1
|
Xiao Y, Wang R, Han X, Wang W, Liang A. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:1766. [PMID: 38339043 PMCID: PMC10855120 DOI: 10.3390/ijms25031766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Xiaxia Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
2
|
Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38:21-6. [PMID: 26661048 PMCID: PMC4749135 DOI: 10.1002/bies.201500131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reading frame maintenance is a critical property of ribosomes. However, a number of genetic elements have been described that can induce ribosomes to shift on mRNAs, the most well understood of which are a class that directs ribosomal slippage by one base in 5' (‐1) direction. This is referred to as programmed ‐1 ribosomal frameshifting (‐1 PRF). Recently, a new ‐1 PRF promoting element was serendipitously discovered in a study examining the effects of stretches of adenosines in the coding sequences of mRNAs. Here, we discuss this finding, recent studies describing how ‐1 PRF is used to control gene expression in eukaryotes, and how ‐1 PRF is itself regulated. The implications of dysregulation of ‐1 PRF on human health are examined, as are possible new areas in which novel ‐1 PRF promoting elements might be discovered. Also watch the https://youtu.be/1mPXIINCRcY.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Belew AT, Dinman JD. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015; 14:172-8. [PMID: 25584829 PMCID: PMC4615106 DOI: 10.4161/15384101.2014.989123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like most basic molecular mechanisms, programmed –1 ribosomal frameshifting (−1 PRF) was first identified in viruses. Early observations that global dysregulation of −1 PRF had deleterious effects on yeast cell growth suggested that −1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral −1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify −1 PRF signals in free living organisms. The unexpected observation that almost all −1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that −1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in −1 PRF. The recent discovery of −1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
Collapse
Affiliation(s)
- Ashton T Belew
- a Department of Cell Biology and Molecular Genetics ; University of Maryland ; College Park , MD USA
| | | |
Collapse
|
4
|
Musalgaonkar S, Moomau CA, Dinman JD. Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression. Nucleic Acids Res 2014; 42:13384-92. [PMID: 25389262 PMCID: PMC4245932 DOI: 10.1093/nar/gku1020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 translocase and disfavor that of the elongation ternary complex. This manifests as specific translational fidelity defects, impacting the expression of genes involved in telomere maintenance. A model is presented describing how cyclic intersubunit rotation ensures the unidirectionality of translational elongation, and how perturbation of rotational equilibrium affects specific aspects of translational fidelity and cellular gene expression.
Collapse
Affiliation(s)
- Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Christine A Moomau
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Gigova A, Duggimpudi S, Pollex T, Schaefer M, Koš M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA (NEW YORK, N.Y.) 2014; 20:1632-44. [PMID: 25125595 PMCID: PMC4174444 DOI: 10.1261/rna.043398.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Andriana Gigova
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sujitha Duggimpudi
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tim Pollex
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Matthias Schaefer
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Martin Koš
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
7
|
Rakauskaite R, Liao PY, Rhodin MHJ, Lee K, Dinman JD. A rapid, inexpensive yeast-based dual-fluorescence assay of programmed--1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res 2011; 39:e97. [PMID: 21602263 PMCID: PMC3152369 DOI: 10.1093/nar/gkr382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Programmed −1 ribosomal frameshifting (−1 PRF) is a mechanism that directs elongating ribosomes to shift-reading frame by 1 base in the 5′ direction that is utilized by many RNA viruses. Importantly, rates of −1 PRF are fine-tuned by viruses, including Retroviruses, Coronaviruses, Flavivriuses and in two endogenous viruses of the yeast Saccharomyces cerevisiae, to deliver the correct ratios of different viral proteins for efficient replication. Thus, −1 PRF presents a novel target for antiviral therapeutics. The underlying molecular mechanism of −1 PRF is conserved from yeast to mammals, enabling yeast to be used as a logical platform for high-throughput screens. Our understanding of the strengths and pitfalls of assays to monitor −1 PRF have evolved since the initial discovery of −1 PRF. These include controlling for the effects of drugs on protein expression and mRNA stability, as well as minimizing costs and the requirement for multiple processing steps. Here we describe the development of an automated yeast-based dual fluorescence assay of −1 PRF that provides a rapid, inexpensive automated pipeline to screen for compounds that alter rates of −1 PRF which will help to pave the way toward the discovery and development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Rasa Rakauskaite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
8
|
Belew AT, Advani VM, Dinman JD. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res 2010; 39:2799-808. [PMID: 21109528 PMCID: PMC3074144 DOI: 10.1093/nar/gkq1220] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although first discovered in viruses, previous studies have identified operational −1 ribosomal frameshifting (−1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast −1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five −1 RF signals. Ablation of the −1 RF signals or of NMD stabilizes this mRNA, and changes in −1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous −1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that −1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence −1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that −1 RF is a broadly used post-transcriptional regulator of gene expression.
Collapse
Affiliation(s)
- Ashton T Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
9
|
Abstract
Errors occur randomly and at low frequency during the translation of mRNA. However, such errors may also be programmed by the sequence and structure of the mRNA. These programmed events are called ‘recoding’ and are found mostly in viruses, in which they are usually essential for viral replication. Translational errors at a stop codon may also be induced by drugs, raising the possibility of developing new treatment protocols for genetic diseases on the basis of nonsense mutations. Many studies have been carried out, but the molecular mechanisms governing these events remain largely unknown. Studies on the yeast Saccharomyces cerevisiae have contributed to characterization of the HIV‐1 frameshifting site and have demonstrated that frameshifting is conserved from yeast to humans. Yeast has also proved a particularly useful model organism for deciphering the mechanisms of translation termination in eukaryotes and identifying the factors required to obtain a high level of natural suppression. These findings open up new possibilities for large‐scale screening in yeast to identify new drugs for blocking HIV replication by inhibiting frameshifting or restoring production of the full‐length protein from a gene inactivated by a premature termination codon. We explore these two aspects of the contribution of yeast studies to human medicine in this review.
Collapse
Affiliation(s)
- Laure Bidou
- Université Paris-Sud, IGM CNRS UMR 8621, Orsay, France
| | | | | |
Collapse
|
10
|
|
11
|
Baeza M, Sanhueza M, Flores O, Oviedo V, Libkind D, Cifuentes V. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas. Virol J 2009; 6:160. [PMID: 19814805 PMCID: PMC2764699 DOI: 10.1186/1743-422x-6-160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. RESULTS Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. CONCLUSION The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X. dendrorhous.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Oriana Flores
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oviedo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología. Bariloche, Río Negro, Argentina
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation. J Mol Biol 2009; 394:268-85. [PMID: 19751744 DOI: 10.1016/j.jmb.2009.09.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui(-) phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui(-) phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui(-) phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.
