1
|
Chen L, Beets I, Schafer W. Two K2P Channels, TWK-46 and TWK-26 do not affect C. elegans Egg-Laying Behavior. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001477. [PMID: 39936042 PMCID: PMC11811770 DOI: 10.17912/micropub.biology.001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Two-pore domain potassium channels, also known as K2P channels, play vital roles in maintaining the resting membrane potential in excitable cells, affecting a variety of physiological processes across species. The Caenorhabditis elegans ( C. elegans ) genome contains 46 different K2P-encoding genes, yet most of their functions remain unknown. Here, we have investigated the possible roles of two C. elegans K2P channel genes - twk-26 and twk-46 - that are expressed in the egg-laying neural circuit by characterizing the egg-laying behavior of null mutants generated by CRISPR/Cas9 gene editing. However, using a variety of assays, we did not observe significant differences in egg-laying behavior between twk-26 and twk-46 mutants and wild-type worms .
Collapse
Affiliation(s)
- Li Chen
- Biology, KU Leuven, Leuven, Flanders, Belgium
| | | | - William Schafer
- Biology, KU Leuven, Leuven, Flanders, Belgium
- Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, England, United Kingdom
| |
Collapse
|
2
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
3
|
Mignerot L, Gimond C, Bolelli L, Bouleau C, Sandjak A, Boulin T, Braendle C. Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off. eLife 2024; 12:RP88253. [PMID: 38564369 PMCID: PMC10987095 DOI: 10.7554/elife.88253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Asma Sandjak
- Université Côte d’Azur, CNRS, Inserm, IBVNiceFrance
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de LyonLyonFrance
| | | |
Collapse
|
4
|
Zhou C, Zhou Q, He X, He Y, Wang X, Zhu X, Zhang Y, Ma L. Differential modulation of C. elegans motor behavior by NALCN and two-pore domain potassium channels. PLoS Genet 2022; 18:e1010126. [PMID: 35482723 PMCID: PMC9049526 DOI: 10.1371/journal.pgen.1010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Two-pore domain potassium channels (K2P) are a large family of “background” channels that allow outward “leak” of potassium ions. The NALCN/UNC80/UNC79 complex is a non-selective channel that allows inward flow of sodium and other cations. It is unclear how K2Ps and NALCN differentially modulate animal behavior. Here, we found that loss of function (lf) in the K2P gene twk-40 suppressed the reduced body curvatures of C. elegans NALCN(lf) mutants. twk-40(lf) caused a deep body curvature and extended backward locomotion, and these phenotypes appeared to be associated with neuron-specific expression of twk-40 and distinct twk-40 transcript isoforms. To survey the functions of other less studied K2P channels, we examined loss-of-function mutants of 13 additional twk genes expressed in the motor circuit and detected defective body curvature and/or locomotion in mutants of twk-2, twk-17, twk-30, twk-48, unc-58, and the previously reported twk-7. We generated presumptive gain-of-function (gf) mutations in twk-40, twk-2, twk-7, and unc-58 and found that they caused paralysis. Further analyses detected variable genetic interactions between twk-40 and other twk genes, an interdependence between twk-40 and twk-2, and opposite behavioral effects between NALCN and twk-2, twk-7, or unc-58. Finally, we found that the hydrophobicity/hydrophilicity property of TWK-40 residue 159 could affect the channel activity. Together, our study identified twk-40 as a novel modulator of the motor behavior, uncovered potential behavioral effects of five other K2P genes and suggests that NALCN and some K2Ps can oppositely affect C. elegans behavior.
Collapse
Affiliation(s)
- Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaohui He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yunxia He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoqin Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaowei Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujia Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
5
|
Rawsthorne-Manning H, Calahorro F, G. Izquierdo P, Tardy P, Boulin T, Holden-Dye L, O’Connor V, Dillon J. Confounds of using the unc-58 selection marker highlights the importance of genotyping co-CRISPR genes. PLoS One 2022; 17:e0253351. [PMID: 35041685 PMCID: PMC8765651 DOI: 10.1371/journal.pone.0253351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple advances have been made to increase the efficiency of CRISPR/Cas9 editing using the model genetic organism Caenorhabditis elegans (C. elegans). Here we report on the use of co-CRISPR 'marker' genes: worms in which co-CRISPR events have occurred have overt, visible phenotypes which facilitates the selection of worms that harbour CRISPR events in the target gene. Mutation in the co-CRISPR gene is then removed by outcrossing to wild type but this can be challenging if the CRISPR and co-CRISPR gene are hard to segregate. However, segregating away the co-CRISPR modified gene can be less challenging if the worms selected appear wild type and are selected from a jackpot brood. These are broods in which a high proportion of the progeny of a single injected worm display the co-CRISPR phenotype suggesting high CRISPR efficiency. This can deliver worms that harbour the desired mutation in the target gene locus without the co-CRISPR mutation. We have successfully generated a discrete mutation in the C. elegans nlg-1 gene using this method. However, in the process of sequencing to authenticate editing in the nlg-1 gene we discovered genomic rearrangements that arise at the co-CRISPR gene unc-58 that by visual observation were phenotypically silent but nonetheless resulted in a significant reduction in motility scored by thrashing behaviour. This highlights that careful consideration of the hidden consequences of co-CRISPR mediated genetic changes should be taken before downstream analysis of gene function. Given this, we suggest sequencing of co-CRISPR genes following CRISPR procedures that utilise phenotypic selection as part of the pipeline.
Collapse
Affiliation(s)
| | - Fernando Calahorro
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Patricia G. Izquierdo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Philippe Tardy
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Vigne P, Gimond C, Ferrari C, Vielle A, Hallin J, Pino-Querido A, El Mouridi S, Mignerot L, Frøkjær-Jensen C, Boulin T, Teotónio H, Braendle C. A single-nucleotide change underlies the genetic assimilation of a plastic trait. SCIENCE ADVANCES 2021; 7:7/6/eabd9941. [PMID: 33536214 PMCID: PMC7857674 DOI: 10.1126/sciadv.abd9941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 05/09/2023]
Abstract
Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.
