1
|
Naz T, Zhao XY, Li S, Saeed T, Ullah S, Nazir Y, Liu Q, Mohamed H, Song Y. The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159592. [PMID: 39733936 DOI: 10.1016/j.bbalip.2024.159592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11. Individual overexpression of sre1 yielded 32.5 % lipids and 21 g/L biomass, while ampk-α1 deletion combined with sre1 overexpression yielded 42.5 % lipids and 25 g/L biomass in mutant strains. This increase correlated with upregulated expression of key lipogenic genes and enzyme activity, enhancing lipid production and biomass. These surges were correlated with the increased mRNA levels of key genes (acl, acc1, acc2, cme1, fas1, g6pdh1, g6pdh2 and 6pgdh2). Enzyme activity analysis further showed that upregulation of ACL, ACC, ME, FAS, G6PDH and 6PGDH might provide more precursors and NADPH for lipid biosynthesis in sre1 overexpressing strains. Conversely, the activities of these genes and enzymes were markedly downregulated in sre1 deleted mutants consistent with lower lipid production and biomass than the control. These findings open new avenues for research by exploring the coordinated role of sre1 and ampk-α1 in lipid metabolism in M. circinelloides.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Tariq Saeed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad 45750, Pakistan.
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
2
|
Ruther J, Hoheneder J, Koschany V. Lipogenesis in Nasonia vitripennis: Influence of sugar chemistry, preferential production of triacylglycerides, and comparison of fatty acid biosynthetic capacity with Drosophilamelanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104179. [PMID: 39214243 DOI: 10.1016/j.ibmb.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sugar consumption increases the fecundity and longevity in many species of parasitic wasps (parasitoids) but whether these insects use sugars to synthesize significant amounts of fatty acids and storage fat de novo (lipogenesis) is discussed controversially. It has long been assumed that parasitic wasps lost this ability during evolution, mainly because in several species wasps with ad libitum access to sugar did not increase teneral lipid levels. Recent studies demonstrated that many species are nonetheless capable of synthesizing fatty acids de novo from glucose. It is unclear, however, whether also other sugars are used for fatty acid biosynthesis and whether an increase of sugar concentration to levels occurring in natural sugar sources translates into higher fatty acid production. Furthermore, it has been suggested that fatty acid production in parasitoids is negligible compared to species increasing teneral fat reserves such as Drosophila melanogaster. Here we show by stable isotope labeling experiments that females of Nasonia vitripennis convert D-glucose, D-fructose, sucrose, and α,α-trehalose, major sugars consumed by adult parasitoids in nature, equally well to palmitic, stearic, oleic, and linoleic acid. Lipogenesis from D-galactose occurs as well albeit to a lesser extent. Sugar concentration is crucial for lipogenic activity, and almost 80% of de novo synthesized fatty acids were incorporated into storage fat (triacylglycerides). Comparison of fatty acid biosynthesis within a 48-h feeding period with D. melanogaster revealed that N. vitripennis produced approximately half as many fatty acids per body mass unit. Both species fed equal amounts of the glucose offered. We conclude that lipogenesis is far from negligible in N. vitripennis and plays an important role for the energy balance when teneral lipid reserves deplete.
Collapse
Affiliation(s)
- Joachim Ruther
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Julian Hoheneder
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Vera Koschany
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Ye X, Yang Y, Zhao X, Fang Q, Ye G. The state of parasitoid wasp genomics. Trends Parasitol 2024; 40:914-929. [PMID: 39227194 DOI: 10.1016/j.pt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Parasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes. Here, we summarize recent progress in parasitoid wasp genomics, focusing on the evolution of genome size (GS) and the genomic basis of several key traits. We also discuss the contributions of genomics in studying venom evolution and endogenization of viruses. Finally, we advocate for increased sequencing and functional research to better understand parasitoid biology and enhance biological control.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
5
|
Dai M, Jiang Z, Li F, Wei J, Li B. A parasitoid regulates 20E synthesis and antibacterial activity of the host for development by inducing host nitric oxide production. INSECT MOLECULAR BIOLOGY 2024; 33:206-217. [PMID: 38180144 DOI: 10.1111/imb.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Parasitoids are important components of the natural enemy guild in the biological control of insect pests. They depend on host resources to complete the development of a specific stage or whole life cycle and thus have evolved towards optimal host exploitation strategies. In the present study, we report a specific survival strategy of a fly parasitoid Exorista sorbillans (Diptera: Tachinidae), which is a potential biological control agent for agricultural pests and a pest in sericulture. We found that the expression levels of nitric oxide synthase (NOS) and nitric oxide (NO) production in host Bombyx mori (Lepidoptera: Bombycidae) were increased after E. sorbillans infection. Reducing NOS expression and NO production with an NOS inhibitor (NG-nitro-L-arginine methyl ester hydrochloride) in infected B. mori significantly impeded the growth of E. sorbillans larvae. Moreover, the biosynthesis of 20-hydroxyecdysone (20E) in infected hosts was elevated with increasing NO production, and inhibiting NOS expression lowered 20E biosynthesis. More importantly, induced NO synthesis was required to eliminate intracellular bacterial pathogens that presumably competed for shared host resources. Inhibiting NOS expression down-regulated the transcription of antimicrobial peptide genes and increased the number of bacteria in parasitized hosts. Collectively, this study revealed a new perspective on the role of NO in host-parasitoid interactions and a novel mechanism for parasitoid regulation of host physiology to support its development.
