1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
4
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
5
|
Bethke JH, Kimbrel J, Jiao Y, Ricci D. Toxin-Antitoxin Systems Reflect Community Interactions Through Horizontal Gene Transfer. Mol Biol Evol 2024; 41:msae206. [PMID: 39404847 PMCID: PMC11523183 DOI: 10.1093/molbev/msae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Bacterial evolution through horizontal gene transfer (HGT) reflects their community interactions. In this way, HGT networks do well at mapping community interactions, but offer little toward controlling them-an important step in the translation of synthetic strains into natural contexts. Toxin-antitoxin (TA) systems serve as ubiquitous and diverse agents of selection; however, their utility is limited by their erratic distribution in hosts. Here we examine the heterogeneous distribution of TAs as a consequence of their mobility. By systematically mapping TA systems across a 10,000 plasmid network, we find HGT communities have unique and predictable TA signatures. We propose these TA signatures arise from plasmid competition and have further potential to signal the degree to which plasmids, hosts, and phage interact. To emphasize these relationships, we construct an HGT network based solely on TA similarity, framing specific selection markers in the broader context of bacterial communities. This work both clarifies the evolution of TA systems and unlocks a common framework for manipulating community interactions through TA compatibility.
Collapse
Affiliation(s)
- Jonathan H Bethke
- Biosciences and Biotechnology Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jeffrey Kimbrel
- Biosciences and Biotechnology Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dante Ricci
- Biosciences and Biotechnology Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
6
|
Zhang M, Wang X, Deng X, Zheng S, Zhang W, He JZ, Yu X, Feng M, Ye C. Viable but non-culturable state formation and resuscitation of different antibiotic-resistant Escherichia coli induced by UV/chlorine. WATER RESEARCH 2024; 261:122011. [PMID: 38959654 DOI: 10.1016/j.watres.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The presence of "viable but nonculturable" (VBNC) state and bacterial antibiotic resistance (BAR) both pose significant threats to the safety of drinking water. However, limited data was available that explicitly addressed the contribution of bacterial VBNC state in the maintenance and propagation of BAR. Here, the VBNC state induction and resuscitation of two antibiotic-resistant Escherichia coli K12 strains, one carrying multidrug-resistant plasmid (RP4 E. coli) and the other with chromosomal mutation (RIF E. coli) were characterized by subjecting them to different doses of UV/chlorine. The results illustrated that the induction, resuscitation, and associated mechanisms of VBNC ARB exhibit variations based on resistance determinants. RP4 E. coli exhibited a higher susceptibility to enter VBNC state compared to the RIF E. coli., and most VBNC state and resuscitated RP4 E. coli retained original antibiotic resistance. While, reverse mutation in the rpoB gene was observed in VBNC state and recovered RIF E. coli strains induced by high doses of UV/chlorine treatment, leading to the loss of rifampicin resistance. According to RT-qPCR results, ARGs conferring efflux pumps appeared to play a more significant role in the VBNC state formation of RP4 E. coli and the down-regulation of rpoS gene enhanced the speed at which this plasmid-carrying ARB entered into the dormant state. As to RIF E. coli, the induction of VBNC state was supposed to be regulated by the combination of general stress response, SOS response, stringent response, and TA system. Above all, this study highlights that ARB could become VBNC state during UV/chlorine treatments and retain, in some cases, their ability to spread ARGs. Importantly, compared with chromosomal mutation-mediated ARB, both VBNC and resuscitated state ARB that carries multidrug-resistant plasmids poses more serious health risks. Our study provides insights into the relationship between the VBNC state and the propagation of BAR in drinking water systems.
Collapse
Affiliation(s)
- Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xiaofeng Deng
- Fujian Minhuan Testing and Inspection Co., Fuzhou 350000, China
| | - Suxia Zheng
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Ji-Zheng He
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Ji C, He T, Wu B, Cao X, Fan X, Liu X, Li X, Yang M, Wang J, Xu L, Hu S, Xia L, Sun Y. Identification and characterization of a novel type II toxin-antitoxin system in Aeromonas veronii. Arch Microbiol 2024; 206:381. [PMID: 39153128 DOI: 10.1007/s00203-024-04101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.
Collapse
Affiliation(s)
- Caihong Ji
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ting He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Binbin Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaomei Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaping Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xia Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaodan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Miao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jihan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ling Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China.
| |
Collapse
|
8
|
Kunnath AP, Suodha Suoodh M, Chellappan DK, Chellian J, Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br J Biomed Sci 2024; 81:12958. [PMID: 39170669 PMCID: PMC11335562 DOI: 10.3389/bjbs.2024.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The global issue of antimicrobial resistance poses significant challenges to public health. The World Health Organization (WHO) has highlighted it as a major global health threat, causing an estimated 700,000 deaths worldwide. Understanding the multifaceted nature of antibiotic resistance is crucial for developing effective strategies. Several physiological and biochemical mechanisms are involved in the development of antibiotic resistance. Bacterial cells may escape the bactericidal actions of the drugs by entering a physiologically dormant state known as bacterial persistence. Recent findings in this field suggest that bacterial persistence can be one of the main sources of chronic infections. The antibiotic tolerance developed by the persister cells could tolerate high levels of antibiotics and may give rise to persister offspring. These persister offspring could be attributed to antibiotic resistance mechanisms, especially in chronic infections. This review attempts to shed light on persister-induced antibiotic resistance and the current therapeutic strategies.
Collapse
Affiliation(s)
- Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mohamed Suodha Suoodh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Chapartegui-González I, Stockton JL, Bowser S, Badten AJ, Torres AG. Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei: exploring bacterial pathogenesis and interactions within the HigBA families. Microbiol Spectr 2024; 12:e0074824. [PMID: 38916327 PMCID: PMC11302019 DOI: 10.1128/spectrum.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.