Collapse
Affiliation(s)
- Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | - Johan Hallin
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, Canada
| | - Ania Pino-Querido
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Sonia El Mouridi
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | | | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | - Henrique Teotónio
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | | |
Collapse
|
7
|
Bouagnon AD, Lin L, Srivastava S, Liu CC, Panda O, Schroeder FC, Srinivasan S, Ashrafi K. Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biol 2019; 17:e3000242. [PMID: 31805041 PMCID: PMC6917301 DOI: 10.1371/journal.pbio.3000242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal β-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal β-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.
Collapse
Affiliation(s)
- Aude D. Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Shubhi Srivastava
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chung-Chih Liu
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
8
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
9
|
Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, Bertsch PM, Tsyusko OV. Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:314-321. [PMID: 26925754 DOI: 10.1016/j.envpol.2016.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Manufactured nanoparticles (MNP) rapidly undergo aging processes once released from products. Silver sulfide (Ag2S) is the major transformation product formed during the wastewater treatment process for Ag-MNP. We examined toxicogenomic responses of pristine Ag-MNP, sulfidized Ag-MNP (sAg-MNP), and AgNO3 to a model soil organism, Caenorhabditis elegans. Transcriptomic profiling of nematodes which were exposed at the EC30 for reproduction for AgNO3, Ag-MNP, and sAg-MNP resulted in 571 differentially expressed genes. We independently verified expression of 4 genes (numr-1, rol-8, col-158, and grl-20) using qRT-PCR. Only 11% of differentially expressed genes were common among the three treatments. Gene ontology enrichment analysis also revealed that Ag-MNP and sAg-MNP had distinct toxicity mechanisms and did not share any of the biological processes. The processes most affected by Ag-MNP relate to metabolism, while those processes most affected by sAg-MNP relate to molting and the cuticle, and the most impacted processes for AgNO3 exposed nematodes was stress related. Additionally, as observed from qRT-PCR and mutant experiments, the responses to sAg-MNP were distinct from AgNO3 while some of the effects of pristine MNP were similar to AgNO3, suggesting that effects from Ag-MNP is partially due to dissolved silver ions.
Collapse
Affiliation(s)
- Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Stuart S Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Catherine P Starnes
- Department of Statistics, University of Kentucky, 725 Rose Street, MDS Building 305, Lexington, KY 40536, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Gregory V Lowry
- Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Paul M Bertsch
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Division of Land and Water, CSIRO, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States.
| |
Collapse
|
10
|
Hartman PS, Barry J, Finstad W, Khan N, Tanaka M, Yasuda K, Ishii N. Ethyl methanesulfonate induces mutations in Caenorhabditis elegans embryos at a high frequency. Mutat Res 2015; 766-767:44-8. [PMID: 25847271 DOI: 10.1016/j.mrfmmm.2014.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Mutagenesis protocols typically call for exposure of late-stage larvae or adults to a mutagen with the intention of inducing mutations in a robust germ line. Instead, ca. 16,000 CB665 [unc-58(e665)] one- to four-cell embryos of the nematode Caenorhabditis elegans were hand selected and exposed to ethyl methanesulfonate (EMS) for 50min. Twenty-one reversion mutants were recovered, of which 17 were intragenic suppressors of the e665 mutation. The mutation frequency was 6.5-fold higher than when CB665 adults were similarly mutagenized, which was predicted given that cell-cycle checkpoints are muted in C. elegans embryos. The mutation spectrum was similar to that obtained after standard EMS mutagenesis.
Collapse
Affiliation(s)
- Phil S Hartman
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States.
| | - James Barry
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Whitney Finstad
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Numan Khan
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Masayuki Tanaka
- Education and Research Support Center, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Kayo Yasuda
- Education and Research Support Center, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Naoaki Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
11
|
Cell excitability necessary for male mating behavior in Caenorhabditis elegans is coordinated by interactions between big current and ether-a-go-go family K(+) channels. Genetics 2011; 190:1025-41. [PMID: 22174070 DOI: 10.1534/genetics.111.137455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.
Collapse
|
12
|
Shephard F, Adenle AA, Jacobson LA, Szewczyk NJ. Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 2011; 6:e24686. [PMID: 21980350 PMCID: PMC3181249 DOI: 10.1371/journal.pone.0024686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
Loss of muscle mass via protein degradation is an important clinical problem but we know little of how muscle protein degradation is regulated genetically. To gain insight our labs developed C. elegans into a model for understanding the regulation of muscle protein degradation. Past studies uncovered novel functional roles for genes affecting muscle and/or involved in signalling in other cells or tissues. Here we examine most of the genes previously identified as the sites of mutations affecting muscle for novel roles in regulating degradation. We evaluate genomic (RNAi knockdown) approaches and combine them with our established genetic (mutant) and pharmacologic (drugs) approaches to examine these 159 genes. We find that RNAi usually recapitulates both organismal and sub-cellular mutant phenotypes but RNAi, unlike mutants, can frequently be used acutely to study gene function solely in differentiated muscle. In the majority of cases where RNAi does not produce organismal level phenotypes, sub-cellular defects can be detected; disrupted proteostasis is most commonly observed. We identify 48 genes in which mutation or RNAi knockdown causes excessive protein degradation; myofibrillar and/or mitochondrial morphologies are also disrupted in 19 of these 48 cases. These 48 genes appear to act via at least three sub-networks to control bulk degradation of protein in muscle cytosol. Attachment to the extracellular matrix regulates degradation via unidentified proteases and affects myofibrillar and mitochondrial morphology. Growth factor imbalance and calcium overload promote lysosome based degradation whereas calcium deficit promotes proteasome based degradation, in both cases myofibrillar and mitochondrial morphologies are largely unaffected. Our results provide a framework for effectively using RNAi to identify and functionally cluster novel regulators of degradation. This clustering allows prioritization of candidate genes/pathways for future mechanistic studies.
