1
|
Chen Q, Xie L, Wang J, Su X, Ye X, Lin X. Resveratrol inhibits lipopolysaccharide‑induced MUC5AC expression and airway inflammation via MAPK and Nrf2 pathways in human bronchial epithelial cells and an acute inflammatory mouse model. Mol Med Rep 2025; 31:157. [PMID: 40211706 PMCID: PMC12004211 DOI: 10.3892/mmr.2025.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Pathological mucus hypersecretion is an important clinical hallmark of chronic airway inflammatory diseases and yet there is a lack of effective therapeutic medicine. Resveratrol, a dietary polyphenol, has been shown to possess anti‑aging, antioxidation, anti‑inflammation and tumor prevention effects. However, the effect and underlying mechanism of resveratrol in lipopolysaccharide (LPS) induced‑mucus hypersecretion remain to be elucidated. Among more than 20 mucin family members, mucin 5ac (MUC5AC) is a major glycoprotein in airway mucus. The present study investigated the therapeutic effects and mechanisms of resveratrol in LPS‑induced MUC5AC expression in human bronchial epithelial (NCI‑H292) cells and an acute inflammatory murine model. It found that resveratrol markedly attenuated LPS‑induced MUC5AC expression and reactive oxygen species production in NCI‑H292 cells. Moreover, resveratrol increased activation of nuclear factor erythroid‑2‑related factor 2 (Nrf2) and phosphorylation of mitogen‑activated protein kinase (MAPK). Notably, compared with negative control, knockdown of Nrf2 by small interfering RNA and specific inhibitors of ERK/p38 MAPK markedly abrogated the downregulative effect of resveratrol on LPS‑induced MUC5AC expression in NCI‑H292 cells. Additionally, in vivo effects on histopathology and gene expression were assessed in lung tissues collected after intratracheal instillation of LPS with or without resveratrol treatment. Western blotting of lung tissue samples confirmed that administration of resveratrol inhibited MUC5AC expression in LPS‑induced acute inflammatory mice, but increased Nrf2 expression along with phosphorylation of ERK and p38. Periodic acid‑Schiff's staining also showed that resveratrol suppressed mucin production. Compared with the LPS group, administration of resveratrol effectively decreased the numbers of inflammatory cells and neutrophils in bronchoalveolar lavage fluid, as well as markedly alleviating the infiltration of exacerbated inflammatory cells in lung tissue. In conclusion, resveratrol exerted protective effects against LPS‑induced MUC5AC overexpression, inflammation and oxidative stress by activating ERK/p38 MAPK and Nrf2 pathway. Furthermore, the results suggested that resveratrol might be a potential therapeutic agent to inhibit airway mucus hyperproduction.
Collapse
Affiliation(s)
- Qiaojuan Chen
- The Second Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350012, P.R. China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Liutian Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Graduate School, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Jianming Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
- Department of Intensive Care Unit, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiangjia Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
2
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Xu Z, Luan J, Wan F, Zhang M, Ding F, Yang L, Dai S. Vitamin D promotes autophagy to inhibit LPS-induced lung injury via targeting cathepsin D. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5531-5541. [PMID: 39570382 DOI: 10.1007/s00210-024-03619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Pneumonia is a frequent-occurring event in children death. Vitamin D (VD) can alleviate inflammatory response and it might be a promising adjunct to antibiotics for the treatment of acute childhood pneumonia. This study intended to uncover the relevant mechanism of VD in pneumonia. For simulating inflammatory condition, BEAS-2B cells were induced using lipopolysaccharide (LPS). Cell viability was detected using cell counting kit-8 (CCK-8) method, and cell apoptosis was detected using flow cytometry and western blot. Inflammatory cytokines as well as oxidative stress markers were detected using enzyme-linked immunosorbent assay (ELISA) and corresponding assays. Western blot evaluated the contents of cathepsin D (CTSD), apoptosis- and autophagy-related proteins. Through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the transfection efficiency of overexpression (OV)-CTSD was detected. Immunofluorescence assay detected light chain 3 (LC3II) level. Through SuperPred database analysis, VD can target CTSD. VD was revealed to suppress viability damage, inflammatory response, oxidative stress, and autophagy injury in BEAS-2B cells induced by LPS via targeting CTSD. However, the protective effects exhibited by VD against LPS-induced viability damage, inflammatory response, and oxidative stress in BEAS-2B cells were all counteracted by autophagy inhibitor 3-methyladenine (3-MA). Collectively, VD alleviated the severity of LPS-induced lung injury by promoting autophagy through targeting CTSD.
Collapse
Affiliation(s)
- Zijuan Xu
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Jinling Luan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fengyun Wan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Meijie Zhang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fei Ding
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Ling Yang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Shuxin Dai
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
4
|
Norrie JL, Lupo MS, Little DR, Shirinifard A, Mishra A, Zhang Q, Geiger N, Putnam D, Djekidel N, Ramirez C, Xu B, Dundee JM, Yu J, Chen X, Dyer MA. Latent epigenetic programs in Müller glia contribute to stress and disease response in the retina. Dev Cell 2025; 60:1199-1216.e7. [PMID: 39753128 PMCID: PMC12014377 DOI: 10.1016/j.devcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/09/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025]
Abstract
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development. Although promoter activity is correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in Müller glial cells, which function to maintain retinal homeostasis and respond to stress, injury, or disease. We refer to these as "pliancy genes" because they allow the Müller glia to rapidly change their gene expression and cellular state in response to retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are important for regulating inflammation in the murine retina in vivo.
Collapse
Affiliation(s)
- Jackie L Norrie
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marybeth S Lupo
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle R Little
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akhilesh Mishra
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qiong Zhang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Natalie Geiger
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Putnam
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacob M Dundee
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiang Yu
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Ascari A, Morona R. Recent insights into Wzy polymerases and lipopolysaccharide O-antigen biosynthesis. J Bacteriol 2025; 207:e0041724. [PMID: 40066993 PMCID: PMC12004945 DOI: 10.1128/jb.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize a plethora of complex surface-associated polysaccharides which enable them to persist and thrive in distinct niches. These glycans serve an array of purposes pertaining to virulence, colonization, antimicrobial resistance, stealth, and biofilm formation. The Wzx/Wzy-dependent pathway is universally the predominant system for bacterial polysaccharide synthesis. This system is responsible for the production of lipopolysaccharide (LPS) O-antigen (Oag), enterobacterial common antigen, capsule, and exopolysaccharides, with orthologs present in both Gram-negative and Gram-positive microbes. Studies focusing principally on Pseudomonas, Shigella, and Salmonella LPS Oag synthesis have provided much of the framework underpinning the biochemical and molecular mechanism behind polysaccharide synthesis via this pathway. LPS Oag production via the Wzx/Wzy-dependent pathway occurs through the stepwise activity of multiple key biosynthetic enzymes, including primarily the polymerase, Wzy, which is responsible for the Oag assembly, and the polysaccharide co-polymerase, Wzz, which effectively modulates the length of the glycan produced. In this review, we provide a comprehensive summary of the latest genetic, structural, and mechanistic data for the main protein candidates of the Wzx/Wzy-dependent pathway, in addition to an examination of their substrate specificities. Furthermore, we have reviewed recent insights pertaining to the dynamics/kinetics of glycan synthesis by this mechanism, including the interplay of the key proteins among themselves and in complex with their substrate. Lastly, we outline key gaps in the literature and suggest future research avenues, with the aim to stimulate ongoing research into this critical pathway responsible for the production of key virulence factors for numerous debilitating and lethal pathogens.
Collapse
Affiliation(s)
- Alice Ascari
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Li X, Ni Z, Shi W, Zhao K, Zhang Y, Liu L, Wang Z, Chen J, Yu Z, Gao X, Qin Y, Zhao J, Peng W, Shi J, Kosten TR, Lu L, Su L, Xue Y, Sun H. Nitrate ameliorates alcohol-induced cognitive impairment via oral microbiota. J Neuroinflammation 2025; 22:106. [PMID: 40234914 PMCID: PMC12001487 DOI: 10.1186/s12974-025-03439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025] Open
Abstract
Alcohol use is associated with cognitive impairment and dysregulated inflammation. Oral nitrate may benefit cognitive impairment in aging through altering the oral microbiota. Similarly, the beneficial effects of nitrate on alcohol-induced cognitive decline and the roles of the oral microbiota merit investigation. Here we found that nitrate supplementation effectively mitigated cognitive impairment induced by chronic alcohol exposure in mice, reducing both systemic and neuroinflammation. Furthermore, nitrate restored the dysbiosis of the oral microbiota caused by alcohol consumption. Notably, removing the oral microbiota led to a subsequent loss of the beneficial effects of nitrate. Oral microbiota from donor alcohol use disordered humans who had been taking the nitrate intervention were transplanted into germ-free mice which then showed increased cognitive function and reduced neuroinflammation. Finally, we examined 63 alcohol drinkers with varying levels of cognitive impairment and found that lower concentrations of nitrate metabolism-related bacteria were associated with higher cognitive impairment and lower nitrate levels in plasma. These findings highlight the protective role of nitrate against alcohol-induced cognition impairment and neuroinflammation and suggest that the oral microbiota associated with nitrate metabolism and brain function may form part of a "microbiota-mouth-brain axis".
