1
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
2
|
Petersen C, Sørensen T, Nielsen MR, Sondergaard TE, Sørensen JL, Fitzpatrick DA, Frisvad JC, Nielsen KL. Comparative genomic study of the Penicillium genus elucidates a diverse pangenome and 15 lateral gene transfer events. IMA Fungus 2023; 14:3. [PMID: 36726175 PMCID: PMC9893605 DOI: 10.1186/s43008-023-00108-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.
Collapse
Affiliation(s)
- Celine Petersen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Trine Sørensen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Mikkel R. Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Niels-Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Teis E. Sondergaard
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Jens L. Sørensen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Niels-Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - David A. Fitzpatrick
- grid.95004.380000 0000 9331 9029Department of Biology, Maynooth University, Maynooth, W23 F2K8 Ireland
| | - Jens C. Frisvad
- grid.5170.30000 0001 2181 8870Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads B221, 2800 Kgs, Lyngby, Denmark
| | - Kåre L. Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| |
Collapse
|
3
|
Cardoza RE, McCormick SP, Izquierdo-Bueno I, Martínez-Reyes N, Lindo L, Brown DW, Collado IG, Proctor RH, Gutiérrez S. Identification of polyketide synthase genes required for aspinolide biosynthesis in Trichoderma arundinaceum. Appl Microbiol Biotechnol 2022; 106:7153-7171. [PMID: 36166052 PMCID: PMC9592644 DOI: 10.1007/s00253-022-12182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.
Collapse
Affiliation(s)
- Rosa E Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Susan P McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA
| | - Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, Torre Sur, 4ª planta, 11510, Puerto Real, Cádiz, Spain
| | - Natalia Martínez-Reyes
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Laura Lindo
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, Torre Sur, 4ª planta, 11510, Puerto Real, Cádiz, Spain
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA.
| | - Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain.
| |
Collapse
|
4
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
5
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
6
|
Brown DW, Kim HS, McGovern A, Probyn C, Proctor RH. Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genet Biol 2022; 160:103696. [DOI: 10.1016/j.fgb.2022.103696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
|
7
|
De Miccolis Angelini RM, Landi L, Raguseo C, Pollastro S, Faretra F, Romanazzi G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front Microbiol 2022; 13:854852. [PMID: 35356516 PMCID: PMC8959702 DOI: 10.3389/fmicb.2022.854852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monilinia species are among the most devastating fungi worldwide as they cause brown rot and blossom blight on fruit trees. To understand the molecular bases of their pathogenic lifestyles, we compared the newly assembled genomes of single strains of Monilinia fructicola, M. fructigena and M. laxa, with those of Botrytis cinerea and Sclerotinia sclerotiorum, as the closest species within Sclerotiniaceae. Phylogenomic analysis of orthologous proteins and syntenic investigation suggest that M. laxa is closer to M. fructigena than M. fructicola, and is closest to the other investigated Sclerotiniaceae species. This indicates that M. laxa was the earliest result of the speciation process. Distinct evolutionary profiles were observed for transposable elements (TEs). M. fructicola and M. laxa showed older bursts of TE insertions, which were affected (mainly in M. fructicola) by repeat-induced point (RIP) mutation gene silencing mechanisms. These suggested frequent occurrence of the sexual process in M. fructicola. More recent TE expansion linked with low RIP action was observed in M. fructigena, with very little in S. sclerotiorum and B. cinerea. The detection of active non-syntenic TEs is indicative of horizontal gene transfer and has resulted in alterations in specific gene functions. Analysis of candidate effectors, biosynthetic gene clusters for secondary metabolites and carbohydrate-active enzymes, indicated that Monilinia genus has multiple virulence mechanisms to infect host plants, including toxins, cell-death elicitor, putative virulence factors and cell-wall-degrading enzymes. Some species-specific pathogenic factors might explain differences in terms of host plant and organ preferences between M. fructigena and the other two Monilinia species.
Collapse
Affiliation(s)
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Celeste Raguseo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
8
|
Pizarro D, Divakar PK, Grewe F, Crespo A, Dal Grande F, Lumbsch HT. Genome-Wide Analysis of Biosynthetic Gene Cluster Reveals Correlated Gene Loss with Absence of Usnic Acid in Lichen-Forming Fungi. Genome Biol Evol 2021; 12:1858-1868. [PMID: 33151307 PMCID: PMC7643366 DOI: 10.1093/gbe/evaa189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
Lichen-forming fungi are known to produce a large number of secondary metabolites. Some metabolites are deposited in the cortical layer of the lichen thallus where they exert important ecological functions, such as UV filtering. The fact that closely related lineages of lichen-forming fungi can differ in cortical chemistry suggests that natural product biosynthesis in lichens can evolve independent from phylogenetic constraints. Usnic acid is one of the major cortical pigments in lichens. Here we used a comparative genomic approach on 46 lichen-forming fungal species of the Lecanoromycetes to elucidate the biosynthetic gene content and evolution of the gene cluster putatively responsible for the biosynthesis of usnic acid. Whole-genome sequences were gathered from taxa belonging to different orders and families of Lecanoromycetes, where Parmeliaceae is the most well-represented taxon, and analyzed with a variety of genomic tools. The highest number of biosynthetic gene clusters was found in Evernia prunastri, Pannoparmelia angustata, and Parmotrema austrosinense, respectively, and lowest in Canoparmelia nairobiensis, Bulbothrix sensibilis, and Hypotrachyna scytodes. We found that all studied species producing usnic acid contain the putative usnic acid biosynthetic gene cluster, whereas the cluster was absent in all genomes of species lacking usnic acid. The absence of the gene cluster was supported by an additional unsuccessful search for ß-ketoacylsynthase, the most conserved domain of the gene cluster, in the genomes of species lacking usnic acid. The domain architecture of this PKS cluster—homologous to the already known usnic acid PKS cluster (MPAS) and CYT450 (MPAO)—varies within the studied species, whereas the gene arrangement is highly similar in closely related taxa. We hypothesize that the ancestor of these lichen-forming fungi contained the putative usnic acid producing PKS cluster and that the gene cluster was lost repeatedly during the evolution of these groups. Our study provides insight into the genomic adaptations to the evolutionary success of these lichen-forming fungal species and sets a baseline for further exploration of biosynthetic gene content and its evolutionary significance.