Collapse
Affiliation(s)
- Freya Shephard
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Ademola A. Adenle
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Lewis A. Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathaniel J. Szewczyk
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Liu Y, LeBeouf B, Guo X, Correa PA, Gualberto DG, Lints R, Garcia LR. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326. [PMID: 21423722 PMCID: PMC3053324 DOI: 10.1371/journal.pgen.1001326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBeouf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Paola A. Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
LeBoeuf B, Guo X, García LR. The effects of transient starvation persist through direct interactions between CaMKII and ether-a-go-go K+ channels in C. elegans males. Neuroscience 2011; 175:1-17. [PMID: 21145946 PMCID: PMC3059131 DOI: 10.1016/j.neuroscience.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. EGL-2 and UNC-43 interactions, induced after food deprivation, maintain reduced excitability in muscles involved in sex. In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - L. René García
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|
15
|
Kullyev A, Dempsey CM, Miller S, Kuan CJ, Hapiak VM, Komuniecki RW, Griffin CT, Sze JY. A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans. Genetics 2010; 186:929-41. [PMID: 20739712 PMCID: PMC2975281 DOI: 10.1534/genetics.110.118877] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/13/2010] [Indexed: 11/18/2022] Open
Abstract
Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition of serotonin reuptake is a sufficient explanation for its therapeutic action. Here, we provide evidence of two additional aspects of fluoxetine action through genetic analyses in Caenorhabditis elegans. We show that fluoxetine treatment and null mutation in the sole SERT gene mod-5 eliminate serotonin in specific neurons. These neurons do not synthesize serotonin but import extracellular serotonin via MOD-5/SERT. Furthermore, we show that fluoxetine acts independently of MOD-5/SERT to regulate discrete properties of acetylcholine (Ach), gamma-aminobutyric acid (GABA), and glutamate neurotransmission in the locomotory circuit. We identified that two G-protein-coupled 5-HT receptors, SER-7 and SER-5, antagonistically regulate the effects of fluoxetine and that fluoxetine binds to SER-7. Epistatic analyses suggest that SER-7 and SER-5 act upstream of AMPA receptor GLR-1 signaling. Our work provides genetic evidence that fluoxetine may influence neuronal functions and behavior by directly targeting serotonin receptors.
Collapse
Affiliation(s)
- Andrey Kullyev
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Catherine M. Dempsey
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Miller
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Chih-Jen Kuan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Vera M. Hapiak
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Richard W. Komuniecki
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Christine T. Griffin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
16
|
Potet F, Petersen CI, Boutaud O, Shuai W, Stepanovic SZ, Balser JR, Kupershmidt S. Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. J Mol Cell Cardiol 2008; 46:257-67. [PMID: 19038263 DOI: 10.1016/j.yjmcc.2008.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 09/17/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The human ether-a-go-go related gene (HERG) constitutes the pore forming subunit of I(Kr), a K(+) current involved in repolarization of the cardiac action potential. While mutations in HERG predispose patients to cardiac arrhythmias (Long QT syndrome; LQTS), altered function of HERG regulators are undoubtedly LQTS risk factors. We have combined RNA interference with behavioral screening in Caenorhabditis elegans to detect genes that influence function of the HERG homolog, UNC-103. One such gene encodes the worm ortholog of the rho-GTPase activating protein 6 (ARHGAP6). In addition to its GAP function, ARHGAP6 induces cytoskeletal rearrangements and activates phospholipase C (PLC). Here we show that I(Kr) recorded in cells co-expressing HERG and ARHGAP6 was decreased by 43% compared to HERG alone. Biochemical measurements of cell-surface associated HERG revealed that ARHGAP6 reduced membrane expression of HERG by 35%, which correlates well with the reduction in current. In an atrial myocyte cell line, suppression of endogenous ARHGAP6 by virally transduced shRNA led to a 53% enhancement of I(Kr). ARHGAP6 effects were maintained when we introduced a dominant negative rho-GTPase, or ARHGAP6 devoid of rhoGAP function, indicating ARHGAP6 regulation of HERG is independent of rho activation. However, ARHGAP6 lost effectiveness when PLC was inhibited. We further determined that ARHGAP6 effects are mediated by a consensus SH3 binding domain within the C-terminus of HERG, although stable ARHGAP6-HERG complexes were not observed. These data link a rhoGAP-activated PLC pathway to HERG membrane expression and implicate this family of proteins as candidate genes in disorders involving HERG.
Collapse
Affiliation(s)
- Franck Potet
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Food deprivation attenuates seizures through CaMKII and EAG K+ channels. PLoS Genet 2007; 3:1622-32. [PMID: 17941711 PMCID: PMC1976334 DOI: 10.1371/journal.pgen.0030156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/27/2007] [Indexed: 11/19/2022] Open
Abstract
Accumulated research has demonstrated the beneficial effects of dietary restriction on extending lifespan and increasing cellular stress resistance. However, reducing nutrient intake has also been shown to direct animal behaviors toward food acquisition. Under food-limiting conditions, behavioral changes suggest that neuronal and muscle activities in circuits that are not involved in nutrient acquisition are down-regulated. These dietary-regulated mechanisms, if understood better, might provide an approach to compensate for defects in molecules that regulate cell excitability. We previously reported that a neuromuscular circuit used in Caenorhabditis elegans male mating behavior is attenuated under food-limiting conditions. During periods between matings, sex-specific muscles that control movements of the male's copulatory spicules are kept inactive by UNC-103 ether-a-go-go-related gene (ERG)-like K(+) channels. Deletion of unc-103 causes approximately 30%-40% of virgin males to display sex-muscle seizures; however, when food is deprived from males, the incidence of spontaneous muscle contractions drops to 9%-11%. In this work, we used genetics and pharmacology to address the mechanisms that act parallel with UNC-103 to suppress muscle seizures in males that lack ERG-like K(+) channel function. We identify calcium/calmodulin-dependent protein kinase II as a regulator that uses different mechanisms in food and nonfood conditions to compensate for reduced ERG-like K(+) channel activity. We found that in food-deprived conditions, calcium/calmodulin-dependent protein kinase II acts cell-autonomously with ether-a-go-go K(+) channels to inhibit spontaneous muscle contractions. Our work suggests that upregulating mechanisms used by food deprivation can suppress muscle seizures.