Collapse
Affiliation(s)
- Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Gulinuer A, Xing B, Yang L. Host Transcriptome Analysis of Spodoptera frugiperda Larvae Parasitized by Microplitis manilae. INSECTS 2023; 14:insects14020100. [PMID: 36835669 PMCID: PMC9966743 DOI: 10.3390/insects14020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 05/12/2023]
Abstract
It has been extensively found that parasitoids manipulate host physiology to benefit the survival and development of their offspring. However, the underlying regulatory mechanisms have not received much attention. To reveal the effects of parasitization of the larval solitary endoparasitoid Microplitis manilae (Hymenoptera: Braconidae) on host Spodoptera frugiperda (Lepidoptera: Noctuidae), one of the most destructive agricultural pests in China, deep-sequencing-based transcriptome analysis was conducted to compare the host gene expression levels after 2 h, 24 h, and 48 h parasitization. A total of 1861, 962, and 108 differentially expressed genes (DEGs) were obtained from the S. frugiperda larvae at 2 h, 24 h, and 48 h post-parasitization, respectively, compared with unparasitized controls. The changes in host gene expressions were most likely caused by the injection of wasp parasitic factors, including PDVs, that were injected along with the eggs during oviposition. Based on the functional annotations in GO and KEGG databases, we revealed that most DEGs were implicated in host metabolism and immunity. Further analysis of the common DEGs in three comparisons between the unparasitized and parasitized groups identified four genes, including one unknown and three prophenoloxidase (PPO) genes. Moreover, 46 and 7 common DEGs involved in host metabolism and immunity were identified at two or three time points after parasitization, respectively. Among these, most DEGs showed increased expressions at 2 h post-wasp parasitization while exhibiting significantly decreased expression levels at 24 h post-parasitization, demonstrating the expression regulations of M. manilae parasitization on host metabolism and immune-related genes. Further qPCR verification in 20 randomly selected DEGs confirmed the accuracy and reproducibility of the gene expression profiles generated from RNA-seq. This study reveals the molecular regulatory network about how host insects respond to wasp parasitism, laying a solid foundation for revealing the physiological manipulation of wasp parasitization on host insects, which facilitates the development of biological control practices for parasitoids.
Collapse
Affiliation(s)
- Ahamaijiang Gulinuer
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
| | - Binglin Xing
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
| | - Lei Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
- Correspondence:
| |
Collapse
|
7
|
Quicray M, Wilhelm L, Enriquez T, He S, Scheifler M, Visser B. The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution. Ecol Evol 2023; 13:e9625. [PMID: 36703713 PMCID: PMC9871341 DOI: 10.1002/ece3.9625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.
Collapse
Affiliation(s)
- Maude Quicray
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Shulin He
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| |
Collapse
|
8
|
Visser B, Le Lann C, Hahn DA, Lammers M, Nieberding CM, Alborn HT, Enriquez T, Scheifler M, Harvey JA, Ellers J. Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100055. [PMID: 37124650 PMCID: PMC10139962 DOI: 10.1016/j.cris.2023.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fat reserves, specifically the accumulation of triacylglycerols, are a major energy source and play a key role for life histories. Fat accumulation is a conserved metabolic pattern across most insects, yet in most parasitoid species adults do not gain fat mass, even when nutrients are readily available and provided ad libitum. This extraordinary physiological phenotype has evolved repeatedly in phylogenetically dispersed parasitoid species. This poses a conundrum because it could lead to significant constraints on energy allocation toward key adult functions such as survival and reproduction. Recent work on the underlying genetic and biochemical mechanisms has spurred a debate on fat accumulation versus fat production, because of incongruent interpretation of results obtained using different methodologies. This debate is in part due to semantics, highlighting the need for a synthetic perspective on fat accumulation that reconciles previous debates and provides new insights and terminology. In this paper, we propose updated, unambiguous terminology for future research in the field, including "fatty acid synthesis" and "lack of adult fat accumulation", and describe the distinct metabolic pathways involved in the complex process of lipogenesis. We then discuss the benefits and drawbacks of the main methods available to measure fatty acid synthesis and adult fat accumulation. Most importantly, gravimetric/colorimetric and isotope tracking methods give complementary information, provided that they are applied with appropriate controls and interpreted correctly. We also compiled a comprehensive list of fat accumulation studies performed during the last 25 years. We present avenues for future research that combine chemistry, ecology, and evolution into an integrative approach, which we think is needed to understand the dynamics of fat accumulation in parasitoids.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Corresponding author.