Collapse
Affiliation(s)
- David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Felix Grewe
- Department of Science & Education, The Field Museum, Chicago, Illinois
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main D-60325, Germany.,LOEWE Center for Translational Biodiversity Genomics, Frankfurt am Main D-60325, Germany
| | | |
Collapse
|
9
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Valero-Jiménez CA, Steentjes MBF, Slot JC, Shi-Kunne X, Scholten OE, van Kan JAL. Dynamics in Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus Botrytis. Genome Biol Evol 2020; 12:2491-2507. [PMID: 33283866 PMCID: PMC7719232 DOI: 10.1093/gbe/evaa218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 02/05/2023] Open
Abstract
Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8-39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.
Collapse
Affiliation(s)
| | | | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | | | - Olga E Scholten
- Plant Breeding, Wageningen University & Research, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| |
Collapse
|
11
|
Hagee D, Abu Hardan A, Botero J, Arnone JT. Genomic clustering within functionally related gene families in Ascomycota fungi. Comput Struct Biotechnol J 2020; 18:3267-3277. [PMID: 33209211 PMCID: PMC7653285 DOI: 10.1016/j.csbj.2020.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell. Members of this phylum include organisms that serve as model systems and those of interest medically, pharmaceutically, and for industrial and biotechnological applications. In this review, we discuss the prevalence of functional clustering through a broad range of organisms within the phylum. Position effects on transcription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures contributing to the formation and maintenance of clusters are addressed, as are common methods to identify and characterize clusters.
Collapse
Affiliation(s)
- Danielle Hagee
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Ahmad Abu Hardan
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Juan Botero
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
12
|
Li X, Cheng J, Liu X, Guo X, Liu Y, Fan W, Lu L, Ma Y, Liu T, Tao S, Jiang H. Origin and Evolution of Fusidane-Type Antibiotics Biosynthetic Pathway through Multiple Horizontal Gene Transfers. Genome Biol Evol 2020; 12:1830-1840. [PMID: 32915993 PMCID: PMC7750971 DOI: 10.1093/gbe/evaa163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Fusidane-type antibiotics represented by fusidic acid, helvolic acid, and cephalosporin P1 have very similar core structures, but they are produced by fungi belonging to different taxonomic groups. The origin and evolution of fusidane-type antibiotics biosynthetic gene clusters (BGCs) in different antibiotics producing strains remained an enigma. In this study, we investigated the distribution and evolution of the fusidane BGCs in 1,284 fungal genomes. We identified 12 helvolic acid BGCs, 4 fusidic acid BGCs, and 1 cephalosporin P1 BGC in Pezizomycotina fungi. Phylogenetic analyses indicated six horizontal gene transfer (HGT) events in the evolutionary trajectory of the BGCs, including 1) three transfers across Eurotiomycetes and Sordariomycetes classes; 2) one transfer between genera under Sordariomycetes class; and 3) two transfers within Aspergillus genus under Eurotiomycetes classes. Finally, we proposed that the ancestor of fusidane BGCs would be originated from the Zoopagomycota by ancient HGT events according to the phylogenetic trees of key enzymes in fusidane BGCs (OSC and P450 genes). Our results extensively clarify the evolutionary trajectory of fusidane BGCs by HGT among distantly related fungi and provide new insights into the evolutionary mechanisms of metabolic pathways in fungi.
Collapse
Affiliation(s)
- Xiangchen Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoxian Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuqian Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenjing Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shiheng Tao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
13
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
14
|
Kim W, Lee N, Hwang S, Lee Y, Kim J, Cho S, Palsson B, Cho BK. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules 2020; 10:biom10060864. [PMID: 32516997 PMCID: PMC7357120 DOI: 10.3390/biom10060864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/02/2023] Open
Abstract
Streptomyces venezuelae is well known to produce various secondary metabolites, including chloramphenicol, jadomycin, and pikromycin. Although many strains have been classified as S. venezuelae species, only a limited number of strains have been explored extensively for their genomic contents. Moreover, genomic differences and diversity in secondary metabolite production between the strains have never been compared. Here, we report complete genome sequences of three S. venezuelae strains (ATCC 10712, ATCC 10595, and ATCC 21113) harboring chloramphenicol and jadomycin biosynthetic gene clusters (BGC). With these high-quality genome sequences, we revealed that the three strains share more than 85% of total genes and most of the secondary metabolite biosynthetic gene clusters (smBGC). Despite such conservation, the strains produced different amounts of chloramphenicol and jadomycin, indicating differential regulation of secondary metabolite production at the strain level. Interestingly, antagonistic production of chloramphenicol and jadomycin was observed in these strains. Through comparison of the chloramphenicol and jadomycin BGCs among the three strains, we found sequence variations in many genes, the non-coding RNA coding regions, and binding sites of regulators, which affect the production of the secondary metabolites. We anticipate that these genome sequences of closely related strains would serve as useful resources for understanding the complex secondary metabolism and for designing an optimal production process using Streptomyces strains.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Jihun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-2660
| |
Collapse
|
15
|
Wang M, Fu H, Ruan R. A Small Horizontally Transferred Gene Cluster Contributes to the Sporulation of Alternaria alternata. Genome Biol Evol 2020; 11:3436-3444. [PMID: 31764979 PMCID: PMC6916707 DOI: 10.1093/gbe/evz257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Horizontal gene transfer (HGT) has been identified as an important source of genomic innovation in fungi. However, how HGT drove the evolution of Alternaria alternata, a necrotrophic fungus which can be ubiquitously isolated from soil and various plants and decaying plant materials is largely known. In this study, we identified 12 protein-encoding genes that are likely acquired from lineages outside Pezizomycotina. Phylogenetic trees and approximately unbiased comparative topology tests strongly supported the evolutionary origin of these genes. According to their predicted functions, these HGT candidates are involved in nitrogen and carbohydrate metabolism. Especially, five genes of them were likely transferred as a physically linked cluster from Tremellales (Basidiomycota). Functionally knocking out the five-gene cluster in an A. alternata isolate causing citrus brown spot resulted in an 80% decrease in asexual spore production in the deletion mutant. We further knocked out each of these five genes in this cluster and the resultant single-gene deletion mutants exhibited a various degree of reduction in spore production. Except for conidiation, functions of these genes associated with vegetative growth, stress tolerance, and virulence are very limited. Our results provide new evidence that HGT has played important roles over the course of the evolution of filamentous fungi.