Collapse
|
18
|
Reiner DJ, Weinshenker D, Tian H, Thomas JH, Nishiwaki K, Miwa J, Gruninger T, Leboeuf B, Garcia LR. Behavioral genetics of caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 2007; 20:41-66. [PMID: 16807195 DOI: 10.1080/01677060600788826] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Caenorhabditis elegans unc-103 gene encodes a potassium channel whose sequence is most similar to the ether-a-go-go related gene (erg) type of K+ channels. We find that the n 500 and e 1597 gain-of-function (gf) mutations in unc-103 cause reduced excitation in most muscles, while loss-of-function (lf) mutations cause mild muscle hyper-excitability. Both gf alleles change the same residue near the cytoplasmic end of S6, consistent with this region regulating channel activation. We also report additional dominant-negative and lf alleles of unc-103 that can antagonize or reduce the function of both gf and wild-type alleles. The unc-103 locus contains 6 promoter regions that express unc-103 in different combinations of body-wall and sex-specific muscles, motor-, inter- and sensory-neurons. Each promoter drives transcripts containing a unique first exon, conferring sequence variability to the N-terminus of the UNC-103 protein, while three splice variants introduce variability into the UNC-103 C-terminus. unc-103(0) hermaphrodites prematurely lay embryos that would normally be retained in the uterus and lay eggs under conditions that inhibit egg-laying behavior. In the egg-laying circuit, unc-103 is expressed in vulval muscles and the HSN neurons from different promoters. Supplying the proper UNC-103 isoform to the vulval muscles is sufficient to restore regulation to egg-laying behavior.
Collapse
Affiliation(s)
- David J Reiner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Genetic studies of behavior in the nematode Caenorhabditis elegans have provided an effective approach to investigate the molecular and cellular basis of nervous system function and development. Among the best studied behaviors is egg-laying, the process by which hermaphrodites deposit developing embryos into the environment. Egg-laying involves a simple motor program involving a small network of motorneurons and specialized smooth muscle cells, which is regulated by a variety of sensory stimuli. Analysis of egg-laying-defective mutants has provided insight into a number of conserved processes in nervous system development, including neurogenesis, cell migration, and synaptic patterning, as well as aspects of excitable cell signal transduction and neuromodulation.
Collapse
Affiliation(s)
- William F Schafer
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0349, USA.
| |
Collapse
|
20
|
Branicky R, Hekimi S. Specification of muscle neurotransmitter sensitivity by a Paired-like homeodomain protein in Caenorhabditis elegans. Development 2005; 132:4999-5009. [PMID: 16236771 DOI: 10.1242/dev.02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of neurotransmitters depend on the receptors expressed on the target cells. In Caenorhabditis elegans, there are two types of GABA receptors that elicit opposite effects: excitatory receptors that open cation-selective channels, and inhibitory receptors that open anion-selective channels. The four non-striated enteric muscle cells required for the expulsion step of the defecation behavior are all sensitive to GABA: the sphincter muscle expresses a classical GABA-sensitive chloride channel (UNC-49) and probably relaxes in response to GABA, while the other three cells express a cation-selective channel (EXP-1) and contract. Here we show that the expression of the exp-1 gene is under the control of dsc-1, which encodes a Paired-like homeodomain protein, a class of transcription factors previously associated with the terminal differentiation of neurons in C. elegans. dsc-1 mutants have anatomically normal enteric muscles but are expulsion defective. We show that this defect is due to the lack of expression of exp-1 in the three cells that contract in response to GABA. In addition, dsc-1, but not exp-1, affects the periodicity of the behavior, revealing an unanticipated role for the enteric muscles in regulating this ultradian rhythm.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, 1205 Avenue Dr Penfield, Montréal, Québec H3A 1B1, Canada
| | | |
Collapse
|
21
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
22
|
Syntichaki P, Tavernarakis N. Genetic Models of Mechanotransduction: The NematodeCaenorhabditis elegans. Physiol Rev 2004; 84:1097-153. [PMID: 15383649 DOI: 10.1152/physrev.00043.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis for a plethora of fundamental biological processes such as the senses of touch, balance, and hearing and contributes critically to development and homeostasis in all organisms. Despite this profound importance in biology, we know remarkably little about how mechanical input forces delivered to a cell are interpreted to an extensive repertoire of output physiological responses. Recent, elegant genetic and electrophysiological studies have shown that specialized macromolecular complexes, encompassing mechanically gated ion channels, play a central role in the transformation of mechanical forces into a cellular signal, which takes place in mechanosensory organs of diverse organisms. These complexes are highly efficient sensors, closely entangled with their surrounding environment. Such association appears essential for proper channel gating and provides proximity of the mechanosensory apparatus to the source of triggering mechanical energy. Genetic and molecular evidence collected in model organisms such as the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse highlight two distinct classes of mechanically gated ion channels: the degenerin (DEG)/epithelial Na+channel (ENaC) family and the transient receptor potential (TRP) family of ion channels. In addition to the core channel proteins, several other potentially interacting molecules have in some cases been identified, which are likely parts of the mechanotransducing apparatus. Based on cumulative data, a model of the sensory mechanotransducer has emerged that encompasses our current understanding of the process and fulfills the structural requirements dictated by its dedicated function. It remains to be seen how general this model is and whether it will withstand the impiteous test of time.
Collapse
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
23
|
Abstract
Dopamine regulates various physiological functions in the central nervous system and the periphery. Dysfunction of the dopamine system is implicated in a wide variety of disorders and behaviors including schizophrenia, addiction, and attention-deficit hyperactivity disorder. Medications that modulate dopamine signaling have therapeutic efficacy on the treatment of these disorders. However, the causes of these disorders and the role of dopamine are still unclear. Studying the dopamine system in a model organism, such as Caenorhabditis elegans, allows the genetic analysis in a simple and well-described nervous system, which may provide new insight into the molecular mechanisms of dopamine signaling. In this review, we summarize recent findings on pharmacological and biochemical properties of the C. elegans dopamine receptors and their physiological role in the control of behavior.