| | - Cécile Le Lann
- CNRS, ECOBIO (écosystèmes, Biodiversité, Évolution) – UMR, Université de Rennes, 6553, France
| | - Daniel A. Hahn
- Department of Entomology and Nematology, The University of Florida, USA
| | - Mark Lammers
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | - Hans T. Alborn
- United States Department of Agriculture, Chemistry Research Unit, Gainesville, USA
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, the Netherlands
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
9
|
Li S, Yang J, Mohamed H, Wang X, Pang S, Wu C, López-García S, Song Y. Identification and Functional Characterization of Adenosine Deaminase in Mucor circinelloides: A Novel Potential Regulator of Nitrogen Utilization and Lipid Biosynthesis. J Fungi (Basel) 2022; 8:jof8080774. [PMID: 35893142 PMCID: PMC9332508 DOI: 10.3390/jof8080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme distributed in a wide variety of organisms that cleaves adenosine into inosine. Since inosine plays an important role in nitrogen metabolism, ADA may have a critical function in the regulation of fatty acid synthesis. However, the role of ADA in oleaginous fungi has not been reported so far. Therefore, in this study, we identified one ada gene encoding ADA (with ID scaffold0027.9) in the high lipid-producing fungus, Mucor circinelloides WJ11, and investigated its role in cell growth, lipid production, and nitrogen metabolism by overexpressing and knockout of this gene. The results showed that knockout of the ada altered the efficiency of nitrogen consumption, which led to a 20% increment in the lipid content (25% of cell dry weight) of the engineered strain, while overexpression of the ada showed no significant differences compared with the control strain at the final growth stage; however, interestingly, it increased lipid accumulation at the early growth stage. Additionally, transcriptional analysis was conducted by RT-qPCR and our findings indicated that the deletion of ada activated the committed steps of lipid biosynthesis involved in acetyl-CoA carboxylase (acc1 gene), cytosolic malic acid enzyme (cme1 gene), and fatty acid synthases (fas1 gene), while it suppressed the expression of AMP-activated protein kinase (ampk α1 and ampk β genes), which plays a role in lipolysis, whereas the ada-overexpressed strain displayed reverse trends. Conclusively, this work unraveled a novel role of ADA in governing lipid biosynthesis and nitrogen metabolism in the oleaginous fungus, M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Sergio López-García
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 3100 Murcia, Spain;
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Correspondence: ; Tel.: +86-13964463099
| |
Collapse
|
10
|
Wang J, Song Y, Hwarari DT, Liang XH, Ding JH, Yan MW, Wu FA, Wang J, Sheng S. Fatty acid synthases and desaturases are essential for the biosynthesis of α-linolenic acid and metamorphosis in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2022; 78:2629-2642. [PMID: 35362207 DOI: 10.1002/ps.6895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND α-linolenic acid is an essential unsaturated fatty acid in organisms. However, there is a large gap between α-linolenic acid accumulation and its synthesis mechanism in insects. Fatty acid synthases (FASs) and desaturases (Desats) are vital enzymes required for the synthesis of unsaturated fatty acids. RESULTS The pupae of Glyphodes pyloalis (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees, contain the highest level of α-linolenic acid compared to other life-history stages. To further explore the synthesis mechanism of α-linolenic acid in G. pyloalis pupae, we constructed a pupal transcriptome dataset and identified 106 genes related to fatty acid metabolism from it. Among these, two fatty acid synthases (GpylFAS) and five desaturases (GpylDesat) were identified. A qRT-PCR validation revealed that GpylFAS1 and GpylDesat1, 2, 3, 5 were expressed highest at pupal stages. Furthermore, the content of α-linolenic acid decreased significantly after silencing GpylFAS1 and GpylDesat5, respectively. Besides, knocking down GpylFAS1 or GpylDesat5 resulted in more malformed pupae and adults, as well as lower emergence rates. Meanwhile, silencing GpylFAS1 or GpylDesat5 affected the expressions of the other GpylFASs and GpylDesats. CONCLUSION The present results illustrate the pivotal function of FASs and Desats in α-linolenic acid biosynthesis and metamorphosis in insects. Our research also broadens the sources of unsaturated fatty acids, especially for α-linolenic acid from insects, and provides novel insights for the management of mulberry insect pests from the perspective of utilization rather than control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Song
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Delight T Hwarari
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Liang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meng-Wen Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
11
|
Genome of the parasitoid wasp Cotesia chilonis sheds light on amino acid resource exploitation. BMC Biol 2022; 20:118. [PMID: 35606775 PMCID: PMC9128236 DOI: 10.1186/s12915-022-01313-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background A fundamental feature of parasitism is the nutritional exploitation of host organisms by their parasites. Parasitoid wasps lay eggs on arthropod hosts, exploiting them for nutrition to support larval development by using diverse effectors aimed at regulating host metabolism. However, the genetic components and molecular mechanisms at the basis of such exploitation, especially the utilization of host amino acid resources, remain largely unknown. To address this question, here, we present a chromosome-level genome assembly of the parasitoid wasp Cotesia chilonis and reconstruct its amino acid biosynthetic pathway. Results Analyses of the amino acid synthetic pathway indicate that C. chilonis lost the ability to synthesize ten amino acids, which was confirmed by feeding experiments with amino acid-depleted media. Of the ten pathways, nine are known to have been lost in the common ancestor of animals. We find that the ability to synthesize arginine was also lost in C. chilonis because of the absence of two key genes in the arginine synthesis pathway. Further analyses of the genomes of 72 arthropods species show that the loss of arginine synthesis is common in arthropods. Metabolomic analyses by UPLC-MS/MS reveal that the temporal concentrations of arginine, serine, tyrosine, and alanine are significantly higher in host (Chilo suppressalis) hemolymph at 3 days after parasitism, whereas the temporal levels of 5-hydroxylysine, glutamic acid, methionine, and lysine are significantly lower. We sequence the transcriptomes of a parasitized host and non-parasitized control. Differential gene expression analyses using these transcriptomes indicate that parasitoid wasps inhibit amino acid utilization and activate protein degradation in the host, likely resulting in the increase of amino acid content in host hemolymph. Conclusions We sequenced the genome of a parasitoid wasp, C. chilonis, and revealed the features of trait loss in amino acid biosynthesis. Our work provides new insights into amino acid exploitation by parasitoid wasps, and this knowledge can specifically be used to design parasitoid artificial diets that potentially benefit mass rearing of parasitoids for pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01313-3.
