1
|
Sylvester T, Adams R, Mitchell RF, Ray AM, Shen R, Shin NR, McKenna DD. Comparative analyses of the banded alder borer (Rosalia funebris) and Asian longhorned beetle (Anoplophora glabripennis) genomes reveal significant differences in genome architecture and gene content among these and other Cerambycidae. J Hered 2024; 115:516-523. [PMID: 38551670 DOI: 10.1093/jhered/esae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 08/21/2024] Open
Abstract
Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled, and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27% of the genome, and 99.0% of expected single-copy orthologous genes were fully assembled. We identified 12,657 genes, fewer than in the four other species studied, and 46.4% fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7,258 orthogroups shared between RFUNE and AGLAB, 1,461 had more copies in AGLAB and 1,023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Richard Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72704, United States
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, United States
| | - Ann M Ray
- Department of Biology, Xavier University, Cincinnati, OH 45207, United States
| | - Rongrong Shen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Na Ra Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
2
|
Li X, Mao C, He J, Bin X, Liu G, Dong Z, Zhao R, Wan X, Li X. The first chromosome-level genome of the stag beetle Dorcus hopei Saunders, 1854 (Coleoptera: Lucanidae). Sci Data 2024; 11:396. [PMID: 38637640 PMCID: PMC11026507 DOI: 10.1038/s41597-024-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Chuyang Mao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Jinwu He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Xiaoyan Bin
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Ruoping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Xia Wan
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China.
| |
Collapse
|
3
|
Le MH, Morgan B, Lu MY, Moctezuma V, Burgos O, Huang JP. The genomes of Hercules beetles reveal putative adaptive loci and distinct demographic histories in pristine North American forests. Mol Ecol Resour 2024; 24:e13908. [PMID: 38063363 DOI: 10.1111/1755-0998.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/14/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Beetles, despite their remarkable biodiversity and a long history of research, remain lacking in reference genomes annotated with structural variations in loci of adaptive significance. We sequenced and assembled high-quality chromosome-level genomes of four Hercules beetles which exhibit divergence in male horn size and shape and body colouration. The four Hercules beetle genomes were assembled to 11 pseudo-chromosomes, where the three genomes assembled using Nanopore data (Dynastes grantii, D. hyllus and D. tityus) were mapped to the genome assembled using PacBio + Hi-C data (D. maya). We demonstrated a striking similarity in genome structure among the four species. This conservative genome structure may be attributed to our use of the D. maya assembly as the reference; however, it is worth noting that such a conservative genome structure is a recurring phenomenon among scarab beetles. We further identified homologues of nine and three candidate-gene families that may be associated with the evolution of horn structure and body colouration respectively. Structural variations in Scr and Ebony2 were detected and discussed for their putative impacts on generating morphological diversity in beetles. We also reconstructed the demographic histories of the four Hercules beetles using heterozygosity information from the diploid genomes. We found that the demographic histories of the beetles closely recapitulated historical changes in suitable forest habitats driven by climate shifts.
Collapse
Affiliation(s)
- My-Hanh Le
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Victor Moctezuma
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl, Tlaxcala, Mexico
| | - Oscar Burgos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Ye Z, Lu R, Li C, Yang D, Zeng Z, Lin W, Cheng J, Yang Z, Wang L, Gao Y, Huang S, Zhang X, Li S. Haplotype-resolved and chromosome-level genome assembly of Colorado potato beetle. J Genet Genomics 2023:S1673-8527(23)00092-9. [PMID: 37080287 DOI: 10.1016/j.jgg.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Ziqi Ye
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Ruirui Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Chao Li
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis, Ministry of Agriculture and Rural Affairs, College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Doudou Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Zhuozhen Zeng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, Guangdong 518000, China
| | - Weichao Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Jie Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Zhongmin Yang
- College of Horticulture, Xinjiang Agricultural University, Urumuqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China; Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China.