Collapse
Affiliation(s)
- Satoshi Suo
- Laboratory of Molecular Neurobiology, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | | | | |
Collapse
|
24
|
Burkeen AK, Maday SL, Rybicka KK, Sulcove JA, Ward J, Huang MM, Barstead R, Franzini-Armstrong C, Allen TS. Disruption of Caenorhabditis elegans muscle structure and function caused by mutation of troponin I. Biophys J 2004; 86:991-1001. [PMID: 14747334 PMCID: PMC1303946 DOI: 10.1016/s0006-3495(04)74174-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Caenorhabditis elegans strains mutant for the unc-27 gene show abnormal locomotion and muscle structure. Experiments revealed that unc-27 is one of four C. elegans troponin I genes and that three mutant alleles truncate the protein: recessive and presumed null allele e155 terminates after nine codons; semidominant su142sd eliminates the inhibitory and C-terminal regions; and semidominant su195sd abbreviates the extreme C-terminus. Assays of in vivo muscular performance at high and low loads indicated that su142sd is most deleterious, with e155 least and su195sd intermediate. Microscopy revealed in mutant muscle a prevalent disorder of dense body positioning and a less well defined sarcomeric structure, with small islands of thin filaments interspersed within the overlap region of A bands and even within the H zone. The mutants' rigid paralysis and sarcomeric disarray are consistent with unregulated contraction of the sarcomeres, in which small portions of each myofibril shorten irregularly and independently of one another, thereby distorting the disposition of filaments. The exacerbated deficits of su142sd worms are compatible with involvement in vivo of the N-terminal portion of troponin I in enhancing force production, and the severe impairment associated with su195sd highlights importance of the extreme C-terminus in the protein's inhibitory function.
Collapse
Affiliation(s)
- A K Burkeen
- Biology Department, Oberlin College, Oberlin, Ohio 44074-1097, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Caenorhabditis elegans UNC-103 ERG-like potassium channel regulates contractile behaviors of sex muscles in males before and during mating. J Neurosci 2003. [PMID: 12684455 DOI: 10.1523/jneurosci.23-07-02696.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During mating behavior the Caenorhabditis elegans male must regulate periodic and prolonged protractor muscle contractions to insert his copulatory spicules into his mate. The protractors undergo periodic contractions to allow the spicules to reattempt insertion if a previous thrust failed to breach the vulva. When the spicule tips penetrate the vulva, the protractors undergo prolonged contraction to keep the spicules inside the hermaphrodite until sperm transfer is complete. To understand how these contractions are regulated, we isolated EMS-induced mutations that cause males to execute prolonged contraction inappropriately. Loss-of-function mutations in the unc-103 ERG-like K(+) channel gene cause the protractor muscles to contract in the absence of mating stimulation. unc-103-induced spicule protraction can be suppressed by killing the SPC motor neurons and the anal depressor muscle: cells that directly contact the protractors. Also, reduction in acetylcholine suppresses unc-103-induced protraction, suggesting that UNC-103 keeps cholinergic neurons from stimulating the protractors before mating behavior. UNC-103 also regulates the timing of spicule protraction during mating behavior. unc-103 males that do not display mating-independent spicule protraction show abnormal spicule insertion behavior during sex. In contrast to wild-type males, unc-103 mutants execute prolonged contractions spontaneously within sequences of periodic protractor contractions. The premature prolonged contractions cause the spicules to extend from the male tail before the spicule tips penetrate the vulva. These observations demonstrate that unc-103 controls various aspects of spicule function.
Collapse
|
26
|
Garcia LR, Sternberg PW. Caenorhabditis elegans UNC-103 ERG-like potassium channel regulates contractile behaviors of sex muscles in males before and during mating. J Neurosci 2003; 23:2696-705. [PMID: 12684455 PMCID: PMC6742059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 01/09/2003] [Accepted: 01/13/2003] [Indexed: 03/01/2023] Open
Abstract
During mating behavior the Caenorhabditis elegans male must regulate periodic and prolonged protractor muscle contractions to insert his copulatory spicules into his mate. The protractors undergo periodic contractions to allow the spicules to reattempt insertion if a previous thrust failed to breach the vulva. When the spicule tips penetrate the vulva, the protractors undergo prolonged contraction to keep the spicules inside the hermaphrodite until sperm transfer is complete. To understand how these contractions are regulated, we isolated EMS-induced mutations that cause males to execute prolonged contraction inappropriately. Loss-of-function mutations in the unc-103 ERG-like K(+) channel gene cause the protractor muscles to contract in the absence of mating stimulation. unc-103-induced spicule protraction can be suppressed by killing the SPC motor neurons and the anal depressor muscle: cells that directly contact the protractors. Also, reduction in acetylcholine suppresses unc-103-induced protraction, suggesting that UNC-103 keeps cholinergic neurons from stimulating the protractors before mating behavior. UNC-103 also regulates the timing of spicule protraction during mating behavior. unc-103 males that do not display mating-independent spicule protraction show abnormal spicule insertion behavior during sex. In contrast to wild-type males, unc-103 mutants execute prolonged contractions spontaneously within sequences of periodic protractor contractions. The premature prolonged contractions cause the spicules to extend from the male tail before the spicule tips penetrate the vulva. These observations demonstrate that unc-103 controls various aspects of spicule function.
Collapse
Affiliation(s)
- L Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | |
Collapse
|
27
|
Watts JL, Phillips E, Griffing KR, Browse J. Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 2003; 163:581-9. [PMID: 12618397 PMCID: PMC1462460 DOI: 10.1093/genetics/163.2.581] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.