Collapse
Affiliation(s)
| | - Jacob L. Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander J. Badten
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
11
|
Kijewski ACR, Witsø IL, Sundaram AYM, Brynildsrud OB, Pettersen K, Anonsen EB, Anonsen JH, Aspholm ME. Transcriptomic and proteomic analysis of the virulence inducing effect of ciprofloxacin on enterohemorrhagic Escherichia coli. PLoS One 2024; 19:e0298746. [PMID: 38787890 PMCID: PMC11125564 DOI: 10.1371/journal.pone.0298746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 05/26/2024] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.
Collapse
Affiliation(s)
| | - Ingun Lund Witsø
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, Norwegian Sequencing Centre, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jan Haug Anonsen
- Department of Biosciences IBV, Mass Spectrometry and Proteomics Unit, University of Oslo, Oslo, Norway
- Norwegian Research Centre AS, Stavanger, Norway
| | - Marina Elisabeth Aspholm
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
12
|
Sengupta P, Muthamilselvi Sivabalan SK, Singh NK, Raman K, Venkateswaran K. Genomic, functional, and metabolic enhancements in multidrug-resistant Enterobacter bugandensis facilitating its persistence and succession in the International Space Station. MICROBIOME 2024; 12:62. [PMID: 38521963 PMCID: PMC10960378 DOI: 10.1186/s40168-024-01777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO2 levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections. RESULTS Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS. CONCLUSIONS Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA.
| |
Collapse
|
13
|
Singh A, Lankapalli AK, Mendem SK, Semmler T, Ahmed N. Unraveling the evolutionary dynamics of toxin-antitoxin systems in diverse genetic lineages of Escherichia coli including the high-risk clonal complexes. mBio 2024; 15:e0302323. [PMID: 38117088 PMCID: PMC10790755 DOI: 10.1128/mbio.03023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Large-scale genomic studies of E. coli provide an invaluable opportunity to understand how genomic fine-tuning contributes to the transition of bacterial lifestyle from being commensals to mutualists or pathogens. Within this context, through machine learning-based studies, it appears that TA systems play an important role in the classification of high-risk clonal lineages and could be attributed to their epidemiological success. Due to these profound indications and assumptions, we attempted to provide unique insights into the ordered world of TA systems at the population level by investigating the diversity and evolutionary patterns of TA genes across 19 different STs of E. coli. Further in-depth analysis of ST-specific TA structures and associated genetic coordinates holds the potential to elucidate the functional implications of TA systems in bacterial cell survival and persistence, by and large.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | - Aditya Kumar Lankapalli
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Suresh Kumar Mendem
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
14
|
Guan J, Chen Y, Goh YX, Wang M, Tai C, Deng Z, Song J, Ou HY. TADB 3.0: an updated database of bacterial toxin-antitoxin loci and associated mobile genetic elements. Nucleic Acids Res 2024; 52:D784-D790. [PMID: 37897352 PMCID: PMC10767807 DOI: 10.1093/nar/gkad962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
TADB 3.0 (https://bioinfo-mml.sjtu.edu.cn/TADB3/) is an updated database that provides comprehensive information on bacterial types I to VIII toxin-antitoxin (TA) loci. Compared with the previous version, three major improvements are introduced: First, with the aid of text mining and manual curation, it records the details of 536 TA loci with experimental support, including 102, 403, 8, 14, 1, 1, 3 and 4 TA loci of types I to VIII, respectively; Second, by leveraging the upgraded TA prediction tool TAfinder 2.0 with a stringent strategy, TADB 3.0 collects 211 697 putative types I to VIII TA loci predicted in 34 789 completely sequenced prokaryotic genomes, providing researchers with a large-scale dataset for further follow-up analysis and characterization; Third, based on their genomic locations, relationships of 69 019 TA loci and 60 898 mobile genetic elements (MGEs) are visualized by interactive networks accessible through the user-friendly web page. With the recent updates, TADB 3.0 may provide improved in silico support for comprehending the biological roles of TA pairs in prokaryotes and their functional associations with MGEs.
Collapse
Affiliation(s)
- Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongkui Chen
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xian Goh
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Liakina V. Antibiotic resistance in patients with liver cirrhosis: Prevalence and current approach to tackle. World J Clin Cases 2023; 11:7530-7542. [PMID: 38078132 PMCID: PMC10698443 DOI: 10.12998/wjcc.v11.i31.7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Regardless of etiology, complications with bacterial infection in patients with cirrhosis are reported in the range of 25%-46% according to the most recent data. Due to frequent episodes of bacterial infection and repetitive antibiotic treatment, most often with broad-spectrum gram negative coverage, patients with cirrhosis are at increased risk of encountering multidrug resistant bacteria, and this raises concern. In such patients, extended-spectrum beta-lactamase and AmpC-producing Enterobacterales, methicillin- or vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii, all of which are difficult to treat, are the most common. That is why novel approaches to the prophylaxis and treatment of bacterial infections to avoid antibiotic resistance have recently been developed. At the same time, our knowledge of resistance mechanisms is constantly updated. This review summarizes the current situation regarding the burden of antibiotic resistance, including the prevalence and mechanisms of intrinsic and acquired resistance in bacterial species that most frequently cause complications in patients with liver cirrhosis and recent developments on how to deal with multidrug resistant bacteria.