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
5
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
6
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
Leaver M, Moreno E, Kayhan M, McGaughran A, Rödelsperger C, Sommer RJ, Hyman AA. Adaptation to environmental temperature in divergent clades of the nematode Pristionchus pacificus. Evolution 2022; 76:1660-1673. [PMID: 35696526 DOI: 10.1111/evo.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023]
Abstract
Because of ongoing climate change, populations of organisms are being subjected to stressful temperatures more often. This is especially problematic for ectothermic organisms, which are likely to be more sensitive to changes in temperature. Therefore, we need to know if ectotherms have adapted to environmental temperature and, if so, what are the evolutionary mechanisms behind such adaptation. Here, we use the nematode Pristionchus pacificus as a case study to investigate thermal adaptation on the Indian Ocean island of La Réunion, which experiences a range of temperatures from coast to summit. We study the evolution of high-temperature tolerance by constructing a phylogenetic tree of strains collected from many different thermal niches. We show that populations of P. pacificus at low altitudes have higher fertility at warmer temperatures. Most likely, this phenotype has arisen recently and at least twice independently, consistent with parallel evolution. We also studied low-temperature tolerance and showed that populations from high altitudes have increased their fertility at cooler temperatures. Together, these data indicate that P. pacificus strains on La Réunion are subject to divergent selection, adapting to hot and cold niches at the coast and summit of the volcano. Precisely defining these thermal niches provides essential information for models that predict the impact of future climate change on these populations.
Collapse
Affiliation(s)
- Mark Leaver
- Biotechnologische Zentrum, Technische Universität Dresden, 01307, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Eduardo Moreno
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Merve Kayhan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.,Physiologisches Institut der Universität Zürich, Zürich, CH-8057, Switzerland
| | - Angela McGaughran
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.,Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Anthony A Hyman
- Biotechnologische Zentrum, Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
8
|
Wang Q, Liu L, Zhang S, Wu H, Huang J. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. Gigascience 2022; 11:giac059. [PMID: 35764601 PMCID: PMC9239855 DOI: 10.1093/gigascience/giac059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulose, as the key structural component of plant biomass, is a recalcitrant structure, difficult to degrade. The traditional management of plant waste, including landfill and incineration, usually causes serious environmental pollution and health problems. Interestingly, the xylophagous beetle, Trypoxylus dichotomus, can decompose lignocellulosic biomass. However, the genomics around the digestion mechanism of this beetle remain to be elucidated. Here, we assembled the genome of T. dichotomus, showing that the draft genome size of T. dichotomus is 636.27 Mb, with 95.37% scaffolds anchored onto 10 chromosomes. Phylogenetic results indicated that a divergent evolution between the ancestors of T. dichotomus and the closely related scarabaeid species Onthophagus taurus occurred in the early Cretaceous (120 million years ago). Through gene family evolution analysis, we found 67 rapidly evolving gene families, within which there were 2 digestive gene families (encoding Trypsin and Enoyl-(Acyl carrier protein) reductase) that have experienced significant expansion, indicating that they may contribute to the high degradation efficiency of lignocellulose in T. dichotomus. Additionally, events of chromosome breakage and rearrangement were observed by synteny analysis during the evolution of T. dichotomus due to chromosomes 6 and 8 of T. dichotomus being intersected with chromosomes 2 and 10 of Tribolium castaneum, respectively. Furthermore, the comparative transcriptome analyses of larval guts showed that the digestion-related genes were more commonly expressed in the midgut or mushroom residue group than the hindgut or sawdust group. This study reports the well-assembled and annotated genome of T. dichotomus, providing genomic and transcriptomic bases for further understanding the functional and evolutionary mechanisms of lignocellulose digestion in T. dichotomus.
Collapse
Affiliation(s)
- Qingyun Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Liwei Liu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Museum of Natural History, No. 6 West Lake Cultural Square, Hangzhou, Zhejiang 310014, China
| | - Sujiong Zhang
- Dapanshan Insect Institute of Zhejiang, Pan'an, Zhejiang 322300, China
| | - Hong Wu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
9
|
Filipović I, Rašić G, Hereward J, Gharuka M, Devine GJ, Furlong MJ, Etebari K. A high-quality de novo genome assembly based on nanopore sequencing of a wild-caught coconut rhinoceros beetle (Oryctes rhinoceros). BMC Genomics 2022; 23:426. [PMID: 35672676 PMCID: PMC9172067 DOI: 10.1186/s12864-022-08628-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. RESULTS High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.1%). These quality metrics place our assembly ahead of the published Coleopteran genomes, including that of an insect model, the red flour beetle (Tribolium castaneum). The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes, with only 2.8% missing BUSCOs, and the expected number of non-coding RNAs. The number and structure of paralogous genes in a gene family like Sigma GST is lower than in another scarab beetle (Onthophagus taurus), but higher than in the red flour beetle (Tribolium castaneum), which suggests expansion of this GST class in Scarabaeidae. The quality of our gene models was also confirmed with the correct placement of O. rhinoceros among other members of the rhinoceros beetles (subfamily Dynastinae) in a phylogeny based on the sequences of 95 protein-coding genes in 373 beetle species from all major lineages of Coleoptera. Finally, we provide a list of 30 candidate dsRNA targets whose orthologs have been experimentally validated as highly effective targets for RNAi-based control of several beetles. CONCLUSIONS The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.