Collapse
Affiliation(s)
- Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huilan Fu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruoxin Ruan
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Drott MT, Bastos RW, Rokas A, Ries LNA, Gabaldón T, Goldman GH, Keller NP, Greco C. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. mSphere 2020; 5:e00156-20. [PMID: 32269157 PMCID: PMC7142299 DOI: 10.1128/msphere.00156-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 01/30/2023] Open
Abstract
The filamentous fungus Aspergillus nidulans has been a primary workhorse used to understand fungal genetics. Much of this work has focused on elucidating the genetics of biosynthetic gene clusters (BGCs) and the secondary metabolites (SMs) they produce. SMs are both niche defining in fungi and of great economic importance to humans. Despite the focus on A. nidulans, very little is known about the natural diversity in secondary metabolism within this species. We determined the BGC content and looked for evolutionary patterns in BGCs from whole-genome sequences of two clinical isolates and the A4 reference genome of A. nidulans Differences in BGC content were used to explain SM profiles determined using liquid chromatography-high-resolution mass spectrometry. We found that in addition to genetic variation of BGCs contained by all isolates, nine BGCs varied by presence/absence. We discovered the viridicatumtoxin BGC in A. nidulans and suggest that this BGC has undergone a horizontal gene transfer from the Aspergillus section Nigri lineage into Penicillium sometime after the sections Nigri and Nidulantes diverged. We identified the production of viridicatumtoxin and several other compounds previously not known to be produced by A. nidulans One isolate showed a lack of sterigmatocystin production even though it contained an apparently intact sterigmatocystin BGC, raising questions about other genes and processes known to regulate this BGC. Altogether, our work uncovers a large degree of intraspecies diversity in BGC and SM production in this genetic model species and offers new avenues to understand the evolution and regulation of secondary metabolism.IMPORTANCE Much of what we know about the genetics underlying secondary metabolite (SM) production and the function of SMs in the model fungus Aspergillus nidulans comes from a single reference genome. A growing body of research indicates the importance of biosynthetic gene cluster (BGC) and SM diversity within a species. However, there is no information about the natural diversity of secondary metabolism in A. nidulans We discovered six novel clusters that contribute to the considerable variation in both BGC content and SM production within A. nidulans We characterize a diverse set of mutations and emphasize how findings of single nucleotide polymorphisms (SNPs), deletions, and differences in evolutionary history encompass much of the variation observed in nonmodel systems. Our results emphasize that A. nidulans may also be a strong model to use within-species diversity to elucidate regulatory cross talk, fungal ecology, and drug discovery systems.
Collapse
Affiliation(s)
- M T Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R W Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - L N A Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - T Gabaldón
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - N P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - C Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Tralamazza SM, Rocha LO, Oggenfuss U, Corrêa B, Croll D. Complex Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among the Plant Pathogenic Fungi of the Fusarium graminearum Species Complex. Genome Biol Evol 2019; 11:3106-3122. [PMID: 31609418 PMCID: PMC6836718 DOI: 10.1093/gbe/evz225] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F. austroamericanum, F. cortaderiae, and F. meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Liliana Oliveira Rocha
- Food Engineering Faculty, Department of Food Science, University of Campinas, Av. Monteiro Lobato, Brazil
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| |
Collapse
|
18
|
Identification of a Polyketide Synthase Gene Responsible for Ascochitine Biosynthesis in Ascochyta fabae and Its Abrogation in Sister Taxa. mSphere 2019; 4:4/5/e00622-19. [PMID: 31554725 PMCID: PMC6763771 DOI: 10.1128/msphere.00622-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fungi produce a diverse array of secondary metabolites, many of which are of pharmacological importance whereas many others are noted for mycotoxins, such as aflatoxin and citrinin, that can threaten human and animal health. The polyketide-derived compound ascochitine, which is structurally similar to citrinin mycotoxin, has been considered to be important for pathogenicity of legume-associated Ascochyta species. Here, we identified the ascochitine polyketide synthase (PKS) gene in Ascochyta fabae and its neighboring genes that may be involved in ascochitine biosynthesis. Interestingly, the ascochitine PKS genes in other legume-associated Ascochyta species have been mutated, encoding truncated PKSs. This indicated that point mutations may have contributed to genetic diversity for secondary metabolite production in these fungi. We also demonstrated that ascochitine is not a pathogenicity factor in A. fabae. The antifungal activities and production of ascochitine during sporulation suggested that it may play a role in competition with other saprobic fungi in nature. The polyketide-derived secondary metabolite ascochitine is produced by species in the Didymellaceae family, including but not restricted to Ascochyta species pathogens of cool-season food legumes. Ascochitine is structurally similar to the well-known mycotoxin citrinin and exhibits broad-spectrum phytotoxicity and antimicrobial activities. Here, we identified a polyketide synthase (PKS) gene (denoted pksAC) responsible for ascochitine production in the filamentous fungus Ascochyta fabae. Deletion of the pksAC prevented production of ascochitine and its derivative ascochital in A. fabae. The putative ascochitine biosynthesis gene cluster comprises 11 genes that have undergone rearrangement and gain-and-loss events relative to the citrinin biosynthesis gene cluster in Monascus ruber. Interestingly, we also identified pksAC homologs in two recently diverged species, A. lentis and A. lentis var. lathyri, that are sister taxa closely related to ascochitine producers such as A. fabae and A. viciae-villosae. However, nonsense mutations have been independently introduced in coding sequences of the pksAC homologs of A. lentis and A. lentis var. lathyri that resulted in loss of ascochitine production. Despite its reported phytotoxicity, ascochitine was not a pathogenicity factor in A. fabae infection and colonization of faba bean (Vicia faba L.). Ascochitine was mainly produced from mature hyphae at the site of pycnidial formation, suggesting a possible protective role of the compound against other microbial competitors in nature. This report highlights the evolution of gene clusters harnessing the structural diversity of polyketides and a mechanism with the potential to alter secondary metabolite profiles via single nucleotide polymorphisms in closely related fungal species. IMPORTANCE Fungi produce a diverse array of secondary metabolites, many of which are of pharmacological importance whereas many others are noted for mycotoxins, such as aflatoxin and citrinin, that can threaten human and animal health. The polyketide-derived compound ascochitine, which is structurally similar to citrinin mycotoxin, has been considered to be important for pathogenicity of legume-associated Ascochyta species. Here, we identified the ascochitine polyketide synthase (PKS) gene in Ascochyta fabae and its neighboring genes that may be involved in ascochitine biosynthesis. Interestingly, the ascochitine PKS genes in other legume-associated Ascochyta species have been mutated, encoding truncated PKSs. This indicated that point mutations may have contributed to genetic diversity for secondary metabolite production in these fungi. We also demonstrated that ascochitine is not a pathogenicity factor in A. fabae. The antifungal activities and production of ascochitine during sporulation suggested that it may play a role in competition with other saprobic fungi in nature.