Collapse
Affiliation(s)
- Jennifer L Watts
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| | | | | | | |
Collapse
|
28
|
Eimer S, Donhauser R, Baumeister R. The Caenorhabditis elegans presenilin sel-12 is required for mesodermal patterning and muscle function. Dev Biol 2002; 251:178-92. [PMID: 12413907 DOI: 10.1006/dbio.2002.0782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in presenilin genes impair Notch signalling and, in humans, have been implicated in the development of familial Alzheimer's disease. We show here that a reduction of the activity of the Caenorhabditis elegans presenilin sel-12 results in a late defect during sex muscle development. The morphological abnormalities and functional deficits in the sex muscles contribute to the egg-laying defects seen in sel-12 hermaphrodites and to the severely reduced mating efficiency of sel-12 males. Both defects can be rescued by expressing sel-12 from the hlh-8 promoter that is active during the development of the sex muscle-specific M lineage, but not by expressing sel-12 from late muscle-specific promoters. Both weak and strong sel-12 mutations cause defects in the sex muscles that resemble the defects we found in lin-12 hypomorphic alleles, suggesting a previously uncharacterised LIN-12 signalling event late in postembryonic mesoderm development. Together with a previous study indicating a role of lin-12 and sel-12 during the specification of the pi cell lineage required for proper vulva-uterine connection, our data suggest that the failure of sel-12 animals to lay eggs properly is caused by defects in at least two independent signalling events in different tissues during development.
Collapse
Affiliation(s)
- Stefan Eimer
- ABI, Department of Biochemistry, Laboratory of Molecular Neurogenetics, Ludwig-Maximilians-Universitaet Munich, Schillerstrasse 44, Munich D-80336, Germany
| | | | | |
Collapse
|
29
|
Abstract
Much life-history theory assumes that alleles segregating in natural populations pleiotropically affect life-history traits. This assumption, while plausible, has rarely been tested directly. Here we investigate the genetic relationship between two traits often suggested to be connected by pleiotropy: maternal body size and fertility. We carry out a quantitative trait locus (QTL) analysis on two isolates of the free-living nematode Caenorhabditis elegans, and identify two body size and three fertility QTLs. We find that one of the fertility QTLs colocalizes with the two body size QTLs on Chromosome IV. Further analysis, however, shows that these QTLs are genetically separable. Thus, none of the five body size or fertility QTLs identified here shows detectable pleiotropy for the assayed traits. The evolutionary origin of these QTLs, possible candidate loci, and the significance for life-history evolution are discussed.
Collapse
Affiliation(s)
- C G Knight
- Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, United Kingdom
| | | | | |
Collapse
|
30
|
Wintle RF, Van Tol HH. Dopamine signaling in Caenorhabditis elegans-potential for parkinsonism research. Parkinsonism Relat Disord 2001; 7:177-183. [PMID: 11331184 DOI: 10.1016/s1353-8020(00)00055-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nematode Caenorhabditis elegans is an attractive model system for the study of many biological processes. It possesses a simple nervous system with known anatomy and connectivity, is conveniently and cheaply cultured in the laboratory, and is amenable to many genetic manipulations that are impossible in mammalian systems. The recent completion of the C. elegans genome sequence provides a rich resource of genomic and bioinformatic data to researchers in diverse fields. This organism, however, has been underexploited in the studies of many basic processes related to nervous system function, neuropsychiatric disorders and neuromuscular function. Anatomical, biochemical, behavioral, pharmacological and genetic evidence accumulated to date strongly suggests that dopamine is used as a neurotransmitter by C. elegans, and that its effects are mediated through pathway(s) that share many features with those of mammals. DNA sequence analysis reveals genes highly homologous to those encoding mammalian dopamine receptors. Probably, C. elegans has dopamine receptors that transduce environmental cues into behaviors, and these receptors pharmacologically most closely resemble the D2 family. Here we present a review of the current state of research into the dopamine system of the worm, focussing on its potential for use in the study of biological processes related to parkinsonism.
Collapse
Affiliation(s)
- R F. Wintle
- Laboratory of Molecular Neurobiology, Centre for Addiction and Mental Health, Ontario, Toronto, Canada
| | | |
Collapse
|
31
|
Abstract
Within the Caenorhabditis elegans genome there exist at least 42 genes encoding TWK (two-P domain K(+)) channels, potassium channel subunits that contain two pore regions and four transmembrane domains. We now report the first functional characterization of a TWK channel from C. elegans. Although potassium channels have been reported to be activated by a variety of factors, TWK-18 currents increase dramatically with increases in temperature. Two mutant alleles of the twk-18 gene confer uncoordinated movement and paralysis in C. elegans. Expression of wild-type and mutant TWK-18 channels in Xenopus oocytes showed that mutant channels express much larger potassium currents than wild-type channels. Promoter-green fluorescent protein fusion experiments indicate that TWK-18 is expressed in body wall muscle. Our genetic and physiological data suggest that the movement defects observed in mutant twk-18 animals may be explained by an increased activity of the mutant TWK-18 channels.
Collapse
|
32
|
Robatzek M, Niacaris T, Steger K, Avery L, Thomas JH. eat-11 encodes GPB-2, a Gbeta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behavior. Curr Biol 2001; 11:288-93. [PMID: 11250160 PMCID: PMC4442483 DOI: 10.1016/s0960-9822(01)00074-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In C. elegans, a G(o)/G(q) signaling network regulates locomotion and egg laying [1-8]. Genetic analysis shows that activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is suppressed by perturbations of this network, which include loss of the GOA-1 G(o)alpha, DGK-1 diacylglycerol kinase, EAT-16 G protein gamma subunit-like (GGL)-containing RGS protein, or an unidentified protein encoded by the gene eat-11 [9]. We cloned eat-11 and report that it encodes the Gbeta(5) ortholog GPB-2. Gbeta(5) binds specifically to GGL-containing RGS proteins, and the Gbeta(5)/RGS complex can promote the GTP-hydrolyzing activity of Galpha subunits [10, 11]. However, little is known about how this interaction affects G protein signaling in vivo. In addition to EAT-16, the GGL-containing RGS protein EGL-10 participates in G(o)/G(q) signaling; EGL-10 appears to act as an RGS for the GOA-1 G(o)alpha, while EAT-16 appears to act as an RGS for the EGL-30 G(q)alpha [4, 5]. We have combined behavioral, electrophysiological, and pharmacological approaches to show that GPB-2 is a central member of the G(o)/G(q) network and that GPB-2 may interact with both the EGL-10 and EAT-16 RGS proteins to mediate the opposing activities of G(o)alpha and G(q)alpha. These interactions provide a mechanism for the modulation of behavior by antagonistic G protein networks.