Collapse
Affiliation(s)
- Igor Filipović
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia.
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James Hereward
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
10
|
Han Z, Sieriebriennikov B, Susoy V, Lo WS, Igreja C, Dong C, Berasategui A, Witte H, Sommer RJ. Horizontally Acquired Cellulases Assist the Expansion of Dietary Range in Pristionchus Nematodes. Mol Biol Evol 2022; 39:msab370. [PMID: 34978575 PMCID: PMC8826503 DOI: 10.1093/molbev/msab370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.
Collapse
Affiliation(s)
- Ziduan Han
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Vladislav Susoy
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Catia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | | | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| |
Collapse
|
11
|
Lukicheva S, Flot JF, Mardulyn P. Genome Assembly of the Cold-Tolerant Leaf Beetle Gonioctena quinquepunctata, an Important Resource for Studying Its Evolution and Reproductive Barriers between Species. Genome Biol Evol 2021; 13:6296840. [PMID: 34115123 PMCID: PMC8290105 DOI: 10.1093/gbe/evab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Coleoptera is the most species-rich insect order, yet is currently underrepresented in genomic databases. An assembly was generated for ca. 1.7 Gb genome of the leaf beetle Gonioctena quinquepunctata by first assembling long-sequence reads (Oxford Nanopore; ± 27-fold coverage) and subsequently polishing the resulting assembly with short sequence reads (Illumina; ± 85-fold coverage). The unusually large size (most Coleoptera species are associated with a reported size below 1 Gb) was at least partially attributed to the presence of a large fraction of repeated elements (73.8%). The final assembly was characterized by an N50 length of 432 kb and a BUSCO score of 95.5%. The heterozygosity rate was ± 0.6%. Automated genome annotation informed by RNA-Seq resulted in 40,568 predicted proteins, which is much larger than the typical range 17,000–23,000 predicted for other Coleoptera. However, no evidence of a genome duplication was detected. This new reference genome will contribute to our understanding of genetic variation in the Coleoptera. Among others, it will also allow exploring reproductive barriers between species, investigating introgression in the nuclear genome, and identifying genes involved in resistance to extreme climate conditions.
Collapse
Affiliation(s)
- Svitlana Lukicheva
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Flot
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics 2021; 22:243. [PMID: 33827435 PMCID: PMC8028732 DOI: 10.1186/s12864-021-07558-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.
Collapse
Affiliation(s)
- Huai-Jun Xue
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yi-Wei Niu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, FL, 33960, USA
| | - Rui-E Nie
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jing Hao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Chao Cheng
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Xue-Wen Zhang
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Wen-Zhu Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Run-Sheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Renahan T, Lo WS, Werner MS, Rochat J, Herrmann M, Sommer RJ. Nematode biphasic 'boom and bust' dynamics are dependent on host bacterial load while linking dauer and mouth-form polyphenisms. Environ Microbiol 2021; 23:5102-5113. [PMID: 33587771 DOI: 10.1111/1462-2920.15438] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023]
Abstract
Cross-kingdom interactions involve dynamic processes that shape terrestrial ecosystems and represent striking examples of co-evolution. The multifaceted relationships of entomopathogenic nematodes with their insect hosts and symbiotic bacteria are well-studied cases of co-evolution and pathogenicity. In contrast, microbial interactions in soil after the natural death of insects and other invertebrates are minimally understood. In particular, the turnover and succession of nematodes and bacteria during insect decay have not been well documented - although it represents a rich ecological niche with multiple species interactions. Here, we utilize developmentally plastic nematode Pristionchus pacificus and its associated scarab beetles as models. On La Réunion Island, we collected rhinoceros beetle Oryctes borbonicus, induced death, and placed carcasses in cages both on the island and in a mock-natural environment in the laboratory controlling for high spatial and temporal resolution. Investigating nematode population density and dispersal dynamics, we were able to connect two imperative plasticities, dauer and mouth form. We observed a biphasic 'boom and bust' dispersal dynamic of dauer larvae that corresponds to bacterial load on carcasses but not bacterial type. Strikingly, all post-dauer adults have the predatory mouth form, demonstrating novel intricate interactions on decaying insect hosts. Thus, ecologically relevant survival strategies incorporate critical plastic traits.