Collapse
|
19
|
Marcet-Houben M, Gabaldón T. Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 2019; 4:2383-2392. [PMID: 31527797 DOI: 10.1038/s41564-019-0552-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/29/2019] [Indexed: 11/09/2022]
Abstract
Gene clusters comprise genomically co-localized and potentially co-regulated genes that tend to be conserved across species. In eukaryotes, multiple examples of metabolic gene clusters are known, particularly among fungi and plants. However, little is known about how gene clustering patterns vary among taxa or with respect to functional roles. Furthermore, mechanisms of the formation, maintenance and evolution of gene clusters remain unknown. We surveyed 341 fungal genomes to discover gene clusters shared by different species, independently of their functions. We inferred 12,120 cluster families, which comprised roughly one third of the gene space and were enriched in genes associated with diverse cellular functions. Additionally, most clusters did not encode transcription factors, suggesting that they are regulated distally. We used phylogenomics to characterize the evolutionary history of these clusters. We found that most clusters originated once and were transmitted vertically, coupled to differential loss. However, convergent evolution-that is, independent appearance of the same cluster-was more prevalent than anticipated. Finally, horizontal gene transfer of entire clusters was somewhat restricted, with the exception of those associated with secondary metabolism. Altogether, our results provide insights on the evolution of gene clustering as well as a broad catalogue of evolutionarily conserved gene clusters whose function remains to be elucidated.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,ICREA, Barcelona, Spain. .,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain.
| |
Collapse
|
20
|
Reus E, Nielsen MR, Frandsen RJN. Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to
Aspergillus nidulans. Mol Microbiol 2019; 112:1684-1700. [DOI: 10.1111/mmi.14376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Reus
- Department of Biotechnology and Bioengineering Technical University of Denmark Kongens Lyngby Denmark
| | | | | |
Collapse
|
21
|
Transposon-Mediated Horizontal Transfer of the Host-Specific Virulence Protein ToxA between Three Fungal Wheat Pathogens. mBio 2019; 10:mBio.01515-19. [PMID: 31506307 PMCID: PMC6737239 DOI: 10.1128/mbio.01515-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work dissects the tripartite horizontal transfer of ToxA, a gene that has a direct negative impact on global wheat yields. Defining the extent of horizontally transferred DNA is important because it can provide clues to the mechanisms that facilitate HGT. Our analysis of ToxA and its surrounding 14 kb suggests that this gene was horizontally transferred in two independent events, with one event likely facilitated by a type II DNA transposon. These horizontal transfer events are now in various processes of decay in each species due to the repeated insertion of new transposons and subsequent rounds of targeted mutation by a fungal genome defense mechanism known as repeat induced point mutation. This work highlights the role that HGT plays in the evolution of host adaptation in eukaryotic pathogens. It also increases the growing body of evidence indicating that transposons facilitate adaptive HGT events between fungi present in similar environments and hosts. Most known examples of horizontal gene transfer (HGT) between eukaryotes are ancient. These events are identified primarily using phylogenetic methods on coding regions alone. Only rarely are there examples of HGT where noncoding DNA is also reported. The gene encoding the wheat virulence protein ToxA and the surrounding 14 kb is one of these rare examples. ToxA has been horizontally transferred between three fungal wheat pathogens (Parastagonospora nodorum, Pyrenophora tritici-repentis, and Bipolaris sorokiniana) as part of a conserved ∼14 kb element which contains coding and noncoding regions. Here we used long-read sequencing to define the extent of HGT between these three fungal species. Construction of near-chromosomal-level assemblies enabled identification of terminal inverted repeats on either end of the 14 kb region, typical of a type II DNA transposon. This is the first description of ToxA with complete transposon features, which we call ToxhAT. In all three species, ToxhAT resides in a large (140-to-250 kb) transposon-rich genomic island which is absent in isolates that do not carry the gene (annotated here as toxa−). We demonstrate that the horizontal transfer of ToxhAT between P. tritici-repentis and P. nodorum occurred as part of a large (∼80 kb) HGT which is now undergoing extensive decay. In B. sorokiniana, in contrast, ToxhAT and its resident genomic island are mobile within the genome. Together, these data provide insight into the noncoding regions that facilitate HGT between eukaryotes and into the genomic processes which mask the extent of HGT between these species.
Collapse
|
22
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
23
|
Gao S, Gold SE, Wisecaver JH, Zhang Y, Guo L, Ma LJ, Rokas A, Glenn AE. Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism. Fungal Genet Biol 2019; 128:60-73. [DOI: 10.1016/j.fgb.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/02/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
|
24
|
Shen L, Porée FH, Gaslonde T, Lalucque H, Chapeland-Leclerc F, Ruprich-Robert G. Functional characterization of the sterigmatocystin secondary metabolite gene cluster in the filamentous fungus Podospora anserina: involvement in oxidative stress response, sexual development, pigmentation and interspecific competitions. Environ Microbiol 2019; 21:3011-3026. [PMID: 31136075 DOI: 10.1111/1462-2920.14698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are known as prolific untapped reservoirs of diverse secondary metabolites, where genes required for their synthesis are organized in clusters. The bioactive properties of these compounds are closely related to their functions in fungal biology, which are not well understood. In this study, we focused on the Podospora anserina gene cluster responsible for the biosynthesis of sterigmatocystin (ST). Deletion of the PaStcA gene encoding the polyketide synthase and overexpression (OE) of the PaAflR gene encoding the ST-specific transcription factor in P. anserina were performed. We showed that growth of PaStcAΔ was inhibited in the presence of methylglyoxal, while OE-PaAflR showed a little inhibition, indicating that ST production may enhance oxidative stress tolerance in P. anserina. We also showed that the OE-PaAflR strain displayed an overpigmented thallus mediated by the melanin pathway. Overexpression of PaAflR also led to sterility. Interspecific confrontation assays showed that ST-overexpressed strains produced a high level of peroxides and possessed a higher competitiveness against other fungi. Comparative metabolite profiling demonstrated that PaStcAΔ strain was unable to produce ST, while OE-PaAflR displayed a ST overproduction. This study contributes to a better understanding of ST in P. anserina, especially with regard to its involvement in fungal physiology.