Collapse
Affiliation(s)
- Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yanjie Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lina Liu
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ying Qin
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Thomas R Kosten
- Department of Psychiatry, Pharmacology, Neuroscience, Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Yanxue Xue
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
7
|
Jia R, Wan L, Jin L, Tian Q, Chen Y, Zhu X, Zhang M, Zhang Y, Zong L, Wu X, Miao C, Cai Y, Ma J, Hu L, Liu WT. Fucoidan reduces NET accumulation and alleviates chemotherapy-induced peripheral neuropathy via the gut-blood-DRG axis. J Neuroinflammation 2025; 22:100. [PMID: 40186245 PMCID: PMC11969723 DOI: 10.1186/s12974-025-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse reaction to chemotherapy with limited treatment options. Research has indicated that neutrophil extracellular traps (NETs) are critical for the pathogenesis of CIPN. LPS/HMGB1 serve as important inducers of NETs. Here, we aimed to target the inhibition of NET formation (NETosis) to alleviate CIPN. METHODS Oxaliplatin (L-OHP) was used to establish a CIPN model. The mice were pretreated with fucoidan to investigate the therapeutic effect. SR-A1-/- mice were used to examine the role of scavenger receptor A1 (SR-A1) in CIPN. Bone marrow-derived macrophages (BMDMs) isolated from SR-A1-/- mice and WT mice were used to investigate the mechanism by which macrophage phagocytosis of NETs alleviates CIPN. RESULTS Clinically, we found that the contents of LPS, HMGB1 and NETs in the plasma of CIPN patients were significantly increased and positively correlated with the VAS score. Fucoidan decreased the LPS/HMGB1/NET contents and relieved CIPN in mice. Mechanistically, fucoidan upregulated SR-A1 expression and promoted the phagocytosis of LPS/HMGB1 by BMDMs. Fucoidan also facilitated the engulfment of NETs by BMDMs via the recognition and localization of SR-A1 and HMGB1. The therapeutic effects of fucoidan were abolished by SR-A1 knockout. RNA-seq analysis revealed that fucoidan increased sqstm1 (p62) gene expression. Fucoidan promoted the competitive binding of sqstm1 and Nrf2 to Keap1, increasing Nrf2 nuclear translocation and SR-A1 transcription. Additionally, the sequencing analysis (16 S) of microbial diversity revealed that fucoidan increased the gut microbiota diversity and abundance and increased the Bacteroides/Firmicutes ratio. CONCLUSIONS Altogether, fucoidan promotes the SR-A1-mediated phagocytosis of LPS/HMGB1/NETs and maintains gut microbial homeostasis, which may provide a potential therapeutic strategy for CIPN.
Collapse
Affiliation(s)
- Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Li Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qingyan Tian
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyi Chen
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Xia Zhu
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China
| | - Mengyao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yajie Zhang
- Central Laboratory, Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lijuan Zong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Cai
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianxin Ma
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
8
|
Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P, Duan Z, Wang X. Latroeggtoxin-VI improves depression by regulating the composition and function of gut microbiota in a mouse model of depression. J Med Microbiol 2025; 74. [PMID: 40202502 DOI: 10.1099/jmm.0.001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Introduction. Depression has become one of the mental diseases that seriously affect human health. Its mechanism is very complex, and many factors influence the condition. An imbalance of the gut microbiota is being considered as a factor that impacts the occurrence and progression of depression. Future therapies may therefore tap into this connection, treating depression through manipulation of the gut microbiome.Hypothesis/Gap Statement. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from Latrodectus tredecimguttatus eggs, was previously demonstrated to inhibit excessive inflammation and improve depression behaviours, suggesting that it might be able to regulate the balance of gut microbiota. The aim of this study was to explore the effects of LPS and LETX-VI on depressive behaviours and gut microbiota and to analyse correlations between changes in the gut microbiota and depressive behaviours.Methodology. A murine model of depression was established, and the effects of LPS and LETX-VI treatment on depressive behaviours and gut microbiota were investigated.Results. In the murine model, depressive behaviour was induced by LPS; the ratio of Firmicutes to Bacteroidetes (F/B) and the number of pro-inflammatory bacteria in the gut microbiota increased (P<0.01), while butyric acid-producing bacteria with anti-inflammatory effect decreased (P<0.05). Furthermore, the metabolic function of the gut microbiota was disrupted, and the level of virulence factors among gut microbiota was up-regulated (P<0.05). Association analysis showed that the changes in the composition and function of gut microbiota were closely related to the depression phenotype of mice, suggesting that the abnormal function of gut microbiota is linked to depression. However, when LETX-VI was applied before LPS injection, the LPS-induced changes in the gut microbiota were alleviated, and the depressive behaviour greatly improved.Conclusion. LETX-VI can prevent depressive behaviour by regulating the composition and/or function of the gut microbiota.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhigui Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
9
|
Zhu X, Sylvetsky AC, McCullough ML, Welsh JA, Hartman TJ, Ferranti EP, Um CY. Association of Low-Calorie Sweeteners with Selected Circulating Biomarkers of Intestinal Permeability in the Cancer Prevention Study-3 Diet Assessment Substudy. J Nutr 2025; 155:1226-1235. [PMID: 40032143 DOI: 10.1016/j.tjnut.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) are popular sugar substitutes and have been shown to alter the gut microbiota, which raises concerns about potential impacts on intestinal permeability. OBJECTIVES This study aimed to examine cross-sectional associations between LCS consumption and circulating biomarkers of intestinal permeability. METHODS We analyzed data from 572 United States adults participating in the Cancer Prevention Study-3 Diet Assessment Substudy who provided ≤2 fasting blood samples, collected 6 mo apart, to measure biomarkers of intestinal permeability including antibodies to flagellin (anti-flagellin), lipopolysaccharide (anti-LPS), and total antibodies; and ≤6 24-h dietary recalls, collected over the course of 12 mo, to estimate average intake of LCS including aspartame, sucralose, acesulfame-potassium, and saccharin. Multivariable linear regression, adjusted for sociodemographic characteristics, lifestyle factors, and medical history, was used to examine associations between LCS consumption and levels of intestinal permeability biomarkers by comparing mean differences in biomarkers among lower (>0 to ≤50th percentile) (n = 158) and higher (>50th percentile) LCS consumers (n = 157) than nonconsumers. A linear trend across nonconsumers and the 2 consumption categories was evaluated using a continuous variable based on the median LCS intake (median = 0, 11.3, and 124.2 mg/d for non-, lower, and higher consumers, respectively). RESULTS Among the 572 study participants, the mean age was 52.5 y, 63.3% were female, 60.7% were on-Hispanic White, and 55.1% reported consuming LCS-containing products. Greater LCS consumption was not associated with anti-flagellin, anti-LPS, or total antibodies. Additionally, no associations between specific types of LCS and intestinal permeability biomarkers were observed. CONCLUSIONS The results of our study did not demonstrate an association between LCS consumption and intestinal permeability biomarkers. Further research with larger sample sizes and randomized controlled trials is needed to confirm our findings.
Collapse
Affiliation(s)
- Xinyu Zhu
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States.
| | - Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Marjorie L McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Jean A Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States; Department of Child Advocacy, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Terryl J Hartman
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Erin P Ferranti
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States.
| |
Collapse
|
10
|
Nguyen E, Agbavor C, Steenhaut A, Pratyush MR, Hiller NL, Cahoon LA, Mikheyeva IV, Ng WL, Bridges AA. A small periplasmic protein governs broad physiological adaptations in Vibrio cholerae via regulation of the DbfRS two-component system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645060. [PMID: 40196685 PMCID: PMC11974885 DOI: 10.1101/2025.03.24.645060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Two-component signaling pathways allow bacteria to sense and respond to environmental changes, yet the sensory mechanisms of many remain poorly understood. In the pathogen Vibrio cholerae, the DbfRS two-component system controls the biofilm lifecycle, a critical process for environmental persistence and host colonization. Here, we identified DbfQ, a small periplasmic protein encoded adjacent to dbfRS, as a direct modulator of pathway activity. DbfQ directly binds the sensory domain of the histidine kinase DbfS, shifting it toward phosphatase activity and promoting biofilm dispersal. In contrast, outer membrane perturbations, caused by mutations in lipopolysaccharide biosynthesis genes or membrane-damaging antimicrobials, activate phosphorylation of the response regulator DbfR. Transcriptomic analyses reveal that DbfR phosphorylation leads to broad transcriptional changes spanning genes involved in biofilm formation, central metabolism, peptidoglycan synthesis, and cellular stress responses. Constitutive DbfR phosphorylation imposes severe fitness costs in an infection model, highlighting this pathway as a potential target for anti-infective therapeutics. We find that dbfQRS-like genetic modules are widely present across bacterial phyla, underscoring their broad relevance in bacterial physiology. Collectively, these findings establish DbfQ as a new class of periplasmic regulator that influences two-component signaling and bacterial adaptation.