Collapse
|
13
|
Petrov AN, Meskauskas A, Roshwalb SC, Dinman JD. Yeast ribosomal protein L10 helps coordinate tRNA movement through the large subunit. Nucleic Acids Res 2008; 36:6187-98. [PMID: 18824477 PMCID: PMC2577338 DOI: 10.1093/nar/gkn643] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast ribosomal protein L10 (E. coli L16) is located at the center of a topological nexus that connects many functional regions of the large subunit. This essential protein has previously been implicated in processes as diverse as ribosome biogenesis, translational fidelity and mRNA stability. Here, the inability to maintain the yeast Killer virus was used as a proxy for large subunit defects to identify a series of L10 mutants. These mapped to roughly four discrete regions of the protein. A detailed analysis of mutants located in the N-terminal 'hook' of L10, which inserts into the bulge of 25S rRNA helix 89, revealed strong effects on rRNA structure corresponding to the entire path taken by the tRNA 3' end as it moves through the large subunit during the elongation cycle. The mutant-induced structural changes are wide-ranging, affecting ribosome biogenesis, elongation factor binding, drug resistance/hypersensitivity, translational fidelity and virus maintenance. The importance of L10 as a potential transducer of information through the ribosome, and of a possible role of its N-terminal domain in switching between the pre- and post-translocational states are discussed.
Collapse
Affiliation(s)
| | | | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2135 Microbiology Building, College Park, MD 20742, USA
| |
Collapse
|
14
|
Meskauskas A, Russ JR, Dinman JD. Structure/function analysis of yeast ribosomal protein L2. Nucleic Acids Res 2008; 36:1826-35. [PMID: 18263608 PMCID: PMC2330241 DOI: 10.1093/nar/gkn034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal protein L2 is a core element of the large subunit that is highly conserved among all three kingdoms. L2 contacts almost every domain of the large subunit rRNA and participates in an intersubunit bridge with the small subunit rRNA. It contains a solvent-accessible globular domain that interfaces with the solvent accessible side of the large subunit that is linked through a bridge to an extension domain that approaches the peptidyltransferase center. Here, screening of randomly generated library of yeast RPL2A alleles identified three translationally defective mutants, which could be grouped into two classes. The V48D and L125Q mutants map to the globular domain. They strongly affect ribosomal A-site associated functions, peptidyltransferase activity and subunit joining. H215Y, located at the tip of the extended domain interacts with Helix 93. This mutant specifically affects peptidyl–tRNA binding and peptidyltransferase activity. Both classes affect rRNA structure far away from the protein in the A-site of the peptidyltransferase center. These findings suggest that defective interactions with Helix 55 and with the Helix 65–66 structure may indicate a certain degree of flexibility in L2 in the neck region between the two other domains, and that this might help to coordinate tRNA–ribosome interactions.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Rm. 2135, University of Maryland, College Park, MD, 20742, USA
| | | | | |
Collapse
|
15
|
Plant EP, Nguyen P, Russ JR, Pittman YR, Nguyen T, Quesinberry JT, Kinzy TG, Dinman JD. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae. PLoS One 2007; 2:e517. [PMID: 17565370 PMCID: PMC1885216 DOI: 10.1371/journal.pone.0000517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Background Decoding of mRNAs is performed by aminoacyl tRNAs (aa-tRNAs). This process is highly accurate, however, at low frequencies (10−3 – 10−4) the wrong aa-tRNA can be selected, leading to incorporation of aberrant amino acids. Although our understanding of what constitutes the correct or cognate aa-tRNA:mRNA interaction is well defined, a functional distinction between near-cognate or single mismatched, and unpaired or non-cognate interactions is lacking. Methodology/Principal Findings Misreading of several synonymous codon substitutions at the catalytic site of firefly luciferase was assayed in Saccharomyces cerevisiae. Analysis of the results in the context of current kinetic and biophysical models of aa-tRNA selection suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons, enabling stimulation of GTPase activity of eukaryotic Elongation Factor 1A (eEF1A). Paromomycin specifically stimulated misreading of near-cognate but not of non-cognate aa-tRNAs, providing a functional probe to distinguish between these two classes. Deletion of the accessory elongation factor eEF1Bγ promoted increased misreading of near-cognate, but hyperaccurate reading of non-cognate codons, suggesting that this factor also has a role in tRNA discrimination. A mutant of eEF1Bα, the nucleotide exchange factor for eEF1A, promoted a general increase in fidelity, suggesting that the decreased rates of elongation may provide more time for discrimination between aa-tRNAs. A mutant form of ribosomal protein L5 promoted hyperaccurate decoding of both types of codons, even though it is topologically distant from the decoding center. Conclusions/Signficance It is important to distinguish between near-cognate and non-cognate mRNA:tRNA interactions, because such a definition may be important for informing therapeutic strategies for suppressing these two different categories of mutations underlying many human diseases. This study suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons in the ribosomal decoding center. An aminoglycoside and a ribosomal factor can be used to distinguish between near-cognate and non-cognate interactions.