Collapse
|
12
|
Multerer MT, Wendler M, Ruther J. The biological significance of lipogenesis in Nasonia vitripennis. Proc Biol Sci 2022; 289:20220208. [PMID: 35414234 PMCID: PMC9006012 DOI: 10.1098/rspb.2022.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parasitic wasps have long been thought to be unable to synthesize fatty acids de novo, but recent 13C-labelling studies have challenged this view. It remained unclear, however, whether the reported biosynthesis rates are of biological relevance. Here, we show in Nasonia vitripennis that ageing females with partly depleted lipid reserves produce biologically relevant amounts of fatty acids de novo. Females with varying oviposition history (0-48 h) prior to feeding 20% 13C-labelled glucose solution showed 13C-incorporation rates of (mean ± SEM) 30 ± 2%, 50 ± 2%, 49 ± 3% and 21 ± 2% in palmitic, stearic, oleic and linoleic acid, respectively. The absolute amounts of fatty acids synthesized de novo across treatments corresponded to 28 ± 3 egg lipid equivalents. Females incorporated de novo synthesized fatty acids into their eggs, and glucose-fed females laid more eggs than water-fed control females. The number of eggs laid prior to glucose feeding did not correlate with the degree of lipogenesis, but the amounts of de novo synthesized fatty acids correlated with constitutive (not synthesized de novo) fatty acids. Hence, glucose feeding has a twofold effect on the fatty acid status of N. vitripennis females by decelerating the catabolism of existing fat reserves and partially replenishing ebbing fat reserves by lipogenesis.
Collapse
Affiliation(s)
- Marie-Theres Multerer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martina Wendler
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
14
|
Broschwitz B, Prager L, Pokorny T, Ruther J. De novo biosynthesis of linoleic acid is widespread in parasitic wasps. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21788. [PMID: 33817829 DOI: 10.1002/arch.21788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Linoleic acid (C18:2∆9,12 , LA) is an important metabolite with numerous essential functions for growth, health, and reproduction of organisms. It has long been assumed that animals lack ∆12-desaturases, the enzymes needed to produce LA from oleic acid (C18:1∆9 , OA). There is, however, increasing evidence that this is not generally true for invertebrates. In the insect order Hymenoptera, LA biosynthesis has been shown for only two parasitic wasp species of the so-called "Nasonia group," but it is unknown whether members of other taxa are also capable of synthesizing LA. Here, we demonstrate LA biosynthesis in 13 out of 14 species from six families of parasitic wasps by gas chromatography-mass spectrometry analysis using two different stable isotope labeling techniques. Females of the studied species converted topically applied fully 13 C-labeled OA into LA and/or produced labeled LA after feeding on fully 13 C-labeled α- d-glucose. These results indicate that ∆12-desaturases are widespread in parasitic Hymenoptera and confirm previous studies demonstrating that these insects are capable of synthesizing fatty acids de novo.
Collapse
Affiliation(s)
| | - Lorena Prager
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Ruther J, Prager L, Pokorny T. Parasitic wasps do not lack lipogenesis. Proc Biol Sci 2021; 288:20210548. [PMID: 34034524 PMCID: PMC8150038 DOI: 10.1098/rspb.2021.0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Fatty acids are crucial primary metabolites for virtually all creatures on earth. Most organisms thus do not rely exclusively on a nutritional supply containing fatty acids, but have the ability to synthesize fatty acids and triacylglycerides de novo from carbohydrates in a process called lipogenesis. The ubiquity of lipogenesis has been questioned by a series of studies reporting that many parasitic wasps (parasitoids) do not accumulate lipid mass despite having unlimited access to sugar. This has been interpreted as an evolutionary metabolic trait loss in parasitoids. Here, we demonstrate de novo biosynthesis of fatty acids from 13C-labelled α-d-glucose in 13 species of parasitoids from seven families. We furthermore show in the model organism Nasonia vitripennis that lipogenesis occurs even when lipid reserves are still intact, but relative 13C-incorporation rates increase in females with widely depleted fat reserves. We therefore conclude that the presumed 'lack of lipogenesis' in parasitoids needs to be re-evaluated.
Collapse
Affiliation(s)
- Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lorena Prager
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Visser B, Alborn HT, Rondeaux S, Haillot M, Hance T, Rebar D, Riederer JM, Tiso S, van Eldijk TJB, Weissing FJ, Nieberding CM. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic wasps. Sci Rep 2021; 11:7751. [PMID: 33833245 PMCID: PMC8032832 DOI: 10.1038/s41598-021-86736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023] Open
Abstract
Numerous cases of evolutionary trait loss and regain have been reported over the years. Here, we argue that such reverse evolution can also become apparent when trait expression is plastic in response to the environment. We tested this idea for the loss and regain of fat synthesis in parasitic wasps. We first show experimentally that the wasp Leptopilina heterotoma switches lipogenesis on in a fat-poor environment, and completely off in a fat-rich environment. Plasticity suggests that this species did not regain fat synthesis, but that it can be switched off in some environmental settings. We then compared DNA sequence variation and protein domains of several more distantly related parasitoid species thought to have lost lipogenesis, and found no evidence for non-functionality of key lipogenesis genes. This suggests that other parasitoids may also show plasticity of fat synthesis. Last, we used individual-based simulations to show that a switch for plastic expression can remain functional in the genome for thousands of generations, even if it is only used sporadically. The evolution of plasticity could thus also explain other examples of apparent reverse evolution.