Collapse
Affiliation(s)
- Valentina Liakina
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Tech, Vilnius 10223, Lithuania
| |
Collapse
|
16
|
Balbay MG, Shlafstein MD, Cockell C, Cady SL, Prescott RD, Lim DSS, Chain PSG, Donachie SP, Decho AW, Saw JH. Metabolic versatility of Caldarchaeales from geothermal features of Hawai'i and Chile as revealed by five metagenome-assembled genomes. Front Microbiol 2023; 14:1216591. [PMID: 37799600 PMCID: PMC10547907 DOI: 10.3389/fmicb.2023.1216591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai'i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai'i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota.
Collapse
Affiliation(s)
- Manolya Gul Balbay
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | | | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sherry L. Cady
- Department of Geology, Portland State University, Portland, OR, United States
| | - Rebecca D. Prescott
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | | | | | - Stuart P. Donachie
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
17
|
Tran TT, Cole M, Tomas E, Scott A, Topp E. Potential selection and maintenance of manure-originated multi-drug resistant plasmids at sub-clinical concentrations for tetracycline family antibiotics. Can J Microbiol 2023; 69:339-350. [PMID: 37267627 DOI: 10.1139/cjm-2022-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goal of this study was to (a) determine the minimum selection concentrations of tetracycline family antibiotics necessary to maintain plasmids carrying tetracycline-resistant genes and (b) correlate these results to environmental hotspot concentrations reported in previous studies. This study used two plasmids (pT295A and pT413A) originating from dairy manure in a surrogate Escherichia coli host CV601. The minimum selection concentrations of antibiotics tested in nutrient-rich medium were determined as follows: 0.1 mg/L for oxytetracycline, 0.45 mg/L for chlortetracycline, and 0.13-0.25 mg/L for tetracycline. Mixing oxytetracycline and chlortetracycline had minimum selection concentration values increased 2-fold compared to those in single antibiotic tests. Minimum selection concentrations found in this study were lower than reported environmental hotspot concentrations, suggesting that tetracycline family antibiotics were likely to be the driver for the selection and maintenance of these plasmids. Relatively high plasmid loss rates (>90%) were observed when culturing a strain carrying a tetracycline-resistant plasmid in antibiotic-free nutrient-rich and nutrient-defined media. Overall, results suggested that these plasmids can be maintained at concentrations environmentally relevant in wastewater treatment plants, sewage, manure, and manured soil; however, they are unstable and easily lost in the absence of antibiotics.
Collapse
Affiliation(s)
- Tam T Tran
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Marlena Cole
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Emily Tomas
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Andrew Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| |
Collapse
|
18
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Alfaray RI, Saruuljavkhlan B, Fauzia KA, Torres RC, Thorell K, Dewi SR, Kryukov KA, Matsumoto T, Akada J, Vilaichone RK, Miftahussurur M, Yamaoka Y. Global Antimicrobial Resistance Gene Study of Helicobacter pylori: Comparison of Detection Tools, ARG and Efflux Pump Gene Analysis, Worldwide Epidemiological Distribution, and Information Related to the Antimicrobial-Resistant Phenotype. Antibiotics (Basel) 2023; 12:1118. [PMID: 37508214 PMCID: PMC10376887 DOI: 10.3390/antibiotics12071118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
We conducted a global-scale study to identify H. pylori antimicrobial-resistant genes (ARG), address their global distribution, and understand their effect on the antimicrobial resistance (AMR) phenotypes of the clinical isolates. We identified ARG using several well-known tools against extensive bacterial ARG databases, then analyzed their correlation with clinical antibiogram data from dozens of patients across countries. This revealed that combining multiple tools and databases, followed by manual selection of ARG from the annotation results, produces more conclusive results than using a single tool or database alone. After curation, the results showed that H. pylori has 42 ARG against 11 different antibiotic classes (16 genes related to single antibiotic class resistance and 26 genes related to multidrug resistance). Further analysis revealed that H. pylori naturally harbors ARG in the core genome, called the 'Set of ARG commonly found in the Core Genome of H. pylori (ARG-CORE)', while ARG-ACC-the ARG in the accessory genome-are exclusive to particular strains. In addition, we detected 29 genes of potential efflux pump-related AMR that were mostly categorized as ARG-CORE. The ARG distribution appears to be almost similar either by geographical or H. pylori populations perspective; however, some ARG had a unique distribution since they tend to be found only in a particular region or population. Finally, we demonstrated that the presence of ARG may not directly correlate with the sensitive/resistance phenotype of clinical patient isolates but may influence the minimum inhibitory concentration phenotype.
Collapse
Affiliation(s)
- Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Roberto C Torres
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaisa Thorell
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Selva Rosyta Dewi
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Kirill A Kryukov
- Biological Networks Laboratory, Department of Informatics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Thammasat University Hospital, Khlong Nueng 12120, Pathumthani, Thailand
- Center of Excellence in Digestive Diseases, Thammasat University, Thailand Science Research and Innovation Fundamental Fund, Bualuang ASEAN Chair Professorship at Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM), Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Oita 870-1192, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Chekli Y, Stevick RJ, Kornobis E, Briolat V, Ghigo JM, Beloin C. Escherichia coli Aggregates Mediated by Native or Synthetic Adhesins Exhibit Both Core and Adhesin-Specific Transcriptional Responses. Microbiol Spectr 2023; 11:e0069023. [PMID: 37039668 PMCID: PMC10269875 DOI: 10.1128/spectrum.00690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.
