with the relative abundance of 37% of proteins significantly altered. Protein changes related to cell wall biosynthesis, metabolism, and drug susceptibility are discussed. Proteins associated with a carbon starvation phenotype are identified, and results are compared to other dormancy models, including hypoxia.
Collapse
Affiliation(s)
- Kaylyn L. Devlin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Damon T. Leach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kelly G. Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vivian S. Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kimberly E. Beatty
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Doherty DZ, De Voss JJ, Bruning JB, Bell SG. Evolutionary insights into the selectivity of sterol oxidising cytochrome P450 enzymes based on ancestral sequence reconstruction. Chem Sci 2025:d5sc01863c. [PMID: 40417289 PMCID: PMC12100521 DOI: 10.1039/d5sc01863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
The cytochrome P450 (CYP) enzyme CYP125A1 is a crucial enzyme for the long-term survival and pathogenicity of Mycobacterium tuberculosis. CYP125 genes are found not only in pathogenic mycobacteria but are also widely dispersed within the Actinobacteria phylum, with many species possessing multiple copies of CYP125 encoding genes. Their primary function is the catalytic hydroxylation of the terminal methyl group of cholesterol and phytosterols. We have previously shown that CYP125 enzymes from distinct mycobacteria have substrate selectivity preferences for animal versus plant steroid oxidation. An evolutionary understanding of this selectivity is not known. Here, we use Ancestral Sequence Reconstruction (ASR), to support the hypothesis that some CYP125 enzymes evolved in a manner reflective of their adaptation to a pathogenic niche. We constructed a maximum-likelihood, most-recent common ancestor of the CYP125 clade (CYP125MRCA). We were then able to produce and characterise this enzyme both functionally and structurally. We found that CYP125MRCA was able to catalyse the terminal hydroxylation of cholesterol, phytosterols, and vitamin D3 (cholecalciferol); the latter was hydroxylated at both C-25 and C-26. This is the first example to date of vitamin D3 oxidation by a CYP125 enzyme, thereby demonstrating an increased substrate range of CYP125MRCA relative to its characterised extant relatives. The X-ray crystal structures of CYP125MRCA bound with sitosterol and vitamin D3 were determined, providing important insight into the changes that enable the expanded substrate range.
Collapse
Affiliation(s)
- Daniel Z Doherty
- Department of Chemistry, University of Adelaide Adelaide South Australia 5005 Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane Queensland 4072 Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide SA 5005 Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
4
|
Maurya RK, Fatima S, Anand S, Raju R, Bharti S, Rastogi S, Venugopal U, Sinha A, Singh A, Krishnan MY. Rv3371, a triacylglycerol synthase promotes survival of Mycobacterium tuberculosis in the host through its contributions to redox homeostasis and propionate detoxification. Tuberculosis (Edinb) 2025; 152:102617. [PMID: 40020280 DOI: 10.1016/j.tube.2025.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Triacylglycerol (TAG) is the major storage lipid of mycobacteria. Mycobacterium tuberculosis (Mtb) genome encodes 15 triacylglycerol synthases (Tgs), which are speculated to differ in substrate preference, suggesting specific physiological roles. In this study, we investigated the role of a Tgs, Rv3371, in the context of infection. Rv3371 knock-out (KO) Mtb was attenuated in mice, with corresponding poor fitness inside macrophages. The KO was more sensitive to free long-chain fatty acids, but was more tolerant to oxidative and nitrosative stresses. Enzyme kinetics of Rv3371 showed its preference for propionyl-CoA. Excess propionate in growth medium retarded the growth of the KO more significantly than the wild type and complemented mutant. This suggests an additional role of Rv3371 in reducing toxic levels of propionate in Mtb by synthesising propionyl TAG. Moreover, chemical inhibition of methylcitrate cycle caused a decrease in methyl-branched lipids in the KO. Overall, the results suggest a role of Rv3371 in Mtb survival in the host through its roles beyond TAG storage.
Collapse
Affiliation(s)
- Rahul Kumar Maurya
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sarah Fatima
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Swati Anand
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rajmani Raju
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Suman Bharti
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shivangi Rastogi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Umamageswaran Venugopal
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amitava Sinha
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Amit Singh
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Manju Y Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
5
|
Simwela NV, Jaecklein E, Sassetti CM, Russell DG. Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis. eLife 2025; 13:RP102980. [PMID: 40080408 PMCID: PMC11906158 DOI: 10.7554/elife.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host-derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyses demonstrate that macrophages that cannot either import, store, or catabolize fatty acids restrict Mtb growth by both common and divergent antimicrobial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy, and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical SchoolWorcesterUnited States
| | | | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
6
|
Kubalová K, Porvazník I, Majherová M, Demková L, Piotrowska A, Mydlárová Blaščáková M. Lipid Levels and Atherogenic Indices as Important Predictive Parameters in the Assessment of Cardiovascular Risk in Patients with Pulmonary Tuberculosis-Slovak Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:365. [PMID: 40142177 PMCID: PMC11943598 DOI: 10.3390/medicina61030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Background and Objective: Tuberculosis is one of the globally prevalent infectious diseases. Lipids play a crucial role in its development as well as in other diseases of the cardiovascular system. Cardiovascular diseases significantly worsen the functional and vital prognosis of tuberculosis patients. The aim of the study was to assess the differences in lipid profile, glucose, and atherogenic markers between tuberculosis patients and healthy individuals. Materials and Methods: The project involved 34 patients diagnosed with pulmonary tuberculosis (TB) and a control group (CG: n = 35). The following were assessed: total cholesterol (CHOL), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), and glucose. Atherogenic indices: Castelli risk index I (CRI-I), Castelli risk index II (CRI-II), atherogenic index of plasma (AIP) and atherogenic coefficient (AC) were calculated from lipid profile parameters using appropriate formulas. Results: A statistically significant difference was found between CG and TB in the parameters CHOL, LDL and HDL (p < 0.001). Based on the calculated atherogenic indices CRI-I and AIP, people diagnosed with TB can be classified into the high cardiovascular risk group. By fitting the ROC curve, atherogenic indices were shown to be effective predictors of cardiovascular risk in people with tuberculosis. Conclusions: Atherogenic indices are useful markers for detecting cardiovascular disease in patients with tuberculosis and may help identify cardiovascular risks that might otherwise be missed.