Collapse
Affiliation(s)
- Tess Renahan
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany.,Department of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jacques Rochat
- Micropoda, 2 Rue De l'é'toile du Berger, Residence le Jardin des Épices, La Possession, La Réunion, 97419, France
| | - Matthias Herrmann
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| |
Collapse
|
14
|
Li HS, Tang XF, Huang YH, Xu ZY, Chen ML, Du XY, Qiu BY, Chen PT, Zhang W, Ślipiński A, Escalona HE, Waterhouse RM, Zwick A, Pang H. Horizontally acquired antibacterial genes associated with adaptive radiation of ladybird beetles. BMC Biol 2021; 19:7. [PMID: 33446206 PMCID: PMC7807722 DOI: 10.1186/s12915-020-00945-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.
Collapse
Affiliation(s)
- Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ze-Yu Xu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mei-Lan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
- School of Environment and Life Science, Nanning Normal University, Nanning, 530001, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bo-Yuan Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Casasa S, Zattara EE, Moczek AP. Nutrition-responsive gene expression and the developmental evolution of insect polyphenism. Nat Ecol Evol 2020; 4:970-978. [PMID: 32424280 DOI: 10.1038/s41559-020-1202-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
Nutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity. Our results further implicate genetic accommodation of ancestrally high variability of gene expression plasticity in both exaggeration and loss of nutritional plasticity, yet reject a major role of taxon-restricted genes in the developmental regulation and evolution of nutritional plasticity.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Eduardo E Zattara
- Department of Biology, Indiana University, Bloomington, IN, USA. .,INIBIOMA, Universidad Nacional del Comahue - CONICET, Bariloche, Argentina.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
16
|
Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini). Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110431. [PMID: 32142896 DOI: 10.1016/j.cbpb.2020.110431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
The longhorned beetles, Rhaphuma horsfieldi and Xylotrechus quadripes, are two polyphagous insects with larvae feeding on different host plants. In this study, we identified and characterized three gene superfamilies of cytochrome P450s (CYPs), carboxylesterases (COEs) and glutathione-S-transferases (GSTs) involved in the detoxification of endobiotics (e.g., hormones and steroids) and xenobiotics (e.g., insecticides, sex pheromones and plant allelochemicals) through a combination approach of bioinformatics, phylogenetics, expression profiles and genomics. Transcriptome analyses led to the identification of 281 transcripts encoding 135 P450s, 108 COEs and 38 GSTs from the two beetles, coupled with comparative studies of detoxification genes among coleopteran species, suggesting a correlation between host range and the sizes of P450 or COE gene repertoires. The P450s of two beetles were phylogenetically classified into four clades, representing the majority of genes in the CYP3 clan. The COEs from R. horsfieldi and X. quadripes were separately grouped into 11 and 10 clades, and the GST superfamily was assigned into six clades. Expression profiles revealed that the detoxification genes were broadly expressed in various tissues as an implication of functional diversities. Ultimately and more importantly, five alternative splicing events in the Epsilon GSTs, including RhorGSTe7.1/GSTe7.2 and XquaGSTe3.1/GST3.2, were acquired in Coleoptera, in which these genes and their orthologs shared highly conserved gene structure. Our current study has complemented the resources for the detoxification genes in the family Cerambycidae, and allows for functional experiments to identify candidate molecular targets involved in pest resistance to insecticides like organophosphates, organochlorines and pyrethroids.