Collapse
Affiliation(s)
- Yankel Chekli
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Valérie Briolat
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
21
|
Verweij W, Griswold CK. Spatial structure and benefits to hosts allow plasmids with and without post-segregational killing systems to coexist. Biol Lett 2023; 19:20220376. [PMID: 36855853 PMCID: PMC9975649 DOI: 10.1098/rsbl.2022.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
To persist, a plasmid relies on being passed on to a daughter cell, but this does not always occur. Plasmids with post-segregational killing (PSK) systems kill a daughter cell if the plasmid has not been passed on. By killing the host, it also kills competing plasmids in the same host, something competing plasmids without a similar system cannot do. Accordingly, plasmids with PSK systems can displace other plasmids. In nature, plasmids with and without PSK systems coexist and prior theory has suggested this is expected to be very rare or unstable, such that one or the other type of plasmid eventually takes over. Here, we show that if there is spatial structure and plasmids confer benefits to hosts, coexistence of plasmids occurs broadly. Often plasmids confer benefits (even ones with a PSK system) and bacteria are often spatially structured. So, our results may be generally applicable.
Collapse
Affiliation(s)
- Wilco Verweij
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Cortland K. Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
22
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
23
|
Bian J, Wang H, Ding H, Song Y, Zhang X, Tang X, Zhong Y, Zhao C. Unveiling the dynamics of antibiotic resistome, bacterial communities, and metals from the feces of patients in a typical hospital wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159907. [PMID: 36336059 DOI: 10.1016/j.scitotenv.2022.159907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Bacterial pathogens and antibiotic resistance genes (ARGs) are extensively disseminated into the environment via hospital wastewater (HWW), as it contains large quantities of feces from resident patients. However, studies on the antibiotic resistome and pathogenic bacteria from the gut of resident patients within the hospital wastewater treatment plant (hWWTP) are limited. Here, we examined and compared the occurrence and abundance of ARGs, mobile genetic elements (MGEs), metals, and bacterial communities from the feces of patients in a typical hWWTP system and determined the pathogenic hosts responsible for transferring ARGs. There were 176 ARGs and 43 MGEs detected in the feces of hospitalized patients, 129 genes were persistent, and 88 genes were enriched after HWW treatment, particularly for the blaVEB, blaNDM, and class 1 integron (intI1), with an average of 659-fold, 202-fold, and seven-fold enrichment, respectively. MGEs, especially Is613, in the feces of hospitalized patients were exceptionally abundant and even surpassed the abundance of total ARGs, which explained the persistence of ARGs in hWWTPs due to possible gene mobilization events. Bacteroidetes and Firmicutes were the most abundant phyla in these feces, accounting for 81 % of the total gut microbiota, while Epsilonbacteraeota and Proteobacteria dominated the hWWTPs. Additionally, 54 possible bacterial pathogens were found in the hospital environment, including four "ESKAPE" pathogens and 14 cancer-related pathogens. Many of them were strongly associated with different types of ARGs. Notably, Bacteroides was the major potential ARG-harboring pathogenic genus, as determined by the network analysis, and was highly abundant after the treatment. The altered microbial community was the major contributing factor shaping antibiotic resistome. This study might provide a comprehensive insight into the distribution profiles of ARGs and pathogens from the gut of inpatients throughout the HWW treatment system, which could be used as a reference for optimizing HWW treatment and monitoring public risk.
Collapse
Affiliation(s)
- Jing Bian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China; Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, People's Republic of China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yunqian Song
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xiaohui Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xianjun Tang
- Breast cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yihua Zhong
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China.
| | - Chun Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China.
| |
Collapse
|
24
|
Yu Z, Goodall ECA, Henderson IR, Guo J. Plasmids Can Shift Bacterial Morphological Response against Antibiotic Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203260. [PMID: 36424175 PMCID: PMC9839882 DOI: 10.1002/advs.202203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Bacterial cell filamentation is a morphological change wherein cell division is blocked, which can improve bacterial survival under unfavorable conditions (e.g., antibiotic stress that causes DNA damage). As an extrachromosomal DNA molecule, plasmids can confer additionally advantageous traits including antibiotic resistance on the host. However, little is known about whether plasmids could shift bacterial morphological responses to antibiotic stress. Here, it is reported that plasmid-free cells, rather than plasmid-bearing cells, exhibit filamentation and asymmetrical cell division under exposure to sub-inhibitory concentrations of antibiotics (ciprofloxacin and cephalexin). The underlying mechanism is revealed by investigating DNA damage, cell division inhibitor sulA, the SOS response, toxin-antitoxin module (parDE) located on plasmids, and efflux pumps. Significantly higher expression of sulA is observed in plasmid-free cells, compared to plasmid-bearing cells. Plasmid carriage enables the hosts to suffer less DNA damage, exhibit stronger efflux pump activities, and thus have a higher antibiotic tolerance. These benefits are attributed to the parDE module that mediates stress responses from plasmid-bearing cells and mainly contributes to cell morphological changes. Collectively, the findings demonstrate that plasmids can confer additional innate defenses on the host to antibiotics, thus advancing the understanding of how plasmids affect bacterial evolution in hostile environments.
Collapse
Affiliation(s)
- Zhigang Yu
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Emily C. A. Goodall
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Ian R. Henderson
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| |
Collapse
|
25
|
Anast JM, Etter AJ, Schmitz‐Esser S. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs. Microbiologyopen 2022; 11:e1315. [PMID: 36314750 PMCID: PMC9484302 DOI: 10.1002/mbo3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.