Collapse
Affiliation(s)
- Ewan P. Plant
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Phuc Nguyen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan R. Russ
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Yvette R. Pittman
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Thai Nguyen
- The Science and Technology Center at Eleanor Roosevelt High School, Greenbelt, Maryland, United States of America
| | | | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of ribosome structure and function by rRNA base modification. PLoS One 2007; 2:e174. [PMID: 17245450 PMCID: PMC1766470 DOI: 10.1371/journal.pone.0000174] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/21/2006] [Indexed: 12/04/2022] Open
Abstract
Background Translating mRNA sequences into functional proteins is a fundamental process necessary for the viability of organisms throughout all kingdoms of life. The ribosome carries out this process with a delicate balance between speed and accuracy. This work investigates how ribosome structure and function are affected by rRNA base modification. The prevailing view is that rRNA base modifications serve to fine tune ribosome structure and function. Methodology/Principal Findings To test this hypothesis, yeast strains deficient in rRNA modifications in the ribosomal peptidyltransferase center were monitored for changes in and translational fidelity. These studies revealed allele-specific sensitivity to translational inhibitors, changes in reading frame maintenance, nonsense suppression and aa-tRNA selection. Ribosomes isolated from two mutants with the most pronounced phenotypic changes had increased affinities for aa-tRNA, and surprisingly, increased rates of peptidyltransfer as monitored by the puromycin assay. rRNA chemical analyses of one of these mutants identified structural changes in five specific bases associated with the ribosomal A-site. Conclusions/Significance Together, the data suggest that modification of these bases fine tune the structure of the A-site region of the large subunit so as to assure correct positioning of critical rRNA bases involved in aa-tRNA accommodation into the PTC, of the eEF-1A•aa-tRNA•GTP ternary complex with the GTPase associated center, and of the aa-tRNA in the A-site. These findings represent a direct demonstration in support of the prevailing hypothesis that rRNA modifications serve to optimize rRNA structure for production of accurate and efficient ribosomes.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/genetics
- Protein Biosynthesis
- Protein Conformation
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- Jennifer L. Baxter-Roshek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Alexey N. Petrov
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Muldoon-Jacobs KL, Dinman JD. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting. EUKARYOTIC CELL 2006; 5:762-70. [PMID: 16607023 PMCID: PMC1459665 DOI: 10.1128/ec.5.4.762-770.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosome-associated molecular chaperone complexes RAC (Ssz1p/Zuo1p) and Ssb1p/Ssb2p expose a link between protein folding and translation. Disruption of the conserved nascent peptide-associated complex results in cell growth and translation fidelity defects. To better understand the consequences of deletion of either RAC or Ssb1p/2p, experiments relating to cell growth and programmed ribosomal frameshifting (PRF) were assayed. Genetic analyses revealed that deletion of Ssb1p/Ssb2p or of Ssz1p/Zuo1p resulted in specific inhibition of -1 PRF and defects in Killer virus maintenance, while no effects were observed on +1 PRF. These factors may provide a new set of targets to exploit against viruses that use -1 PRF. Quantitative measurements of growth profiles of isogenic wild-type and mutant cells showed that translational inhibitors exacerbate underlying growth defects in these mutants. Previous studies have identified -1 PRF signals in yeast chromosomal genes and have demonstrated an inverse relationship between -1 PRF efficiency and mRNA stability. Analysis of published DNA microarray experiments reveals conditions under which Ssb1, Ssb2, Ssz1, and Zuo1 transcript levels are regulated independently of those of genes encoding ribosomal proteins. Thus, the findings presented here suggest that these trans-acting factors could be used by cells to posttranscriptionally regulate gene expression through -1 PRF.
Collapse
Affiliation(s)
- Kristi L Muldoon-Jacobs
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
18
|
Abstract
Since the discovery of toxin-secreting killer yeasts more than 40 years ago, research into this phenomenon has provided insights into eukaryotic cell biology and virus-host-cell interactions. This review focuses on the most recent advances in our understanding of the basic biology of virus-carrying killer yeasts, in particular the toxin-encoding killer viruses, and the intracellular processing, maturation and toxicity of the viral protein toxins. The strategy of using eukaryotic viral toxins to effectively penetrate and eventually kill a eukaryotic target cell will be discussed, and the cellular mechanisms of self-defence and protective immunity will also be addressed.
Collapse
Affiliation(s)
- Manfred J Schmitt
- Applied Molecular Biology, University of the Saarland, D-66041 Saarbrücken, Germany.
| | | |
Collapse
|
19
|
Plant EP, Dinman JD. Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems. RNA (NEW YORK, N.Y.) 2006; 12:666-73. [PMID: 16497657 PMCID: PMC1421095 DOI: 10.1261/rna.2225206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
20
|
Meskauskas A, Petrov AN, Dinman JD. Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 2006; 25:10863-74. [PMID: 16314511 PMCID: PMC1316954 DOI: 10.1128/mcb.25.24.10863-10874.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is accumulating evidence that many ribosomal proteins are involved in shaping rRNA into their functionally correct conformations through RNA-protein interactions. Moreover, although rRNA seems to play the central role in all aspects of ribosome function, ribosomal proteins may be involved in facilitating communication between different functional regions in ribosome, as well as between the ribosome and cellular factors. In an effort to more fully understand how ribosomal proteins may influence ribosome function, we undertook large-scale mutational analysis of ribosomal protein L3, a core protein of the large subunit that has been implicated in numerous ribosome-associated functions in the past. A total of 98 different rpl3 alleles were genetically characterized with regard to their effects on killer virus maintenance, programmed -1 ribosomal frameshifting, resistance/hypersensitivity to the translational inhibitor anisomycin and, in specific cases, the ability to enhance translation of a reporter mRNA lacking the 5' (7)mGppp cap structure and 3' poly(A) tail. Biochemical studies reveal a correlation between an increased affinity for aminoacyl-tRNA and the extent of anisomycin resistance and a decreased peptidyltransferase activity and increased frameshifting efficiency. Immunoblot analyses reveal that the superkiller phenotype is not due to a defect in the ability of ribosomes to recruit the Ski-complex, suggesting that the defect lies in a reduced ability of mutant ribosomes to distinguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs. The results of these analyses are discussed with regard to how protein-rRNA interactions may affect ribosome function.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, 20742, USA
| | | | | |
Collapse
|
21
|
Abstract
NMD (nonsense-mediated mRNA decay) is a cellular quality-control mechanism in which an otherwise stable mRNA is destabilized by the presence of a premature termination codon. We have defined the set of endogenous NMD substrates, demonstrated that they are available for NMD at every round of translation, and showed that premature termination and normal termination are not equivalent biochemical events. Premature termination is aberrant, and its NMD-stimulating defects can be reversed by the presence of tethered poly(A)-binding protein (Pab1p) or tethered eRF3 (eukaryotic release factor 3) (Sup35p). Thus NMD appears to be triggered by a ribosome's failure to terminate adjacent to a properly configured 3′-UTR (untranslated region), an event that may promote binding of the UPF/NMD factors to stimulate mRNA decapping.
Collapse
|
22
|
Plant EP, Pérez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol 2005; 3:e172. [PMID: 15884978 PMCID: PMC1110908 DOI: 10.1371/journal.pbio.0030172] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 03/14/2005] [Indexed: 12/16/2022] Open
Abstract
A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.