Collapse
Affiliation(s)
- Karolína Kubalová
- Department of Biology, Faculty of Humanities and Naturel Sciences, University of Prešov in Prešov, Ul. 17 Novembra 1, 080 01 Prešov, Slovakia;
| | - Igor Porvazník
- Department of Laboratory Methods in Healthcare, Faculty of Health Science, Catholic University in Ružomberok, 60, Námestie Adreja Hlinku 1159, 034 01 Ružomberok, Slovakia;
| | - Mária Majherová
- Department of Physics, Mathematics and Technology, Faculty of Humanities and Natural Sciences, University of Prešov in Prešov, Ul. 17 Novembra 1, 080 01 Prešov, Slovakia;
| | - Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov in Prešov, Ul. 17 Novembra 1, 080 01 Prešov, Slovakia;
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Culture, 31-571 Krakow, Poland
| | - Marta Mydlárová Blaščáková
- Department of Biology, Faculty of Humanities and Naturel Sciences, University of Prešov in Prešov, Ul. 17 Novembra 1, 080 01 Prešov, Slovakia;
| |
Collapse
|
7
|
Saha P, Kumar M, Sharma DK. Potential of Mycobacterium tuberculosis Type II NADH-Dehydrogenase in Antitubercular Drug Discovery. ACS Infect Dis 2025; 11:398-412. [PMID: 39812155 DOI: 10.1021/acsinfecdis.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The type II NADH-dehydrogenase enzyme in Mycobacterium tuberculosis plays a critical role in the efficient functioning of the oxidative phosphorylation pathway. It acts as the entry point for electrons in the electron transport chain, which is essential for fulfilling the energy requirements of both replicating and nonreplicating mycobacterial species. Due to the absence of the type II NADH-dehydrogenase enzyme in mammalian mitochondria, targeting the type II NADH-dehydrogenase enzyme for antitubercular drug discovery could be a vigilant approach. Utilizing type II NADH-dehydrogenase inhibitors in antitubercular therapy led to bactericidal response, even in monotherapy. However, the absence of the cryo-EM structure of Mycobacterium tuberculosis type II NADH-dehydrogenase has constrained drug discovery efforts to rely on high-throughput screening methods, limiting the use of structure-based drug discovery. Here, we have delineated the literature-reported Mycobacterium tuberculosis type II NADH-dehydrogenase inhibitors and the rationale behind selecting this specific enzyme for antitubercular drug discovery, along with shedding light on the architecture of the enzyme structure and functionality. The gap in the current research and future research direction for TB treatment have been addressed.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| | - Mohit Kumar
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Priya M, Gupta SK, Koundal A, Kapoor S, Tiwari S, Kidwai S, Sorio de Carvalho LP, Thakur KG, Mahajan D, Sharma D, Kumar Y, Singh R. Itaconate mechanism of action and dissimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2025; 122:e2423114122. [PMID: 39841148 PMCID: PMC11789021 DOI: 10.1073/pnas.2423114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with Mycobacterium tuberculosis increases itaconate levels in lung tissues. We also show that exposure to itaconate inhibits M. tuberculosis growth in vitro, in macrophages, and mice. We report that exposure to sodium itaconate (ITA) interferes with the central carbon metabolism of M. tuberculosis. In addition to the inhibition of isocitrate lyase (ICL), we demonstrate that itaconate inhibits aldolase and inosine monophosphate (IMP) dehydrogenase in a concentration-dependent manner. Previous studies have shown that Rv2498c from M. tuberculosis is the bona fide (S)-citramalyl-CoA lyase, but the remaining components of the pathway remain elusive. Here, we report that Rv2503c and Rv3272 possess itaconate:succinyl-CoA transferase activity, and Rv2499c and Rv3389c possess itaconyl-CoA hydratase activity. Relative to the parental and complemented strains, the ΔRv3389c strain of M. tuberculosis was attenuated for growth in itaconate-containing medium, in macrophages, mice, and guinea pigs. The attenuated phenotype of ΔRv3389c strain of M. tuberculosis is associated with a defect in the itaconate dissimilation and propionyl-CoA detoxification pathway. This study thus reveals that multiple metabolic enzymes are targeted by itaconate in M. tuberculosis. Furthermore, we have assigned the two remaining enzymes responsible for the degradation of itaconic acid into pyruvate and acetyl-CoA. Finally, we also demonstrate the importance of enzymes involved in the itaconate dissimilation pathway for M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Manisha Priya
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Sonu Kumar Gupta
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Anil Koundal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Srajan Kapoor
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Snigdha Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Luiz Pedro Sorio de Carvalho
- Department of Chemistry, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL33458
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Dinesh Mahajan
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Deepak Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Yashwant Kumar
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| |
Collapse
|
9
|
Simwela NV, Jaecklein E, Sassetti CM, Russell DG. Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.22.604660. [PMID: 39091727 PMCID: PMC11291043 DOI: 10.1101/2024.07.22.604660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyzes demonstrate that macrophages which cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Kavanagh ME, McLean KJ, Gilbert SH, Amadi C, Snee M, Tunnicliffe RB, Arora K, Boshoff HI, Fanourakis A, Rebello-Lopez MJ, Ortega-Muro F, Levy CW, Munro AW, Leys D, Abell C, Coyne AG. Fragment-based development of small molecule inhibitors targeting Mycobacterium tuberculosis cholesterol metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620643. [PMID: 39803573 PMCID: PMC11722527 DOI: 10.1101/2024.10.28.620643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for Mtb's long-term survival in vivo. Here, we report the development of antitubercular small molecules that inhibit the Mtb cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule 1a that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of 1a, yielding a potent dual CYP125/142 inhibitor 5m (KD CYP125/CYP142 = 0.04/0.16 μM). Compound 5m potently inhibits the catalytic activity of CYP125 and CYP142 in vitro (KI values < 0.1 μM), and rapidly depletes Mtb intracellular ATP (IC50 = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR Mtb (MIC99 values 0.4 - 1.5 μM) in extracellular assays, and inhibits the growth of Mtb in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD50 ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in Mtb and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
Collapse
Affiliation(s)
- Madeline E. Kavanagh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J. McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sophie H. Gilbert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cecilia Amadi
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew Snee
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard B. Tunnicliffe
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | - Colin W. Levy
- Manchester Protein Structure Facility (MPSF), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Andrew W. Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
11
|
Arshad K, Salim J, Talat MA, Ashraf A, Kanwal N. Integrated virtual screening and MD simulation study to discover potential inhibitors of mycobacterial electron transfer flavoprotein oxidoreductase. PLoS One 2024; 19:e0312860. [PMID: 39546486 PMCID: PMC11567552 DOI: 10.1371/journal.pone.0312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Tuberculosis (TB) continues to be a major global health burden, with high incidence and mortality rates, compounded by the emergence and spread of drug-resistant strains. The limitations of current TB medications and the urgent need for new drugs targeting drug-resistant strains, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, underscore the pressing demand for innovative anti-TB drugs that can shorten treatment duration. This has led to a focus on targeting energy metabolism of Mycobacterium tuberculosis (Mtb) as a promising approach for drug discovery. This study focused on repurposing drugs against the crucial mycobacterial protein, electron transfer flavoprotein oxidoreductase (EtfD), integral to utilizing fatty acids and cholesterol as a carbon source during infection. The research adopted an integrative approach, starting with virtual screening of approved drugs from the ZINC20 database against EtfD, followed by molecular docking, and concluding with molecular dynamics (MD) simulations. Diacerein, levonadifloxacin, and gatifloxacin were identified as promising candidates for repurposing against TB based on their strong binding affinity, stability, and interactions with EtfD. ADMET analysis and anti-TB sensitivity predictions assessed their pharmacokinetic and therapeutic potential. Diacerein and levonadifloxacin, previously unexplored in anti-tuberculous therapy, along with gatifloxacin, known for its efficacy in drug-resistant TB, have broad-spectrum antimicrobial properties and favorable pharmacokinetic profiles, suggesting potential as alternatives to current TB treatments, especially against resistant strains. This study underscores the efficacy of computational drug repurposing, highlighting bacterial energy metabolism and lipid catabolism as fruitful targets. Further research is necessary to validate the clinical suitability and efficacy of diacerein, levonadifloxacin, and gatifloxacin, potentially enhancing the arsenal against global TB.