Collapse
Affiliation(s)
- Justin M. Anast
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Andrea J. Etter
- Department of Nutrition and Food SciencesThe University of VermontBurlingtonVermontUSA
| | - Stephan Schmitz‐Esser
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| |
Collapse
|
26
|
Gómez-Martínez J, Rocha-Gracia RDC, Bello-López E, Cevallos MA, Castañeda-Lucio M, López-García A, Sáenz Y, Jiménez-Flores G, Cortés-Cortés G, Lozano-Zarain P. A Plasmid Carrying blaIMP-56 in Pseudomonas aeruginosa Belonging to a Novel Resistance Plasmid Family. Microorganisms 2022; 10:microorganisms10091863. [PMID: 36144465 PMCID: PMC9501424 DOI: 10.3390/microorganisms10091863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
blaIMP and blaVIM are the most detected plasmid-encoded carbapenemase genes in Pseudomonas aeruginosa. Previous studies have reported plasmid sequences carrying blaIMP variants, except blaIMP-56. In this study, we aimed to characterize a plasmid carrying blaIMP-56 in a P. aeruginosa strain isolated from a Mexican hospital. The whole genome of P. aeruginosa strain PE52 was sequenced using Illumina Miseq 2 × 150 bp, with 5 million paired-end reads. We characterized a 27 kb plasmid (pPE52IMP) that carried blaIMP-56. The phylogenetic analysis of RepA in pPE52IMP and 33 P. aeruginosa plasmids carrying resistance genes reported in the GenBank revealed that pPE52IMP and four plasmids (pMATVIM-7, unnamed (FDAARGOS_570), pD5170990, and pMRVIM0713) were in the same clade. These closely related plasmids belonged to the MOBP11 subfamily and had similar backbones. Another plasmid (p4130-KPC) had a similar backbone to pPE52IMP; however, its RepA was truncated. In these plasmids, the resistance genes blaKPC-2, blaVIM variants, aac(6′)-Ib4, blaOXA variants, and blaIMP-56 were inserted between phd and resolvase genes. This study describes a new family of plasmids carrying resistance genes, with a similar backbone, the same RepA, and belonging to the MOBP11 subfamily in P. aeruginosa. In addition, our characterized plasmid harboring blaIMP-56 (pPE52IMP) belongs to this family.
Collapse
Affiliation(s)
- Jessica Gómez-Martínez
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Elena Bello-López
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Miguel Angel Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Miguel Castañeda-Lucio
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Alma López-García
- Departamento de Microbiología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Guadalupe Jiménez-Flores
- Laboratorio Clínico. Área de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla 72570, Mexico
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-222-2-29-55-00 (ext. 2543)
| |
Collapse
|
27
|
How GBS Got Its Hump: Genomic Analysis of Group B Streptococcus from Camels Identifies Host Restriction as well as Mobile Genetic Elements Shared across Hosts and Pathogens. Pathogens 2022; 11:pathogens11091025. [PMID: 36145457 PMCID: PMC9504112 DOI: 10.3390/pathogens11091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Group B Streptococcus (GBS) literature largely focuses on humans and neonatal disease, but GBS also affects numerous animals, with significant impacts on health and productivity. Spill-over events occur between humans and animals and may be followed by amplification and evolutionary adaptation in the new niche, including changes in the core or accessory genome content. Here, we describe GBS from one-humped camels (Camelus dromedarius), a relatively poorly studied GBS host of increasing importance for food security in arid regions. Genomic analysis shows that virtually all GBS from camels in East Africa belong to a monophyletic clade, sublineage (SL)609. Capsular types IV and VI, including a new variant of type IV, were over-represented compared to other host species. Two genomic islands with signatures of mobile elements contained most camel-associated genes, including genes for metal and carbohydrate utilisation. Lactose fermentation genes were associated with milk isolates, albeit at lower prevalence in camel than bovine GBS. The presence of a phage with high identity to Streptococcus pneumoniae and Streptococcus suis suggests lateral gene transfer between GBS and bacterial species that have not been described in camels. The evolution of camel GBS appears to combine host restriction with the sharing of accessory genome content across pathogen and host species.
Collapse
|
28
|
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts. Microbiol Res 2022; 265:127183. [PMID: 36108440 DOI: 10.1016/j.micres.2022.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
Collapse
|
29
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
30
|
Dai Z, Wu T, Xu S, Zhou L, Tang W, Hu E, Zhan L, Chen M, Yu G. Characterization of toxin-antitoxin systems from public sequencing data: A case study in Pseudomonas aeruginosa. Front Microbiol 2022; 13:951774. [PMID: 36051757 PMCID: PMC9424990 DOI: 10.3389/fmicb.2022.951774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The toxin-antitoxin (TA) system is a widely distributed group of genetic modules that play important roles in the life of prokaryotes, with mobile genetic elements (MGEs) contributing to the dissemination of antibiotic resistance gene (ARG). The diversity and richness of TA systems in Pseudomonas aeruginosa, as one of the bacterial species with ARGs, have not yet been completely demonstrated. In this study, we explored the TA systems from the public genomic sequencing data and genome sequences. A small scale of genomic sequencing data in 281 isolates was selected from the NCBI SRA database, reassembling the genomes of these isolates led to the findings of abundant TA homologs. Furthermore, remapping these identified TA modules on 5,437 genome/draft genomes uncovers a great diversity of TA modules in P. aeruginosa. Moreover, manual inspection revealed several TA systems that were not yet reported in P. aeruginosa including the hok-sok, cptA-cptB, cbeA-cbtA, tomB-hha, and ryeA-sdsR. Additional annotation revealed that a large number of MGEs were closely distributed with TA. Also, 16% of ARGs are located relatively close to TA. Our work confirmed a wealth of TA genes in the unexplored P. aeruginosa pan-genomes, expanded the knowledge on P. aeruginosa, and provided methodological tips on large-scale data mining for future studies. The co-occurrence of MGE, ARG, and TA may indicate a potential interaction in their dissemination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
32
|
Shetty S, P Shastry R, A Shetty V, Patil P, Shetty P, D Ghate S. Functional analysis of Escherichia coli K12 toxin-antitoxin systems as novel drug targets using a network biology approach. Microb Pathog 2022; 169:105683. [PMID: 35853597 DOI: 10.1016/j.micpath.2022.105683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Bacterial resistance to various drugs and antibiotics has become a significant issue in the fight against infectious diseases. Due to the presence of diverse toxin-antitoxin (TA) systems, bacteria undergo adaptive metabolic alterations and can tolerate the effects of drugs and antibiotics. Bacterial TA systems are unique and can be therapeutic targets for developing new antimicrobial agents, owing to their ability to influence bacterial fate. With this background, our study aims to identify novel drug targets against Escherichia coli K12 MG1655 antitoxin using homology modelling approach. In this study, the protein-protein interaction network of 87 E. coli K12 MG1655 TA systems identified through literature mining was screened for the identification of hub proteins. The model evaluation, assessment, and homology modelling of the hub proteins were evaluated. Furthermore, computer-aided mathematical models of selected phytochemicals have been tested against the identified hub proteins. The TA system was functionally enriched in regulation of cell growth, negative regulation of cell growth, regulation of mRNA stability, mRNA catabolic process and RNA phosphodiester bond hydrolysis. RelE, RelB, MazE, MazF, MqsR, MqsA, and YoeB were identified as hub proteins. The robustness and superior quality of the RelB and MazE modelled structure were discovered by model evaluation, quality assessment criteria, and homology modelling of hub proteins. Clorobiocin was found to be a strong inhibitor by docking these modelled structures. Clorobiocin could be utilized as an antibacterial agent against multidrug resistant E. coli which may inactivate antitoxins and cause programmed cell death.
