1
|
Morin PA, Martien KK, Lang AR, Hancock-Hanser BL, Pease VL, Robertson KM, Sattler M, Slikas E, Rosel PE, Baker CS, Taylor BL, Archer FI. Guidelines and quantitative standards for improved cetacean taxonomy using full mitochondrial genomes. J Hered 2023; 114:612-624. [PMID: 37647537 DOI: 10.1093/jhered/esad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
In many organisms, especially those of conservation concern, traditional lines of evidence for taxonomic delineation, such as morphological data, are often difficult to obtain. In these cases, genetic data are often the only source of information available for taxonomic studies. In particular, population surveys of mitochondrial genomes offer increased resolution and precision in support of taxonomic decisions relative to conventional use of the control region or other gene fragments of the mitochondrial genome. To improve quantitative guidelines for taxonomic decisions in cetaceans, we build on a previous effort targeting the control region and evaluate, for whole mitogenome sequences, a suite of divergence and diagnosability estimates for pairs of recognized cetacean populations, subspecies, and species. From this overview, we recommend new guidelines based on complete mitogenomes, combined with other types of evidence for isolation and divergence, which will improve resolution for taxonomic decisions, especially in the face of small sample sizes or low levels of genetic diversity. We further use simulated data to assist interpretations of divergence in the context of varying forms of historical demography, culture, and ecology.
Collapse
Affiliation(s)
- Phillip A Morin
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Karen K Martien
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Aimee R Lang
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Brittany L Hancock-Hanser
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Victoria L Pease
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Kelly M Robertson
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Maya Sattler
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Elizabeth Slikas
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Lafayette, LA, United States
| | - C Scott Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | - Barbara L Taylor
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Frederick I Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| |
Collapse
|
2
|
Bond DM, Ortega-Recalde O, Laird MK, Hayakawa T, Richardson KS, Reese FCB, Kyle B, McIsaac-Williams BE, Robertson BC, van Heezik Y, Adams AL, Chang WS, Haase B, Mountcastle J, Driller M, Collins J, Howe K, Go Y, Thibaud-Nissen F, Lister NC, Waters PD, Fedrigo O, Jarvis ED, Gemmell NJ, Alexander A, Hore TA. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes. Nat Commun 2023; 14:6364. [PMID: 37848431 PMCID: PMC10582058 DOI: 10.1038/s41467-023-41784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.
Collapse
Affiliation(s)
- Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Melanie K Laird
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0808, Japan
| | - Kyle S Richardson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Biology Department, University of Montana Western, Dillon, MT, 59725, USA
| | - Finlay C B Reese
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Bruce Kyle
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | | - Amy L Adams
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Wei-Shan Chang
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, CSIRO, Canberra, ACT, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Joanna Collins
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Yasuhiro Go
- Graduate School of Information Science, Hyogo University, Hyogo, Japan
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, Aichi, Japan
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Nishida S, Uchimura A, Tajima Y, Yamada TK. Comparative analysis of the genetic structures of Kogia spp. populations in the western North Pacific. ADVANCES IN MARINE BIOLOGY 2023; 96:25-37. [PMID: 37980127 DOI: 10.1016/bs.amb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The two Kogia species, the pygmy sperm whale (K. breviceps) and the dwarf sperm whale (K. sima), have similar morphological and biological features as well as diets. Both species are deep divers, and both have wide distributions from tropical to warm-temperate zones. Although K. breviceps is larger than K. sima, there are few reports of habitat differentiation between the two species. The distribution of K. breviceps is concentrated in higher-latitudes, and this species dives deeper than K. sima. We investigated whether these two species differ in their population structures in the western North Pacific. Using stranded specimens from Japan, we compared the population genetic patterns of the two Kogia species using mtDNA control region variation (941 bp). In total, 34 K. breviceps samples and 54 K. sima samples from stranded individuals around Japan were successfully sequenced. Thirty haplotypes were detected in K. breviceps and 34 in K. sima, indicating high genetic diversity for both. Almost all these haplotypes are unique to the western North Pacific, but did not constitute distinct phylogeographic clades within either species. We detected differences between the species in the shape of haplotype networks and in the potential time of population expansion, indicating that the western North Pacific population of the two biologically similar species could have different population demographies. This may reflect differences in evolutionary histories and in the details of their ecological niches.