Collapse
|
17
|
Shelomi M, Lin SS, Liu LY. Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 2019; 20:957. [PMID: 31818246 PMCID: PMC6902462 DOI: 10.1186/s12864-019-6352-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The coconut rhinoceros beetle, Oryctes rhinoceros, is a major pest of palm crops in tropical Asia and the Pacific Islands. Little molecular data exists for this pest, impeding our ability to develop effective countermeasures and deal with the species' growing resistance to viral biocontrols. We present the first molecular biology analyses of this species, including a metagenomic assay to understand the microbiome of different sections of its digestive tract, and a transcriptomics assay to complement the microbiome data and to shed light on genes of interest like plant cell wall degrading enzymes and immunity and xenobiotic resistance genes. RESULTS The gut microbiota of Oryctes rhinoceros larvae is quite similar to that of the termite gut, as both species feed on decaying wood. We found the first evidence for endogenous beta-1,4-endoglucanase in the beetle, plus evidence for microbial cellobiase, suggesting the beetle can degrade cellulose together with its gut microfauna. A number of antimicrobial peptides are expressed, particularly by the fat body but also by the midgut and hindgut. CONCLUSIONS This transcriptome provides a wealth of data about the species' defense against chemical and biological threats, has uncovered several potentially new species of microbial symbionts, and significantly expands our knowledge about this pest.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, No 27 Lane 113 Sec 4 Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Veenstra JA. Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ 2019; 7:e7144. [PMID: 31245184 PMCID: PMC6585902 DOI: 10.7717/peerj.7144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Insect neuropeptides are interesting for the potential their receptors hold as plausible targets for a novel generation of pesticides. Neuropeptide genes have been identified in a number of different species belonging to a variety of insects. Results suggest significant neuropeptide variation between different orders, but much less is known of neuropeptidome variability within an insect order. I therefore compared the neuropeptidomes of a number of Coleoptera. Methodology Publicly available genome sequences, transcriptomes and the original sequence data in the form of short sequence read archives were analyzed for the presence or absence of genes coding neuropeptides as well as some neuropeptide receptors in seventeen beetle species. Results Significant differences exist between the Coleoptera analyzed here, while many neuropeptides that were previously characterized from Tribolium castaneum appear very similar in all species, some are not and others are lacking in one or more species. On the other hand, leucokinin, which was presumed to be universally absent from Coleoptera, is still present in non-Polyphaga beetles. Conclusion The variability in neuropeptidome composition between species from the same insect order may be as large as the one that exists between species from different orders.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France
| |
Collapse
|
19
|
Adamski Z, Bufo SA, Chowański S, Falabella P, Lubawy J, Marciniak P, Pacholska-Bogalska J, Salvia R, Scrano L, Słocińska M, Spochacz M, Szymczak M, Urbański A, Walkowiak-Nowicka K, Rosiński G. Beetles as Model Organisms in Physiological, Biomedical and Environmental Studies - A Review. Front Physiol 2019; 10:319. [PMID: 30984018 PMCID: PMC6447812 DOI: 10.3389/fphys.2019.00319] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Model organisms are often used in biological, medical and environmental research. Among insects, Drosophila melanogaster, Galleria mellonella, Apis mellifera, Bombyx mori, Periplaneta americana, and Locusta migratoria are often used. However, new model organisms still appear. In recent years, an increasing number of insect species has been suggested as model organisms in life sciences research due to their worldwide distribution and environmental significance, the possibility of extrapolating research studies to vertebrates and the relatively low cost of rearing. Beetles are the largest insect order, with their representative - Tribolium castaneum - being the first species with a completely sequenced genome, and seem to be emerging as new potential candidates for model organisms in various studies. Apart from T. castaneum, additional species representing various Coleoptera families, such as Nicrophorus vespilloides, Leptinotarsa decemlineata, Coccinella septempunctata, Poecilus cupreus, Tenebrio molitor and many others, have been used. They are increasingly often included in two major research aspects: biomedical and environmental studies. Biomedical studies focus mainly on unraveling mechanisms of basic life processes, such as feeding, neurotransmission or activity of the immune system, as well as on elucidating the mechanism of different diseases (neurodegenerative, cardiovascular, metabolic, or immunological) using beetles as models. Furthermore, pharmacological bioassays for testing novel biologically active substances in beetles have also been developed. It should be emphasized that beetles are a source of compounds with potential antimicrobial and anticancer activity. Environmental-based studies focus mainly on the development and testing of new potential pesticides of both chemical and natural origin. Additionally, beetles are used as food or for their valuable supplements. Different beetle families are also used as bioindicators. Another important research area using beetles as models is behavioral ecology studies, for instance, parental care. In this paper, we review the current knowledge regarding beetles as model organisms and their practical application in various fields of life science.