Collapse
Affiliation(s)
- Emmy Nguyen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anjali Steenhaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - M R Pratyush
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Irina V. Mikheyeva
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025; 14:290. [PMID: 40137776 PMCID: PMC11946689 DOI: 10.3390/pathogens14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The rise of bacterial infections is a global health issue that calls for the development and availability of additional antimicrobial agents. Known for its in vitro effects on Gram-positive organisms, the drug-like small molecule marinopyrrole A was re-examined for the potential of broader efficacy against a wider array of microbes. We uncovered selective efficacy against an important subset of Gram-negative bacteria from three genera: Neisseria, Moraxella, and Campylobacter. This susceptibility is correlated with the absence of canonical LPS in these specific Gram-negative species, a phenomenon observed with other hydrophobic anti-microbial compounds. Further, when exposed to molecules which inhibit the LpxC enzyme of the LPS synthesis pathway, previously resistant LPS-producing Gram-negative bacteria showed increased susceptibility to marinopyrrole A. These results demonstrate marinopyrrole A's efficacy against a broader range of Gram-negative bacteria than previously known, including N. gonorrhea, a species identified as a priority pathogen by the WHO.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (C.F.E.); (B.N.D.); (L.M.L.); (A.J.N.)
| |
Collapse
|
12
|
Wang P, Li H, Wu W. Anti-inflammatory effects of Esomeprazole in septic lung injury by mediating endoplasmic reticulum stress. J Bioenerg Biomembr 2025:10.1007/s10863-025-10055-0. [PMID: 40072652 DOI: 10.1007/s10863-025-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
Acute lung injury characterized by overactive pulmonary inflammation is a common and serious complication of sepsis. Esomeprazole (ESO), a potent proton pump inhibitor (PPI), has been demonstrated as a promising anti-inflammatory agent in treating sepsis at high concentrations, the efficacy of which in sepsis-induced lung injury has not been explored. This research aimed to investigate the role of ESO in septic lung injury and the potential mechanism. The mice were pretreated by ESO prior to the construction of cecal ligation and puncture (CLP) sepsis model. MH-S lung macrophages were exposed to lipopolysaccharide (LPS) to induce inflammatory injury. The severity of lung damage was detected by H&E staining, measurement of lactic dehydrogenase (LDH) and lung wet/dry weight (W/D) ratio. The levels of inflammatory cytokines were detected by ELISA and Western blotting. The number of inflammatory cells was counted. Macrophage distribution was measured by immunohistochemical staining of macrophage markers. Western blotting also determined the expression of endoplasmic reticulum stress (ERS) and NLR family pyrin domain containing 3 (NLRP3) inflammasome-related proteins. CCK-8 method was used to detect cell viability. ESO concentration-dependently mitigated the pathological damage of lung tissues, reduced LDH activity, lung W/D ratio, decreased inflammatory cell counts and F4/80 expression in the lung tissues of sepsis mice. Besides, ESO suppressed inflammatory response, NLRP3 inflammasome activation and inactivated activating transcription factor 6 (ATF6)-CCAAT-enhancer-binding protein homologous protein (CHOP)-mediated ERS signaling both in vitro and in vivo. ATF6 overexpression partially reversed the impacts of ESO on NLRP3 inflammasome and the levels of inflammatory cytokines in LPS-induced MH-S cells. Anyway, ESO may inhibit ATF6/CHOP pathway to protect against inflammation in septic lung injury.
Collapse
Affiliation(s)
- Peng Wang
- Emergency Medicine Department, The people's hospital of Feicheng, No. 108 Xincheng Road, Feicheng City, Shandong Province, China
| | - Hui Li
- Emergency Medicine Department, The people's hospital of Feicheng, No. 108 Xincheng Road, Feicheng City, Shandong Province, China
| | - Wencheng Wu
- Emergency Medicine Department, The people's hospital of Feicheng, No. 108 Xincheng Road, Feicheng City, Shandong Province, China.
| |
Collapse
|
13
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ma W, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. SCIENCE ADVANCES 2025; 11:eadt9027. [PMID: 40053584 PMCID: PMC11887843 DOI: 10.1126/sciadv.adt9027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD). Caspase-11 also detects eukaryotic (i.e., self) lipids. This observation raises the question of whether common or distinct mechanisms govern caspase interactions with self- and nonself-lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self- and nonself-lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self- and nonself-lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
14
|
Sun Q, Zhai W, Wang H, Gao Z, Liu H. A novel lncRNA MSTRG.59348.1 regulates muscle cells proliferation and innate immunity of Megalobrama amblycephala. Int J Biol Macromol 2025; 294:139445. [PMID: 39756731 DOI: 10.1016/j.ijbiomac.2024.139445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
In mammals, long non-coding RNAs (lncRNAs) play a regulatory role in gene expression, contribute to immune responses, and aid in pathogen elimination, primarily through interactions with RNA-binding proteins (RBPs). However, the role of lncRNAs in fish innate immunity and their interaction with RBPs remains uncertain. To investigate the immunomodulatory role of lncRNAs in Megalobrama amblycephala, we identified the novel lncRNA MSTRG.59348.1 and examined its function in the innate immune response to Aeromonas hydrophila infection. Localization studies in hepatocytes revealed that MSTRG.59348.1 is primarily located in the nucleus, suggesting its potential involvement in gene regulation, possibly through chromatin modification or other nuclear processes. The expression of MSTRG.59348.1 was significantly up-regulated after lipopolysaccharide (LPS) stimulation in liver cells. RNA-seq analysis of muscle cells revealed that genes differentially expressed following MSTRG.59348.1 overexpression were enriched in immune pathways. MSTRG.59348.1 overexpression significantly inhibited the expression of sting and ifn, and significantly up-regulated muscle cell viability and promoted cell proliferation by targeting sting, ifn, nf-κb1, and bcl2. Screening by RNA pull-down and mass spectrometry identified 57 RBPs interacting with MSTRG.59348.1, with functions enriched in immune pathways. Our results suggest that MSTRG.59348.1 plays a crucial regulatory role in fish antibacterial response, marking it as a significant subject for future research in innate immunity.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xiaogan Academy of Agricultural Sciences, Xiaogan 432100, China
| | - Wenya Zhai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
15
|
Mei M, Estrada I, Diggle SP, Goldberg JB. R-pyocins as targeted antimicrobials against Pseudomonas aeruginosa. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:17. [PMID: 40021925 PMCID: PMC11871291 DOI: 10.1038/s44259-025-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
R-pyocins, bacteriocin-like proteins produced by Pseudomonas aeruginosa, present a promising alternative to phage therapy and/or adjunct to currently used antimicrobials in treating bacterial infections due to their targeted specificity, lack of replication, and stability. This review explores the structural, mechanistic, and therapeutic aspects of R-pyocins, including their potential for chronic infection management, and discusses recent advances in delivery methods, paving the way for novel antimicrobial applications in clinical settings.
Collapse
Affiliation(s)
- Madeline Mei
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaac Estrada
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Soranno DE, Coopersmith CM, Brinkworth JF, Factora FNF, Muntean JH, Mythen MG, Raphael J, Shaw AD, Vachharajani V, Messer JS. A review of gut failure as a cause and consequence of critical illness. Crit Care 2025; 29:91. [PMID: 40011975 DOI: 10.1186/s13054-025-05309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
In critical illness, all elements of gut function are perturbed. Dysbiosis develops as the gut microbial community loses taxonomic diversity and new virulence factors appear. Intestinal permeability increases, allowing for translocation of bacteria and/or bacterial products. Epithelial function is altered at a cellular level and homeostasis of the epithelial monolayer is compromised by increased intestinal epithelial cell death and decreased proliferation. Gut immunity is impaired with simultaneous activation of maladaptive pro- and anti-inflammatory signals leading to both tissue damage and susceptibility to infections. Additionally, splanchnic vasoconstriction leads to decreased blood flow with local ischemic changes. Together, these interrelated elements of gastrointestinal dysfunction drive and then perpetuate multi-organ dysfunction syndrome. Despite the clear importance of maintaining gut homeostasis, there are very few reliable measures of gut function in critical illness. Further, while multiple therapeutic strategies have been proposed, most have not been shown to conclusively demonstrate benefit, and care is still largely supportive. The key role of the gut in critical illness was the subject of the tenth Perioperative Quality Initiative meeting, a conference to summarize the current state of the literature and identify key knowledge gaps for future study. This review is the product of that conference.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Faith N F Factora
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Julia H Muntean
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Monty G Mythen
- Perioperative Medicine, University College London, London, England
| | - Jacob Raphael
- Anesthesiology and Perioperative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew D Shaw
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jeannette S Messer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
17
|
Xiao S, Tian M, Liao H, Xie J, Chai J, Li J, Nguyen T, Wu J, Gao Y, Li J, Chen X, Xu X, Qingwen W. The first Ranatuerin antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Life Sci 2025; 363:123375. [PMID: 39788417 DOI: 10.1016/j.lfs.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Pelophylax nigromaculata, common traditional Chinese medicinal material used for several hundreds of years, is one of the most widely distributed amphibians in China. In this study, a novel Ranatuerin-2 family antimicrobial peptide, Rana-2PN, was identified and characterized from its skin, and its structural characteristics and functional activities were studied extensively. First, Rana-2PN exhibited a broad spectrum of antimicrobial activity, displaying minimum inhibitory concentration (MIC) values ranging from 12.5 to 100 μM against all strains tested. Mechanistically, Rana-2PN exerted its bacteriostatic effects by binding to bacterial cells and inducing bacterial membrane rupture and subsequent bacterial death. Secondly, Rana-2PN effectively inhibited the inflammatory response in RAW264.7 cells induced by lipopolysaccharide (LPS) and reduced inflammation induced by carrageenan in mouse toes. Thus, Rana-2PN with LPS-neutralizing, anti-inflammatory, and antimicrobial properties, represents the first member of the Ranatuerin antimicrobial peptide family, and its discovery offers a promising therapeutic candidate for addressing inflammatory disorders resulting from bacterial infections.