Collapse
Affiliation(s)
- Ling Shen
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Diderot, UMR 8236, 75205, Paris, France
| | - François-Hugues Porée
- Laboratoire de Pharmacognosie, Faculté de Pharmacie de Paris, Université de Paris, Université Paris Descartes, UMR CNRS CITCOM 8038, 75006, Paris, France
| | - Thomas Gaslonde
- Laboratoire de Pharmacognosie, Faculté de Pharmacie de Paris, Université de Paris, Université Paris Descartes, UMR CNRS CITCOM 8038, 75006, Paris, France
| | - Hervé Lalucque
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Diderot, UMR 8236, 75205, Paris, France
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Descartes, UMR 8236, 75205, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Descartes, UMR 8236, 75205, Paris, France
| |
Collapse
|
25
|
Villani A, Proctor RH, Kim HS, Brown DW, Logrieco AF, Amatulli MT, Moretti A, Susca A. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 2019; 20:314. [PMID: 31014248 PMCID: PMC6480918 DOI: 10.1186/s12864-019-5567-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/25/2019] [Indexed: 11/29/2022] Open
Abstract
Background The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. Results We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. Conclusion Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters. Electronic supplementary material The online version of this article (10.1186/s12864-019-5567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Robert H Proctor
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Hye-Seon Kim
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Daren W Brown
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Maria Teresa Amatulli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.,Thales Alenia Space Italia, Torino, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
26
|
Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger S, Diana Di Mavungu J. Secondary Metabolite Dereplication and Phylogenetic Analysis Identify Various Emerging Mycotoxins and Reveal the High Intra-Species Diversity in Aspergillus flavus. Front Microbiol 2019; 10:667. [PMID: 31024476 PMCID: PMC6461017 DOI: 10.3389/fmicb.2019.00667] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is one of the most important mycotoxigenic species from the genus Aspergillus, due to its ability to synthesize the potent hepatocarcinogen, aflatoxin B1. Moreover, this fungus is capable of producing several other toxic metabolites from the class of indole-tetramates, non-ribosomal peptides, and indole-diterpenoids. Populations of A. flavus are characterized by considerable diversity in terms of morphological, functional and genetic features. Although for many years A. flavus was considered an asexual fungus, researchers have shown evidence that at best these fungi can exhibit a predominantly asexual existence. We now know that A. flavus contains functional genes for mating, uncovering sexuality as potential contributor for its diversification. Based on our results, we reconfirm that A. flavus is a predominant producer of B-type aflatoxins. Moreover, this fungus can decisively produce AFM1 and AFM2. We did not observe any clear relationship between mating-type genes and particular class of metabolites, probably other parameters such as sexual/asexual ratio should be investigated. A dynamic secondary metabolism was found also in strains intended to be used as biocontrol agents. In addition we succeeded to provide mass spectrometry fragmentation spectra for the most important classes of A. flavus metabolites, which will serve as identification cards for future studies. Both, metabolic and phylogenetic analysis proved a high intra-species diversity for A. flavus. These findings contribute to our understanding about the diversity of Aspergillus section Flavi species, raising the necessity for polyphasic approaches (morphological, metabolic, genetic, etc.) when dealing with this type of complex group of species.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo†
| | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA, United States
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, Murcia, Spain
| | - Dashnor Nebija
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo†
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Abstract
One of the exciting movements in microbial sciences has been a refocusing and revitalization of efforts to mine the fungal secondary metabolome. The magnitude of biosynthetic gene clusters (BGCs) in a single filamentous fungal genome combined with the historic number of sequenced genomes suggests that the secondary metabolite wealth of filamentous fungi is largely untapped. Mining algorithms and scalable expression platforms have greatly expanded access to the chemical repertoire of fungal-derived secondary metabolites. In this Review, I discuss new insights into the transcriptional and epigenetic regulation of BGCs and the ecological roles of fungal secondary metabolites in warfare, defence and development. I also explore avenues for the identification of new fungal metabolites and the challenges in harvesting fungal-derived secondary metabolites.
Collapse
|
28
|
Feurtey A, Stukenbrock EH. Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annu Rev Microbiol 2018; 72:377-398. [DOI: 10.1146/annurev-micro-090817-062753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
| | - Eva H. Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
29
|
Couger B, Weirick T, Damásio ARL, Segato F, Polizeli MDLTDM, de Almeida RSC, Goldman GH, Prade RA. The Genome of a Thermo Tolerant, Pathogenic Albino Aspergillus fumigatus. Front Microbiol 2018; 9:1827. [PMID: 30154766 PMCID: PMC6102483 DOI: 10.3389/fmicb.2018.01827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
Biotechnologists are interested in thermo tolerant fungi to manufacture enzymes active and stable at high temperatures, because they provide improved catalytic efficiency, strengthen enzyme substrate interactions, accelerate substrate enzyme conversion rates, enhance mass transfer, lower substrate viscosity, lessen contamination risk and offer the potential for enzyme recycling. Members of the genus Aspergillus live a wide variety of lifestyles, some embrace GRAS status routinely employed in food processing while others such as Aspergillus fumigatus are human pathogens. A. fumigatus produces melanins, pyomelanin protects the fungus against reactive oxygen species and DHN melanin produced by the pksP gene cluster confers the gray-greenish color. pksP mutants are attenuated in virulence. Here we report on the genomic DNA sequence of a thermo tolerant albino Aspergillus isolated from rain forest composted floors. Unexpectedly, the nucleotide sequence was 95.7% identical to the reported by Aspergillus fumigatus Af293. Genome size and predicted gene models were also highly similar, however differences in DNA content and conservation were observed. The albino strain, classified as Aspergillus fumigatus var. niveus, had 160 gene models not present in A. fumigatus Af293 and A. fumigatus Af293 had 647 not found in the albino strain. Furthermore, the major pigment generating gene cluster pksP appeared to have undergone genomic rearrangements and a key tyrosinase present in many aspergilli was missing from the genome. Remarkably however, despite the lack of pigmentation A. fumigatus var. niveus killed neutropenic mice and survived macrophage engulfment at similar rates as A. fumigatus Af293.