Collapse
Affiliation(s)
- Shin Nishida
- Biology, Science Education, Faculty of Education, University of Miyazaki. Gakuen-Kibanadai-Nishi, Miyazaki, Miyazaki, Japan.
| | - Atsushi Uchimura
- Biology, Science Education, Faculty of Education, University of Miyazaki. Gakuen-Kibanadai-Nishi, Miyazaki, Miyazaki, Japan
| | - Yuko Tajima
- Department of Zoology, National Museum of Nature and Science, Tokyo, Amakubo, Tsukuba, Ibaraki, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, Tokyo, Amakubo, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Mitogenome of a monotypic genus, Oliotius Kottelat, 2013 (Cypriniformes: Cyprinidae): Genomic characterization and phylogenetic position. Gene 2022; 851:147035. [DOI: 10.1016/j.gene.2022.147035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
5
|
Wang D, Yang L, Ning C, Liu JF, Zhao X. Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs. BMC Genomics 2021; 22:736. [PMID: 34641784 PMCID: PMC8507312 DOI: 10.1186/s12864-021-08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background Reference sequences play a vital role in next-generation sequencing (NGS), impacting mapping quality during genome analyses. However, reference genomes usually do not represent the full range of genetic diversity of a species as a result of geographical divergence and independent demographic events of different populations. For the mitochondrial genome (mitogenome), which occurs in high copy numbers in cells and is strictly maternally inherited, an optimal reference sequence has the potential to make mitogenome alignment both more accurate and more efficient. In this study, we used three different types of reference sequences for mitogenome mapping, i.e., the commonly used reference sequence (CU-ref), the breed-specific reference sequence (BS-ref) and the sample-specific reference sequence (SS-ref), respectively, and compared the accuracy of mitogenome alignment and SNP calling among them, for the purpose of proposing the optimal reference sequence for mitochondrial DNA (mtDNA) analyses of specific populations Results Four pigs, representing three different breeds, were high-throughput sequenced, subsequently mapping reads to the reference sequences mentioned above, resulting in a largest mapping ratio and a deepest coverage without increased running time when aligning reads to a BS-ref. Next, single nucleotide polymorphism (SNP) calling was carried out by 18 detection strategies with the three tools SAMtools, VarScan and GATK with different parameters, using the bam results mapping to BS-ref. The results showed that all eighteen strategies achieved the same high specificity and sensitivity, which suggested a high accuracy of mitogenome alignment by the BS-ref because of a low requirement for SNP calling tools and parameter choices. Conclusions This study showed that different reference sequences representing different genetic relationships to sample reads influenced mitogenome alignment, with the breed-specific reference sequences being optimal for mitogenome analyses, which provides a refined processing perspective for NGS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08030-1.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liu Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Sarano F, Girardet J, Sarano V, Vitry H, Preud'homme A, Heuzey R, Garcia-Cegarra AM, Madon B, Delfour F, Glotin H, Adam O, Jung JL. Kin relationships in cultural species of the marine realm: case study of a matrilineal social group of sperm whales off Mauritius island, Indian Ocean. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201794. [PMID: 33972866 PMCID: PMC8074673 DOI: 10.1098/rsos.201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
Understanding the organization and dynamics of social groups of marine mammals through the study of kin relationships is particularly challenging. Here, we studied a stable social group of sperm whales off Mauritius, using underwater observations, individual-specific identification, non-invasive sampling and genetic analyses based on mitochondrial sequencing and microsatellite profiling. Twenty-four sperm whales were sampled between 2017 and 2019. All individuals except one adult female shared the same mitochondrial DNA (mtDNA) haplotype-one that is rare in the western Indian Ocean-thus confirming with near certainty the matrilineality of the group. All probable first- and second-degree kin relationships were depicted in the sperm whale social group: 13 first-degree and 27 second-degree relationships were identified. Notably, we highlight the likely case of an unrelated female having been integrated into a social unit, in that she presented a distinct mtDNA haplotype and no close relationships with any members of the group. Investigating the possible matrilineality of sperm whale cultural units (i.e. vocal clans) is the next step in our research programme to elucidate and better apprehend the complex organization of sperm whale social groups.