Collapse
Affiliation(s)
- Kaleem Arshad
- Biological Sciences, Superior University, Lahore, Pakistan
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | - Jahanzab Salim
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | | | - Asifa Ashraf
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | - Nazia Kanwal
- Biological Sciences, Superior University, Lahore, Pakistan
| |
Collapse
|
12
|
Opperman M, Pietersen RD, Loots DT, van Reenen M, Beukes D, Baker B, du Preez I. The effect of Tyloxapol on the metabolome of Mycobacterium tuberculosis. J Microbiol Methods 2024; 226:107028. [PMID: 39245369 DOI: 10.1016/j.mimet.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The use of detergents when culturing Mycobacterium tuberculosis (M. tuberculosis) are essential to prevent clumping. However, these detergents may influence research outcomes by impacting bacterial morphology and metabolism. This study aimed to assess the metabolome of a M. tuberculosis H37Rv strain cultured with Tyloxapol (H37RvTyloxapol), compared to a control group of H37Rv strain cultured without detergent (H37RvControl) to evaluate Tyloxapol's suitability for metabolomic studies. Distinct metabolic alterations were observed in H37RvTyloxapol compared to H37RvControl, primarily associated with fatty acid, sugar and pentose phosphate metabolic pathways. These changes are associated with the surface stress exerted by Tyloxapol on the bacteria, prompting an adaptation of M. tuberculosis metabolism to that usually observed in stress environments. Nevertheless, the effect of Tyloxapol is less pronounced than that of a previous investigation using Tween 80, indicating its potential as the more favourable choice for culturing M. tuberculosis for metabolomic analysis, with due consideration to dosage and result interpretation.
Collapse
Affiliation(s)
- Monique Opperman
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Ray-Dean Pietersen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Bienyameen Baker
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - Ilse du Preez
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
13
|
Simwela NV, Johnston L, Bitar PP, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth. Nat Commun 2024; 15:9322. [PMID: 39472457 PMCID: PMC11522665 DOI: 10.1038/s41467-024-53637-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Zhen J, Abuliken Y, Yan Y, Gao C, Jiang Z, Huang T, Le TTT, Xiang L, Li P, Xie J. Mycobacterium LacI-type Transcription Regulator Rv3575c Affects Host Innate Immunity by Regulating Bacterial mce4 Operon-Mediated Cholesterol Transport. ACS Infect Dis 2024; 10:3618-3630. [PMID: 39236267 DOI: 10.1021/acsinfecdis.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mycobacterium tuberculosis has evolved a highly specialized system to snatch essential nutrients from its host, among which host-derived cholesterol has been established as one main carbon source for M. tuberculosis to survive within granulomas. The uptake, catabolism, and utilization of cholesterol are important for M. tuberculosis to sustain within the host largely via remodeling of the bacterial cell walls. However, the regulatory mechanism of cholesterol uptake and its impact on bacterium fate within infected hosts remain elusive. Here, we found that M. tuberculosis LacI-type transcription regulator Rv3575c negatively regulates its mce4 family gene transcription. Overexpression of Rv3575c impaired the utilization of cholesterol as the sole carbon source by Mycobacterium smegmatis, activating the host's innate immune response and triggering cell pyroptosis. The M. smegmatis homologue of Rv3575c MSMEG6044 knockout showed enhanced hydrophobicity and permeability of the cell wall and resistance to ethambutol, suppressed the host innate immune response to M. smegmatis, and promoted the survival of M. smegmatis in macrophages and infected mouse lungs, leading to reduced transcriptional levels of TNFα and IL-6. In summary, these data indicate a role of Rv3575c in the pathogenesis of mycobacteria and reveal the key function of Rv3575c in cholesterol transport in mycobacteria.
Collapse
Affiliation(s)
- Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuerigu Abuliken
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thi Thu Thuy Le
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liying Xiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
15
|
Kathayat D, VanderVen BC. Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery. Trends Microbiol 2024; 32:874-883. [PMID: 38360432 PMCID: PMC11322422 DOI: 10.1016/j.tim.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Dipak Kathayat
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C VanderVen
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Dalwani S, Metz A, Huschmann FU, Weiss MS, Wierenga RK, Venkatesan R. Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them. Acta Crystallogr D Struct Biol 2024; 80:605-619. [PMID: 39012716 DOI: 10.1107/s2059798324006557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE-fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.