Collapse
Affiliation(s)
- Shibai Xiao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianpeng Xie
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jinqiao Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wang Qingwen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
18
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
19
|
Jiang H, Zeng W, Zhu F, Zhang X, Cao D, Peng A, Wang H. Exploring the associations of gut microbiota with inflammatory and the early hematoma expansion in intracerebral hemorrhage: from change to potential therapeutic objectives. Front Cell Infect Microbiol 2025; 15:1462562. [PMID: 39963412 PMCID: PMC11830820 DOI: 10.3389/fcimb.2025.1462562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Background Although a great deal of research has explored the possibility of a systemic inflammatory response and dysbiosis of the gut microbiota after an intracerebral hemorrhage (ICH), the relationships between gut microbiota and blood inflammatory indicators as well as their role in the hematoma expansion following an early-stage mild-to-moderate ICH (emICH) remain unknown. This study analyzes these changes and associations in order to predict and prevent hematoma expansion after emICH. Methods The study included 100 participants, with 70 individuals diagnosed with emICH (30 with hematoma expansion and 40 without hematoma expansion, referred to as the HE and NE groups) and 30 healthy controls matched in terms of age and gender (HC). We used 16S rRNA gene sequencing to explore the gut microbial structure and its underlying associations with blood inflammatory parameters in the HE group. Results Our findings showed a significant decrease in the diversity and even distribution of microorganisms in the HE group when compared to the HC and NE groups. The composition of the gut microbiota experienced notable alterations in the emICH group, especially in HE. These changes included a rise in the number of gram-negative pro-inflammatory bacteria and a decline in the level of probiotics. Furthermore, we observed strong positive connections between bacteria enriched in the HE group and levels of systemic inflammation. Several microbial biomarkers (e.g. Escherichia_Shigella, Enterobacter, and Porphyromonas) were revealed in disparateiating HE from HC and NE. Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) exposed disturbances in essential physiological pathways, especially those related to inflammation (such as the Toll-like receptor signaling pathway), in the HE group. Conclusions Our exploration indicated that individuals with emICH, especially those with HE, demonstrate notably different host-microbe interactions when compared to healthy individuals. We deduced that emICH could rapidly trigger the dysbiosis of intestinal flora, and the disturbed microbiota could, in turn, exacerbate inflammatory response and increase the risk of hematoma expansion. Our comprehensive research revealed the potential of intestinal flora as a potent diagnostic tool, emphasizing its significance as a preventive target for HE.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Zeng
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Fei Zhu
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoli Zhang
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Demao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Aijun Peng
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hongsheng Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
21
|
Lin YT, Lin HH, Chen CH, Tseng KH, Hsu PC, Wu YL, Chang WC, Liao NS, Chou YF, Hsu CY, Liao YH, Ho MW, Chang SS, Hsueh PR, Cho DY. Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:77-85. [PMID: 39638747 DOI: 10.1016/j.jmii.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising alternative for bacterial identification. However, its clinical utility still requires further validation. METHODS In this study, the artificial intelligent Raman detection and identification system (AIRDIS) was implemented to identify bacterial species, including Staphylococcus aureus (n = 1290), Enterococcus faecium (n = 1020), Klebsiella pneumoniae (n = 1366), Pseudomonas aeruginosa (n = 1067), and Acinetobacter baumannii (n = 811). Raman spectra were collected, preprocessed, and analyzed by machine learning (ML). RESULTS After training on 24,420 Raman spectra from 1221 isolates and testing on 4333 isolates, the AIRDIS demonstrated an area under the curve (AUC) of 0.99 for Gram classification, with accuracies of 97.64 % for Gram-positive bacteria and 98.86 % for Gram-negative bacteria. Spectral differences between Gram-positive and Gram-negative bacteria were linked to structural variations in their cell walls, such as peptidoglycan and lipopolysaccharides. At the species level, S. aureus, E. faecium, K. pneumoniae, P. aeruginosa, and A. baumannii were identified with high accuracy, ranging from 94.76 % to 96.88 %, with all species achieving an AUC of 0.99. CONCLUSIONS Validation with a large number of clinical isolates demonstrated Raman spectroscopy combined with ML excels in identification of five bacterial species associated with multidrug resistance. This finding confirms the clinical utility of the system while laying a solid foundation for the future development of antimicrobial resistance prediction models.
Collapse
Affiliation(s)
- Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Hao Chen
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kun-Hao Tseng
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pang-Chien Hsu
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Lun Wu
- AI Innovation Center, China Medical University Hospital, Taichung City, Taiwan
| | | | | | | | | | | | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shih-Sheng Chang
- AI Innovation Center, China Medical University Hospital, Taichung City, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Yesitayi G, Wang Q, Wang M, Ainiwan M, Kadier K, Aizitiaili A, Ma Y, Ma X. LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis. Microbes Infect 2025; 27:105406. [PMID: 39168178 DOI: 10.1016/j.micinf.2024.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.
Collapse
Affiliation(s)
- Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Qi Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Mengmeng Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Kaisaierjiang Kadier
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Yitong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
23
|
Sirisena DMKP, Kim G, Warnakula WADLR, Jayamali BPMV, Tharanga EMT, Jayasinghe JDHE, Sandeepani RI, Wan Q, Sohn H, Lee J. Interferon regulatory factor 2 of red-spotted grouper (Epinephelus akaara): Insights into its transcriptional profiling, antiviral potential, and function in macrophage polarization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105323. [PMID: 39848353 DOI: 10.1016/j.dci.2025.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree. The highest level of EAIRF2 mRNA was found in the blood under normal physiological conditions. In the immune challenge experiment, significant transcriptional modulation of EAIRF2 upon lipopolysaccharide (LPS), polyinosinic: polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) challenge were observed. The subcellular localization assay confirmed the role of EAIRF2 as a transcription factor by revealing its specific nuclear localization. To elucidate its functional implications in antiviral defense, EAIRF2 was overexpressed in fathead minnow cells, which were subsequently infected with viral hemorrhagic septicemia virus (VHSV). Notably, cells overexpressing EAIRF2 exhibited a significant reduction in the transcription of VHSV genes. Concurrently, the genes associated with the IFN/IRF signaling pathway were upregulated. Furthermore, the Hoechst and propidium iodide dual staining assay, water-soluble tetrazolium-1 (WST-1) assay, and transcriptional analysis of B-cell lymphoma 2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) indicated that EAIRF2 possesses anti-apoptotic properties during viral infection and poly I:C treatment. Additionally, EAIRF2 overexpression in murine macrophages induced M1 polarization and augmented relative marker gene expression. Collectively, these findings suggest that EAIRF2 is a pivotal immune-related gene, specifically implicated in the IFN/IRF-mediated antiviral defense mechanism, apoptotic signaling pathway, and activation of macrophage-mediated immune responses in Epinephelus akaara. The finding of this study enhances our understanding of IRF2's function in teleost immunity and presents potential avenues for developing therapeutic strategies against viral infections and other immune-related conditions in aquaculture species.
Collapse
Affiliation(s)
- D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - R I Sandeepani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Hanchang Sohn
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
24
|
Zhang F, Liu M, Wang Y, Zhao X, Zhao C, Liu D, Li Y, Xu X, Li X, Yang H, Tian J. Bailixiang tea, an herbal medicine formula, co-suppresses TLR2/MAPK8 and TLR2/NF-κB signaling pathways to protect against LPS-triggered cytokine storm in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118791. [PMID: 39265795 DOI: 10.1016/j.jep.2024.118791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has shown notable effectiveness and safety in managing illnesses linked to cytokine storm(CS). Bailixiang tea (BLX), an herbal medicine formula, which is a compound Chinese medicine composed of Thymus mongolicus (Ronniger) Ronniger (Bailixiang), Glycyrrhiza uralensis Fisch. (Gancao), Citrus reticulata Blanco (Chenpi), Cyperus rotundus L. (Xiangfu), and Perilla frutescens (L.) Britton (Zisu). The objective of this study was to explore the capacity of BLX in improving LPS-induced CS. AIM OF THE STUDY This study aimed to validate the mitigating effect of BLX on CS and to further investigate its mechanism. MATERIALS AND METHODS mice were orally administered BLX for 24 h after being treated with 5 mg/kg lipopolysaccharide (LPS). Histopathological observations further confirmed the significant protective effect of BLX treatment against LPS-induced lung and spleen damage. Additionally, we aimed to explore the molecular mechanism underlying its effects through blood proteomics and transcriptomics analyses. Real-Time Quantitative PCR (RT-qPCR) was utilized to detect the levels of Toll-like receptor 2 (TLR2), Matrix metalloproteinase 8 (MMP8), Matrix metalloproteinase 9 (MMP9), Integrin beta 2 (ITGB2), Mitogen-activated protein kinase 8 (MAPK8), Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon (NFKBIE), Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NFKB2), and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)expressions in the lung tissue. RESULTS The results demonstrated that BLX effectively down-regulated the overproduction of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in both the serum and lung and spleen tissues. Furthermore, BLX effectively mitigated the overproduction of monocyte chemoattractant protein-1 (MCP-1) in the serum. Through comprehensive multi-omics analysis, it was revealed that BLX specifically targeted and regulated TLR2/MAPK8 and TLR2/NF-κB signaling pathways, which play a crucial role in the production of key cytokines. CONCLUSIONS The findings of this study demonstrate that Bailixiang tea possesses the ability to alleviate lung tissue damage and inhibit the development of LPS-induced cytokine storm in mice. These effects are attributed to the tea's ability to suppress the TLR2/MAPK8 and TLR2/NF-κB pathways. Consequently, this research highlights the potential application of Bailixiang tea as a treatment option for cytokine storm.