Collapse
Affiliation(s)
| | - Justine Girardet
- Université de Brest, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, ISYEB, Brest, France
| | | | - Hugues Vitry
- Marine Megafauna Conservation Organisation, Mauritius
| | | | | | - Ana M. Garcia-Cegarra
- Centro de Investigación de Fauna Marina y Avistamiento de Cetáceos, CIFAMAC, Mejillones, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile
| | - Bénédicte Madon
- Université de Brest, AMURE - Aménagement des Usages des Ressources et des Espaces marins et littoraux - Centre de droit et d'économie de la mer, Plouzané, France
| | - Fabienne Delfour
- Laboratoire d'Ethologie Expérimentale et Comparée EA 4443, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Hervé Glotin
- Toulon University, Aix Marseille Université, CNRS, LIS, DYNI Team, Marseille, France
| | - Olivier Adam
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, UMR 7190, Paris, France
- Institute of Neurosciences Paris-Saclay, Bioacoustics Team, CNRS UMR 9197, Université Paris Sud, Orsay, France
| | - Jean-Luc Jung
- Université de Brest, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, ISYEB, Brest, France
| |
Collapse
|
7
|
Mudge C, Dallwitz R, Llamas B, Austin JJ. Using Ancient DNA Analysis and Radiocarbon Dating to Determine the Provenance of an Unusual Whaling Artifact. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.505233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Wang D, Xiang H, Ning C, Liu H, Liu JF, Zhao X. Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS analyses. Brief Bioinform 2020; 21:1368-1377. [PMID: 31204429 DOI: 10.1093/bib/bbz060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic associations between mitochondrial DNA (mtDNA) and economic traits have been widely reported for pigs, which indicate the importance of mtDNA. However, studies on mtDNA heteroplasmy in pigs are rare. Next generation sequencing (NGS) methodologies have emerged as a promising genomic approach for detection of mitochondrial heteroplasmy. Due to the short reads, flexible bioinformatic analyses and the contamination of nuclear mitochondrial sequences (NUMTs), NGS was expected to increase false-positive detection of heteroplasmy. In this study, Sanger sequencing was performed as a gold standard to detect heteroplasmy with a detection sensitivity of 5% in pigs and then one whole-genome sequencing method (WGS) and two mtDNA enrichment sequencing methods (Capture and LongPCR) were carried out. The aim of this study was to determine whether mitochondrial heteroplasmy identification from NGS data was affected by NUMTs. We find that WGS generated more false intra-individual polymorphisms and less mapping specificity than the two enrichment sequencing methods, suggesting NUMTs indeed led to false-positive mitochondrial heteroplasmies from NGS data. In addition, to accurately detect mitochondrial diversity, three commonly used tools-SAMtools, VarScan and GATK-with different parameter values were compared. VarScan achieved the best specificity and sensitivity when considering the base alignment quality re-computation and the minimum variant frequency of 0.25. It also suggested bioinformatic workflow interfere in the identification of mtDNA SNPs. In conclusion, intra-individual polymorphism in pig mitochondria from NGS data was confused with NUMTs, and mtDNA-specific enrichment is essential before high-throughput sequencing in the detection of mitochondrial genome sequences.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hai Xiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Liu
- National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Konrad CM, Frasier TR, Rendell L, Whitehead H, Gero S. Kinship and association do not explain vocal repertoire variation among individual sperm whales or social units. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Heimeier D, Alexander A, Hamner RM, Pichler F, Baker CS. The Influence of Selection on MHC DQA and DQB Haplotypes in the Endemic New Zealand Hector’s and Māui Dolphins. J Hered 2018; 109:744-756. [DOI: 10.1093/jhered/esy050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Alana Alexander
- Biodiversity Institute, University of Kansas, Jayhawk Boulevard, Lawrence, KS
| | - Rebecca M Hamner