Collapse
Affiliation(s)
- Shriya Shetty
- Department of Microbiology, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India; Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Veena A Shetty
- Department of Microbiology, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India; Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Prakash Patil
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India; Department of Biochemistry, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Sudeep D Ghate
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India; Center for Bioinformatics, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
33
|
Torrez Lamberti MF, Terán LC, Lopez FE, de Las Mercedes Pescaretti M, Delgado MA. Genomic and proteomic characterization of two strains of Shigella flexneri 2 isolated from infants' stool samples in Argentina. BMC Genomics 2022; 23:495. [PMID: 35804311 PMCID: PMC9264714 DOI: 10.1186/s12864-022-08711-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Shigella specie is a globally important intestinal pathogen disseminated all over the world. In this study we analyzed the genome and the proteomic component of two Shigella flexneri 2a clinical isolates, collected from pediatric patients with gastroenteritis of the Northwest region of Argentina (NWA) in two periods of time, with four years of difference. Our goal was to determine putative changes at molecular levels occurred during these four years, that could explain the presence of this Shigella`s serovar as the prevalent pathogen in the population under study. Results As previously reported, our findings support the idea of Shigella has a conserved “core” genome, since comparative studies of CI133 and CI172 genomes performed against 80 genomes obtained from the NCBI database, showed that there is a large number of genes shared among all of them. However, we observed that CI133 and CI172 harbors a small number of strain-specific genes, several of them present in mobile genetic elements, supporting the hypothesis that these isolates were established in the population by horizontal acquisition of genes. These differences were also observed at proteomic level, where it was possible to detect the presence of certain secreted proteins in a culture medium that simulates the host environment. Conclusion Great similarities were observed between the CI133 and CI172 strains, confirming the high percentage of genes constituting the “core” genome of S. flexneri 2. However, numerous strain specific genes were also determined. The presence of the here identified molecular elements into other strain of our culture collation, is currently used to develop characteristic markers of local pathogens. In addition, the most outstanding result of this study was the first description of a S. flexneri 2 producing Colicin E, as one of the characteristics that allows S. flexneri 2 to persist in the microbial community. These findings could also contribute to clarify the mechanism and the evolution strategy used by this pathogen to specifically colonize, survive, and cause infection within the NWA population. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08711-5.
Collapse
Affiliation(s)
- Mónica F Torrez Lamberti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, 5Q7R+96, San Miguel de Tucumán, Argentina
| | - Lucrecia C Terán
- Centro de Referencia Para Lactobacilos (CERELA-CONICET), Chacabuco 145, 5Q9R+3J, San Miguel de Tucumán, Argentina
| | - Fabián E Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, 5Q7R+96, San Miguel de Tucumán, Argentina.,Universidad Nacional de Chilecito (UNdeC), 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - María de Las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, 5Q7R+96, San Miguel de Tucumán, Argentina.
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, 5Q7R+96, San Miguel de Tucumán, Argentina.
| |
Collapse
|
34
|
Dong Y, Feng Y, Ou X, Liu C, Fan W, Zhao Y, Hu Y, Zhou X. Genomic analysis of diversity, biogeography, and drug resistance in Mycobacterium bovis. Transbound Emerg Dis 2022; 69:e2769-e2778. [PMID: 35695307 DOI: 10.1111/tbed.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Mycobacterium bovis is the cause of bovine tuberculosis, and it can also cause disease in humans, with symptoms similar to those caused by Mycobacterium tuberculosis. However, our understanding of its genomic diversity, biogeography, and drug resistance remains incomplete. We performed a comparative and phylogenetic analysis of 3,228 M. bovis genomes from 24 countries. Following drug susceptibility testing, we applied a bacterial genome-wide association study to capture associations between genomic variation and drug resistance in 74 newly isolated strains from China. The data show that the cattle-adapted M. bovis were divided into six lineages with a strong phylogeographical population structure. Lineage 1 and Lineage 6 are the most widespread globally, while others show a strong geographical restriction. 17.39% of M. bovis isolates were resistant to at least one drug in China. Furthermore, we identify genomic variations associated with an increased risk of resistance acquisition. This study furthers our knowledge of M. bovis diversity, biogeography, and drug resistance and will facilitate more deeply informed genomic tracking and surveillance to minimize its threat to human health, as a cause of zoonotic tuberculosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuhui Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Weixing Fan
- National Reference Laboroatory for Animal Tuberculosis, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
35
|
The role of PemIK (PemK/PemI) type II TA system from Klebsiella pneumoniae clinical strains in lytic phage infection. Sci Rep 2022; 12:4488. [PMID: 35296704 PMCID: PMC8927121 DOI: 10.1038/s41598-022-08111-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023] Open
Abstract
Since their discovery, toxin-antitoxin (TA) systems have captivated the attention of many scientists. Recent studies have demonstrated that TA systems play a key role in phage inhibition. The aim of the present study was to investigate the role of the PemIK (PemK/PemI) type II TA system in phage inhibition by its intrinsic expression in clinical strains of Klebsiella pneumoniae carrying the lncL plasmid, which harbours the carbapenemase OXA-48 and the PemK/PemI TA system. Furthermore, induced expression of the system in an IPTG-inducible plasmid in a reference strain of K. pneumoniae ATCC10031 was also studied. The results showed that induced expression of the whole TA system did not inhibit phage infection, whereas overexpression of the pemK toxin prevented early infection. To investigate the molecular mechanism involved in the PemK toxin-mediated inhibition of phage infection, assays measuring metabolic activity and viability were performed, revealing that overexpression of the PemK toxin led to dormancy of the bacteria. Thus, we demonstrate that the PemK/PemI TA system plays a role in phage infection and that the action of the free toxin induces a dormant state in the cells, resulting in inhibition of phage infections.