Collapse
Affiliation(s)
- Ewan P Plant
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Gabriela C Pérez-Alvarado
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan L Jacobs
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Bani Mukhopadhyay
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Mirko Hennig
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan D Dinman
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| |
Collapse
|
23
|
Harger JW, Dinman JD. Evidence against a direct role for the Upf proteins in frameshifting or nonsense codon readthrough. RNA (NEW YORK, N.Y.) 2004; 10:1721-1729. [PMID: 15388879 PMCID: PMC1236997 DOI: 10.1261/rna.7120504] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/10/2004] [Indexed: 05/24/2023]
Abstract
The Upf proteins are essential for nonsense-mediated mRNA decay (NMD). They have also been implicated in the modulation of translational fidelity at viral frameshift signals and premature termination codons. How these factors function in both mRNA turnover and translational control remains unclear. In this study, mono- and bicistronic reporter systems were used in the yeast Saccharomyces cerevisae to differentiate between effects at the levels of mRNA turnover and those at the level of translation. We confirm that upfDelta mutants do not affect programmed frameshifting, and show that this is also true for mutant forms of eIF1/Sui1p. Further, bicistronic reporters did not detect defects in translational readthrough due to deletion of the UPF genes, suggesting that their function in termination is not as general a phenomenon as was previously believed. The demonstration that upf sui1 double mutants are synthetically lethal demonstrates an important functional interaction between the NMD and translation initiation pathway.
Collapse
Affiliation(s)
- Jason W Harger
- Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
24
|
Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004; 32:784-90. [PMID: 14762205 PMCID: PMC373365 DOI: 10.1093/nar/gkh256] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) directs rapid degradation of premature termination codon (PTC)-containing mRNAs, e.g. those containing frameshift mutations. Many viral mRNAs encode polycistronic messages where programmed -1 ribosomal frameshift (-1 PRF) signals direct ribosomes to synthesize polyproteins. A previous study, which identified consensus -1 PRF signals in the yeast genome, found that, in contrast to viruses, the majority of predicted -1 PRF events would direct translating ribosomes to PTCs. Here we tested the hypothesis that a -1 PRF signal can function as a cis-acting mRNA destabilizing element by inserting an L-A viral -1 PRF signal into a PGK1 reporter construct in the 'genomic' orientation. The results show that even low levels of -1 PRF are sufficient to target the reporter mRNA for degradation via the NMD pathway, with half-lives similar to messages containing in-frame PTCs. The demonstration of an inverse correlation between frameshift efficiency and mRNA half-lives suggests that modulation of -1 PRF frequencies can be used to post-transcriptionally regulate gene expression. Analysis of the mRNA decay profiles of the frameshift-signal- containing reporter mRNAs also supports the notion that NMD remains active on mRNAs beyond the 'pioneer round' of translation in yeast.
Collapse
MESH Headings
- Codon, Nonsense/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Fungal/genetics
- Genes, Reporter/genetics
- Half-Life
- Models, Genetic
- Polyproteins/genetics
- RNA Stability
- RNA Transport
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
25
|
Meskauskas A, Harger JW, Jacobs KLM, Dinman JD. Decreased peptidyltransferase activity correlates with increased programmed -1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2003; 9:982-92. [PMID: 12869709 PMCID: PMC1240118 DOI: 10.1261/rna.2165803] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 05/22/2003] [Indexed: 05/20/2023]
Abstract
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
26
|
Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:233-48. [PMID: 12762025 DOI: 10.1101/sqb.2001.66.233] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- I Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
27
|
Meskauskas A, Baxter JL, Carr EA, Yasenchak J, Gallagher JEG, Baserga SJ, Dinman JD. Delayed rRNA processing results in significant ribosome biogenesis and functional defects. Mol Cell Biol 2003; 23:1602-13. [PMID: 12588980 PMCID: PMC151716 DOI: 10.1128/mcb.23.5.1602-1613.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mof6-1 was originally isolated as a recessive mutation in Saccharomyces cerevisiae which promoted increased efficiencies of programmed -1 ribosomal frameshifting and rendered cells unable to maintain the killer virus. Here, we demonstrate that mof6-1 is a unique allele of the histone deacetylase RPD3, that the deacetylase function of Rpd3p is required for controlling wild-type levels of frameshifting and virus maintenance, and that the closest human homolog can fully complement these defects. Loss of the Rpd3p-associated histone deacetylase function, either by mutants of rpd3 or loss of the associated gene product Sin3p or Sap30p, results in a delay in rRNA processing rather than in an rRNA transcriptional defect. This results in production of ribosomes having lower affinities for aminoacyl-tRNA and diminished peptidyltransferase activities. We hypothesize that decreased rates of peptidyl transfer allow ribosomes with both A and P sites occupied by tRNAs to pause for longer periods of time at -1 frameshift signals, promoting increased programmed -1 ribosomal frameshifting efficiencies and subsequent loss of the killer virus. The frameshifting defect is accentuated when the demand for ribosomes is highest, suggesting that rRNA posttranscriptional modification is the bottleneck in ribosome biogenesis.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Plant EP, Jacobs KLM, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2003; 9:168-74. [PMID: 12554858 PMCID: PMC1237042 DOI: 10.1261/rna.2132503] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is something special about mRNA pseudoknots that allows them to elicit efficient levels of programmed -1 ribosomal frameshifting. Here, we present a synthesis of recent crystallographic, molecular, biochemical, and genetic studies to explain this property. Movement of 9 A by the anticodon loop of the aminoacyl-tRNA at the accommodation step normally pulls the downstream mRNA a similar distance along with it. We suggest that the downstream mRNA pseudoknot provides resistance to this movement by becoming wedged into the entrance of the ribosomal mRNA tunnel. These two opposing forces result in the creation of a local region of tension in the mRNA between the A-site codon and the mRNA pseudoknot. This can be relieved by one of two mechanisms; unwinding the pseudoknot, allowing the downstream region to move forward, or by slippage of the proximal region of the mRNA backwards by one base. The observed result of the latter mechanism is a net shift of reading frame by one base in the 5' direction, that is, a -1 ribosomal frameshift.