Collapse
Affiliation(s)
- Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Tyler Weirick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - André R. L. Damásio
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| | - Fernando Segato
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Departamento de Biotecnologia da Escola de Engenharia de Lorena, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Gustavo H. Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, São Paulo, Brazil
| | - Rolf A. Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| |
Collapse
|
30
|
Abstract
Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum, we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi, we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium, we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks.IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments.
Collapse
|
31
|
Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen XX, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P. Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 2018; 7:33034. [PMID: 29648535 PMCID: PMC5897096 DOI: 10.7554/elife.33034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fructophily is a rare trait that consists of the preference for fructose over other carbon sources. Here, we show that in a yeast lineage (the Wickerhamiella/Starmerella, W/S clade) comprised of fructophilic species thriving in the high-sugar floral niche, the acquisition of fructophily is concurrent with a wider remodeling of central carbon metabolism. Coupling comparative genomics with biochemical and genetic approaches, we gathered ample evidence for the loss of alcoholic fermentation in an ancestor of the W/S clade and subsequent reinstatement through either horizontal acquisition of homologous bacterial genes or modification of a pre-existing yeast gene. An enzyme required for sucrose assimilation was also acquired from bacteria, suggesting that the genetic novelties identified in the W/S clade may be related to adaptation to the high-sugar environment. This work shows how even central carbon metabolism can be remodeled by a surge of HGT events. Cells build their components, such as the molecular machinery that helps them obtain energy from their environment, by following the instructions contained in genes. This genetic information is usually transferred from parents to offspring. Over the course of several generations, genes can accumulate small changes and the molecules they code for can acquire new roles: yet, this process is normally slow. However, certain organisms can also obtain completely new genes by ‘stealing’ them from other species. For example, yeasts, such as the ones used to make bread and beer, can take genes from nearby bacteria. This ‘horizontal gene transfer’ helps organisms to rapidly gain new characteristics, which is particularly useful if the environment changes quickly. One way that yeasts get the energy they need is by breaking down sugars through a process called alcoholic fermentation. To do this, most yeast species prefer to use a sugar called glucose, but a small group of ‘fructophilic’ species instead favors a type of sugar known as fructose. Scientists do not know exactly how fructophilic yeasts came to be, but there is some evidence horizontal gene transfers may have been involved in the process. Now, Gonçalves et al. have compared the genetic material of fructophilic yeasts with that of other groups of yeasts . Comparing genetic material helps scientists identify similarities and differences between species, and gives clues about why specific genetic features first evolved. The experiments show that, early in their history, fructophilic yeasts lost the genes that allowed them to do alcoholic fermentation, probably since they could obtain energy in a different way. However, at a later point in time, these yeasts had to adapt to survive in flower nectar, an environment rich in sugar. They then favored fructose as their source of energy, possibly because this sugar can compensate more effectively for the absence of alcoholic fermentation. Later, the yeasts acquired a gene from nearby bacteria, which allowed them to do alcoholic fermentation again: this improved their ability to use the other sugars present in flower nectars. When obtaining energy, yeasts and other organisms produce substances that are relevant to industry. Studying natural processes of evolution can help scientists understand how organisms can change the way they get their energy and adapt to new challenges. In turn, this helps to engineer yeasts into ‘cell factories’ that produce valuable chemicals in environmentally friendly and cost-effective ways.
Collapse
Affiliation(s)
- Carla Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Purdue Center for Plant Biology, Purdue University, West Lafayette, United States
| | - Jacek Kominek
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Madalena Salema Oom
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Maria José Leandro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.,LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia (UB), Lisboa, Portugal
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Dana A Opulente
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - David Peris
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
32
|
Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog 2018; 14:e1006946. [PMID: 29649280 PMCID: PMC5897003 DOI: 10.1371/journal.ppat.1006946] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. Toxins produced by pathogens can contribute to infection and/or colonization of hosts. Some toxins consist of a family of metabolites with similar but distinct chemical structures. This structural variation can affect biological activity, which in turn likely contributes to adaptation to different environments, including to different hosts. Trichothecene toxins consist of over 150 structurally distinct molecules produced by certain fungi, including some plant and insect pathogens. In multiple systems that have been examined, trichothecenes contribute to pathogenesis on plants. To elucidate the evolutionary processes that have given rise to trichothecene structural variation, we conducted comparative analyses of nine fungal genera, most of which produce different trichothecene structures. Using genomic, molecular biology, phylogenetic, and analytical chemistry approaches, we obtained evidence that trichothecene structural variation has arisen primarily from gain, loss, and functional changes of trichothecene biosynthetic genes. Our results also indicate that some structural changes have arisen independently in different fungi. Our findings provide insight into genetic and biochemical changes that can occur in toxin biosynthetic pathways as fungi with the pathways adapt to different environmental conditions.
Collapse
|
33
|
Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci U S A 2017; 114:E11121-E11130. [PMID: 29229817 DOI: 10.1073/pnas.1714381115] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial natural products remain an important source of new medicines. DNA sequencing has revealed that a majority of natural product biosynthetic gene clusters (BGCs) maintained in bacterial genomes have yet to be linked to the small molecules whose biosynthesis they encode. Efforts to discover the products of these orphan BGCs are driving the development of genome mining techniques based on the premise that many are transcriptionally silent during normal laboratory cultivation. Here, we employ comparative transcriptomics to assess BGC expression among four closely related strains of marine bacteria belonging to the genus Salinispora The results reveal that slightly more than half of the BGCs are expressed at levels that should facilitate product detection. By comparing the expression profiles of similar gene clusters in different strains, we identified regulatory genes whose inactivation appears linked to cluster silencing. The significance of these subtle differences between expressed and silent BGCs could not have been predicted a priori and was only revealed by comparative transcriptomics. Evidence for the conservation of silent clusters among a larger number of strains for which genome sequences are available suggests they may be under different regulatory control from the expressed forms or that silencing may represent an underappreciated mechanism of gene cluster evolution. Coupling gene expression and metabolomics data established a bioinformatic link between the salinipostins and their associated BGC, while genetic manipulation established the genetic basis for this series of compounds, which were previously unknown from Salinispora pacifica.