Collapse
|
36
|
Pudova DS, Toymentseva AA, Gogoleva NE, Shagimardanova EI, Mardanova AM, Sharipova MR. Comparative Genome Analysis of Two Bacillus pumilus Strains Producing High Level of Extracellular Hydrolases. Genes (Basel) 2022; 13:genes13030409. [PMID: 35327964 PMCID: PMC8950961 DOI: 10.3390/genes13030409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Whole-genome sequencing of a soil isolate Bacillus pumilus, strain 7P, and its streptomycin-resistant derivative, B. pumilus 3-19, showed genome sizes of 3,609,117 bp and 3,609,444 bp, respectively. Annotation of the genome showed 3794 CDS (3204 with predicted function) and 3746 CDS (3173 with predicted function) in the genome of strains 7P and 3-19, respectively. In the genomes of both strains, the prophage regions Bp1 and Bp2 were identified. These include 52 ORF of prophage proteins in the Bp1 region and 38 prophages ORF in the Bp2 region. Interestingly, more than 50% of Bp1 prophage proteins are similar to the proteins of the phi105 in B. subtilis. The DNA region of Bp2 has 15% similarity to the DNA of the Brevibacillus Jimmer phage. Degradome analysis of the genome of both strains revealed 148 proteases of various classes. These include 60 serine proteases, 48 metalloproteases, 26 cysteine proteases, 4 aspartate proteases, 2 asparagine proteases, 3 threonine proteases, and 2 unclassified proteases. Likewise, three inhibitors of proteolytic enzymes were found. Comparative analysis of variants in the genomes of strains 7P and 3-19 showed the presence of 81 nucleotide variants in the genome 3-19. Among them, the missense mutations in the rpsL, comA, spo0F genes and in the upstream region of the srlR gene were revealed. These nucleotide polymorphisms may have affected the streptomycin resistance and overproduction of extracellular hydrolases of the 3-19 strain. Finally, a plasmid DNA was found in strain 7P, which is lost in its derivative, strain 3-19. This plasmid contains five coding DNA sequencing (CDS), two regulatory proteins and three hypothetical proteins.
Collapse
|
37
|
Igler C, Huisman JS, Siedentop B, Bonhoeffer S, Lehtinen S. Plasmid co-infection: linking biological mechanisms to ecological and evolutionary dynamics. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200478. [PMID: 34839701 PMCID: PMC8628072 DOI: 10.1098/rstb.2020.0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not only by plasmid-host interactions but also by ecological interactions between plasmid variants. These interactions are complex: plasmids can co-infect the same cell and the consequences for the co-resident plasmid can be either beneficial or detrimental. Many of the biological processes that govern plasmid co-infection-from systems that exclude infection by other plasmids to interactions in the regulation of plasmid copy number-are well characterized at a mechanistic level. Modelling plays a central role in translating such mechanistic insights into predictions about plasmid dynamics and the impact of these dynamics on bacterial evolution. Theoretical work in evolutionary epidemiology has shown that formulating models of co-infection is not trivial, as some modelling choices can introduce unintended ecological assumptions. Here, we review how the biological processes that govern co-infection can be represented in a mathematical model, discuss potential modelling pitfalls, and analyse this model to provide general insights into how co-infection impacts ecological and evolutionary outcomes. In particular, we demonstrate how beneficial and detrimental effects of co-infection give rise to frequency-dependent selection on plasmid variants. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Claudia Igler
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Jana S. Huisman
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Berit Siedentop
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Sonja Lehtinen
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
38
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
39
|
Hematian A, Goudarzi H, Ghalavand Z, Goudarzi M, Shafieian M, Hashemi A, Ghafourian S. The relationship between phoH and colistin-heteroresistant in clinical isolates of Acinetobacter baumannii. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
41
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
42
|
Nguyen AQ, Vu HP, Nguyen LN, Wang Q, Djordjevic SP, Donner E, Yin H, Nghiem LD. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146964. [PMID: 33866168 DOI: 10.1016/j.scitotenv.2021.146964] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to human and animal health. Progress in molecular biology has revealed new and significant challenges for AMR mitigation given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), where the presence of diverse selection pressures together with a highly concentrated consortium of pathogenic/commensal microbes create favourable conditions for the transfer of ARGs and proliferation of antibiotic resistant bacteria (ARB). The rapid emergence of antibiotic resistant pathogens of clinical and veterinary significance over the past 80 years has re-defined the role of WWTPs as a focal point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge and the current technologies used to quantify ARGs and identify ARB, this paper provides a research roadmap to address existing challenges in AMR control via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic AMR. State of the art ARB identification technologies, such as metagenomic sequencing and fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone species in AMR networks, and improved the resolution of AMR dissemination models. Data and information provided in this review highlight significant knowledge gaps. These include inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a standardised protocol for determining ARG removal via wastewater treatments, and the inability to support appropriate risk assessment. This is due to a lack of standard monitoring targets and agreed threshold values, and paucity of information on the ARG-pathogen host relationship and risk management. These research gaps need to be addressed and research findings need to be transformed into practical guidance for WWTP operators to enable effective progress towards mitigating the evolution and spread of AMR.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- Institute of Infection, Immunity and Innovation, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