Collapse
Affiliation(s)
- Zbigniew Adamski
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Szymon Chowański
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Jan Lubawy
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Matera, Italy
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marta Spochacz
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Monika Szymczak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
20
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
21
|
Evans JD, McKenna D, Scully E, Cook SC, Dainat B, Egekwu N, Grubbs N, Lopez D, Lorenzen MD, Reyna SM, Rinkevich FD, Neumann P, Huang Q. Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. Gigascience 2018; 7:5232982. [PMID: 30535280 PMCID: PMC6302959 DOI: 10.1093/gigascience/giy138] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background The small hive beetle (Aethina tumida; ATUMI) is an invasive parasite of bee colonies. ATUMI feeds on both fruits and bee nest products, facilitating its spread and increasing its impact on honey bees and other pollinators. We have sequenced and annotated the ATUMI genome, providing the first genomic resources for this species and for the Nitidulidae, a beetle family that is closely related to the extraordinarily species-rich clade of beetles known as the Phytophaga. ATUMI thus provides a contrasting view as a neighbor for one of the most successful known animal groups. Results We present a robust genome assembly and a gene set possessing 97.5% of the core proteins known from the holometabolous insects. The ATUMI genome encodes fewer enzymes for plant digestion than the genomes of wood-feeding beetles but nonetheless shows signs of broad metabolic plasticity. Gustatory receptors are few in number compared to other beetles, especially receptors with known sensitivity (in other beetles) to bitter substances. In contrast, several gene families implicated in detoxification of insecticides and adaptation to diverse dietary resources show increased copy numbers. The presence and diversity of homologs involved in detoxification differ substantially from the bee hosts of ATUMI. Conclusions Our results provide new insights into the genomic basis for local adaption and invasiveness in ATUMI and a blueprint for control strategies that target this pest without harming their honey bee hosts. A minimal set of gustatory receptors is consistent with the observation that, once a host colony is invaded, food resources are predictable. Unique detoxification pathways and pathway members can help identify which treatments might control this species even in the presence of honey bees, which are notoriously sensitive to pesticides.
Collapse
Affiliation(s)
- Jay D Evans
- USDA-ARS, Bee Research Laboratory, BARC-East Building 306, Beltsville, Maryland 20705, USA
| | - Duane McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152, USA
| | - Erin Scully
- USDA-ARS, Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Manhattan, KS 66502, USA
| | - Steven C Cook
- USDA-ARS, Bee Research Laboratory, BARC-East Building 306, Beltsville, Maryland 20705, USA
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Center, CH-3003 Bern, Switzerland
| | - Noble Egekwu
- USDA-ARS, Bee Research Laboratory, BARC-East Building 306, Beltsville, Maryland 20705, USA
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, 1566 Thomas Hall, Raleigh, NC 27695, USA
| | - Dawn Lopez
- USDA-ARS, Bee Research Laboratory, BARC-East Building 306, Beltsville, Maryland 20705, USA
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, 1566 Thomas Hall, Raleigh, NC 27695, USA
| | - Steven M Reyna
- Department of Entomology and Plant Pathology, North Carolina State University, 1566 Thomas Hall, Raleigh, NC 27695, USA
| | - Frank D Rinkevich
- USDA, Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, CH-3097, Liebefeld, Switzerland
| | - Qiang Huang
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, CH-3097, Liebefeld, Switzerland.,Honey Bee Research Institute, Jiangxi Agricultural University, Zhimin Avenue 1101, 330045 Nanchang, China
| |
Collapse
|
22
|
Pandit AA, Ragionieri L, Marley R, Yeoh JGC, Inward DJG, Davies SA, Predel R, Dow JAT. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:94-107. [PMID: 30165105 DOI: 10.1016/j.ibmb.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lapo Ragionieri
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
23
|
Prabh N, Roeseler W, Witte H, Eberhardt G, Sommer RJ, Rödelsperger C. Deep taxon sampling reveals the evolutionary dynamics of novel gene families in Pristionchus nematodes. Genome Res 2018; 28:1664-1674. [PMID: 30232197 PMCID: PMC6211646 DOI: 10.1101/gr.234971.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/05/2018] [Indexed: 01/20/2023]
Abstract
The widespread identification of genes without detectable homology in related taxa is a hallmark of genome sequencing projects in animals, together with the abundance of gene duplications. Such genes have been called novel, young, taxon-restricted, or orphans, but little is known about the mechanisms accounting for their origin, age, and mode of evolution. Phylogenomic studies relying on deep and systematic taxon sampling and using the comparative method can provide insight into the evolutionary dynamics acting on novel genes. We used a phylogenomic approach for the nematode model organism Pristionchus pacificus and sequenced six additional Pristionchus and two outgroup species. This resulted in 10 genomes with a ladder-like phylogeny, sequenced in one laboratory using the same platform and analyzed by the same bioinformatic procedures. Our analysis revealed that 68%-81% of genes are assignable to orthologous gene families, the majority of which defined nine age classes with presence/absence patterns that can be explained by single evolutionary events. Contrasting different age classes, we find that older age classes are concentrated at chromosome centers, whereas novel gene families preferentially arise at the periphery, are weakly expressed, evolve rapidly, and have a high propensity of being lost. Over time, they increase in expression and become more constrained. Thus, the detailed phylogenetic resolution allowed a comprehensive characterization of the evolutionary dynamics of Pristionchus genomes indicating that distribution of age classes and their associated differences shape chromosomal divergence. This study establishes the Pristionchus system for future research on the mechanisms that drive the formation of novel genes.