Collapse
Affiliation(s)
- Merrilee Robatzek
- Department of Genetics, The University of Washington, Seattle, Washington 98195, USA
| | - Tim Niacaris
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Kate Steger
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Leon Avery
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - James H. Thomas
- Department of Genetics, The University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Knight CG, Azevedo RBR, Leroi AM. TESTING LIFE-HISTORY PLEIOTROPY IN CAENORHABDITIS ELEGANS. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[1795:tlhpic]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Robatzek M, Thomas JH. Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a G(o)/G(q) signaling network. Genetics 2000; 156:1069-82. [PMID: 11063685 PMCID: PMC1461315 DOI: 10.1093/genetics/156.3.1069] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caenorhabditis elegans locomotion is a complex behavior generated by a defined set of motor neurons and interneurons. Genetic analysis shows that UNC-43, the C. elegans Ca(2+)/calmodulin protein kinase II (CaMKII), controls locomotion rate. Elevated UNC-43 activity, from a gain-of-function mutation, causes severely lethargic locomotion, presumably by inappropriate phosphorylation of targets. In a genetic screen for suppressors of this phenotype, we identified multiple alleles of four genes in a G(o)/G(q) G-protein signaling network, which has been shown to regulate synaptic activity via diacylglycerol. Mutations in goa-1, dgk-1, eat-16, or eat-11 strongly or completely suppressed unc-43(gf) lethargy, but affected other mutants with reduced locomotion only weakly. We conclude that CaMKII and G(o)/G(q) pathways act in concert to regulate synaptic activity, perhaps through a direct interaction between CaMKII and G(o).
Collapse
Affiliation(s)
- M Robatzek
- Department of Genetics, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
35
|
Kunkel MT, Johnstone DB, Thomas JH, Salkoff L. Mutants of a temperature-sensitive two-P domain potassium channel. J Neurosci 2000; 20:7517-24. [PMID: 11027209 PMCID: PMC6772866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Within the Caenorhabditis elegans genome there exist at least 42 genes encoding TWK (two-P domain K(+)) channels, potassium channel subunits that contain two pore regions and four transmembrane domains. We now report the first functional characterization of a TWK channel from C. elegans. Although potassium channels have been reported to be activated by a variety of factors, TWK-18 currents increase dramatically with increases in temperature. Two mutant alleles of the twk-18 gene confer uncoordinated movement and paralysis in C. elegans. Expression of wild-type and mutant TWK-18 channels in Xenopus oocytes showed that mutant channels express much larger potassium currents than wild-type channels. Promoter-green fluorescent protein fusion experiments indicate that TWK-18 is expressed in body wall muscle. Our genetic and physiological data suggest that the movement defects observed in mutant twk-18 animals may be explained by an increased activity of the mutant TWK-18 channels.
Collapse
Affiliation(s)
- M T Kunkel
- Departments of Anatomy, Washington University School of Medicine, Seattle, Washington, USA
| | | | | | | |
Collapse
|
36
|
Block of an ether-a-go-go-like K(+) channel by imipramine rescues egl-2 excitation defects in Caenorhabditis elegans. J Neurosci 1999. [PMID: 10559392 DOI: 10.1523/jneurosci.19-22-09831.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
K(+) channels are key regulators of cellular excitability. Mutations that activate K(+) channels can lower cellular excitability, whereas those that inhibit K(+) channels may increase excitability. We show that the Caenorhabditis elegans egl-2 gene encodes an eag K(+) channel and that a gain-of-function mutation in egl-2 blocks excitation in neurons and muscles by causing the channel to open at inappropriately negative voltages. Tricyclic antidepressants reverse egl-2(gf) mutant phenotypes, suggesting that EGL-2 is a tricyclic target. We verified this by showing that EGL-2 currents are inhibited by imipramine. Similar inhibition is observed with the mouse homolog MEAG, suggesting that inhibition of EAG-like channels may mediate some clinical side effects of this class of antidepressants.
Collapse
|
37
|
Weinshenker D, Wei A, Salkoff L, Thomas JH. Block of an ether-a-go-go-like K(+) channel by imipramine rescues egl-2 excitation defects in Caenorhabditis elegans. J Neurosci 1999; 19:9831-40. [PMID: 10559392 PMCID: PMC6782970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
K(+) channels are key regulators of cellular excitability. Mutations that activate K(+) channels can lower cellular excitability, whereas those that inhibit K(+) channels may increase excitability. We show that the Caenorhabditis elegans egl-2 gene encodes an eag K(+) channel and that a gain-of-function mutation in egl-2 blocks excitation in neurons and muscles by causing the channel to open at inappropriately negative voltages. Tricyclic antidepressants reverse egl-2(gf) mutant phenotypes, suggesting that EGL-2 is a tricyclic target. We verified this by showing that EGL-2 currents are inhibited by imipramine. Similar inhibition is observed with the mouse homolog MEAG, suggesting that inhibition of EAG-like channels may mediate some clinical side effects of this class of antidepressants.