43
|
Karimaei S, Kazem Aghamir SM, Foroushani AR, Pourmand MR. Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathog 2021; 159:105126. [PMID: 34384900 DOI: 10.1016/j.micpath.2021.105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
The ability of Staphylococcus aureus to form biofilm and persister cells is the main cause of recurrent infections. This study aimed to evaluate the expression of toxin-antitoxin (TA) systems in persister cells within S. aureus biofilms. Time-dependent variation in the persister population present in biofilms of S. aureus was examined after treatment with bactericidal antibiotics. Then, the relative expression level of type II TA system (mazF, relE1, and relE2), type I TA system (sprG), and clpP protease genes in S. aureus strains were assessed by Real _Time PCR. Among the sixteen isolates, two isolates were found to be the strongest biofilm producers. The established biofilm of these isolates showed a comparable biphasic pattern at the lethal dose of the antibiotics. The expression level of TA system genes was increased and strain-specific expression patterns were observed under antibiotics stress conditions. Persisters within a biofilm may establish a reservoir for relapsing infection and could contribute to treatment failures. Hence, the possible role of the TA systems should be considered in biofilm and persister cell formation.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Oliveira MM, de Almeida FA, Baglinière F, de Oliveira LL, Vanetti MCD. Behavior of Salmonella Enteritidis and Shigella flexneri during induction and recovery of the viable but nonculturable state. FEMS Microbiol Lett 2021; 368:6316107. [PMID: 34227668 DOI: 10.1093/femsle/fnab087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria may enter into a viable but nonculturable (VBNC) state as a response to stresses, such as those found in food processing. Cells in the VBNC state lose the ability to grow in a conventional culture medium but man recover culturability. The viability, culturability and intracellular reactive oxygen species (ROS) of Salmonella Enteritidis and Shigella flexneri were evaluated under stress conditions to induce a VBNC state. Cells were maintained under nutritional, osmotic and cold stresses (long-term induction) in Butterfield's phosphate solution plus 1.2 M of NaCl at 4°C and under nutritional and oxidative stresses (short-term induction) in 10 mM of H2O2. Culture media, recovery agents, sterilization methods of media and incubation temperature, were combined and applied to recover the culturability of the VBNC cells. Salmonella entered in the VBNC state after 135 days under long-term induction, while Shigella maintained culturability after 240 days. Under short-term induction, Salmonella and Shigella lose culturability after 135 and 240 min, respectively. Flow cytometric analysis revealed viable cells and intracellular ROS in both species in VBNC. It was not possible to recover the culturability of VBNC cells using the 42 combinations of different factors.
Collapse
Affiliation(s)
- Mayara Messias Oliveira
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-450, Brazil.,Department of Food Science, Universidade Estadual de Campinas (Unicamp), Campinas, SP, 13084-654, Brazil
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora (UFJF), Governador Valadares, MG, 35032-620, Brazil
| | - François Baglinière
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-450, Brazil
| | | | | |
Collapse
|
45
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
46
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
47
|
Ajayi AO, Perry B, Yost CK, Jamieson R, Truelstrup Hansen L, Rahube T. Comparative Genomic Analyses of the β-lactamase (blaCMY-42) Encoding Plasmids Isolated from Wastewater Treatment Plants in Canada. Can J Microbiol 2021; 67:737-748. [PMID: 34077692 DOI: 10.1139/cjm-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wastewater treatment plants are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes. Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening of antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209,357 bp), harbouring resistance genes to beta-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172,280 bp), carrying similar beta-lactamase and a small multidrug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24,552 bp cluster in pFEMG - intersperced with transposons, insertion sequence elements, and a class 1 integron - maybe of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponds to the observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade offs of plasmids having differing types of conjugative transfer and maintenance modules.
Collapse
Affiliation(s)
| | - Ben Perry
- University of Regina, 6846, Regina, Saskatchewan, Canada;
| | | | - Rob Jamieson
- Dalhousie University, 3688, Halifax, Nova Scotia, Canada;
| | - Lisbeth Truelstrup Hansen
- Dalhousie University, 3688, Department of Process Engineering and Applied Science, Halifax, Canada.,Technical University of Denmark, 5205, Department of Process Engineering and Applied Science, Lyngby, Denmark;
| | - Teddie Rahube
- University of Regina, 6846, Biology Department, Regina, Canada, S4S 0A2.,Botswana International University of Science and Technology, 357305, Biology Department, Palapye, Botswana;
| |
Collapse
|
48
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
49
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
50
|
Krzyżek P. Toxin-Antitoxin Systems - A New Player in Morphological Transformation of Antibiotic-Exposed Helicobacter pylori? Front Cell Infect Microbiol 2021; 11:670677. [PMID: 33981631 PMCID: PMC8108984 DOI: 10.3389/fcimb.2021.670677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|