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Franz Pichler
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - C Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
11
|
Konrad CM, Gero S, Frasier T, Whitehead H. Kinship influences sperm whale social organization within, but generally not among, social units. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180914. [PMID: 30225081 PMCID: PMC6124104 DOI: 10.1098/rsos.180914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/06/2018] [Indexed: 05/14/2023]
Abstract
Sperm whales have a multi-level social structure based upon long-term, cooperative social units. What role kinship plays in structuring this society is poorly understood. We combined extensive association data (518 days, during 2005-2016) and genetic data (18 microsatellites and 346 bp mitochondrial DNA (mtDNA) control region sequences) for 65 individuals from 12 social units from the Eastern Caribbean to examine patterns of kinship and social behaviour. Social units were clearly matrilineally based, evidenced by greater relatedness within social units (mean r = 0.14) than between them (mean r = 0.00) and uniform mtDNA haplotypes within social units. Additionally, most individuals (82.5%) had a first-degree relative in their social unit, while we found no first-degree relatives between social units. Generally and within social units, individuals associated more with their closer relatives (matrix correlations: 0.18-0.25). However, excepting a highly related pair of social units that merged over the study period, associations between social units were not correlated with kinship (p > 0.1). These results are the first to robustly demonstrate kinship's contribution to social unit composition and association preferences, though they also reveal variability in association preferences that is unexplained by kinship. Comparisons with other matrilineal species highlight the range of possible matrilineal societies and how they can vary between and even within species.
Collapse
Affiliation(s)
- Christine M. Konrad
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, CanadaB3H 4J1
| | - Shane Gero
- Department of Zoophysiology, Institute for Bioscience, Aarhus University, C.F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Timothy Frasier
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, CanadaB3H 3C3
| | - Hal Whitehead
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, CanadaB3H 4J1
| |
Collapse
|
12
|
Mazzariol S, Centelleghe C, Cozzi B, Povinelli M, Marcer F, Ferri N, Di Francesco G, Badagliacca P, Profeta F, Olivieri V, Guccione S, Cocumelli C, Terracciano G, Troiano P, Beverelli M, Garibaldi F, Podestà M, Marsili L, Fossi MC, Mattiucci S, Cipriani P, De Nurra D, Zaccaroni A, Rubini S, Berto D, de Quiros YB, Fernandez A, Morell M, Giorda F, Pautasso A, Modesto P, Casalone C, Di Guardo G. Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy. Sci Rep 2018; 8:11577. [PMID: 30068967 PMCID: PMC6070578 DOI: 10.1038/s41598-018-29966-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022] Open
Abstract
Mass strandings of sperm whales (Physeter macrocephalus) are rare in the Mediterranean Sea. Nevertheless, in 2014 a pod of 7 specimens stranded alive along the Italian coast of the Central Adriatic Sea: 3 individuals died on the beach after a few hours due to internal damages induced by prolonged recumbency; the remaining 4 whales were refloated after great efforts. All the dead animals were genetically related females; one was pregnant. All the animals were infected by dolphin morbillivirus (DMV) and the pregnant whale was also affected by a severe nephropathy due to a large kidney stone. Other analyses ruled out other possible relevant factors related to weather conditions or human activities. The results of multidisciplinary post-mortem analyses revealed that the 7 sperm whales entered the Adriatic Sea encountering adverse weather conditions and then kept heading northward following the pregnant but sick leader of the pod, thereby reaching the stranding site. DMV infection most likely played a crucial role in impairing the health condition and orientation abilities of the whales. They did not steer back towards deeper waters, but eventually stranded along the Central Adriatic Sea coastline, a real trap for sperm whales.