Collapse
Affiliation(s)
- Fengrong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoang Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dewen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Youming Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jixiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
25
|
Kim M, Kang S, Oh S. The Anti-Inflammatory Activities of Benzylideneacetophenone Derivatives in LPS Stimulated BV2 Microglia Cells and Mice. Biomol Ther (Seoul) 2025; 33:106-116. [PMID: 39390761 PMCID: PMC11704402 DOI: 10.4062/biomolther.2024.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 10/12/2024] Open
Abstract
A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMOLUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments. From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Seungmin Kang
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
26
|
Chen K, Wang J, Hu T, Zhao Y, Wu Y, Wang X, Li W, Yang G, Zhang L, Wang J, Zhu Y. Salmonella enterica serovar typhimurium effectors spiA and spiC promote replication by modulating iron metabolism and oxidative stress. Vet Microbiol 2025; 300:110328. [PMID: 39674031 DOI: 10.1016/j.vetmic.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a major threat to the health and safety of animal-derived foods worldwide. Recently, we have reported that S. Typhimurium uses iron to promote its own proliferation, leading to iron metabolism disorders. However, the mechanism by which S. Typhimurium induces iron metabolism disturbances remains unclear. In this study, we found that the S. Typhimurium effectors spiA and spiC promote the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1 (TfR1) and divalent metal transporter protein 1 (DMT1) and inhibit the expression of ferroportin after transfection with the recombinant plasmids pEGFP-C1-spiA and pEGFP-C1-spiC, which in turn contributes to the accumulation of iron and oxidative stress. Furthermore, we aimed to verify the role of these two effector proteins in S. Typhimurium-induced disorders of iron metabolism. We constructed spiA or spiC mutant strains and their corresponding complementation strains. Our data showed that when spiA or spiC was knocked out, the upregulation of iron metabolism proteins (IRP2, TfR1 and DMT1), the accumulation of iron and oxidative stress caused by the wild-type strain were clearly alleviated in vitro and in vivo, which plays a key role in reducing the intracellular replication of S. Typhimurium and attenuating pathological damage to the liver and ileum of mice. Our findings highlighted that S. Typhimurium induces the disruption of iron metabolism via the virulence factors spiA and spiC, thereby facilitating S. Typhimurium proliferation and causing oxidative damage to the liver and ileum, which provides prospective insights into the search for effective antimicrobial targets for the defense against salmonellosis.
Collapse
Affiliation(s)
- Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Ting Hu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yiqing Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yi Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Wei Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
27
|
Jiang Y, Li Z. Comprehensive genomic and phenotypic characterization of thermophilic bacterium Sinimarinibacterium thermocellulolyticum sp. nov. HSW-8 T, a cellulase-producing bacterium isolated from hot spring water in South Korea. Antonie Van Leeuwenhoek 2024; 118:45. [PMID: 39739050 DOI: 10.1007/s10482-024-02055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
A thermophilic cellulase-producing bacterium, strain HSW-8T, isolated from hot spring waters in South Korea, was subjected to a taxonomic analysis. Cells of strain HSW-8T were gram-stain-negative, facultatively anaerobic, rod-shaped, with optimum growth at 45 °C, pH 7.0, in the presence of 0% (w/v) NaCl. Strain HSW-8T showed the highest 16S rRNA gene sequence similarity to Sinimarinibacterium flocculans NH6-24T (97.52%), followed by Fontimonas thermophila DSM 23609T (96.97%), Solimonas flava CW-KD 4T (95.24%), and Solimonas variicoloris DSM 15731T (95.18%). Based on 16S rRNA phylogeny, strain HSW-8T is phylogenetically closely related to Fontimonas thermophila DSM 23609T and Sinimarinibacterium flocculans DSM 104150T and could be distinguished from the type species based on their phenotypic properties. The genome length of strain HSW-8T was 3.32 Mbp with a 67.33% G + C content. The average nucleotide identity and digital DNA-DNA hybridization values between strain HSW-8T and its closely related type strains were 75.4-83.2 and 20.2-26.2%, respectively. Summed feature 8 (C18:1ω7c and/or C18:1ω6c), C16:0, and iso-C16:0 identified the major fatty acids (> 10%). Phosphatidylglycerol and phosphatidylethanolamine were demonstrated as the major polar lipids while the respiratory quinone is ubiquinone-8. Strain HSW-8T exhibited multiple adaptations for survival at high temperatures, including diverse potential motility mechanisms and toxin-antitoxin systems, as evidenced by both phenotypic characteristics and genomic analysis. Based on genotypic and phenotypic features, strain HSW-8T (= KCTC 92765T = GDMCC 1.4313T) represents a novel Sinimarinibacterium species, in which the name Sinimarinibacterium thermocellulolyticum sp. nov. is proposed.
Collapse
Affiliation(s)
- Yue Jiang
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
28
|
Saitoh H, Sakaguchi M, Miruno F, Muramatsu N, Ito N, Tadokoro K, Kawakami K, Nakadate K. Histopathological Analysis of Lipopolysaccharide-Induced Liver Inflammation and Thrombus Formation in Mice: The Protective Effects of Aspirin. Curr Issues Mol Biol 2024; 46:14291-14303. [PMID: 39727984 DOI: 10.3390/cimb46120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatitis, a significant medical concern owing to its potential to cause acute and chronic liver disease, necessitates early intervention. In this study, we aimed to elucidate the histopathological features of lipopolysaccharide-induced hepatitis in mice, focusing on tissue alterations. The results demonstrated that hepatocytes exhibited decreased eosin staining, indicating cellular shrinkage, whereas sinusoids were swollen with blood cells. Detailed electron microscope analysis identified these blood cells as leukocytes and erythrocytes, which confirmed a thrombus formation within the liver. Pre-treatment with aspirin significantly attenuated these pathological changes, including reductions in inflammatory markers such as C-reactive protein, interleukin-1β, and tumor necrosis factor-alpha. These findings highlight aspirin's anti-inflammatory and antiplatelet effects in mitigating liver inflammation and thrombus formation. In this study, we highlighted the potential of aspirin as a therapeutic agent for liver inflammation, in addition to providing insights into hepatocyte alterations and sinusoidal blood cell aggregation in liver inflammation. Aspirin, through the protection of endothelial cells and reduction of cytokine levels, may have broader applications in managing liver disease and other systemic inflammatory conditions. This emphasizes its value in prevention and therapy.
Collapse
Affiliation(s)
- Hayate Saitoh
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Miina Sakaguchi
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Fumito Miruno
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Naoto Muramatsu
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Nozomi Ito
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Kanako Tadokoro
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Kiyoharu Kawakami
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Kazuhiko Nakadate
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| |
Collapse
|
29
|
Pitell S, Spencer-Williams I, Huffman D, Moncure P, Millstone J, Stout J, Gilbertson L, Haig SJ. Not the Silver Bullet: Uncovering the Unexpected Limited Impacts of Silver-Containing Showerheads on the Drinking Water Microbiome. ACS ES&T WATER 2024; 4:5364-5376. [PMID: 39698548 PMCID: PMC11650587 DOI: 10.1021/acsestwater.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
The incidence of waterborne disease outbreaks in the United States attributed to drinking water-associated pathogens that can cause infections in the immunocompromised DWPIs (e.g., Legionella pneumophila, nontuberculous mycobacteria (NTM), and Pseudomonas aeruginosa, among others) appears to be increasing. An emerging technology adopted to reduce DWPIs are point-of-use devices, such as showerheads that contain silver, a known antimicrobial material. In this study, we evaluate the effect of silver-containing showerheads on DWPI density and the broader microbiome in shower water under real-use conditions in a full-scale shower system, considering three different silver-modified showerhead designs: (i) silver mesh within the showerhead, (ii) silver-coated copper mesh in the head and hose, and (iii) silver-embedded polymer composite compared to conventional plastic and metal showerheads. We found no significant difference in targeted DWPI transcriptional activity in collected water across silver and nonsilver shower head designs. Yet, the presence of silver and how it was incorporated in the showerhead influenced the metal concentrations, microbial rare taxa, and microbiome functionality. Microbial dynamics were also influenced by the showerhead age (i.e., time after installation). The results of this study provide valuable information for consumers and building managers to consider when choosing a showerhead meant to reduce microorganisms in shower water.