Collapse
Affiliation(s)
- D Weinshenker
- Department of Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
38
|
Mitenko NL, Eisner JR, Swiston JR, Mains PE. A limited number of Caenorhabditis elegans genes are readily mutable to dominant, temperature-sensitive maternal-effect embryonic lethality. Genetics 1997; 147:1665-74. [PMID: 9409829 PMCID: PMC1208339 DOI: 10.1093/genetics/147.4.1665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dominant gain-of-function mutations can give unique insights into the study of gene function. In addition, gain-of-function mutations, unlike loss-of-function alleles, are not biased against the identification of genetically redundant loci. To identify novel genetic functions active during Caenorhabditis elegans embryogenesis, we have collected a set of dominant temperature-sensitive maternal-effect embryonic lethal mutations. In a previous screen, we isolated eight such mutations, distributed among six genes. In the present study, we describe eight new dominant mutations that identify only three additional genes, yielding a total of 16 dominant mutations found in nine genes. Therefore, it appears that a limited number of C. elegans genes mutate to this phenotype at appreciable frequencies. Five of the genes that we identified by dominant mutations have loss-of-function alleles. Two of these genes may lack loss-of-function phenotypes, indicating that they are nonessential and so may represent redundant loci. Loss-of-function mutations of three other genes are associated with recessive lethality, indicating nonredundancy.
Collapse
Affiliation(s)
- N L Mitenko
- Department of Medical Biochemistry, The University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
39
|
Johnstone DB, Wei A, Butler A, Salkoff L, Thomas JH. Behavioral defects in C. elegans egl-36 mutants result from potassium channels shifted in voltage-dependence of activation. Neuron 1997; 19:151-64. [PMID: 9247271 DOI: 10.1016/s0896-6273(00)80355-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in the C. elegans egl-36 gene result in defective excitation of egg-laying and enteric muscles. Dominant gain-of-function alleles inhibit enteric and egg-laying muscle contraction, whereas a putative null mutation has no observed phenotype. egl-36 encodes a Shaw-type (Kv3) voltage-dependent potassium channel subunit. In Xenopus oocytes, wild-type egl-36 expresses noninactivating channels with slow activation kinetics. One gain-of-function mutation causes a single amino acid substitution in S6, and the other causes a substitution in the cytoplasmic amino terminal domain. Both mutant alleles produce channels dramatically shifted in their midpoints of activation toward hyperpolarized voltages. An egl-36::gfp fusion is expressed in egg-laying muscles and in a pair of enteric muscle motor neurons. The mutant egl-36 phenotypes can thus be explained by expression in these cells of potassium channels that are inappropriately opened at hyperpolarized potentials, causing decreased excitability due to increased potassium conductance.
Collapse
Affiliation(s)
- D B Johnstone
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
40
|
Elkes DA, Cardozo DL, Madison J, Kaplan JM. EGL-36 Shaw channels regulate C. elegans egg-laying muscle activity. Neuron 1997; 19:165-74. [PMID: 9247272 DOI: 10.1016/s0896-6273(00)80356-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The C. elegans egl-36 gene encodes a Shaw-type potassium channel that regulates egg-laying behavior. Gain of function [egl-36(gf)] and dominant negative [egl-36(dn)] mutations in egl-36 cause reciprocal defects in egg laying. An egl-36::gfp reporter is expressed in the egg-laying muscles and in a few other tissues. Expression of an egl-36(gf) cDNA in the egg-laying muscles causes behavioral defects similar to those observed in egl-36(gf) mutants. Gain of function EGL-36 subunits form channels that are active at more negative potentials than wild-type channels. The egl-36(gf) alleles correspond to missense mutations in an amino terminal subunit assembly domain (E138K) and in the S6 transmembrane domain (P435S), neither of which were previously implicated in the voltage dependence of channel activation. Altogether, these results suggest that EGL-36 channels regulate the excitability of the egg-laying muscles.
Collapse
Affiliation(s)
- D A Elkes
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
41
|
Schafer WR, Sanchez BM, Kenyon CJ. Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 1996; 143:1219-30. [PMID: 8807295 PMCID: PMC1207392 DOI: 10.1093/genetics/143.3.1219] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulating the response of a postsynaptic cell to neurotransmitter is an important mechanism for controlling synaptic strength, a process critical to learning. We have begun to define and characterize genes that may control sensitivity to the neurotransmitter serotonin in the nematode Caenorhabditis elegans by identifying serotonin-hypersensitive mutants. We reported previously that mutations in the gene unc-2, which encodes a putative calcium channel subunit, result in hypersensitivity to serotonin. Here we report that mutants defective in the unc-36 gene, which encodes a homologue of a calcium channel auxiliary subunit, are also serotonin-hypersensitive. Moreover, the unc-36 gene appears to be required in the same cells as unc-2 for control of the same behaviors. Mutations in several other genes, including unc-8, unc-10, unc-20, unc-35, unc-75, unc-77, and snt-1 also result in hypersensitivity to serotonin. Several of these mutations have previously been shown to confer resistance to acetylcholinesterase inhibitors, suggesting that they may affect acetylcholine release. Moreover, we found that mutations that decrease acetylcholine synthesis cause defective egg-laying and serotonin hypersensitivity. Thus, acetylcholine appears to negatively regulate the response to serotonin and may participate in the process of serotonin desensitization.
Collapse
Affiliation(s)
- W R Schafer
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA.
| | | | | |
Collapse
|
42
|
Brundage L, Avery L, Katz A, Kim UJ, Mendel JE, Sternberg PW, Simon MI. Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 1996; 16:999-1009. [PMID: 8630258 PMCID: PMC4444781 DOI: 10.1016/s0896-6273(00)80123-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We find that C. elegans egl-30 encodes a heterotrimeric G protein a subunit more than 80% identical to mammalian Gqalpha family proteins, and which can function as a Gqalpha subunit in COS-7 cells. We have identified new egl-30 alleles in a selection for genes involved in the C. elegans acetylcholine response. Two egl-30 alleles specify premature termination of Gqalpha and are essentially lethal in homozygotes. Animals homozygous for six other egl-30 alleles are viable and fertile, but exhibit delayed egg laying and leave flattened tracks. Overexpression of the wild-type egl-30 gene produces the opposite behavior. Analysis of these mutants suggest that their phenotypes reflect defects in the muscle or neuromuscular junction.
Collapse
Affiliation(s)
- L Brundage
- Division of Biology and Howard Hughes Medical Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|