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Weiler F, Rehfeldt K, Bautz F, Schmitt MJ. The Zygosaccharomyces bailii antifungal virus toxin zygocin: cloning and expression in a heterologous fungal host. Mol Microbiol 2002; 46:1095-105. [PMID: 12421314 DOI: 10.1046/j.1365-2958.2002.03225.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zygocin, a monomeric protein toxin secreted by a virus-infected killer strain of the osmotolerant spoilage yeast Zygosaccharomyces bailii, kills a broad spectrum of human and phytopathogenic yeasts and filamentous fungi by disrupting cytoplasmic membrane function. The toxin is encoded by a double-stranded (ds)RNA killer virus (ZbV-M, for Z. bailii virus M) that stably persists within the yeast cell cytosol. In this study, the protein toxin was purified, its N-terminal amino acid sequence was determined, and a full-length cDNA copy of the 2.1 kb viral dsRNA genome was cloned and successfully expressed in a heterologous fungal system. Sequence analysis as well as zygocin expression in Schizosaccharomyces pombe indicated that the toxin is in vivo expressed as a 238-amino-acid preprotoxin precursor (pptox) consisting of a hydrophobic N-terminal secretion signal, followed by a potentially N-glycosylated pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N-terminus of the mature and biologically active protein toxin in a late Golgi compartment. Matrix-assisted laser desorption mass spectrometry further indicated that the secreted toxin is a monomeric 10.4 kDa protein lacking detectable post-translational modifications. Furthermore, we present additional evidence that in contrast with other viral antifungal toxins, zygocin immunity is not mediated by the toxin precursor itself and, therefore, heterologous pptox expression in a zygocin-sensitive host results in a suicidal phenotype. Final sequence comparisons emphasize the conserved pattern of functional elements present in dsRNA killer viruses that naturally infect phylogenetically distant hosts (Saccharomyces cerevisiae and Z. bailii) and reinforce models for the sequence elements that are in vivo required for viral RNA packaging and replication.
Collapse
Affiliation(s)
- Frank Weiler
- Angewandte Molekularbiologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | |
Collapse
|
30
|
Goss Kinzy T, Harger JW, Carr-Schmid A, Kwon J, Shastry M, Justice M, Dinman JD. New targets for antivirals: the ribosomal A-site and the factors that interact with it. Virology 2002; 300:60-70. [PMID: 12202206 DOI: 10.1006/viro.2002.1567] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many viruses use programmed -1 ribosomal frameshifting to ensure the correct ratio of viral structural to enzymatic proteins. Alteration of frameshift efficiencies changes these ratios, in turn inhibiting viral particle assembly and virus propagation. Previous studies determined that anisomycin, a peptidyl transferase inhibitor, specifically inhibited -1 frameshifting and the ability of yeast cells to propagate the L-A and M(1) dsRNA viruses (J. D. Dinman, M. J. Ruiz-Echevarria, K. Czaplinski, and S. W. Peltz, 1997, Proc. Natl. Acad. Sci. USA 94, 6606-6611). Here we show that preussin, a pyrollidine that is structurally similar to anisomycin (R. E. Schwartz, J. Liesch, O. Hensens, L. Zitano, S. Honeycutt, G. Garrity, R. A. Fromtling, J. Onishi, and R. Monaghan, 1988. J. Antibiot. (Tokyo) 41, 1774--1779), also inhibits -1 programmed ribosomal frameshifting and virus propagation by acting at the same site or through the same mechanism as anisomycin. Since anisomycin is known to assert its effect at the ribosomal A-site, we undertook a pharmacogenetic analysis of mutants of trans-acting eukaryotic elongation factors (eEFs) that function at this region of the ribosome. Among mutants of eEF1A, a correlation is observed between resistance/susceptibility profiles to preussin and anisomycin, and these in turn correlate with programmed -1 ribosomal frameshifting efficiencies and killer virus phenotypes. Among mutants of eEF2, the extent of resistance to preussin correlates with resistance to sordarin, an eEF2 inhibitor. These results suggest that structural features associated with the ribosomal A-site and with the trans-acting factors that interact with it may present a new set of molecular targets for the rational design of antiviral compounds.
Collapse
Affiliation(s)
- Terri Goss Kinzy
- Department of Molecular Genetics and Microbiology, UMDNJ/Rutgers Universities, UMDNJ Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Since the initial discovery of the yeast killer system almost 40 years ago, intensive studies have substantially strengthened our knowledge in many areas of biology and provided deeper insights into basic aspects of eukaryotic cell biology as well as into virus-host cell interactions and general yeast virology. Analysis of killer toxin structure, synthesis and secretion has fostered understanding of essential cellular mechanisms such as post-translational prepro-protein processing in the secretory pathway. Furthermore, investigation of the receptor-mediated mode of toxin action proved to be an effective means for dissecting the molecular structure and in vivo assembly of yeast and fungal cell walls, providing important insights relevant to combating infections by human pathogenic yeasts. Besides their general importance in understanding eukaryotic cell biology, killer yeasts, killer toxins and killer viruses are also becoming increasingly interesting with respect to possible applications in biomedicine and gene technology. This review will try to address all these aspects.
Collapse
Affiliation(s)
- Manfred J Schmitt
- Angewandte Molekularbiologie (FR 8.3 -- Mikrobiologie), Universität des Saarlandes, Im Stadtwald, Gebäude 2, D-66123 Saarbrücken, Germany.
| | | |
Collapse
|
32
|
Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD. Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:8264-75. [PMID: 11713264 PMCID: PMC99992 DOI: 10.1128/mcb.21.24.8264-8275.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome.
Collapse
Affiliation(s)
- M W Smith
- Department of Molecular Genetics and Microbiology, Rutgers University and University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cell survival depends on the precise and correct production of polypeptides. Eukaryotic cells have evolved conserved proofreading mechanisms to get rid of incomplete and potentially deleterious proteins. The nonsense-mediated mRNA decay (NMD) pathway is an example of a surveillance mechanism that monitors premature translation termination and promotes degradation of aberrant transcripts that code for nonfunctional or even harmful proteins. In this review we will describe our current knowledge of the NMD pathway, analyzing primarily the results obtained from the yeast Saccharomyces cerevisiae, but establishing functional comparisons with those obtained in higher eukaryotes. Based on these observations, we present two related working models to explain how this surveillance pathway recognizes and selectively degrades aberrant mRNAs.
Collapse
Affiliation(s)
- C I González
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
34
|
Meskauskas A, Dinman JD. Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2001; 7:1084-96. [PMID: 11497428 PMCID: PMC1307509 DOI: 10.1017/s1355838201001480] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our previous demonstration that mutants of 5S rRNA called mof9 can specifically alter efficiencies of programmed ribosomal frameshifting (PRF) suggested a role for this ubiquitous molecule in the maintenance of translational reading frame, though the repetitive nature of the 5S rDNA gene (>100 copies/cell) inhibited more detailed analyses. However, given the known interactions between 5S rRNA and ribosomal protein L5 (previously called L1 or YL3) encoded by an essential, single-copy gene, we monitored the effects of a series of well-defined rpl5 mutants on PRF and virus propagation. Consistent with the mof9 results, we find that the rpl5 mutants promoted increased frameshifting efficiencies in both the -1 and +1 directions, and conferred defects in the ability of cells to propagate two endogenous viruses. Biochemical analyses demonstrated that mutant ribosomes had decreased affinities for peptidyl-tRNA. Pharmacological studies showed that sparsomycin, a peptidyltransferase inhibitor that specifically increases the binding of peptidyl-tRNA with ribosomes, was antagonistic to the frameshifting defects of the most severe mutant, and the extent of sparsomycin resistance correlated with the severity of the frameshifting defects in all of the mutants. These results provide biochemical and physiological evidence that one function of L5 is to anchor peptidyl-tRNA to the P-site. A model is presented describing how decreased affinity of ribosomes for peptidyl-tRNA can affect both -1 and +1 frameshifting, and for the effects of sparsomycin.