Collapse
Affiliation(s)
- Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Franziska U Huschmann
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Simwela NV, Johnston L, Pavinski Bitar P, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis- infected macrophages identified the GID/CTLH complex as a determinant of intracellular bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592714. [PMID: 38766174 PMCID: PMC11100626 DOI: 10.1101/2024.05.06.592714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The eukaryotic GID/CTLH complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host antimicrobial defenses has not been described. We exploited Mycobacterium tuberculosis ( Mtb ) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 ( GID8 , YPEL5 , WDR26 , UBE2H , MAEA ) of the 10 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the antimicrobial properties of the GID/CTLH complex knockdown macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to cell death. Meanwhile, Mtb isolated from GID/CTLH knockdown macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host antimicrobial responses against intracellular bacterial infections. Graphical abstract
Collapse
|
19
|
Churchman LR, Beckett JR, Tan L, Woods K, Doherty DZ, Ghith A, Bernhardt PV, Bell SG, West NP, De Voss JJ. Synthesis of steroidal inhibitors for Mycobacterium tuberculosis. J Steroid Biochem Mol Biol 2024; 239:106479. [PMID: 38346478 DOI: 10.1016/j.jsbmb.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Oxidised derivatives of cholesterol have been shown to inhibit the growth of Mycobacterium tuberculosis (Mtb). The bacteriostatic activity of these compounds has been attributed to their inhibition of CYP125A1 and CYP142A1, two metabolically critical cytochromes P450 that initiate degradation of the sterol side chain. Here, we synthesise and characterise an extensive library of 28 cholesterol derivatives to develop a structure-activity relationship for this class of inhibitors. The candidate compounds were evaluated for MIC with virulent Mtb and in binding studies with CYP125A1 and CYP142A1 from Mtb.
Collapse
Affiliation(s)
- Luke R Churchman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - James R Beckett
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kyra Woods
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
20
|
Roth AT, Philips JA, Chandra P. The role of cholesterol and its oxidation products in tuberculosis pathogenesis. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00042. [PMID: 38693938 PMCID: PMC11060060 DOI: 10.1097/in9.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.
Collapse
Affiliation(s)
- Andrew T. Roth
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Montero-Vega MT, Matilla J, Bazán E, Reimers D, De Andrés-Martín A, Gonzalo-Gobernado R, Correa C, Urbano F, Gómez-Coronado D. Fluvastatin Converts Human Macrophages into Foam Cells with Increased Inflammatory Response to Inactivated Mycobacterium tuberculosis H37Ra. Cells 2024; 13:536. [PMID: 38534380 PMCID: PMC10969755 DOI: 10.3390/cells13060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.
Collapse
Affiliation(s)
- María Teresa Montero-Vega
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| | - Joaquín Matilla
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.B.); (D.R.)
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.B.); (D.R.)
| | - Ana De Andrés-Martín
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Rafael Gonzalo-Gobernado
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carlos Correa
- Unidad de Cirugía Experimental y Animalario, Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Francisco Urbano
- Servicio Interdepartamental de Investigación (SIdI), Facultad de Medicina, Universidad Autónoma, 28029 Madrid, Spain;
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| |
Collapse
|
22
|
Zhang L, Cai M, Su B, Ma Y, Zhang Y. Mitochondrial Metabolism in Alveolar Macrophages of Patients Infected with HIV, Tuberculosis, and HIV/Tuberculosis. AIDS Res Hum Retroviruses 2024; 40:148-157. [PMID: 37885217 DOI: 10.1089/aid.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Tuberculosis (TB) is one of the most common opportunistic infections and is a leading cause of mortality in patients with HIV and AIDS. HIV infection causes serious defects in the host immune system and increases the risk of active TB. TB infection promotes HIV replication and aggravates host damage in patients with HIV/AIDS. Alveolar macrophages (AMs) are essential immune cells during TB and HIV infections. AMs undergo a shift in mitochondrial metabolism during TB or HIV infection, that is, metabolic reprogramming, allowing them to act in the form of classical activated macrophages (M1) and alternative activated macrophages (M2) at different stages of infection. We reviewed the alterations in the mitochondrial energy metabolism of AMs in patients with HIV, TB, and HIV/TB to provide ideas for further research on the role of metabolic reprogramming by AMs in the pathogeneses of HIV, TB, and HIV/TB coinfection.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
23
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
24
|
Hkimi C, Kamoun S, Khamessi O, Ghedira K. Mycobacterium tuberculosis-THP-1 like macrophages protein-protein interaction map revealed through dual RNA-seq analysis and a computational approach. J Med Microbiol 2024; 73. [PMID: 38314675 DOI: 10.1099/jmm.0.001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Introduction. Infection caused by Mycobacterium tuberculosis (M. tb) is still a leading cause of mortality worldwide with estimated 1.4 million deaths annually.Hypothesis/Gap statement. Despite macrophages' ability to kill bacterium, M. tb can grow inside these innate immune cells and the exploration of the infection has traditionally been characterized by a one-sided relationship, concentrating solely on the host or examining the pathogen in isolation.Aim. Because of only a handful of M. tb-host interactions have been experimentally characterized, our main goal is to predict protein-protein interactions during the early phases of the infection.Methodology. In this work, we performed an integrative computational approach that exploits differentially expressed genes obtained from Dual RNA-seq analysis combined with known domain-domain interactions.Results. A total of 2381 and 7214 genes were identified as differentially expressed in M. tb and in THP-1-like macrophages, respectively, revealing different transcriptional profiles in response to infection. Over 48 h of infection, the host-pathogen network revealed 25 016 PPIs. Analysis of the resulting predicted network based on cellular localization information of M. tb proteins, indicated the implication of interacting nodes including the bacterial PE/PPE/PE_PGRS family. In addition, M. tb proteins interacted with host proteins involved in NF-kB signalling pathway as well as interfering with the host apoptosis ability via the potential interaction of M. tb TB16.3 with human TAB1 and M. tb GroEL2 with host protein kinase C delta, respectively.Conclusion. The prediction of the full range of interactions between M. tb and host will contribute to better understanding of the pathogenesis of this bacterium and may provide advanced approaches to explore new therapeutic targets against tuberculosis.