Collapse
Affiliation(s)
- Bertanne Visser
- grid.7942.80000 0001 2294 713XEvolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Hans T. Alborn
- grid.417548.b0000 0004 0478 6311Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1600 SW 23rd Drive, Gainesville, FL 32608 USA
| | - Suzon Rondeaux
- grid.7942.80000 0001 2294 713XEvolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Manon Haillot
- grid.7942.80000 0001 2294 713XEvolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- grid.7942.80000 0001 2294 713XEcology of Interactions and Biological Control Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Darren Rebar
- grid.255525.00000 0001 0722 577XDepartment of Biological Sciences, Emporia State University, 1 Kellogg Circle, Campus Box 4050, Emporia, KS 66801 USA
| | - Jana M. Riederer
- grid.4830.f0000 0004 0407 1981Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Stefano Tiso
- grid.4830.f0000 0004 0407 1981Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Timo J. B. van Eldijk
- grid.4830.f0000 0004 0407 1981Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Franz J. Weissing
- grid.4830.f0000 0004 0407 1981Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Caroline M. Nieberding
- grid.7942.80000 0001 2294 713XEvolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Kryukova NA, Mozhaytseva KA, Rotskaya UN, Glupov VV. Galleria mellonella larvae fat body disruption (Lepidoptera: Pyralidae) caused by the venom of Habrobracon brevicornis (Hymenoptera: Braconidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21746. [PMID: 33026670 DOI: 10.1002/arch.21746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/22/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The ability of Habrobracon brevicornis venom to elevate the nutritional suitability of a host by affecting the host larvae fat body condition was studied. To understand whether H. brevicornis crude venom impacts the host biochemical profile, the concentrations of total lipids and main sugars in the host larvae lymph were analyzed. All measurements were carried out during the first 3 days after envenomation. A significant increase in the lipid level was fixed only on the second day after envenomation. A significant increase in the total trehalose count was detected during all 3 days, while a significant increase in glucose concentration was noted only on the first day. Well-observed disruptions were fixed in thin and semithin sections of the G. mellonella larval fat body starting from the second day after envenomation. Significant increases in both phospholipase A2 and C enzyme activity as well as acid proteases were detected in the wax moth fat body after envenomation during all experimental times. At the same time, imbalances in the antioxidant system, including changes in the activities of superoxide dismutase, peroxidases, catalase, and glutathione-S-transferase, were detected. The reliable increase in the expression of the gene encoding Hsp70 was fixed both for 24 and 48 h after envenomation, while a reliable increase in the expression of the gene encoding inhibitor of apoptosis protein was detected only 24 h after wax moth larvae envenomation. Considering the absence of DNA fragmentation, the imbalance in the "ROS/antioxidants" system, and the increased activity of phospholipases and acid proteases in the fat body cells from envenomated wax moth larvae, we can hypothesize that the fat body disruption occurs in a necrotic manner. The results of the work expand the knowledge about the biochemical aspects of interaction between ectoparasitoids and their hosts.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ksenia A Mozhaytseva
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ulyana N Rotskaya
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
19
|
Kaczmarek A, Wrońska AK, Kazek M, Boguś MI. Metamorphosis-related changes in the free fatty acid profiles of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830). Sci Rep 2020; 10:17337. [PMID: 33060748 PMCID: PMC7562915 DOI: 10.1038/s41598-020-74475-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
The flies of the Sarcophagidae, widespread throughout the temperate zone, are of great significance in Medicine, Veterinary science, Forensics and Entomotoxicology. Lipids are important elements of cell and organelle membranes and a source of energy for embryogenesis, metamorphosis and flight. Cuticular lipids protect from desiccation and act as recognition cues for species, nest mates and castes, and are a source of various pheromones. The free fatty acid (FFA) profile of cuticular and internal extracts of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830) larvae, pupae and adults was determined by gas chromatography-mass spectrometry (GC-MS). The larvae, pupae and adults contained FFAs from C5:0 to C28:0. The extracts differed quantitatively and qualitatively from each other: C18:1 > C16:1 > C16:0 > C18:0 predominated in the cuticular and internal extracts from the larvae and adults, while 18:1 > C16:0 > C16:1 > C18:0 predominated in the pupae. The FFA profile of the cuticle varies considerably between each development stage: C23:0 and C25:0 are only present in larvae, C28:0 in the pupal cuticle, and C12:1 and C18:3 in internal extracts from adults. The mechanisms underlying this diversity are discussed herein.
Collapse
Affiliation(s)
- Agata Kaczmarek
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Katarzyna Wrońska
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Michalina Kazek
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
20
|
Lipid Dynamics, Identification, and Expression Patterns of Fatty Acid Synthase Genes in an Endoparasitoid, Meteorus pulchricornis (Hymenoptera: Braconidae). Int J Mol Sci 2020; 21:ijms21176228. [PMID: 32872177 PMCID: PMC7503466 DOI: 10.3390/ijms21176228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
In insect parasitoids, fatty acid synthases (FASs) have received less attention and their roles associated with lipogenesis loss are far from clear. Meteorus pulchricornis is a solitary endoparasitoid wasp of many larvae of lepidopteran pests. The lipid content during developmental stages of M. pulchricornis was measured; it was higher in the larval and pupal stages but declined from six-day-old pupae. Lipid accumulation constantly decreased in the adult stage, even after feeding on honey solutions. To investigate the roles of FASs in lipid synthesis in M. pulchricornis, four FAS genes (MpulFAS1~4) were identified from the transcriptome database of M. pulchricornis. All FAS genes included full-length open reading frames and shared 72–79% similarity with the sequences of Microplitis demolitor. qRT-PCR validation showed that all four FASs had the highest expression after the adult wasps were fed on honey diets. MpulFAS1 and MpulFAS2 reached their expression peaks at the adult stage but MpulFAS3 and MpulFAS4 peaked at the larval stage. To further study the function of FASs, dsRNA injection knocked down the expression of four MpulFASs and resulted in a significant decline of lipid content at the adult stage in M. pulchricornis. Results from this study suggest that M. pulchricornis adults cannot accumulate lipid content effectively and FASs may still contribute to lipid synthesis in the adult stage. This broadens the knowledge on the ability of lipid synthesis in parasitoid wasps and provides insight into the roles of FASs in insects with parasitic life-history traits.