Collapse
Affiliation(s)
- Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Michele Povinelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Pietro Badagliacca
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Profeta
- University of Teramo, Faculty of Veterinary Medicine, Località Piano d'Accio, 64100, Teramo, Italy
| | | | | | - Cristiano Cocumelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Rome, Italy
| | - Giuliana Terracciano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Rome, Italy
| | - Pasquale Troiano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Matteo Beverelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | | | - Letizia Marsili
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Maria Cristina Fossi
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, University La Sapienza, Rome, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, University La Sapienza, Rome, Italy
| | - Daniele De Nurra
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Silva Rubini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Ferrara, Italy
| | | | - Yara Beraldo de Quiros
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Fernandez
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Maria Morell
- Institute for Neurosciences of Montpellier (Inserm UMR 1051), Montpellier, France
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Giovanni Di Guardo
- University of Teramo, Faculty of Veterinary Medicine, Località Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
13
|
Morin PA, Foote AD, Baker CS, Hancock‐Hanser BL, Kaschner K, Mate BR, Mesnick SL, Pease VL, Rosel PE, Alexander A. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses. Mol Ecol 2018; 27:2604-2619. [DOI: 10.1111/mec.14698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Phillip A. Morin
- Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Andrew D. Foote
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor Gwynedd UK
| | - Charles Scott Baker
- Marine Mammal Institute Hatfield Marine Science Center Oregon State University Newport Oregon
- Department of Fisheries and Wildlife College of Agricultural Sciences Corvallis Oregon
| | - Brittany L. Hancock‐Hanser
- Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis Albert‐Ludwigs‐University of Freiburg Freiburg Germany
| | - Bruce R. Mate
- Marine Mammal Institute Hatfield Marine Science Center Oregon State University Newport Oregon
- Department of Fisheries and Wildlife College of Agricultural Sciences Corvallis Oregon
| | - Sarah L. Mesnick
- Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Victoria L. Pease
- Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Patricia E. Rosel
- Southeast Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Lafayette Louisiana
| | | |
Collapse
|
14
|
Vachon F, Whitehead H, Frasier TR. What factors shape genetic diversity in cetaceans? Ecol Evol 2018; 8:1554-1572. [PMID: 29435232 PMCID: PMC5792597 DOI: 10.1002/ece3.3727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.
Collapse
Affiliation(s)
- Felicia Vachon
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - Hal Whitehead
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - Timothy R. Frasier
- Department of Biology and Forensic Sciences ProgrammeSaint Mary's UniversityHalifaxNSCanada
| |
Collapse
|
15
|
Autenrieth M, Ernst A, Deaville R, Demaret F, IJsseldijk LL, Siebert U, Tiedemann R. Putative origin and maternal relatedness of male sperm whales (Physeter macrocephalus) recently stranded in the North Sea. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
More evolution underground: Accelerated mitochondrial substitution rate in Australian burrowing freshwater crayfishes (Decapoda: Parastacidae). Mol Phylogenet Evol 2017; 118:88-98. [PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/18/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
Collapse
|
17
|
Abstract
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother-calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother-offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene-culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology.
Collapse
Affiliation(s)
- Hal Whitehead
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
18
|
Whitehead H, Vachon F, Frasier TR. Cultural Hitchhiking in the Matrilineal Whales. Behav Genet 2017; 47:324-334. [PMID: 28275880 DOI: 10.1007/s10519-017-9840-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022]
Abstract
Five species of whale with matrilineal social systems (daughters remain with mothers) have remarkably low levels of mitochondrial DNA diversity. Non-heritable matriline-level demography could reduce genetic diversity but the required conditions are not consistent with the natural histories of the matrilineal whales. The diversity of nuclear microsatellites is little reduced in the matrilineal whales arguing against bottlenecks. Selective sweeps of the mitochondrial genome are feasible causes but it is not clear why these only occurred in the matrilineal species. Cultural hitchhiking (cultural selection reducing diversity at neutral genetic loci transmitted in parallel to the culture) is supported in sperm whales which possess suitable matrilineal socio-cultural groups (coda clans). Killer whales are delineated into ecotypes which likely originated culturally. Culture, bottlenecks and selection, as well as their interactions, operating between- or within-ecotypes, may have reduced their mitochondrial diversity. The societies, cultures and genetics of false killer and two pilot whale species are insufficiently known to assess drivers of low mitochondrial diversity.