Collapse
Affiliation(s)
- A Meskauskas
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
35
|
Harger JW, Meskauskas A, Nielsen J, Justice MC, Dinman JD. Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 2001; 286:216-24. [PMID: 11448174 DOI: 10.1006/viro.2001.0997] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed ribosomal frameshifting is utilized by a number of RNA viruses to ensure the correct ratio of viral structural to enzymatic proteins for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, inhibiting virus propagation. Two yeast viruses that induce host cell ribosomes to shift translational reading frame were used as tools to explore the interactions between viruses and host cellular protein synthetic machinery. Previous studies showed that the ribosome-inactivating protein pokeweed antiviral protein specifically inhibited propagation of the Ty1 retrotransposable element of yeast as a consequence of inhibition of programmed +1 ribosomal frameshifting. Here, complementary genetic and pharmacological approaches were employed to test whether inhibition of Ty1 retrotransposition is a general feature of alterations in the translocation step of elongation and +1 frameshifting. The results demonstrate that cells harboring a variety of mutant alleles of two host-encoded proteins that are involved in translocation, eukaryotic elongation factor-2 and the ribosome-associated protein RPP0, have Ty1 propagation defects. We also show that sordarin, a fungus-specific inhibitor of eEF-2 function, specifically inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition. These findings serve to link inhibition of Ty1 retrotransposition and +1 frameshifting to changes in the translocation step of elongation.
Collapse
Affiliation(s)
- J W Harger
- Department of Molecular Genetics and Microbiology, Graduate Program in Molecular Biosciences at UMDNJ/Rutgers Universities, The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
36
|
He F, Jacobson A. Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol 2001; 21:1515-30. [PMID: 11238889 PMCID: PMC86698 DOI: 10.1128/mcb.21.5.1515-1530.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, rapid degradation of nonsense-containing mRNAs requires the decapping enzyme Dcp1p, the 5'-to-3' exoribonuclease Xrn1p, and the three nonsense-mediated mRNA decay (NMD) factors, Upf1p, Nmd2p, and Upf3p. To identify specific functions for the NMD factors, we analyzed the mRNA decay phenotypes of yeast strains containing deletions of DCP1 or XRN1 and UPF1, NMD2, or UPF3. Our results indicate that Upf1p, Nmd2p, and Upf3p regulate decapping and exonucleolytic degradation of nonsense-containing mRNAs. In addition, we show that these factors also regulate the same processes in the degradation of wild-type mRNAs. The participation of the NMD factors in general mRNA degradation suggests that they may regulate an aspect of translation termination common to all transcripts.
Collapse
Affiliation(s)
- F He
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | |
Collapse
|
37
|
Hudak KA, Hammell AB, Yasenchak J, Tumer NE, Dinman JD. A C-terminal deletion mutant of pokeweed antiviral protein inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition without depurinating the sarcin/ricin loop of rRNA. Virology 2001; 279:292-301. [PMID: 11145910 DOI: 10.1006/viro.2000.0647] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. Here, a series of PAP mutants were used to examine the relationship between depurination of the S/R loop and inhibition of +1 programmed ribosomal frameshifting (PRF) and to define PAP sequences critical for inhibition of +1 PRF and Ty1 retrotransposition in the yeast Saccharomyces cerevisiae. Using three different classes of mutants we present evidence that strong binding of a C-terminal PAP mutant (PAPc) to ribosomes is sufficient to inhibit +1 PRF and Ty1 retrotransposition in the absence of S/R loop depurination. PAPc did not affect the totivirus ScV-L-A and HIV-1-directed -1 PRF efficiencies or the ability of cells to maintain the M(1)-dependent killer phenotype, demonstrating the specificity of the effect of PAPc on +1 PRF.
Collapse
Affiliation(s)
- K A Hudak
- Biotechnology Center for Agriculture and the Environment and Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, New Jersey, 08903-0231, USA
| | | | | | | | | |
Collapse
|
38
|
Fujimura T, Esteban R. Recognition of RNA encapsidation signal by the yeast L-A double-stranded RNA virus. J Biol Chem 2000; 275:37118-26. [PMID: 10954712 DOI: 10.1074/jbc.m005245200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The encapsidation signal of the yeast L-A virus contains a 24-nucleotide stem-loop structure with a 5-nucleotide loop and an A bulged at the 5' side of the stem. The Pol part of the Gag-Pol fusion protein is responsible for encapsidation of viral RNA. Opened empty viral particles containing Gag-Pol specifically bind to this encapsidation signal in vitro. We found that binding to empty particles protected the bulged A and the flanking-two nucleotides from cleavage by Fe(II)-EDTA-generated hydroxyl radicals. The five nucleotides of the loop sequence ((4190)GAUCC(4194)) were not protected. However, T1 RNase protection and in vitro mutagenesis experiments indicated that G(4190) is essential for binding. Although the sequence of the other four nucleotides of the loop is not essential, data from RNase protection and chemical modification experiments suggested that C(4194) was also directly involved in binding to empty particles rather than indirectly through its potential base pairing with G(4190). These results suggest that the Pol domain of Gag-Pol contacts the encapsidation signal at two sites: one, the bulged A, and the other, G and C bases at the opening of the loop. These two sites are conserved in the encapsidation signal of M1, a satellite RNA of the L-A virus.
Collapse
Affiliation(s)
- T Fujimura
- Instituto de Microbiologia Bioquimica/Departamento de Microbiologia y Genética, Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
39
|
Giedroc DP, Theimer CA, Nixon PL. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol 2000; 298:167-85. [PMID: 10764589 PMCID: PMC7126452 DOI: 10.1006/jmbi.2000.3668] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed -1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide "slippery sequence" conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level ( approximately 1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed -1 ribosomal frameshifting.