Collapse
|
21
|
Wu PX, Ma BX, Wu FM, Xu J, Zhang RZ. The endoparasitoid Psyllaephagus arenarius benefits from ectoparasitic venom via multiparasitism with the ectoparasitoid Tamarixia lyciumi. INSECT SCIENCE 2020; 27:815-825. [PMID: 31250982 DOI: 10.1111/1744-7917.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
As solitary nymphal parasitoids of Paratrioza sinica, the ectoparasitoid Tamarixia lyciumi and the endoparasitoid Psyllaephagus arenarius act as effective biocontrol agents. Thus, it is necessary to facilitate mass productions of both species. Despite showing an excellent parasitic ability, Ps. arenarius is often trapped fatally inside 5th-instar nymphs of Pa. sinica due to strong host immunity. To improve the emergence rate of Ps. arenarius, we evaluated whether Ps. arenarius could utilize T. lyciumi venom via multiparasitism, so the parasitism characteristics of both species were examined between separate-existence (monoparasitism only) and co-existence (mono- and multiparasitism) systems. Further, the parasitism characteristics of Ps. arenarius on venom-injected hosts with/without T. lyciumi eggs were tested to further identify the facilitator. The results showed the parasitism rate of T. lyciumi was increased while that of Ps. arenarius did not change from separate-existence to co-existence systems. The intrinsic performances of two species in monoparasitism did not differ between separate- and co-existence systems. From monoparasitism (separate-existence) to multiparasitism (co-existence), no differences were detected in the intrinsic performances of T. lyciumi, but those of Ps. arenarius were greatly improved. After T. lyciumi venom injection, the parasitism characteristics of Ps. arenarius did not differ between venom-injected hosts with T. lyciumi eggs and those without, further indicating Ps. arenarius benefited from the venom of T. lyciumi females rather than T. lyciumi egg/larval secretions. Instead of negative effects, multiparasitism with ectoparasitoids improves endoparasitoids due to ectoparasitic venom. The study increases host resource utilization and provides creative ways for mass production of endoparasitoids.
Collapse
Affiliation(s)
- Peng-Xiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Xu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Ming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Run-Zhi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wang J, Jin H, Schlenke T, Yang Y, Wang F, Yao H, Fang Q, Ye G. Lipidomics reveals how the endoparasitoid wasp Pteromalus puparum manipulates host energy stores for its young. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158736. [PMID: 32438058 DOI: 10.1016/j.bbalip.2020.158736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yi Yang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Prager L, Bruckmann A, Ruther J. De novo biosynthesis of fatty acids from α-D-glucose in parasitoid wasps of the Nasonia group. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103256. [PMID: 31655163 DOI: 10.1016/j.ibmb.2019.103256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Fatty acids are indispensable primary metabolites for virtually any organism on earth and thus enzymatic machinery enabling de novo production of fatty acids from carbohydrates is highly conserved. A series of studies has questioned the ubiquity of lipogenesis in parasitoid wasps suggesting that the vast majority of species have lost the ability to synthesize fatty acids de novo. One such species is Nasonia vitripennis, which, like the congeneric species N. giraulti and N. longicornis, uses a fatty acid-derived male sex pheromone for sexual communication. Here we demonstrate by feeding fully 13C-labeled α-D-glucose and analyzing insect-derived fatty acid methyl esters and the male sex pheromone by coupled gas chromatography/mass spectrometry that both males and females of N. vitripennis as well as N. giraulti and N. longicornis are capable of synthesizing fatty acids de novo. We furthermore show by a proteomics approach that predicted fatty acid synthase, ATP-citrate synthase, and acetyl-CoA carboxylase, key enzymes of lipogenesis, are expressed in the male pheromone gland of N. vitripennis and N. giraulti. Labeling experiments with Urolepis rufipes, a closely related species producing a male sex pheromone independently of fatty acids via the mevalonate pathway, revealed that both sexes are likewise able to synthesize fatty acids de novo. We conclude that the parasitoid wasp species studied here, irrespective of the biosynthetic origin of their sex pheromones, are capable of responding flexibly to lipid shortage during their adult life by keeping enzymatic machinery for lipogenesis running.
Collapse
Affiliation(s)
- Lorena Prager
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Astrid Bruckmann
- University of Regensburg, Institute of Biochemistry Genetics and Microbiology, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Joachim Ruther
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
24
|
Ellers J, Visser M, Mariën J, Kraaijeveld K, Lammers M. The Importance of Validating the Demethylating Effect of 5-aza-2'-deoxycytidine in Model Species (A Comment on Cook et al., "DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis"). Am Nat 2019; 194:422-431. [PMID: 31553212 DOI: 10.1086/704247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.