Collapse
Affiliation(s)
- Hal Whitehead
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | - Felicia Vachon
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Timothy R Frasier
- Department of Biology & Forensic Sciences Programme, Saint Mary's University, Halifax, Canada
| |
Collapse
|
19
|
Alexander AM, Su Y, Oliveros CH, Olson KV, Travers SL, Brown RM. Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow‐mouth frogs. Evolution 2016; 71:475-488. [DOI: 10.1111/evo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Yong‐Chao Su
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences National University of Singapore 117543 Singapore
| | - Carl H. Oliveros
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Karen V. Olson
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Scott L. Travers
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Rafe M. Brown
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| |
Collapse
|
20
|
Speller C, van den Hurk Y, Charpentier A, Rodrigues A, Gardeisen A, Wilkens B, McGrath K, Rowsell K, Spindler L, Collins M, Hofreiter M. Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150332. [PMID: 27481784 PMCID: PMC4971184 DOI: 10.1098/rstb.2015.0332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/30/2022] Open
Abstract
Over the last few centuries, many cetacean species have witnessed dramatic global declines due to industrial overharvesting and other anthropogenic influences, and thus are key targets for conservation. Whale bones recovered from archaeological and palaeontological contexts can provide essential baseline information on the past geographical distribution and abundance of species required for developing informed conservation policies. Here we review the challenges with identifying whale bones through traditional anatomical methods, as well as the opportunities provided by new molecular analyses. Through a case study focused on the North Sea, we demonstrate how the utility of this (pre)historic data is currently limited by a lack of accurate taxonomic information for the majority of ancient cetacean remains. We then discuss current opportunities presented by molecular identification methods such as DNA barcoding and collagen peptide mass fingerprinting (zooarchaeology by mass spectrometry), and highlight the importance of molecular identifications in assessing ancient species' distributions through a case study focused on the Mediterranean. We conclude by considering high-throughput molecular approaches such as hybridization capture followed by next-generation sequencing as cost-effective approaches for enhancing the ecological informativeness of these ancient sample sets.This article is part of the themed issue 'From DNA barcodes to biomes'.
Collapse
Affiliation(s)
- Camilla Speller
- BioArCh, Department of Archaeology, University of York, Environment Building, York, North Yorkshire YO10 5DD, UK
| | - Youri van den Hurk
- Institute of Archaeology, University College London, 31-34 Gordon Square, London WC1H 0PY, UK
| | - Anne Charpentier
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE - CNRS, Montpellier Cedex 5, France
| | - Ana Rodrigues
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE - CNRS, Montpellier Cedex 5, France
| | - Armelle Gardeisen
- Archéologie des Sociétés Méditerranéennes, UMR 5140, CNRS, Labex Archimede IA-ANR-11-LABX-0032-01, Université Paul-Valéry Montpellier, 34970 Lattes, France
| | - Barbara Wilkens
- Dipartimento di Scienze della Natura e del Territorio, Università degli Studi, Sassari, Italy
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, Environment Building, York, North Yorkshire YO10 5DD, UK
| | - Keri Rowsell
- BioArCh, Department of Archaeology, University of York, Environment Building, York, North Yorkshire YO10 5DD, UK
| | - Luke Spindler
- BioArCh, Department of Archaeology, University of York, Environment Building, York, North Yorkshire YO10 5DD, UK
| | - Matthew Collins
- BioArCh, Department of Archaeology, University of York, Environment Building, York, North Yorkshire YO10 5DD, UK
| | - Michael Hofreiter
- Institute of Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
21
|
Montelli S, Peruffo A, Patarnello T, Cozzi B, Negrisolo E. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs. PLoS One 2016; 11:e0158129. [PMID: 27336480 PMCID: PMC4919058 DOI: 10.1371/journal.pone.0158129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/11/2016] [Indexed: 11/29/2022] Open
Abstract
The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers.