Collapse
Affiliation(s)
- Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
25
|
Lin H, Xing J, Wang H, Wang S, Fang R, Li X, Li Z, Song N. Roles of Lipolytic enzymes in Mycobacterium tuberculosis pathogenesis. Front Microbiol 2024; 15:1329715. [PMID: 38357346 PMCID: PMC10865251 DOI: 10.3389/fmicb.2024.1329715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that can endure for long periods in an infected patient, without causing disease. There are a number of virulence factors that increase its ability to invade the host. One of these factors is lipolytic enzymes, which play an important role in the pathogenic mechanism of Mtb. Bacterial lipolytic enzymes hydrolyze lipids in host cells, thereby releasing free fatty acids that are used as energy sources and building blocks for the synthesis of cell envelopes, in addition to regulating host immune responses. This review summarizes the relevant recent studies that used in vitro and in vivo models of infection, with particular emphasis on the virulence profile of lipolytic enzymes in Mtb. A better understanding of these enzymes will aid the development of new treatment strategies for TB. The recent work done that explored mycobacterial lipolytic enzymes and their involvement in virulence and pathogenicity was highlighted in this study. Lipolytic enzymes are expected to control Mtb and other intracellular pathogenic bacteria by targeting lipid metabolism. They are also potential candidates for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hong Lin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
26
|
Brown KL, Krekhno JMC, Xing S, Huan T, Eltis LD. Cholesterol-Mediated Coenzyme A Depletion in Catabolic Mutants of Mycobacteria Leads to Toxicity. ACS Infect Dis 2024; 10:107-119. [PMID: 38054469 DOI: 10.1021/acsinfecdis.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cholesterol is a critical growth substrate for Mycobacterium tuberculosis (Mtb) during infection, and the cholesterol catabolic pathway has been targeted for the development of new antimycobacterial agents. A key metabolite in cholesterol catabolism is 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP). Many of the HIP metabolites are acyl-coenzyme A (CoA) thioesters, whose accumulation in deletion mutants can cause cholesterol-mediated toxicity. We used LC-MS/MS analysis to demonstrate that deletion of genes involved in HIP catabolism leads to acyl-CoA accumulation with concomitant depletion of free CoASH, leading to dysregulation of central metabolic pathways. CoASH and acyl-CoAs inhibited PanK, the enzyme that catalyzes the first step in the transformation of pantothenate to CoASH. Inhibition was competitive with respect to ATP with Kic values ranging from 9 μM for CoASH to 57 μM for small acyl-CoAs and 180 ± 30 μM for cholesterol-derived acyl-CoA. These findings link two critical metabolic pathways and suggest that therapeutics targeting cholesterol catabolic enzymes could both prevent the utilization of an important growth substrate and simultaneously sequester CoA from essential cellular processes, leading to bacterial toxicity.
Collapse
Affiliation(s)
- Kirstin L Brown
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jessica M C Krekhno
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Shipei Xing
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
27
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator. PLoS Genet 2024; 20:e1011143. [PMID: 38266039 PMCID: PMC10843139 DOI: 10.1371/journal.pgen.1011143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Current affiliation: Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Comín J, Campos E, Gonzalo-Asensio J, Samper S. Transcriptomic profile of the most successful Mycobacterium tuberculosis strain in Aragon, the MtZ strain, during exponential and stationary growth phases. Microbiol Spectr 2023; 11:e0468522. [PMID: 37882511 PMCID: PMC10714837 DOI: 10.1128/spectrum.04685-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Aragon Community suffered, during the first years of the beginning of this century, a large outbreak caused by the MtZ strain, producing more than 240 cases to date. MtZ strain and the outbreak have been previously studied from an epidemiological and molecular point of view. In this work, we analyzed the transcriptomic profile of the strain for better understanding of its success among our population. We have discovered that MtZ has some upregulated virulence pathways, such as the ESX-1 system, the cholesterol degradation pathway or the peptidoglycan biosynthesis. Interestingly, MtZ has downregulated the uptake of iron. Another special feature of MtZ strain is the interruption of desA3 gene, essential for producing oleic acid. Although the strain takes a long time to grow in the initial culture media, eventually it is able to reach normal optical densities, suggestive of the presence of another route for obtaining oleic acid in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Universidad de Zaragoza, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
29
|
Zmyslia M, Fröhlich K, Dao T, Schmidt A, Jessen-Trefzer C. Deep Proteomic Investigation of Metabolic Adaptation in Mycobacteria under Different Growth Conditions. Proteomes 2023; 11:39. [PMID: 38133153 PMCID: PMC10747050 DOI: 10.3390/proteomes11040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the complex mechanisms of mycobacterial pathophysiology and adaptive responses presents challenges that can hinder drug development. However, employing physiologically relevant conditions, such as those found in human macrophages or simulating physiological growth conditions, holds promise for more effective drug screening. A valuable tool in this pursuit is proteomics, which allows for a comprehensive analysis of adaptive responses. In our study, we focused on Mycobacterium smegmatis, a model organism closely related to the pathogenic Mycobacterium tuberculosis, to investigate the impact of various carbon sources on mycobacterial growth. To facilitate this research, we developed a cost-effective, straightforward, and high-quality pipeline for proteome analysis and compared six different carbon source conditions. Additionally, we have created an online tool to present and analyze our data, making it easily accessible to the community. This user-friendly platform allows researchers and interested parties to explore and interpret the results effectively. Our findings shed light on mycobacterial adaptive physiology and present potential targets for drug development, contributing to the fight against tuberculosis.
Collapse
Affiliation(s)
- Mariia Zmyslia
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
| | - Klemens Fröhlich
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; (K.F.); (A.S.)
| | - Trinh Dao
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- The Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; (K.F.); (A.S.)
| | - Claudia Jessen-Trefzer
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
- The Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
31
|
Pandey M, Talwar S, Pal R, Nain V, Johri S, Singhal A, Pandey AK. Transcription factor mce3R modulates antibiotics and disease persistence in Mycobacteriumtuberculosis. Res Microbiol 2023; 174:104082. [PMID: 37244349 DOI: 10.1016/j.resmic.2023.104082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Transcription factors (TFs) of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis, regulate a network of pathways that help prolong the survival of Mtb inside the host. In this study, we have characterized a transcription repressor gene (mce3R) from the TetR family, that encodes for Mce3R protein in Mtb. We demonstrated that the mce3R gene is dispensable for the growth of Mtb on cholesterol. Gene expression analysis suggests that the transcription of genes belonging to the mce3R regulon is independent of the carbon source. We found that, in comparison to the wild type, the mce3R deleted strain (Δmce3R) generated more intracellular ROS and demonstrated reduced susceptibility to oxidative stress. Total lipid analysis suggests that mce3R regulon encoded proteins modulate the biosynthesis of cell wall lipids in Mtb. Interestingly, the absence of Mce3R increased the frequency of generation of antibiotic persisters in Mtb and imparted in-vivo growth advantage phenotype in guinea pigs. In conclusion, genes belonging to the mce3R regulon modulate the frequency of generation of persisters in Mtb. Hence, targeting mce3R regulon encoded proteins could potentiate the current regimen by eliminating persisters during Mtb infection.