Collapse
|
25
|
Mair MM, Ruther J. Chemical Ecology of the Parasitoid Wasp Genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Lammers M, Kraaijeveld K, Mariën J, Ellers J. Gene expression changes associated with the evolutionary loss of a metabolic trait: lack of lipogenesis in parasitoids. BMC Genomics 2019; 20:309. [PMID: 31014246 PMCID: PMC6480896 DOI: 10.1186/s12864-019-5673-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Trait loss is a pervasive phenomenon in evolution, yet the underlying molecular causes have been identified in only a handful of cases. Most of these cases involve loss-of-function mutations in one or more trait-specific genes. However, in parasitoid insects the evolutionary loss of a metabolic trait is not associated with gene decay. Parasitoids have lost the ability to convert dietary sugars into fatty acids. Earlier research suggests that lack of lipogenesis in the parasitoid wasp Nasonia vitripennis is caused by changes in gene regulation. Results We compared transcriptomic responses to sugar-feeding in the non-lipogenic parasitoid species Nasonia vitripennis and the lipogenic Drosophila melanogaster. Both species adjusted their metabolism within 4 hours after sugar-feeding, but there were sharp differences between the expression profiles of the two species, especially in the carbohydrate and lipid metabolic pathways. Several genes coding for key enzymes in acetyl-CoA metabolism, such as malonyl-CoA decarboxylase (mcd) and HMG-CoA synthase (hmgs) differed in expression between the two species. Their combined action likely blocks lipogenesis in the parasitoid species. Network-based analysis showed connectivity of genes to be negatively correlated to the fold change of gene expression. Furthermore, genes involved in the fatty acid metabolic pathway were more connected than the set of genes of all metabolic pathways combined. Conclusion High connectivity of lipogenesis genes is indicative of pleiotropic effects and could explain the absence of gene degradation. We conclude that modification of expression levels of only a few little-connected genes, such as mcd, is sufficient to enable complete loss of lipogenesis in N. vitripennis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5673-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Lammers
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Ken Kraaijeveld
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Janine Mariën
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Visser B, Hance T, Noël C, Pels C, Kimura MT, Stökl J, Geuverink E, Nieberding CM. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol Evol 2018; 8:7355-7364. [PMID: 30151155 PMCID: PMC6106180 DOI: 10.1002/ece3.4265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Lipid synthesis can have a major effect on survival and reproduction, yet most insect parasitoids fail to synthesize lipids. For parasitic wasps in the genus Leptopilina, however, studies have suggested that there is intraspecific variation in the ability for lipid synthesis. These studies were performed on only few populations, and a large-scale investigation of both lipogenic ability and population genetic structure is now needed. Here, we first examined lipogenic ability of nine Leptopilina heterotoma populations collected in 2013 and found that five of nine populations synthesized lipids. The 2013 populations could not be used to determine genetic structure; hence, we obtained another 20 populations in 2016 that were tested for lipogenic ability. Thirteen of 20 populations (all Leptopilina heterotoma) were then used to determine the level of genetic differentiation (i.e., haplotype and nucleotide diversity) by sequencing neutral mitochondrial (COI) and nuclear (ITS2) markers. None of the 2016 populations synthesized lipids, and no genetic differentiation was found. Our results did reveal a nearly twofold increase in mean wasp lipid content at emergence in populations obtained in 2016 compared to 2013. We propose that our results can be explained by plasticity in lipid synthesis, where lipogenic ability is determined by environmental factors, such as developmental temperature and/or the amount of lipids carried over from the host.
Collapse
Affiliation(s)
- Bertanne Visser
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Thierry Hance
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Christine Noël
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Christophe Pels
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | | | - Johannes Stökl
- Institute of Insect BiotechnologyJustus‐Liebig‐University GießenGießenGermany
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Caroline M. Nieberding
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
28
|
RNA-Seq and UHPLC-Q-TOF/MS Based Lipidomics Study in Lysiphlebia japonica. Sci Rep 2018; 8:7802. [PMID: 29773840 PMCID: PMC5958133 DOI: 10.1038/s41598-018-26139-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids play an important role in energy storage, membrane structure stabilization and signaling. Parasitoids are excellent models to study lipidomics because a majority of them do not accumulate during their free-living life-stage. Studies on parasitoids have mostly focused on the changes in the lipids and gene transcripts in hosts and little attention has been devoted to lipidomics and transcriptomics changes in parasitoids. In this study, a relative quantitative analysis of lipids and their gene transcripts in 3-days-old Lysiphlebia japonica larva (3 days after spawning) and pupae were performed using liquid chromatography, mass spectrometry and RNA-seq. Thirty-three glycerolipids and 250 glycerophospholipids were identified in this study; all triglycerides and the vast majority of phospholipids accumulated in the pupal stage. This was accompanied by differentially regulated lipid uptake and remolding. Furthermore, our data showed that gene transcription was up-regulated in key nutrient metabolic pathways involved in lipid synthesis in 3-days-old larvae. Finally, our data suggests that larva and pupa of L. japonica may lack the ability for fatty acids synthesis. A comprehensive, quantitative, and expandable resource was provided for further studies of metabolic regulation and molecular mechanisms underlying parasitic response to hosts defense.