Collapse
Affiliation(s)
- Sarah Pitell
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Isaiah Spencer-Williams
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel Huffman
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paige Moncure
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jill Millstone
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Janet Stout
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Special
Pathogens Laboratory, Pittsburgh, Pennsylvania 15219, United States
| | - Leanne Gilbertson
- Department
of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sarah-Jane Haig
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
30
|
Ou Z, Wei J, Lei J, Wu D, Tong B, Liang H, Zhu D, Wang H, Zhou X, Xu H, Du Z, Du Y, Tan L, Yang C, Feng X. Biodegradable Janus sonozyme with continuous reactive oxygen species regulation for treating infected critical-sized bone defects. Nat Commun 2024; 15:10525. [PMID: 39627239 PMCID: PMC11615367 DOI: 10.1038/s41467-024-54894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Critical-sized bone defects are usually accompanied by bacterial infection leading to inflammation and bone nonunion. However, existing biodegradable materials lack long-term therapeutical effect because of their gradual degradation. Here, a degradable material with continuous ROS modulation is proposed, defined as a sonozyme due to its functions as a sonosensitizer and a nanoenzyme. Before degradation, the sonozyme can exert an effective sonodynamic antimicrobial effect through the dual active sites of MnN4 and Cu2O8. Furthermore, it can promote anti-inflammation by superoxide dismutase- and catalase-like activities. Following degradation, quercetin-metal chelation exhibits a sustaining antioxidant effect through ligand-metal charge transfer, while the released ions and quercetin also have great self-antimicrobial, osteogenic, and angiogenic effects. A rat model of infected cranial defects demonstrates the sonozyme can rapidly eliminate bacteria and promote bone regeneration. This work presents a promising approach to engineer biodegradable materials with long-time effects for infectious bone defects.
Collapse
Affiliation(s)
- Zixuan Ou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Junyu Wei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Lei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Di Wu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bide Tong
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huaizhen Liang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dingchao Zhu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongchuan Wang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xingyu Zhou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hanpeng Xu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Tan
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Cao Yang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Xiaobo Feng
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
31
|
Hussain A, Ong EBB, Balaram P, Ismail A, Kien PK. TolC facilitates the intracellular survival and immunomodulation of Salmonella Typhi in human host cells. Virulence 2024; 15:2395831. [PMID: 39185619 PMCID: PMC11385165 DOI: 10.1080/21505594.2024.2395831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic infection that affects millions of people worldwide. S. Typhi can invade and survive within host cells, such as intestinal epithelial cells and macrophages, by modulating their immune responses. However, the immunomodulatory capability of S. Typhi in relation to TolC-facilitated efflux pump function remains unclear. The role of TolC, an outer membrane protein that facilitates efflux pump function, in the invasion and immunomodulation of S. Typhi, was studied in human intestinal epithelial cells and macrophages. The tolC deletion mutant of S. Typhi was compared with the wild-type and its complemented strain in terms of their ability to invade epithelial cells, survive and induce cytotoxicity in macrophages, and elicit proinflammatory cytokine production in macrophages. The tolC mutant, which has a defective outer membrane, was impaired in invading epithelial cells compared to the wild-type strain, but the intracellular presence of the tolC mutant exhibited greater cytotoxicity and induced higher levels of proinflammatory cytokines (IL-1β and IL-8) in macrophages compared to the wild-type strain. These effects were reversed by complementing the tolC mutant with a functional tolC gene. Our results suggest that TolC plays a role in S. Typhi to efficiently invade epithelial cells and suppress host immune responses during infection. TolC may be a potential target for the development of novel therapeutics against typhoid fever.
Collapse
Affiliation(s)
- Ashraf Hussain
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Prabha Balaram
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Phua Kia Kien
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
32
|
Zhang YL, Zhou YY, Ke LJ, Sheng J, Zou DY, Tang TT, Yang ZY, Chen L, Hou XC, Zhu J, Xu JB, Zhu YX, Zhou WL. Lipopolysaccharide Triggers Luminal Acidification to Promote Defense Against Bacterial Infection in Vaginal Epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2290-2301. [PMID: 39222908 DOI: 10.1016/j.ajpath.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The vaginal epithelium plays pivotal roles in host defense against pathogen invasion, contributing to the maintenance of an acidic microenvironment within the vaginal lumen through the activity of acid-base transport proteins. However, the precise defense mechanisms of the vaginal epithelium after a bacterial infection remain incompletely understood. This study showed that bacterial lipopolysaccharide (LPS) potentiated net proton efflux by up-regulating the expression of Na+-H+ exchanger 1 (NHE1) in vaginal epithelial cells. Pharmacologic inhibition or genetic knockdown of Toll-like receptor-4 and the extracellular signal-regulated protein kinase signaling pathway effectively counteracted the up-regulation of NHE1 and the enhanced proton efflux triggered by LPS in vaginal epithelial cells. In vivo studies revealed that LPS administration led to luminal acidification through the up-regulation of NHE1 expression in the rat vagina. Moreover, inhibition of NHE exhibited an impaired defense against acute bacterial infection in the rat vagina. These findings collectively indicate the active involvement of vaginal epithelial cells in facilitating luminal acidification during acute bacterial infection, offering potential insights into the treatment of bacterial vaginosis.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China.
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Jiao Ke
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan-Yang Zou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ting-Ting Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Ying Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Tedeschi G, Navarro MX, Scipioni L, Sondhi TK, Prescher JA, Digman MA. Monitoring Macrophage Polarization with Gene Expression Reporters and Bioluminescence Phasor Analysis. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:765-774. [PMID: 39610466 PMCID: PMC11600157 DOI: 10.1021/cbmi.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/30/2024]
Abstract
Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types: inflammatory (M1) or anti-inflammatory (M2). Tracking these phenotypes in living cells can provide insight into immune function but remains a challenging pursuit. Existing methods are mostly limited to static readouts or are difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution. We aimed to fill this void using bioluminescent technologies. Here we report genetically engineered luciferase reporters for the long-term monitoring of macrophage polarization via spectral phasor analysis. M1- and M2-specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines. The readouts were multiplexed and discernible in both 2D and 3D formats with single-cell resolution in living samples. Collectively, this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| | - Mariana X. Navarro
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
| | - Lorenzo Scipioni
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| | - Tanvi K. Sondhi
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
| | - Jennifer A. Prescher
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, Irvine, California 92617, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92617, United States
| | - Michelle A. Digman
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
34
|
Xu L, Yang X, Liu XT, Li XY, Zhu HZ, Xie YH, Wang SW, Li Y, Zhao Y. Carvacrol alleviates LPS-induced myocardial dysfunction by inhibiting the TLR4/MyD88/NF-κB and NLRP3 inflammasome in cardiomyocytes. J Inflamm (Lond) 2024; 21:47. [PMID: 39548566 PMCID: PMC11568595 DOI: 10.1186/s12950-024-00411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/16/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction (SIMD) may contribute to the poor prognosis of septic patients. Carvacrol (2-methyl-5-isopropyl phenol), a phenolic monoterpene compound extracted from various aromatic plants and fragrance essential oils, has multiple beneficial effects such as antibacterial, anti-inflammatory, and antioxidant properties. These attributes make it potentially useful for treating many diseases. This study aims to investigate the effects of CAR on LPS-induced myocardial dysfunction and explore the underlying mechanism. RESULTS H9c2 cells were stimulated with 10 µg/ml LPS for 12 h, and c57BL/6 mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic-myocardial injury model. Our results showed that CAR could improve cardiac function, significantly reduce serum levels of inflammatory cytokines (including TNF-α, IL-1β, and IL-6), decrease oxidative stress, and inhibit cardiomyocyte apoptosis in LPS-injured mice. Additionally, CAR significantly downregulated the expression of TLR4, MyD88, and NF-κB in LPS-injured mice and H9c2 cells. It also inhibited the upregulation of inflammasome components (such as NLRP3, GSDMD, and IL-1β) in H9c2 cells triggered by LPS. CONCLUSION Taken together, CAR exhibited potential cardioprotective effects against sepsis, which may be mainly attributed to the TLR4/MyD88/NF-κB pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lu Xu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xu Yang
- The College of Life Science, Northwest University, Xi'an, China
| | - Xiao-Ting Liu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xia-Yun Li
- The College of Life Science, Northwest University, Xi'an, China
| | - Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Yan-Hua Xie
- The College of Life Science, Northwest University, Xi'an, China
| | - Si-Wang Wang
- The College of Life Science, Northwest University, Xi'an, China.