Collapse
MESH Headings
- Base Sequence
- Cations/metabolism
- Cations/pharmacology
- Frameshifting, Ribosomal/genetics
- Infectious bronchitis virus/genetics
- Luteovirus/genetics
- Mammary Tumor Virus, Mouse/genetics
- Models, Genetic
- Nucleic Acid Conformation/drug effects
- RNA Stability/drug effects
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Retroviruses, Simian/genetics
Collapse
Affiliation(s)
- D P Giedroc
- Department of Biochemistry and Biophysics, Center for Macromolecular Design, Texas A&M University, TX 77843-2128, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Burck CL, Chernoff YO, Liu R, Farabaugh PJ, Liebman SW. Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift. RNA (NEW YORK, N.Y.) 1999; 5:1451-1457. [PMID: 10580473 PMCID: PMC1369866 DOI: 10.1017/s1355838299990490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Certain viruses, transposons, and cellular genes have evolved specific sequences that induce high levels of specific translational errors. Such "programmed misreading" can result in levels of frameshifting or nonsense codon readthrough that are up to 1,000-fold higher than normal. Here we determine how a number of mutations in yeast affect the programmed misreading used by the yeast Ty retrotransposons. These mutations have previously been shown to affect the general accuracy of translational termination. We find that among four nonsense suppressor ribosomal mutations tested, one (a ribosomal protein mutation) enhanced the efficiency of the Tyl frameshifting, another (an rRNA mutation) reduced frameshifting, and two others (another ribosomal protein mutation and another rRNA mutation) had no effect. Three antisuppressor rRNA mutations all reduced Tyl frameshifting; however the antisuppressor mutation in the ribosomal protein did not show any effect. Among nonribosomal mutations, the allosuppressor protein phosphatase mutation enhanced Tyl frameshifting, whereas the partially inactive prion form of the release factor eRF3 caused a slight decrease, if any effect. A mutant form of the other release factor, eRF1, also had no effect on frameshifting. Our data suggest that Ty frameshifting is under the control of the cellular translational machinery. Surprisingly we find that translational suppressors can affect Ty frameshifting in either direction, whereas antisuppressors have either no effect or cause a decrease.
Collapse
Affiliation(s)
- C L Burck
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
42
|
Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999; 19:4552-60. [PMID: 10373504 PMCID: PMC84253 DOI: 10.1128/mcb.19.7.4552] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. alpha-Globin mRNA stability is dictated by sequences in the 3' untranslated region (3'UTR) which form a specific ribonucleoprotein complex (alpha-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, alphaCP1 and alphaCP2. Using an in vitro-transcribed and polyadenylated alpha-globin 3'UTR, we have devised an in vitro mRNA decay assay which reproduces the alpha-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the alpha-complex by sequestration of alphaCP1 and alphaCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the alpha-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between alphaCP1 and alphaCP2 with PABP suggests that the alpha-complex can directly interact with PABP. Therefore, the alpha-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.
Collapse
Affiliation(s)
- Z Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | | | | | |
Collapse
|
43
|
Sheikh MS, Fernandez-Salas E, Yu M, Hussain A, Dinman JD, Peltz SW, Huang Y, Fornace AJ. Cloning and characterization of a human genotoxic and endoplasmic reticulum stress-inducible cDNA that encodes translation initiation factor 1(eIF1(A121/SUI1)). J Biol Chem 1999; 274:16487-93. [PMID: 10347211 DOI: 10.1074/jbc.274.23.16487] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and characterization of a DNA damage-inducible (DDI) transcript DDI A121. The full-length human DDI A121 cDNA contains an open reading frame of 113 amino acids, corresponding to a protein of 12.7 kDa. The deduced amino acid sequence of A121 shows high homology to the yeast translation initiation factor (eIF) sui1 and also exhibits perfect identity to the partial sequence of recently purified human eIF1. Expression of human A121 corrected the mutant sui1 phenotype in yeast, demonstrating that human A121 encodes a bona fide translation initiation factor that is equivalent to yeast sui1p. The mammalian A121/SUI1 gene exhibits two transcripts (1.35 kilobases and 0.65 kilobases) containing a common coding region but differing in their 3'-untranslated region. The long and short A121/SUI1 mRNAs are differentially regulated by genotoxic and endoplasmic reticulum stress. The genotoxic stress induction of A121/SUI1 mRNA is conserved in both humans and rodents and occurs in a p53-independent manner. Our identification of a stress-inducible cDNA that encodes eIF1 suggests that modulation of translation initiation appears to occur during cellular stress and may represent an important adaptive response to genotoxic as well as endoplasmic reticulum stress.
Collapse
Affiliation(s)
- M S Sheikh
- Division of Basic Sciences, NCI, National Institutes of Health, Bethesda MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cui Y, González CI, Kinzy TG, Dinman JD, Peltz SW. Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 1999; 5:794-804. [PMID: 10376878 PMCID: PMC1369805 DOI: 10.1017/s1355838299982055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies have demonstrated that cells have evolved elaborate mechanisms to rid themselves of aberrant proteins and transcripts. The nonsense-mediated mRNA decay pathway (NMD) is an example of a pathway that eliminates aberrant mRNAs. In yeast, a transcript is recognized as aberrant and is rapidly degraded if a specific sequence, called the DSE, is present 3' of a premature termination codon. Results presented here show that strains harboring the mof2-1, mof4-1, mof5-1, and mof8-1 alleles, previously demonstrated to increase the efficiency of programmed -1 ribosomal frameshifting, decrease the activity of the NMD pathway. The effect of the mof2-1 allele on NMD was characterized in more detail. Previous results demonstrated that the wild-type MOF2 gene is identical to the SUI1 gene. Studies on the mof2-1 allele of the SUI1 gene indicate that in addition to its role in recognition of the AUG codon during translation initiation and maintenance of the appropriate reading frame during translation elongation, the Mof2 protein plays a role in the NMD pathway. The Mof2p/Sui1 p is conserved throughout nature and the human homolog of the Mof2p/Sui1p functions in yeast cells to activate NMD. These results suggest that factors involved in NMD are general modulators that act in several aspects of translation and mRNA turnover.