Collapse
Affiliation(s)
- Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India; Department of Life Science, ITM University, Gwalior, Madhya Pradesh, India
| | - Sakshi Talwar
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rahul Pal
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vaibhav Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sonia Johri
- Department of Life Science, ITM University, Gwalior, Madhya Pradesh, India
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science Technology and Research (A∗STAR), Singapore 138648, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, Singapore 138648, Republic of Singapore
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
32
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
33
|
Fines DM, Schichnes D, Knight M, Anaya-Sanchez A, Thuong N, Cox J, Stanley SA. Mycobacterial formation of intracellular lipid inclusions is a dynamic process associated with rapid replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552809. [PMID: 37609245 PMCID: PMC10441389 DOI: 10.1101/2023.08.10.552809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Intracellular lipid inclusions (ILI) are triacylglyceride rich organelles produced by mycobacteria thought to serve as energy reservoirs. It is believed that ILI are formed as a result of a dosR mediated transition from replicative growth to non-replicating persistence (NRP). ILI rich Mycobacterium tuberculosis (Mtb) bacilli have been reported during infection and in sputum, establishing their importance in Mtb pathogenesis. Studies conducted in mycobacteria such as Mycobacterium smegmatis, Mycobacterium abscessus, or lab Mtb strains have demonstrated ILI formation in the presence of hypoxic, nitric oxide, nutrient limitation, or low nitrogen stress, conditions believed to emulate the host environment within which Mtb resides. Here, we show that M. marinum and clinical Mtb isolates make ILI during active replication in axenic culture independent of environmental stressors. By tracking ILI formation dynamics we demonstrate that ILI are quickly formed in the presence of fresh media or exogenous fatty acids but are rapidly depleted while bacteria are still actively replicating. We also show that the cell envelope is an alternate site for neutral lipid accumulation observed during stationary phase. In addition, we screen a panel of 60 clinical isolates and observe variation in ILI production during early log phase growth between and among Mtb lineages. Finally, we show that dosR expression level does not strictly correlate with ILI accumulation in fresh clinical isolates. Taken together, our data provide evidence of an active ILI formation pathway in replicating mycobacteria cultured in the absence of stressors, suggesting a decoupling of ILI formation from NRP.
Collapse
|
34
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
35
|
Grigg JC, Copp JN, Krekhno JMC, Liu J, Ibrahimova A, Eltis LD. Deciphering the biosynthesis of a novel lipid in Mycobacterium tuberculosis expands the known roles of the nitroreductase superfamily. J Biol Chem 2023; 299:104924. [PMID: 37328106 PMCID: PMC10404671 DOI: 10.1016/j.jbc.2023.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mycobacterium tuberculosis's (Mtb) success as a pathogen is due in part to its sophisticated lipid metabolic programs, both catabolic and biosynthetic. Several of Mtb lipids have specific roles in pathogenesis, but the identity and roles of many are unknown. Here, we demonstrated that the tyz gene cluster in Mtb, previously implicated in resistance to oxidative stress and survival in macrophages, encodes the biosynthesis of acyl-oxazolones. Heterologous expression of tyzA (Rv2336), tyzB (Rv2338c) and tyzC (Rv2337c) resulted in the biosynthesis of C12:0-tyrazolone as the predominant compound, and the C12:0-tyrazolone was identified in Mtb lipid extracts. TyzA catalyzed the N-acylation of l-amino acids, with highest specificity for l-Tyr and l-Phe and lauroyl-CoA (kcat/KM = 5.9 ± 0.8 × 103 M-1s-1). In cell extracts, TyzC, a flavin-dependent oxidase (FDO) of the nitroreductase (NTR) superfamily, catalyzed the O2-dependent desaturation of the N-acyl-L-Tyr produced by TyzA, while TyzB, a ThiF homolog, catalyzed its ATP-dependent cyclization. The substrate preference of TyzB and TyzC appear to determine the identity of the acyl-oxazolone. Phylogenetic analyses revealed that the NTR superfamily includes a large number of broadly distributed FDOs, including five in Mtb that likely catalyze the desaturation of lipid species. Finally, TCA1, a molecule with activity against drug-resistant and persistent tuberculosis, failed to inhibit the cyclization activity of TyzB, the proposed secondary target of TCA1. Overall, this study identifies a novel class of Mtb lipids, clarifies the role of a potential drug target, and expands our understanding of the NTR superfamily.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine N Copp
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M C Krekhno
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aygun Ibrahimova
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Veyron-Churlet R, Lecher S, Lacoste AS, Saliou JM, Locht C. Proximity-dependent biotin identification links cholesterol catabolism with branched-chain amino acid degradation in Mycobacterium smegmatis. FASEB J 2023; 37:e23036. [PMID: 37331005 DOI: 10.1096/fj.202202018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Cholesterol is a crucial component in Mycobacterium tuberculosis virulence as it is required for phagocytosis of mycobacteria by macrophages. In addition, the tubercle bacilli can grow using cholesterol as the sole carbon source. Thus, cholesterol catabolism represents a valuable target for the development of new antitubercular drugs. However, the molecular partners of cholesterol catabolism remain elusive in mycobacteria. Here, we focused on HsaC and HsaD, enzymes involved in two consecutive steps of cholesterol ring degradation and identified putative partners, using a BirA-based proximity-dependent biotin identification (BioID) approach in Mycobacterium smegmatis. In rich medium, the fusion protein BirA-HsaD was able to fish the endogenous cognate HsaC, thus validating this approach to study protein-protein interactions and to infer metabolic channeling of cholesterol ring degradation. In chemically defined medium, both HsaC and HsaD interacted with four proteins, BkdA, BkdB, BkdC, and MSMEG_1634. BkdA, BkdB, and BkdC are enzymes that participate in the degradation of branched-chain amino acids. As cholesterol and branched-chain amino acid catabolism both generate propionyl-CoA, which is a toxic metabolite for mycobacteria, this interconnection suggests a compartmentalization to avoid dissemination of propionyl-CoA into the mycobacterial cytosol. Moreover, the BioID approach allowed us to decipher the interactome of MSMEG_1634 and MSMEG_6518, two proteins of unknown function, which are proximal to the enzymes involved in cholesterol and branched-chain amino acid catabolism. In conclusion, BioID is a powerful tool to characterize protein-protein interactions and to decipher the interconnections between different metabolic pathways, thereby facilitating the identification of new mycobacterial targets.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sophie Lecher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Anne-Sophie Lacoste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
37
|
Li S, Qu Y. Structural study of medium-long chain fatty acyl-CoA ligase FadD8 from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2023; 672:65-71. [PMID: 37336126 DOI: 10.1016/j.bbrc.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