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Ye Zhao
- The College of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
35
|
Yamaguchi M, Weir JD, Hartung R. The composition of linoleic acid and conjugated linoleic acid has potent synergistic effects on the growth and death of RAW264.7 macrophages: The role in anti-inflammatory effects. Int Immunopharmacol 2024; 141:112952. [PMID: 39151384 DOI: 10.1016/j.intimp.2024.112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Linoleic acid (LA) is an omega-6 polyunsaturated fatty acid. Conjugated linoleic acid (CLA) is a family of LA isomers that includes both a trans fatty acid and a cis fatty acid. Both fatty acids play a nutritional role in maintaining health. Inflammation is critical in the pathogenesis of many diseases, including cancer. This study found that the combination of LA and CLA (LA/CLA), each of which had no effect, had a strong anti-synergistic effect on inflammatory macrophage RAW264.7 cells in vitro. Cells were cultured in a DMEM containing fetal bovine serum with or without either LA, CLA, or a combination of LA/CLA. The composition of LA and CLA at a comparatively lower concentration synergistically suppressed cell growth, resulting in a reduction in cell number. The underlying mechanism of this effect was based on reduced levels of Ras, PI3K, Akt, MAPK, and mTOR and elevated levels of p21, p53, and Rb, which are associated with cell growth. In addition, the combination of LA and CLA at a lower concentration stimulated potential cell death associated with increased caspase-3 and cleaved caspase-3 levels. Notably, this composition synergistically suppressed the production of TNF-α, IL-6, and PGE2, which are a major mediator of inflammation, with lipopolysaccharide stimulation in RAW264.7 cells This effect was associated with decreased levels of COX-1, COX-2, and NF-κB p65. This study may provide a useful tool for treating inflammatory conditions with the composition of LA and CLA.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - James D Weir
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85251, USA
| | - Ryan Hartung
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85251, USA
| |
Collapse
|
36
|
Bao N, Zhang X, Lin C, Qiu F, Mo G. A scoring model based on bacterial lipopolysaccharide-related genes to predict prognosis in NSCLC. Front Genet 2024; 15:1408000. [PMID: 39610830 PMCID: PMC11602480 DOI: 10.3389/fgene.2024.1408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) has high incidence and mortality rates. The discovery of an effective biomarker for predicting prognosis and treatment response in patients with NSCLC is of great significance. Bacterial lipopolysaccharide-related genes (LRGs) play a critical role in tumor development and the formation of an immunosuppressive microenvironment; however, their relevance in NSCLC prognosis and immune features is yet to be discovered. Methods Differentially expressed LRGs associated with NSCLC prognosis were identified in the TCGA dataset. Prognostic LRG scoring and nomogram models were established using single-variable Cox regression, Least Absolute Shrinkage, and Selection Operator (LASSO) regression. The prognostic value of the scoring and nomogram models was evaluated using Kaplan-Meier (KM) analysis and further validated using an external dataset. Patients were stratified into high- and low-risk groups based on the nomogram score, and drug sensitivity analysis was performed. Additionally, clinical characteristics, mutation features, immune infiltration characteristics, and responses to immunotherapy were compared between the two groups. Results We identified 15 differentially expressed LRGs associated with NSCLC prognosis. A prognostic prediction model consisting of 6 genes (VIPR1, NEK2, HMGA1, FERMT1, SLC7A, and TNS4) was established. Higher LRG scores were associated with worse clinical prognosis and were independent prognostic factors for NSCLC. Subsequently, a clinical risk prediction nomogram model for NSCLC was constructed, incorporating the status of patients with tumor burden, tumor T-stage, and LRG scores. The nomogram model demonstrated good predictive performance upon validation. Additionally, NSCLC patients classified as high risk based on the model's predictions exhibited not only a poorer prognosis but also a more pronounced inflammatory immune microenvironment phenotype than low-risk patients. Furthermore, high-risk patients showed disparate predicted responses to various drugs and immunotherapies compared with low-risk patients. Conclusion The LRGs scoring model can serve as a biomarker that contributes to the establishment of a reliable prognostic risk-prediction model, potentially facilitating the development of personalized treatment strategies for patients with NSCLC.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xinxin Zhang
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Chenyu Lin
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, First Medical Center of the PLA General Hospital, Beijing, China
| | - Guoxin Mo
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Mikołajczyk M, Złotkowska D, Mikołajczyk A. Impact on Human Health of Salmonella spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int J Mol Sci 2024; 25:11868. [PMID: 39595937 PMCID: PMC11593640 DOI: 10.3390/ijms252211868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Epidemiologically, one of the most important concerns associated with introducing Salmonella spp. into the environment and food chain is the presence of asymptomatic carriers. The oncogenic and oncolytic activity of Salmonella and their lipopolysaccharides (LPSs) is important and research on this topic is needed. Even a single asymptomatic dose of the S. Enteritidis LPS (a dose that has not caused any symptoms of illness) in in vivo studies induces the dysregulation of selected cells and bioactive substances of the nervous, immune, and endocrine systems. LPSs from different species, and even LPSs derived from different serotypes of one species, can define different biological activities. The activity of low doses of LPSs derived from three different Salmonella serotypes (S. Enteritidis, S. Typhimurium, and S. Minnesota) affects the neurochemistry of neurons differently in in vitro studies. Studies on lipopolysaccharides from different Salmonella serotypes do not consider the diversity of their activity. The presence of an LPS from S. Enteritidis in the body, even in amounts that do not induce any symptoms of illness, may lead to unknown long-term consequences associated with its action on the cells and biologically active substances of the human body. These conclusions should be important for both research strategies and the pharmaceutical industry &.
Collapse
Affiliation(s)
- Mateusz Mikołajczyk
- Division of Medicine and Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Anita Mikołajczyk
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
38
|
Yu W, Lv Y, Xuan R, Han P, Xu H, Ma X. Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochem Pharmacol 2024; 229:116547. [PMID: 39306309 DOI: 10.1016/j.bcp.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Wenqin Yu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Yuzhen Lv
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Ruirui Xuan
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Peipei Han
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Haihuan Xu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Xiaowei Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China.
| |
Collapse
|
39
|
Sastre-Dominguez J, DelaFuente J, Toribio-Celestino L, Herencias C, Herrador-Gómez P, Costas C, Hernández-García M, Cantón R, Rodríguez-Beltrán J, Santos-Lopez A, San Millan A. Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria. Nat Ecol Evol 2024; 8:2097-2112. [PMID: 39198572 PMCID: PMC7616626 DOI: 10.1038/s41559-024-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation.
Collapse
Affiliation(s)
| | | | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coloma Costas
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
41
|
Peregud DI, Gulyaeva NV. Contribution of Visceral Systems to the Development of Substance Use Disorders: Translational Aspects of Interaction between Central and Peripheral Mechanisms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1868-1888. [PMID: 39647817 DOI: 10.1134/s0006297924110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 12/10/2024]
Abstract
Substance use disorders are associated with structural and functional changes in the neuroendocrine, neuromediator, and neuromodulator systems in brain areas involved in the reward and stress response circuits. Chronic intoxication provokes emergence of somatic diseases and aggravates existing pathologies. Substance use disorders and somatic diseases often exacerbate the clinical courses of each other. Elucidation of biochemical pathways common for comorbidities may serve as a basis for the development of new effective pharmacotherapy agents, as well as drug repurposing. Here, we discussed molecular mechanisms underlying integration of visceral systems into the central mechanisms of drug dependence.
Collapse
Affiliation(s)
- Danil I Peregud
- Serbsky National Medical Research Center for Psychiatry and Drug Addiction, Ministry of Health of the Russian Federation, Moscow, 119034, Russia.
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
42
|
Boodhoo N, Shoja Doost J, Sharif S. Biosensors for Monitoring, Detecting, and Tracking Dissemination of Poultry-Borne Bacterial Pathogens Along the Poultry Value Chain: A Review. Animals (Basel) 2024; 14:3138. [PMID: 39518862 PMCID: PMC11545827 DOI: 10.3390/ani14213138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The poultry industry plays a crucial role in global food production, with chickens being the most widely consumed as a rich protein source. However, infectious diseases pose significant threats to poultry health, underscoring the need for rapid and accurate detection to enable timely intervention. In recent years, biosensors have emerged as essential tools to facilitate routine surveillance on poultry farms and rapid screening at slaughterhouses. These devices provide producers and veterinarians with timely information, thereby promoting proactive disease management. Biosensors have been miniaturized, and portable platforms allow for on-site testing, thereby enhancing biosecurity measures and bolstering disease surveillance networks throughout the poultry supply chain. Consequently, biosensors represent a transformative advancement in poultry disease management, offering rapid and precise detection capabilities that are vital for safeguarding poultry health and ensuring sustainable production systems. This section offers an overview of biosensors and their applications in detecting poultry diseases, with a particular emphasis on enteric pathogens.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (S.S.)
| | | | | |
Collapse
|
43
|
Żebracki K, Koper P, Wójcik M, Marczak M, Mazur A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. Int J Mol Sci 2024; 25:11734. [PMID: 39519284 PMCID: PMC11547076 DOI: 10.3390/ijms252111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as Rhizobium leguminosarum bv. trifolii TA1 (RtTA1), whose genome comprises a chromosome and four extrachromosomal replicons (ECRs). In this study, the transcriptomic responses of RtTA1 to partial nutrient limitation and low acidic pH were analyzed using high-throughput RNA sequencing. RtTA1 growth under these conditions resulted in the differential expression of 1035 to 1700 genes (DEGs), which were assigned to functional categories primarily related to amino acid and carbohydrate metabolism, ribosome and cell envelope biogenesis, signal transduction, and transcription. These results highlight the complexity of the bacterial response to stress. Notably, the distribution of DEGs among the replicons indicated that ECRs played a significant role in the stress response. The transcriptomic data align with the Rhizobium pangenome analysis, which revealed an over-representation of functional categories related to transport, metabolism, and regulatory functions on ECRs. These findings confirm that ECRs contribute substantially to the ability of rhizobia to adapt to challenging environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.Ż.); (P.K.); (M.W.); (M.M.)