Collapse
Affiliation(s)
- Y Cui
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
45
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res 1999. [DOI: 10.1101/gr.9.5.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the −1 (5′) direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed −1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed −1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus −1 ribosomal frameshift signals. The results demonstrated that consensus programmed −1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed −1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeastRAS1 and the human CCR5 genes were able to promote significant levels of programmed −1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
|
46
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 1999; 9:417-27. [PMID: 10330121 PMCID: PMC310776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the -1 (5') direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed -1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed -1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus -1 ribosomal frameshift signals. The results demonstrated that consensus programmed -1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed -1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeast RAS1 and the human CCR5 genes were able to promote significant levels of programmed -1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
Affiliation(s)
- A B Hammell
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, and The Graduate Programs in Molecular Bioscience Rutgers/UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
47
|
Peltz SW, Hammell AB, Cui Y, Yasenchak J, Puljanowski L, Dinman JD. Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Mol Cell Biol 1999; 19:384-91. [PMID: 9858562 PMCID: PMC83896 DOI: 10.1128/mcb.19.1.384] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is utilized by a number of RNA viruses as a means of ensuring the correct ratio of viral structural to enzymatic proteins available for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, interfering with virus propagation. We have previously demonstrated that compounds that alter the kinetics of the peptidyl-transfer reaction affect programmed -1 ribosomal frameshift efficiencies and interfere with viral propagation in yeast. Here, the use of a genetic approach lends further support to the hypothesis that alterations affecting the ribosome's peptidyltransferase activity lead to changes in frameshifting efficiency and virus loss. Mutations in the RPL3 gene, which encodes a ribosomal protein located at the peptidyltransferase center, promote approximately three- to fourfold increases in programmed -1 ribosomal frameshift efficiencies and loss of the M1 killer virus of yeast. The mak8-1 allele of RPL3 contains two adjacent missense mutations which are predicted to structurally alter the Mak8-1p. Furthermore, a second allele that encodes the N-terminal 100 amino acids of L3 (called L3Delta) exerts a trans-dominant effect on programmed -1 ribosomal frameshifting and killer virus maintenance. Taken together, these results support the hypothesis that alterations in the peptidyltransferase center affect programmed -1 ribosomal frameshifting.
Collapse
Affiliation(s)
- S W Peltz
- The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
48
|
Edskes HK, Ohtake Y, Wickner RB. Mak21p of Saccharomyces cerevisiae, a homolog of human CAATT-binding protein, is essential for 60 S ribosomal subunit biogenesis. J Biol Chem 1998; 273:28912-20. [PMID: 9786894 DOI: 10.1074/jbc.273.44.28912] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mak21-1 mutants are unable to propagate M1 double-stranded RNA, a satellite of the L-A double-stranded RNA virus, encoding a secreted protein toxin lethal to yeast strains that do not carry M1. We cloned MAK21 using its map location and found that Mak21p is homologous to a human and mouse CAATT-binding protein and open reading frames in Schizosaccharomyces pombe and Caenorhabditis elegans. Although the human protein regulates Hsp70 production, Mak21p is essential for growth and necessary for 60 S ribosomal subunit biogenesis. mak21-1 mutants have decreased levels of L-A coat protein and L-A double-stranded RNA. Electroporation with reporter mRNAs shows that mak21-1 cells cannot optimally express mRNAs which, like L-A viral mRNA, lack 3'-poly(A) or 5'-cap structures but can normally express mRNA with both cap and poly(A). The virus propagation phenotype of mak21-1 is suppressed by ski2 or ski6 mutations, each of which derepresses translation of non-poly(A) mRNA.
Collapse
Affiliation(s)
- H K Edskes
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
49
|
Ivanov IP, Gesteland RF, Matsufuji S, Atkins JF. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast. RNA (NEW YORK, N.Y.) 1998; 4:1230-1238. [PMID: 9769097 PMCID: PMC1369695 DOI: 10.1017/s1355838298980864] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The coding sequence for mammalian ornithine decarboxylase antizyme is in two different partially overlapping reading frames with no independent ribosome entry to the second ORF. Immediately before the stop codon of the first ORF, a proportion of ribosomes undergo a quadruplet translocation event to shift to the +1 reading frame of the second and main ORF. The proportion that frameshifts is dependent on the polyamine level and, because the product antizyme is a negative regulator of intracellular polyamine levels, the frameshifting acts to complete an autoregulatory circuit by sensing polyamine levels. An mRNA element just 5' of the shift site and a 3' pseudoknot are important for efficient frameshifting. Previous work has shown that a cassette with the mammalian shift site and associated signals directs efficient shifting in the budding yeast Saccharomyces cerevisiae at the same codon to the correct frame, but that the shift is -2 instead of +1. The product contains an extra amino acid corresponding to the shift site. The present work shows efficient frameshifting also occurs in the fission yeast, Schizosaccharomyces pombe. This frameshifting is 80% +1 and 20% -2. The response of S. pombe translation apparatus to the mammalian antizyme recoding signals is more similar to that of the mammalian system than to that of S. cerevisiae. S. pombe provides a good model system for genetic studies on the mechanism of at least this type of programmed mammalian frameshifting.
Collapse
Affiliation(s)
- I P Ivanov
- Department of Human Genetics, University of Utah, Salt Lake City 84112-5330, USA
| | | | | | | |
Collapse
|
50
|
Ruiz-Echevarría MJ, Yasenchak JM, Han X, Dinman JD, Peltz SW. The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc Natl Acad Sci U S A 1998; 95:8721-6. [PMID: 9671745 PMCID: PMC21143 DOI: 10.1073/pnas.95.15.8721] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Indexed: 02/08/2023] Open
Abstract
The nonsense-mediated mRNA decay pathway functions to degrade aberrant mRNAs that contain premature translation termination codons. In Saccharomyces cerevisiae, the Upf1, Upf2, and Upf3 proteins have been identified as trans-acting factors involved in this pathway. Recent results have demonstrated that the Upf proteins may also be involved in maintaining the fidelity of several aspects of the translation process. Certain mutations in the UPF1 gene have been shown to affect the efficiency of translation termination at nonsense codons and/or the process of programmed -1 ribosomal frameshifting used by viruses to control their gene expression. Alteration of programmed frameshift efficiencies can affect virus assembly leading to reduced viral titers or elimination of the virus. Here we present evidence that the Upf3 protein also functions to regulate programmed -1 frameshift efficiency. A upf3-Delta strain demonstrates increased sensitivity to the antibiotic paromomycin and increased programmed -1 ribosomal frameshift efficiency resulting in loss of the M1 virus. Based on these observations, we hypothesize that the Upf proteins are part of a surveillance complex that functions to monitor translational fidelity and mRNA turnover.
Collapse
Affiliation(s)
- M J Ruiz-Echevarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, USA
| | | | | | | | | |
Collapse
|