In mycobacteria, lipids are important components of the cell wall and play a critical role for pathogenic activities. Lipids need to be activated before participating in many biological pathways. FadD proteins are members of the adenylate-forming superfamily, catalyzing activation of fatty acids. FadD8 is one of the 34 Mycobacterium tuberculosis FadD proteins, which was reported to be a putative medium-long chain fatty acyl-CoA ligase. Previous studies showed FadD8 from Mycobacterium smegmatis exhibited higher activity with oxidized cholesterol than fatty acids. However, the catalytic mechanism of the FadD8 is still exclusive. Here, we reported the crystal structure of FadD8 from Mycobacterium tuberculosis, which forms homodimer. Structural analysis revealed presence of a relatively narrow pocket compared to other FadD proteins and a novel alternative pocket, implying distinct substrate binding preference. We propose that FadD8 plays a vital role in cholesterol utilization and metabolism by catalyzing activation of cholesterol. Collectively, our findings provide novel information for the further studies of the inhibitor and drug development.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Yunhui Qu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
38
|
Wu M, Yang Q, Yang C, Han J, Liu H, Qiao L, Duan H, Xing L, Liu Q, Dong L, Wang Q, Zuo L. Characteristics of plasma exosomes in drug-resistant tuberculosis patients. Tuberculosis (Edinb) 2023; 141:102359. [PMID: 37329682 DOI: 10.1016/j.tube.2023.102359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing prevalence of drug-resistant tuberculosis (DR-TB) poses a major challenge to the early detection and effective control of tuberculosis (TB). Exosomes carrying proteins and nucleic acid mediate intercellular communication between host and pathogen including Mycobacterium tuberculosis. However, molecular events of exosomes indicating the status and development of DR-TB remain unknown. This study determined the proteomics of exosome in DR-TB and explored the potential pathogenesis of DR-TB. METHODS Plasma samples were collected from 17 DR-TB patients and 33 non-drug-resistant tuberculosis (NDR-TB) patients using grouped case-control study design. After exosomes of plasma were isolated and confirmed by compositional and morphological measurement for exosomal characteristics, a label-free quantitative proteomics of exosomes was performed and differential protein components were determined via bioinformatics analysis. RESULTS Compared with the NDR-TB group, we identified 16 up-regulated proteins and 10 down-regulated proteins in the DR-TB group. The down-regulated proteins were mainly apolipoproteins and mainly enriched in cholesterol metabolism-related pathways. Apolipoproteins family including APOA1, APOB, APOC1 were key proteins in protein-protein interaction network. CONCLUSION Differentially expressed proteins in the exosomes may indicate the status of DR-TB from NDR-TB. Apolipoproteins family including APOA1, APOB, APOC1 may be involved in the pathogenesis of DR-TB by regulating cholesterol metabolism via exosomes.
Collapse
Affiliation(s)
- Mingrui Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qianwei Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Caiting Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jie Han
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Hai Liu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Lingran Qiao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Huiping Duan
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Xing
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qunqun Liu
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Dong
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Quanhong Wang
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China.
| | - Lin Zuo
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
39
|
Ghith A, Bruning JB, Bell SG. The oxidation of cholesterol derivatives by the CYP124 and CYP142 enzymes from Mycobacterium marinum. J Steroid Biochem Mol Biol 2023; 231:106317. [PMID: 37141947 DOI: 10.1016/j.jsbmb.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
The CYP124 and CYP142 families of bacterial cytochrome P450 monooxygenases (CYPs), catalyze the oxidation of methyl branched lipids, including cholesterol, as one of the initial activating steps in their catabolism. Both enzymes are reported to supplement the CYP125 family of P450 enzymes. These CYP125 enzymes are found in the same bacteria, and are the primary cholesterol/cholest-4-en-3-one metabolizing enzymes. To further understand the role of the CYP124 and CYP142 cytochrome P450s we investigated the Mycobacterium marinum enzymes, MmarCYP124A1 and CYP142A3, with various cholesterol analogues with modifications on the A and B rings of the steroid. We assessed the substrate binding and catalytic activity of each enzyme. Neither enzyme could bind or oxidize cholesteryl acetate or 3,5-cholestadiene, which have modifications at the C3 hydroxyl moiety of cholesterol. The CYP142 enzyme was better able to accommodate and oxidize cholesterol analogues which have changes on the A/B rings including cholesterol-5α,6α-epoxide and diastereomers of 5-cholestan-3-ol. The CYP124 enzyme was more tolerant of changes at C7 of the cholesterol B ring, e.g., 7-ketocholesterol than in the A ring. The selectivity for oxidation at the ω-carbon of a branched chain was observed in all steroids that were oxidized. The 7-ketocholesterol-bound MmarCYP124A1 enzyme from M. marinum, was structurally characterized by X-ray crystallography to 1.81Å resolution. The 7-ketocholesterol-bound X-ray crystal structure of the MmarCYP124A1 enzyme revealed that the substrate binding mode of this cholesterol derivative was altered compared to those observed with other non-steroidal ligands. The structure provided an explanation for the selectivity of the enzyme for terminal methyl hydroxylation.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
40
|
Parivakkam Mani A, K S, K DK, Yadav S. Assessment of Lipid Profile in Patients With Pulmonary Tuberculosis: An Observational Study. Cureus 2023; 15:e39244. [PMID: 37342750 PMCID: PMC10277210 DOI: 10.7759/cureus.39244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis causes tuberculosis (TB), an infectious lung disease. There is mounting evidence linking low lipid levels to a variety of human diseases, including TB. Cholesterol, mainly due to its involvement in heart disease, gets more attention in recent years. The objectives of the study were to look into the link that connects hypolipidemia to the existence of pulmonary/extrapulmonary TB; we have tried to find the link in relation to patients who have been recently diagnosed with TB as well as in those who are having TB in the long term. MATERIALS AND METHODS An observational study was performed on TB patients attending respiratory medicine at the Saveetha Medical College and Hospital, Chennai, Tamil Nadu, India, from February 2021 to January 2022, and their lipid levels were tested from patients with consent and correlated. Student's t-test was applied to the obtained data. To convey quantitative data, measurements such as mean along with standard deviation were applied, and a p-value of 0.05 was considered statistically significant. RESULTS This research included 80 subjects, 40 of whom were diagnosed with TB, and the rest (40 controls) were deemed healthy. The age group with the highest low lipid levels in pulmonary TB was 40-50 years. A chi-square test of association was conducted; this test revealed that the fraction of TB patients having lower than normal levels of total cholesterol (p = 0.0001), triglyceride level (p = 0.006), high-density lipoprotein (p = 0.009), low-density lipoprotein (p = 0.006), and body mass index (p = 0.000) was statistically significantly higher in contrast to the control group. Thus, there was a significant correlation between a higher prevalence of hypolipidemia in patients with pulmonary tuberculosis (PTB) and normal healthy individuals. CONCLUSIONS We observed a strong relationship between hypolipidemia and TB, indicating that patients with low lipid levels tend to have severe inflammation as compared to patients with normal lipid levels.