| |
Collapse
|
44
|
Akahori Y, Hashimoto Y, Shizuno K, Nagasawa M. Antibacterial effects of Kampo products against pneumonia causative bacteria. PLoS One 2024; 19:e0312500. [PMID: 39466752 PMCID: PMC11515972 DOI: 10.1371/journal.pone.0312500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Community-acquired pneumonia is caused primarily by bacterial infection. For years, antibiotic treatment has been the standard of care for patients with bacterial pneumonia, although the emergence of antimicrobial-resistant strains is recognized as a global health issue. The traditional herbal medicine Kampo has a long history of clinical use and is relatively safe in treating various diseases. However, the antimicrobial effects of Kampo products against pneumonia-causative bacteria remain largely uncharacterized. In this study, we investigated the bacteriological efficacy of 11 Kampo products against bacteria commonly associated with pneumonia. Sho-saiko-To (9), Sho-seiryu-To (19), Chikujo-untan-To (91) and Shin'i-seihai-To (104) inhibited the growth of S. pneumoniae serotype 3, a highly virulent strain that causes severe pneumonia. Also, the growth of S. pneumoniae serotype 1, another highly virulent strain, was suppressed by treatment with Sho-saiko-To (9), Chikujo-untan-To (91), and Shin'i-seihai-To (104). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against these strains ranged from 6.25-50 mg/mL and 12.5-25 mg/mL, respectively. Furthermore, Sho-saiko-To (9), Chikujo-untan-To (91), and Shin'i-seihai-To (104) suppressed the growth of antibiotic-resistant S. pneumoniae isolates. Additionally, Sho-saiko-To (9) and Shin'i-seihai-To (104) showed growth inhibition activity against Staphylococcus aureus, another causative agent for pneumonia, with MIC ranging from 6.25-12.5 mg/mL. These results suggest that some Kampo products have antimicrobial effects against S. pneumoniae and S. aureus, and that Sho-saiko-To (9) and Shin'i-seihai-To (104) are promising medicines for treating pneumonia caused by S. pneumoniae and S. aureus infection.
Collapse
Affiliation(s)
- Yukiko Akahori
- Department of Microbiology, The University of Tokyo, Tokyo, Japan
- Department of Medical Technology and Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Yusuke Hashimoto
- Department of Medical Technology and Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Kenichi Shizuno
- Department of Clinical Laboratory, Chiba Kaihin Municipal Hospital, Chiba, Japan
| | - Mitsuaki Nagasawa
- Department of Medical Technology and Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
45
|
Lukova P, Kokova V, Baldzhieva A, Murdjeva M, Katsarov P, Delattre C, Apostolova E. Alginate from Ericaria crinita Possesses Antioxidant Activity and Attenuates Systemic Inflammation via Downregulation of Pro-Inflammatory Cytokines. Mar Drugs 2024; 22:482. [PMID: 39590762 PMCID: PMC11595431 DOI: 10.3390/md22110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Alginates are anionic polysaccharides present in the cell walls of brown seaweeds. Various biological activities of alginate and its derivatives have been described. In this study, we assessed the potential of alginate obtained from Ericaria crinita (formerly Cystoseira crinita) to scavenge free radicals and function as a ferric ion reductor. The anti-inflammatory effect on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment was also examined. Ericaria crinita alginate showed antioxidant activities of IC50 = 505 µg/mL (DPPH) and OD700 > 2 (ferric reducing power). A significant decrease in serum levels of IL-1β was observed only in animals treated with the polysaccharide at a dose of 100 mg/kg bw. Both doses of E. crinita alginate (25 and 100 mg/kg bw) significantly reduced the serum concentrations of pro-inflammatory cytokines TNF-α and IL-6, but no statistical significance was observed in the levels of the anti-inflammatory cytokine IL-10. Our findings show the potential of E. crinita alginate to act as an antioxidant and anti-inflammatory agent. It is likely that the exhibited antioxidant ability of the polysaccharide contributes to its antiphlogistic effects. More in-depth studies are needed to fully understand the specific mechanisms and the molecular pathways involved in these activities.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
46
|
Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, Zhan X, Liu B. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol 2024; 140:112650. [PMID: 39079346 DOI: 10.1016/j.intimp.2024.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/01/2024]
Abstract
Periodontitis is a prevalent polymicrobial disease. It damages soft tissues and alveolar bone, and causes a significant public-health burden. Development of an advanced therapeutic approach and exploration of vaccines against periodontitis hold promise as potential treatment avenues. Clinical trials for a periodontitis vaccine are lacking. Therefore, it is crucial to address the urgent need for developing strategies to implement vaccines at the primary level of prevention in public health. A deep understanding of the principles and mechanisms of action of vaccines plays a crucial role in the successful development of vaccines and their clinical translation. This review aims to provide a comprehensive summary of potential directions for the development of highly efficacious periodontitis vaccines. In addition, we address the limitations of these endeavors and explore future possibilities for the development of an efficacious vaccine against periodontitis.
Collapse
Affiliation(s)
- Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yujia Feng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Guojiang Li
- School of Stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, MI, USA
| | - Xiaozhen Zhan
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China.
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
47
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617105. [PMID: 39416091 PMCID: PMC11482759 DOI: 10.1101/2024.10.07.617105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD), triggering inflammatory cell death known as pyroptosis. Caspase-11 also detects eukaryotic (i.e. self) lipids. This observation raises the question of whether common or distinct mechanisms govern the interactions with self and nonself lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self and nonself lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self and nonself lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer critical insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
48
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
49
|
Sun L, Yang K, Wang L, Wu S, Wen D, Wang J. LncRNA MIAT suppresses inflammation in LPS-induced J774A.1 macrophages by promoting autophagy through miR-30a-5p/SOCS1 axi. Sci Rep 2024; 14:22608. [PMID: 39349964 PMCID: PMC11442610 DOI: 10.1038/s41598-024-73607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Accumulated data implicate that long noncoding RNA (lncRNA) plays a pivotal role in rheumatoid arthritis (RA), potentially serving as a competitive endogenous RNA (ceRNA) for microRNAs (miRNAs). The lncRNA myocardial infarction-associated transcript (MIAT) has been demonstrated to regulate inflammation. However, the role of MIAT in the inflammation of RA remains inadequately explored. This study aims to elucidate MIAT's role in the inflammation of lipopolysaccharide (LPS)-induced macrophages and to uncover the underlying molecular mechanisms. We observed heightened MIAT expression in LPS-induced J774A.1 cells and collagen-induced arthritis mouse models, in contrast to the expression pattern of miR-30a-5p. Silencing MIAT resulted in increased expression of the inflammatory cytokines IL-1β and TNF-α. Simultaneously, MIAT interference significantly impeded macrophage autophagy, evidenced by decreased expression of autophagy-related markers LC3-II and Beclin-1, alongside increased levels of p62 in LPS-induced J774A.1 cells. Notably, MIAT functioned as a ceRNA, sponging miR-30a-5p and exerting a negative regulatory influence on its expression. SOCS1 emerged as a target of miR-30a-5p, modulated by MIAT. Mechanistically, inhibiting miR-30a-5p reversed the impact of MIAT deficiency in promoting LPS-induced inflammation, while SOCS1 knockdown countered the cytokine inhibitory effect induced by silencing miR-30a-5p. In summary, this study indicates that lncRNA MIAT suppresses inflammation in LPS-induced J774A.1 macrophages by stimulating autophagy through the miR-30a-5p/SOCS1 axis. This suggests that MIAT holds promise as a potential therapeutic target for RA inflammation.
Collapse
Affiliation(s)
- Linqian Sun
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kun Yang
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liqin Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Si Wu
- Department of Infectious Disease, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Dawei Wen
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jibo Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
50
|
Sun J, Kong P, Shi J, Liu Y. Evaluation of the Antibacterial Potential of Two Short Linear Peptides YI12 and FK13 against Multidrug-Resistant Bacteria. Pathogens 2024; 13:797. [PMID: 39338988 PMCID: PMC11435022 DOI: 10.3390/pathogens13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The accelerating spread of antibiotic resistance has significantly weakened the clinical efficacy of existing antibiotics, posing a severe threat to public health. There is an urgent need to develop novel antimicrobial alternatives that can bypass the mechanisms of antibiotic resistance and effectively kill multidrug-resistant (MDR) pathogens. Antimicrobial peptides (AMPs) are one of the most promising candidates to treat MDR pathogenic infections since they display broad-spectrum antimicrobial activities and are less prone to achieve drug resistance. In this study, we investigated the antibacterial capability and mechanisms of two machine learning-driven linear peptide compounds termed YI12 and FK13. We reveal that YI12 and FK13 exhibit broad-spectrum antibacterial properties against clinically significant bacterial pathogens, inducing no or minimal hemolysis in mammalian red blood cells. We further ascertain that YI12 and FK13 are resilient to heat and acid-base conditions, and exhibit susceptibility to hydrolytic enzymes and divalent cations under physiological conditions. Initial mechanistic investigations reveal that YI12 and FK13 compromise bacterial membrane integrity, leading to membrane potential dissipation and excessive reactive oxygen species (ROS) generation. Collectively, our findings highlight the prospective utility of these two cationic amphiphilic peptides as broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Pan Kong
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|