Collapse
Affiliation(s)
- Neel Prabh
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Waltraud Roeseler
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Gabi Eberhardt
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Rödelsperger C, Meyer JM, Prabh N, Lanz C, Bemm F, Sommer RJ. Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. Cell Rep 2018; 21:834-844. [PMID: 29045848 DOI: 10.1016/j.celrep.2017.09.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 09/24/2017] [Indexed: 01/24/2023] Open
Abstract
The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| | - Jan M Meyer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Falcke JM, Bose N, Artyukhin AB, Rödelsperger C, Markov GV, Yim JJ, Grimm D, Claassen MH, Panda O, Baccile JA, Zhang YK, Le HH, Jolic D, Schroeder FC, Sommer RJ. Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chem Biol 2018; 25:787-796.e12. [PMID: 29779955 DOI: 10.1016/j.chembiol.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022]
Abstract
In the nematodes Caenorhabditis elegans and Pristionchus pacificus, a modular library of small molecules control behavior, lifespan, and development. However, little is known about the final steps of their biosynthesis, in which diverse building blocks from primary metabolism are attached to glycosides of the dideoxysugar ascarylose, the ascarosides. We combine metabolomic analysis of natural isolates of P. pacificus with genome-wide association mapping to identify a putative carboxylesterase, Ppa-uar-1, that is required for attachment of a pyrimidine-derived moiety in the biosynthesis of ubas#1, a major dauer pheromone component. Comparative metabolomic analysis of wild-type and Ppa-uar-1 mutants showed that Ppa-uar-1 is required specifically for the biosynthesis of ubas#1 and related metabolites. Heterologous expression of Ppa-UAR-1 in C. elegans yielded a non-endogenous ascaroside, whose structure confirmed that Ppa-uar-1 is involved in modification of a specific position in ascarosides. Our study demonstrates the utility of natural variation-based approaches for uncovering biosynthetic pathways.
Collapse
Affiliation(s)
- Jan M Falcke
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gabriel V Markov
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Joshua J Yim
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dominik Grimm
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
| | - Marc H Claassen
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dino Jolic
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
McKenna DD. Beetle genomes in the 21st century: prospects, progress and priorities. CURRENT OPINION IN INSECT SCIENCE 2018; 25:76-82. [PMID: 29602365 DOI: 10.1016/j.cois.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
The order Coleoptera (beetles) is arguably the most species-rich lineage of animals. Beetles exhibit an extraordinary variety of life histories and occupy most terrestrial environments. Whole genome sequences are available for 11 beetle species, only six of which have been published. Studies of beetle genomes have revealed remarkable new insights into the genomic basis and evolution of beetle life histories and other aspects of beetle biodiversity, including the genes underlying chemoperception, detoxification, and specialized plant feeding, as well as the role of horizontal gene transfer in elaboration of the beetle trophic repertoire. Nonetheless, such studies are in their infancy. The study of beetle genomes has the potential to further revolutionize our understanding of beetle biodiversity, but genomic studies of beetles remain seriously limited in scope and resolution by the very few genomes that are currently available for study.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Avenue, Memphis, TN 38152, USA.