Collapse
Affiliation(s)
- Stefano Montelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
- * E-mail:
| |
Collapse
|
22
|
Alexander A, Steel D, Hoekzema K, Mesnick SL, Engelhaupt D, Kerr I, Payne R, Baker CS. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)? Mol Ecol 2016; 25:2754-72. [DOI: 10.1111/mec.13638] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Alana Alexander
- Marine Mammal Institute; Hatfield Marine Science Center; Oregon State University; 2030 SE Marine Science Drive Newport OR 97365 USA
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis OR 97330 USA
- Biodiversity Institute; University of Kansas; 1345 Jayhawk Blvd Lawrence KS 66045 USA
| | - Debbie Steel
- Marine Mammal Institute; Hatfield Marine Science Center; Oregon State University; 2030 SE Marine Science Drive Newport OR 97365 USA
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis OR 97330 USA
| | - Kendra Hoekzema
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis OR 97330 USA
| | - Sarah L. Mesnick
- Southwest Fisheries Science Center; National Marine Fisheries Service; National Oceanic and Atmospheric Administration; 8901 La Jolla Shores Drive La Jolla CA 92037 USA
| | | | - Iain Kerr
- Ocean Alliance; 32 Horton Street Gloucester MA 01930 USA
| | - Roger Payne
- Ocean Alliance; 32 Horton Street Gloucester MA 01930 USA
| | - C. Scott Baker
- Marine Mammal Institute; Hatfield Marine Science Center; Oregon State University; 2030 SE Marine Science Drive Newport OR 97365 USA
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis OR 97330 USA
- School of Biological Sciences; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
23
|
Caballero S, Duchêne S, Garavito MF, Slikas B, Baker CS. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes. PLoS One 2015; 10:e0123543. [PMID: 25946045 PMCID: PMC4422622 DOI: 10.1371/journal.pone.0123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
Collapse
Affiliation(s)
- Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- * E-mail:
| | - Sebastian Duchêne
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- School of Biological Sciences, The University of Sydney, NSW, Australia
| | - Manuel F. Garavito
- Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
| | - Beth Slikas
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| | - C. Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| |
Collapse
|
24
|
Uribe-Convers S, Duke JR, Moore MJ, Tank DC. A long PCR-based approach for DNA enrichment prior to next-generation sequencing for systematic studies. APPLICATIONS IN PLANT SCIENCES 2014. [PMID: 25202592 DOI: 10.5061/dryad.kc75n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. • METHODS AND RESULTS Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. • CONCLUSIONS Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies.
Collapse
Affiliation(s)
- Simon Uribe-Convers
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051 USA ; College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
| | - Justin R Duke
- College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland St., Oberlin, Ohio 44074-1097 USA
| | - David C Tank
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051 USA ; College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
| |
Collapse
|
25
|
Uribe-Convers S, Duke JR, Moore MJ, Tank DC. A long PCR-based approach for DNA enrichment prior to next-generation sequencing for systematic studies. APPLICATIONS IN PLANT SCIENCES 2014; 2:apps1300063. [PMID: 25202592 PMCID: PMC4104715 DOI: 10.3732/apps.1300063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/03/2013] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. • METHODS AND RESULTS Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. • CONCLUSIONS Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies.
Collapse
Affiliation(s)
- Simon Uribe-Convers
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051 USA
- College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
- Author for correspondence:
| | - Justin R. Duke
- College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
| | - Michael J. Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland St., Oberlin, Ohio 44074-1097 USA
| | - David C. Tank
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051 USA
- College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, Idaho 83844-1133 USA
| |
Collapse
|