Collapse
|
34
|
Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 2017; 15:e2003583. [PMID: 29149178 PMCID: PMC5711037 DOI: 10.1371/journal.pbio.2003583] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/01/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns. All organisms produce metabolites, which are small molecules important for growth, reproduction, and other essential functions. Some organisms, including fungi, plants, and bacteria, make specialized forms of metabolites known as “secondary” metabolites that are ecologically important and improve their producers’ chances of survival and reproduction. In fungi, the genes in pathways that synthesize secondary metabolites are typically located next to each other in the genome and organized in contiguous gene clusters. These gene clusters, along with the metabolites they produce, are highly distinct, even between otherwise similar fungi, and it is often difficult to reconstruct how these differences evolved. To understand how secondary metabolic pathways evolve in fungi, we compared secondary metabolic gene clusters in 66 strains of one species of filamentous fungus, the human pathogen Aspergillus fumigatus. We show that these gene clusters vary extensively within this species, and describe the genetic processes that cause these differences. We identify 5 types of variants: single nucleotide changes, gene and gene cluster gain and loss, different gene clusters at the same genomic position, and mobile gene clusters that “jump” around the genome. These results provide a road map to the types and frequencies of genomic changes underlying the extensive diversity of fungal secondary metabolites.
Collapse
Affiliation(s)
- Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer H. Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Catarina Lameiras
- Department of Microbiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Philipp Wiemann
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan M. Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B′s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
36
|
|
37
|
Letzel AC, Li J, Amos GCA, Millán-Aguiñaga N, Ginigini J, Abdelmohsen UR, Gaudêncio SP, Ziemert N, Moore BS, Jensen PR. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 2017; 19:3660-3673. [PMID: 28752948 DOI: 10.1111/1462-2920.13867] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jing Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Gregory C A Amos
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California 22800, Mexico
| | - Joape Ginigini
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Susana P Gaudêncio
- Department of Chemistry, REQUIMTE, LAQV and UCIBIO, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica 2529-516, Portugal
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Interfaculty Institute of Microbiology and Infection Medicine Tuübingen, University of Tuübingen, Auf der Morgenstelle 28, Tuübingen 72076, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0036-2016. [PMID: 28820115 PMCID: PMC11687519 DOI: 10.1128/microbiolspec.funk-0036-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
The fungal lineage is one of the three large eukaryotic lineages that dominate terrestrial ecosystems. They share a common ancestor with animals in the eukaryotic supergroup Opisthokonta and have a deeper common ancestry with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among all living organisms. This article provides an overview of some of the most important fungal traits, how they evolve, and what major genes and gene families contribute to their development. The traits highlighted here represent just a sample of the characteristics that have evolved in fungi, including polarized multicellular growth, fruiting body development, dimorphism, secondary metabolism, wood decay, and mycorrhizae. However, a great number of other important traits also underlie the evolution of the taxonomically and phenotypically hyperdiverse fungal kingdom, which could fill up a volume on its own. After reviewing the evolution of these six well-studied traits in fungi, we discuss how the recurrent evolution of phenotypic similarity, that is, convergent evolution in the broad sense, has shaped their phylogenetic distribution in extant species.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Enikő Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Jason Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
39
|
Sbaraini N, Andreis FC, Thompson CE, Guedes RLM, Junges Â, Campos T, Staats CC, Vainstein MH, Ribeiro de Vasconcelos AT, Schrank A. Genome-Wide Analysis of Secondary Metabolite Gene Clusters in O phiostoma ulmi and Ophiostoma novo-ulmi Reveals a Fujikurin-Like Gene Cluster with a Putative Role in Infection. Front Microbiol 2017; 8:1063. [PMID: 28659888 PMCID: PMC5468452 DOI: 10.3389/fmicb.2017.01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp.) in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi), along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs) have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8) was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus’ lifestyle.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Fábio C Andreis
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Claudia E Thompson
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Rafael L M Guedes
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Ângela Junges
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Thais Campos
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Charley C Staats
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilene H Vainstein
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ana T Ribeiro de Vasconcelos
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Augusto Schrank
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
40
|
Reynolds HT, Slot JC, Divon HH, Lysøe E, Proctor RH, Brown DW. Differential Retention of Gene Functions in a Secondary Metabolite Cluster. Mol Biol Evol 2017; 34:2002-2015. [DOI: 10.1093/molbev/msx145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Druzhinina IS, Kubicek EM, Kubicek CP. Several steps of lateral gene transfer followed by events of 'birth-and-death' evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evol Biol 2016; 16:269. [PMID: 28010735 PMCID: PMC5182515 DOI: 10.1186/s12862-016-0834-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background Sorbicillinoids are a family of complex cyclic polyketides produced by only a small number of distantly related ascomycete fungi such as Trichoderma (Sordariomycetes) and Penicillium (Eurotiomycetes). In T. reesei, they are synthesized by a gene cluster consisting of eight genes including two polyketide synthases (PKS). To reconstruct the evolutionary origin of this gene cluster, we examined the occurrence of these eight genes in ascomycetes. Results A cluster comprising at least six of them was only found in Hypocreales (Acremonium chrysogenum, Ustilaginoidea virens, Trichoderma species from section Longibrachiatum) and in Penicillium rubens (Eurotiales). In addition, Colletotrichum graminicola contained the two pks (sor1 and sor2), but not the other sor genes. A. chrysogenum was the evolutionary eldest species in which sor1, sor2, sor3, sor4 and sor6 were present. Sor5 was gained by lateral gene transfer (LGT) from P. rubens. In the younger Hypocreales (U. virens, Trichoderma spp.), the cluster evolved by vertical transfer, but sor2 was lost and regained by LGT from C. graminicola. SorB (=sor2) and sorD (=sor4) were symplesiomorphic in P. rubens, whereas sorA, sorC and sorF were obtained by LGT from A. chrysogenum, and sorE by LGT from Pestalotiopsis fici (Xylariales). The sorbicillinoid gene cluster in Trichoderma section Longibrachiatum is under strong purifying selection. The T. reesei sor genes are expressed during fast vegetative growth, during antagonism of other fungi and regulated by the secondary metabolism regulator LAE1. Conclusions Our findings pinpoint the evolution of the fungal sorbicillinoid biosynthesis gene cluster. The core cluster arose in early Hypocreales, and was complemented by LGT. During further speciation in the Hypocreales, it became subject to birth and death evolution in selected lineages. In P. rubrens (Eurotiales), two cluster genes were symplesiomorphic, and the whole cluster formed by LGT from at least two different fungal donors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0834-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Eva M Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Wien, Austria
| | - Christian P Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria. .,, Present address: Steinschötelgasse 7, 1100, Wien, Austria.