Collapse
|
29
|
Visser B, Willett DS, Harvey JA, Alborn HT. Concurrence in the ability for lipid synthesis between life stages in insects. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160815. [PMID: 28405368 PMCID: PMC5383825 DOI: 10.1098/rsos.160815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/23/2017] [Indexed: 05/17/2023]
Abstract
The ability to synthesize lipids is critical for an organism's fitness; hence, metabolic pathways, underlying lipid synthesis, tend to be highly conserved. Surprisingly, the majority of parasitoids deviate from this general metabolic model by lacking the ability to convert sugars and other carbohydrates into lipids. These insects spend the first part of their life feeding and developing in or on an arthropod host, during which they can carry over a substantial amount of lipid reserves. While many parasitoid species have been tested for lipogenic ability at the adult life stage, it has remained unclear whether parasitoid larvae can synthesize lipids. Here we investigate whether or not several insects can synthesize lipids during the larval stage using three ectoparasitic wasps (developing on the outside of the host) and the vinegar fly Drosophila melanogaster that differ in lipogenic ability in the adult life stage. Using feeding experiments and stable isotope tracing with gas chromatography/mass spectrometry, we first confirm lipogenic abilities in the adult life stage. Using topical application of stable isotopes in developing larvae, we then provide clear evidence of concurrence in lipogenic ability between larval and adult life stages in all species tested.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| | - Denis S. Willett
- Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Jeffrey A. Harvey
- Department of Ecological Sciences, VU University Amsterdam, Section Animal Ecology, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6700 EH Wageningen, The Netherlands
| | - Hans T. Alborn
- Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
30
|
Zhang S, Luo JY, Lv LM, Wang CY, Li CH, Zhu XZ, Cui JJ. Effects of Lysiphlebia japonica (Ashmead) on cotton-melon aphid Aphis gossypii Glover lipid synthesis. INSECT MOLECULAR BIOLOGY 2015; 24:348-357. [PMID: 25702953 DOI: 10.1111/imb.12162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cotton-melon aphid, Aphis gossypii Glover, is a major insect pest worldwide. The wasp Lysiphlebia japonica (Ashmead) is the predominant parasitoid of cotton-melon aphids in north China. Parasitization has been reported to affect host lipids in several systems, but the lipid synthesis-related genes and transcription changes in the cotton-melon aphid-parasitoid interaction are not clear. In this study, 36 lipid synthesis-related genes were cloned and their transcription changes in parasitized aphids were studied by quantitative real-time PCR. In parasitized cotton-melon aphids, almost all key genes in the glycerolipid synthesis pathway were up-regulated, the rate-limiting enzyme diacylglycerol o-acyltransferase by 3.24-fold. The rate-limiting enzyme of the glycolytic pathway, pyruvate kinase, and the pace-making enzyme in citrate synthesis were 1.69-fold and 1.75-fold less in parasitized aphids than in unparasitized aphids, respectively. These results suggest increased glycerolipid synthesis in parasitized aphids but that citrate production from sucrose was decreased. Aconitate hydratase (aco), in the pathway that converts amino acids into citrate, was up-regulated. The number of fragments per kilobase per million mapped reads of the mitochondrial aco2 gene was only 4.6, whereas that of the cytoplasmic aco1 was 41.5, indicating that the citrate comes from amino acids in the cytoplasm of parasitized cotton-melon aphids.
Collapse
Affiliation(s)
- S Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, Ghani IA. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae) infected with Nosema sp. (Microsporidia: Nosematidae): implications in integrated pest management strategy. PLoS One 2014; 9:e100671. [PMID: 24968125 PMCID: PMC4072679 DOI: 10.1371/journal.pone.0100671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
Collapse
Affiliation(s)
- Nadia Kermani
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | | | - Amalina Suhaimi
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Ismail Abuzid
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Noor Farehan Ismail
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Mansour Attia
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Idris Abd Ghani
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| |
Collapse
|
32
|
Danneels EL, Formesyn EM, Hahn DA, Denlinger DL, Cardoen D, Wenseleers T, Schoofs L, de Graaf DC. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1189-200. [PMID: 24161520 DOI: 10.1016/j.ibmb.2013.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 05/26/2023]
Abstract
We investigated changes in the pupal transcriptome of the flesh fly Sarcophaga crassipalpis, 3 and 25 h after parasitization by the ectoparasitoid wasp, Nasonia vitripennis. These time points are prior to hatching of the wasp eggs, thus the results document host responses to venom injection, rather than feeding by the wasp larvae. Only a single gene appeared to be differentially expressed 3 h after parasitization. However, by 25 h, 128 genes were differentially expressed and expression patterns of a subsample of these genes were verified using RT-qPCR. Among the responsive genes were clusters of genes that altered the fly's metabolism, development, induced immune responses, elicited detoxification responses, and promoted programmed cell death. Envenomation thus clearly alters the metabolic landscape and developmental fate of the fly host prior to subsequent penetration of the pupal cuticle by the wasp larva. Overall, this study provides new insights into the specific action of ectoparasitoid venoms.
Collapse
Affiliation(s)
- Ellen L Danneels
- Laboratory of Zoophysiology, Ghent University, Krijgslaan 281 S2, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Le Lann C, Visser B, Mériaux M, Moiroux J, van Baaren J, van Alphen JJM, Ellers J. Rising temperature reduces divergence in resource use strategies in coexisting parasitoid species. Oecologia 2013; 174:967-77. [PMID: 24169941 DOI: 10.1007/s00442-013-2810-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022]
Abstract
Coexistence of species sharing the same resources is often possible if species are phylogenetically divergent in resource acquisition and allocation traits, decreasing competition between them. Developmental and life-history traits related to resource use are influenced by environmental conditions such as temperature, but thermal trait responses may differ among species. An increase in ambient temperature may, therefore, affect trait divergence within a community, and potentially species coexistence. Parasitoids are interesting models to test this hypothesis, because multiple species commonly attack the same host, and employ divergent larval and adult host use strategies. In particular, development mode (arrested or continued host growth following parasitism) has been recognized as a major organiser of parasitoid life histories. Here, we used a comparative trait-based approach to determine thermal responses of development time, body mass, egg load, metabolic rate and energy use of the coexisting Drosophila parasitoids Asobara tabida, Leptopilina heterotoma, Trichopria drosophilae and Spalangia erythromera. We compared trait values between species and development modes, and calculated trait divergence in response to temperature, using functional diversity indices. Parasitoids differed in their thermal response for dry mass, metabolic rate and lipid use throughout adult life, but only teneral lipid reserves and egg load were affected by developmental mode. Species-specific trait responses to temperature were probably determined by their adaptations in resource use (e.g. lipogenesis or ectoparasitism). Overall, trait values of parasitoid species converged at the higher temperature. Our results suggest that local effects of warming could affect host resource partitioning by reducing trait diversity in communities.
Collapse
Affiliation(s)
- Cécile Le Lann
- Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|