| |
Collapse
|
27
|
Abstract
Nematodes, such as Caenorhabditis elegans, form one of the most species-rich animal phyla. By now more than 30 nematode genomes have been published allowing for comparative genomic analyses at various different time-scales. The majority of a nematode's gene repertoire is represented by either duplicated or so-called orphan genes of unknown origin. This indicates the importance of mechanisms that generate new genes during the course of evolution. While it is certain that nematodes have acquired genes by horizontal gene transfer from various donors, this process only explains a small portion of the nematode gene content. As evolutionary genomic analyses strongly support that most orphan genes are indeed protein-coding, future studies will have to decide, whether they are result from extreme divergence or evolved de novo from previously noncoding sequences. In this contribution, I summarize several studies investigating gene loss and gain in nematodes and discuss the strengths and weaknesses of individual approaches and datasets. These approaches can be used to ask nematode-specific questions such as associated with the evolution of parasitism or with switches in mating systems, but also can complement studies in other animal phyla like vertebrates and insects to broaden our general view on genome evolution.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany.
| |
Collapse
|
28
|
Strobl F, Klees S, Stelzer EHK. Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. J Vis Exp 2017. [PMID: 28518097 DOI: 10.3791/55629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The red flour beetle Tribolium castaneum has become an important insect model organism in developmental genetics and evolutionary developmental biology. The observation of Tribolium embryos with light sheet-based fluorescence microscopy has multiple advantages over conventional widefield and confocal fluorescence microscopy. Due to the unique properties of a light sheet-based microscope, three dimensional images of living specimens can be recorded with high signal-to-noise ratios and significantly reduced photo-bleaching as well as photo-toxicity along multiple directions over periods that last several days. With more than four years of methodological development and a continuous increase of data, the time seems appropriate to establish standard operating procedures for the usage of light sheet technology in the Tribolium community as well as in the insect community at large. This protocol describes three mounting techniques suitable for different purposes, presents two novel custom-made transgenic Tribolium lines appropriate for long-term live imaging, suggests five fluorescent dyes to label intracellular structures of fixed embryos and provides information on data post-processing for the timely evaluation of the recorded data. Representative results concentrate on long-term live imaging, optical sectioning and the observation of the same embryo along multiple directions. The respective datasets are provided as a downloadable resource. Finally, the protocol discusses quality controls for live imaging assays, current limitations and the applicability of the outlined procedures to other insect species. This protocol is primarily intended for developmental biologists who seek imaging solutions that outperform standard laboratory equipment. It promotes the continuous attempt to close the gap between the technically orientated laboratories/communities, which develop and refine microscopy methodologically, and the life science laboratories/communities, which require 'plug-and-play' solutions to technical challenges. Furthermore, it supports an axiomatic approach that moves the biological questions into the center of attention.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Selina Klees
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Ernst H K Stelzer
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg;
| |
Collapse
|
29
|
Meyer JM, Baskaran P, Quast C, Susoy V, Rödelsperger C, Glöckner FO, Sommer RJ. Succession and dynamics of Pristionchus nematodes and their microbiome during decomposition of Oryctes borbonicus on La Réunion Island. Environ Microbiol 2017; 19:1476-1489. [PMID: 28198090 DOI: 10.1111/1462-2920.13697] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023]
Abstract
Insects and nematodes represent the most species-rich animal taxa and they occur together in a variety of associations. Necromenic nematodes of the genus Pristionchus are found on scarab beetles with more than 30 species known from worldwide samplings. However, little is known about the dynamics and succession of nematodes and bacteria during the decomposition of beetle carcasses. Here, we study nematode and bacterial succession of the decomposing rhinoceros beetle Oryctes borbonicus on La Réunion Island. We show that Pristionchus pacificus exits the arrested dauer stage seven days after the beetles´ deaths. Surprisingly, new dauers are seen after 11 days, suggesting that some worms return to the dauer stage after one reproductive cycle. We used high-throughput sequencing of the 16S rRNA genes of decaying beetles, beetle guts and nematodes to study bacterial communities in comparison to soil. We find that soil environments have the most diverse bacterial communities. The bacterial community of living and decaying beetles are more stable but one single bacterial family dominates the microbiome of decaying beetles. In contrast, the microbiome of nematodes is relatively similar even across different families. This study represents the first characterization of the dynamics of nematode-bacterial interactions during the decomposition of insects.
Collapse
Affiliation(s)
- Jan M Meyer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Praveen Baskaran
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Christian Quast
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Vladislav Susoy
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Frank O Glöckner
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| |
Collapse
|
30
|
Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genomics 2017; 292:565-583. [PMID: 28204924 DOI: 10.1007/s00438-017-1291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.
Collapse
|