| |
Collapse
|
42
|
Sbaraini N, Guedes RLM, Andreis FC, Junges Â, de Morais GL, Vainstein MH, de Vasconcelos ATR, Schrank A. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics 2016; 17:736. [PMID: 27801295 PMCID: PMC5088523 DOI: 10.1186/s12864-016-3067-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). Results Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. Conclusions Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Fábio Carrer Andreis
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Junges
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Loss de Morais
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Marilene Henning Vainstein
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Augusto Schrank
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil. .,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Sun B, Li T, Xiao J, Liu L, Zhang P, Murphy RW, He S, Huang D. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis. Front Microbiol 2016; 7:1360. [PMID: 27630622 PMCID: PMC5005798 DOI: 10.3389/fmicb.2016.01360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023] Open
Abstract
Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.
Collapse
Affiliation(s)
- Baofa Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Tong Li
- Key Laboratory of Crop Pests Control of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences Zhengzhou, China
| | - Jinhua Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Li Liu
- Network & Information Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Peng Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Robert W Murphy
- Department of Natural History, Royal Ontario Museum Toronto, ON, Canada
| | - Shunmin He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Dawei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
44
|
Boto L. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer. J Biosci 2016; 40:465-72. [PMID: 25963270 DOI: 10.1007/s12038-015-9514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.
Collapse
Affiliation(s)
- Luis Boto
- Departamento de Biodiversidad y Biologia Evolutiva, Museo Nacional Ciencias Naturales, CSIC, C/ Jose Gutierrez Abascal 2, 28006, Madrid, Spain,
| |
Collapse
|
45
|
Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proc Natl Acad Sci U S A 2016; 113:4116-21. [PMID: 27035945 DOI: 10.1073/pnas.1517242113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Horizontal gene transfer (HGT) among bacteria, archaea, and viruses is widespread, but the extent of transfers from these lineages into eukaryotic organisms is contentious. Here we systematically identify hundreds of genes that were likely acquired horizontally from a variety of sources by the early-diverging fungal phyla Microsporidia and Cryptomycota. Interestingly, the Microsporidia have acquired via HGT several genes involved in nucleic acid synthesis and salvage, such as those encoding thymidine kinase (TK), cytidylate kinase, and purine nucleotide phosphorylase. We show that these HGT-derived nucleic acid synthesis genes tend to function at the interface between the metabolic networks of the host and pathogen. Thus, these genes likely play vital roles in diversifying the useable nucleic acid components available to the intracellular parasite, often through the direct capture of resources from the host. Using an in vivo viability assay, we also demonstrate that one of these genes, TK, encodes an enzyme that is capable of activating known prodrugs to their active form, which suggests a possible treatment route for microsporidiosis. We further argue that interfacial genes with well-understood activities, especially those horizontally transferred from bacteria or viruses, could provide medical treatments for microsporidian infections.
Collapse
|
46
|
Staehlin BM, Gibbons JG, Rokas A, O'Halloran TV, Slot JC. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria. Genome Biol Evol 2016; 8:811-26. [PMID: 26893455 PMCID: PMC4824010 DOI: 10.1093/gbe/evw031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens.
Collapse
Affiliation(s)
- Benjamin M Staehlin
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - John G Gibbons
- Department of Biological Sciences, Vanderbilt University Present address: Biology Department, Clark University, Worcester, MA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| | - Thomas V O'Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus
| |
Collapse
|
47
|
Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 2016; 89:37-51. [PMID: 26826610 DOI: 10.1016/j.fgb.2016.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi.
Collapse
|
48
|
Donzelli B, Krasnoff S. Molecular Genetics of Secondary Chemistry in Metarhizium Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:365-436. [DOI: 10.1016/bs.adgen.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Nguyen M, Ekstrom A, Li X, Yin Y. HGT-Finder: A New Tool for Horizontal Gene Transfer Finding and Application to Aspergillus genomes. Toxins (Basel) 2015; 7:4035-53. [PMID: 26473921 PMCID: PMC4626719 DOI: 10.3390/toxins7104035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022] Open
Abstract
Horizontal gene transfer (HGT) is a fast-track mechanism that allows genetically unrelated organisms to exchange genes for rapid environmental adaptation. We developed a new phyletic distribution-based software, HGT-Finder, which implements a novel bioinformatics algorithm to calculate a horizontal transfer index and a probability value for each query gene. Applying this new tool to the Aspergillus fumigatus, Aspergillus flavus, and Aspergillus nidulans genomes, we found 273, 542, and 715 transferred genes (HTGs), respectively. HTGs have shorter length, higher guanine-cytosine (GC) content, and relaxed selection pressure. Metabolic process and secondary metabolism functions are significantly enriched in HTGs. Gene clustering analysis showed that 61%, 41% and 74% of HTGs in the three genomes form physically linked gene clusters (HTGCs). Overlapping manually curated, secondary metabolite gene clusters (SMGCs) with HTGCs found that 9 of the 33 A. fumigatus SMGCs and 31 of the 65 A. nidulans SMGCs share genes with HTGCs, and that HTGs are significantly enriched in SMGCs. Our genome-wide analysis thus presented very strong evidence to support the hypothesis that HGT has played a very critical role in the evolution of SMGCs. The program is freely available at http://cys.bios.niu.edu/HGTFinder/ HGTFinder.tar.gz.
Collapse
Affiliation(s)
- Marcus Nguyen
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115-2857, USA.
| | - Alex Ekstrom
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115-2857, USA.
| | - Xueqiong Li
- Department of Biological Sciences, Northern Illinois University, Montgomery Hall 325A, DeKalb, IL 60115-2857, USA.
- College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China.
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, Montgomery Hall 325A, DeKalb, IL 60115-2857, USA.
| |
Collapse
|
50
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|