Collapse
Affiliation(s)
| | - Shanmugapriya K
- Respiratory Medicine, Sri Lalithambigai Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai, IND
| | - Deepak Kanna K
- Respiratory Medicine, Tamil Nadu Government Multisuperspeciality Hospital, Chennai, IND
| | - Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
41
|
Ghith A, Bruning JB, Bell SG. The catalytic activity and structure of the lipid metabolizing CYP124 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2023; 737:109554. [PMID: 36842492 DOI: 10.1016/j.abb.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
42
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
43
|
Fieweger RA, Wilburn KM, Montague CR, Roszkowski EK, Kelly CM, Southard TL, Sondermann H, Nazarova EV, VanderVen BC. MceG stabilizes the Mce1 and Mce4 transporters in Mycobacterium tuberculosis. J Biol Chem 2023; 299:102910. [PMID: 36642182 PMCID: PMC9947336 DOI: 10.1016/j.jbc.2023.102910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Lipids are important nutrients for Mycobacterium tuberculosis (Mtb) to support bacterial survival in mammalian tissues and host cells. Fatty acids and cholesterol are imported across the Mtb cell wall via the dedicated Mce1 and Mce4 transporters, respectively. It is thought that the Mce1 and Mce4 transporters are comprised of subunits that confer substrate specificity and proteins that couple lipid transport to ATP hydrolysis, similar to other bacterial ABC transporters. However, unlike canonical bacterial ABC transporters, Mce1 and Mce4 appear to share a single ATPase, MceG. Previously, it was established that Mce1 and Mce4 are destabilized when key transporter subunits are rendered nonfunctional; therefore, we investigated here the role of MceG in Mce1 and Mce4 protein stability. We determined that key residues in the Walker B domain of MceG are required for the Mce1- and Mce4-mediated transport of fatty acids and cholesterol. Previously, it has been established that Mce1 and Mce4 are destabilized and/or degraded when key transporter subunits are rendered nonfunctional, thus we investigated a role for MceG in stabilizing Mce1 and Mce4. Using an unbiased quantitative proteomic approach, we demonstrate that Mce1 and Mce4 proteins are specifically degraded in mutants lacking MceG. Furthermore, bacteria expressing Walker B mutant variants of MceG failed to stabilize Mce1 and Mce4, and we show that deleting MceG impacts the fitness of Mtb in the lungs of mice. Thus, we conclude that MceG represents an enzymatic weakness that can be potentially leveraged to disable and destabilize both the Mce1 and Mce4 transporters in Mtb.
Collapse
Affiliation(s)
- Rachael A Fieweger
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Kaley M Wilburn
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Christine R Montague
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Emma K Roszkowski
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Carolyn M Kelly
- Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Teresa L Southard
- Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Holger Sondermann
- Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Evgeniya V Nazarova
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Brian C VanderVen
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA.
| |
Collapse
|
44
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
45
|
Mendonca LE, Pernet E, Khan N, Sanz J, Kaufmann E, Downey J, Grant A, Orlova M, Schurr E, Krawczyk C, Jones RG, Barreiro LB, Divangahi M. Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection. Front Immunol 2023; 13:1044592. [PMID: 36776396 PMCID: PMC9910175 DOI: 10.3389/fimmu.2022.1044592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 01/28/2023] Open
Abstract
Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB.
Collapse
Affiliation(s)
- Laura E. Mendonca
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Erwan Pernet
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Nargis Khan
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Joaquin Sanz
- Institute for Biocomputation and Physics of Complex Systems (BIFI) for Biocomputation and Physics of Complex Systems and Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| | - Eva Kaufmann
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Jeffrey Downey
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Alexandre Grant
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada
| | - Marianna Orlova
- McGill International TB Centre, Montreal, QC, Canada,Department of Medicine and Human Genetics, McGill University. Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Erwin Schurr
- McGill International TB Centre, Montreal, QC, Canada,Department of Medicine and Human Genetics, McGill University. Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Connie Krawczyk
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada,VanAndel Institute, Center for Cancer and Cell Biology, Grand Rapids, MI, United States
| | - Russell G. Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada,VanAndel Institute, Center for Cancer and Cell Biology, Grand Rapids, MI, United States
| | - Luis B. Barreiro
- McGill International TB Centre, Montreal, QC, Canada,Department of Genetics, Centre hospitalier de l'Université (CHU) Sainte-Justine Research Center, Montreal, QC, Canada,University of Chicago, Department of Medicine, Section of Genetic Medicine, Chicago, IL, United States
| | - Maziar Divangahi
- The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and,McGill International TB Centre, Montreal, QC, Canada,*Correspondence: Maziar Divangahi,
| |
Collapse
|
46
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
47
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
48
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
49
|
Gibson SER, Harrison J, Molloy A, Cox JAG. Cholesterol-dependent activity of dapsone against non-replicating persistent mycobacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748615 DOI: 10.1099/mic.0.001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One-third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis. This reservoir of bacteria is largely resistant to antimicrobial treatment that often only targets actively replicating mycobacteria, with current treatment for latent infection revolving around inhibiting the resuscitation event rather than preventing or treating latent infection. As a result, antimicrobials that target latent infection often have little to no activity in vivo. Here we report a method of in vitro analysis of physiologically relevant non-replicating persistence (NRP) utilizing cholesterol as the sole carbon source, alongside hypoxia as a driver of Mycobacterium bovis BCG into the NRP state. Using the minimal cholesterol media NRP assay, we observed an increased state of in vitro resistance to front-line anti-tubercular compounds. However, following a phenotypic screen of an approved-drug library, we identified dapsone as a bactericidal active molecule against cholesterol-dependent NRP M. bovis BCG. Through an overexpression trial of probable antimicrobial target enzymes, we further identified FolP2, a non-functional dihydropteroate synthase homologue, as the likely target of dapsone under cholesterol-NRP due to a significant increase in bacterial resistance when overexpressed. These results highlight the possible reason for little in vivo activity seen for current front-line anti-NRP drugs, and we introduce a new methodology for future drug screening as well as a potential role for dapsone inclusion within the current treatment regime.
Collapse
Affiliation(s)
- Savannah E R Gibson
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - James Harrison
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Antonia Molloy
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
50
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|