1
|
Xiao T, Ünal E. Remodeling, compartmentalization, and degradation: a trifecta for organelle quality control during gametogenesis. Curr Opin Genet Dev 2025; 92:102347. [PMID: 40233504 DOI: 10.1016/j.gde.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025]
Abstract
The key to healthy offspring production lies in the accurate inheritance of components from progenitor germ cells during gametogenesis. Along with genetic material, precise regulation of organelle inheritance is vital for gamete health and embryonic development, especially in aged organisms, where organelle function declines and damage accumulates. In these cases, removing age-related organellar defects in precursor cells is crucial for successful reproduction. The single-celled organism Saccharomyces cerevisiae shares striking similarities with more complex organisms: like metazoan cells, yeast accumulate organelle damage with age, yet can still produce damage-free gametes with a reset lifespan. Recent studies show that organelles undergo significant reorganization during yeast gametogenesis, and similar remodeling occurs in metazoans, suggesting common strategies for maintaining gamete quality. This review summarizes organellar reorganization during gametogenesis in yeast and how it aids in clearing age-related cellular damage. We also explore organellar remodeling in multicellular organisms and discuss the potential mechanisms and biological benefits of meiotic organellar reshaping.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA. https://twitter.com/@XiaoTianyao
| | - Elçin Ünal
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA.
| |
Collapse
|
2
|
Singh DND, Roberts ARE, Wang X, Li G, Quesada Moraga E, Alliband D, Ballou E, Tsai HJ, Hidalgo A. Toll-1-dependent immune evasion induced by fungal infection leads to cell loss in the Drosophila brain. PLoS Biol 2025; 23:e3003020. [PMID: 39946503 PMCID: PMC11825051 DOI: 10.1371/journal.pbio.3003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Fungi can intervene in hosts' brain function. In humans, they can drive neuroinflammation, neurodegenerative diseases and psychiatric disorders. However, how fungi alter the host brain is unknown. The mechanism underlying innate immunity to fungi is well-known and universally conserved downstream of shared Toll/TLR receptors, which via the adaptor MyD88 and the transcription factor Dif/NFκB, induce the expression of antimicrobial peptides (AMPs). However, in the brain, Toll-1 could also drive an alternative pathway via Sarm, which causes cell death instead. Sarm is the universal inhibitor of MyD88 and could drive immune evasion. Here, we show that exposure to the fungus Beauveria bassiana reduced fly life span, impaired locomotion and caused neurodegeneration. Beauveria bassiana entered the Drosophila brain and induced the up-regulation of AMPs, and the Toll adaptors wek and sarm, within the brain. RNAi knockdown of Toll-1, wek or sarm concomitantly with infection prevented B. bassiana-induced cell loss. By contrast, over-expression of wek or sarm was sufficient to cause neuronal loss in the absence of infection. Thus, B. bassiana caused cell loss in the host brain via Toll-1/Wek/Sarm signalling driving immune evasion. A similar activation of Sarm downstream of TLRs upon fungal infections could underlie psychiatric and neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Deepanshu N. D. Singh
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Abigail R. E. Roberts
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guiyi Li
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - David Alliband
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Ballou
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hung-Ji Tsai
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Lee-Soety JY, Resch G, Rimal A, Johnson ES, Benway J, Winter E. The MAPK homolog, Smk1, promotes assembly of the glucan layer of the spore wall in S. cerevisiae. Yeast 2024; 41:448-457. [PMID: 38874213 PMCID: PMC11230851 DOI: 10.1002/yea.3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.
Collapse
Affiliation(s)
- Julia Y. Lee-Soety
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania
| | - Gwendolyn Resch
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abhimannyu Rimal
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Erica S. Johnson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jonathan Benway
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Daicho KM, Hirono-Hara Y, Kikukawa H, Tamura K, Hara KY. Engineering yeast with a light-driven proton pump system in the vacuolar membrane. Microb Cell Fact 2024; 23:4. [PMID: 38172917 PMCID: PMC10763269 DOI: 10.1186/s12934-023-02273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The supply of ATP is a limiting factor for cellular metabolism. Therefore, cell factories require a sufficient ATP supply to drive metabolism for efficient bioproduction. In the current study, a light-driven proton pump in the vacuolar membrane was constructed in yeast to reduce the ATP consumption required by V-ATPase to maintain the acidification of the vacuoles and increase the intracellular ATP supply for bioproduction. RESULTS Delta rhodopsin (dR), a microbial light-driven proton-pumping rhodopsin from Haloterrigena turkmenica, was expressed and localized in the vacuolar membrane of Saccharomyces cerevisiae by conjugation with a vacuolar membrane-localized protein. Vacuoles with dR were isolated from S. cerevisiae, and the light-driven proton pumping activity was evaluated based on the pH change outside the vacuoles. A light-induced increase in the intracellular ATP content was observed in yeast harboring vacuoles with dR. CONCLUSIONS Yeast harboring the light-driven proton pump in the vacuolar membrane developed in this study are a potential optoenergetic cell factory suitable for various bioproduction applications.
Collapse
Affiliation(s)
- Kaoru M Daicho
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yoko Hirono-Hara
- 396Bio, Inc., University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hiroshi Kikukawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Kentaro Tamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Kiyotaka Y Hara
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
6
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
7
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
8
|
Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS, Hunn AM, McCroskey S, Snyder JL, Bravo Núñez MA, McClain M, McKinney SA, Wood C, Halfmann R, Zanders SE. The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. eLife 2020; 9:e55694. [PMID: 33108274 PMCID: PMC7591262 DOI: 10.7554/elife.55694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Meiotic drivers are parasitic loci that force their own transmission into greater than half of the offspring of a heterozygote. Many drivers have been identified, but their molecular mechanisms are largely unknown. The wtf4 gene is a meiotic driver in Schizosaccharomyces pombe that uses a poison-antidote mechanism to selectively kill meiotic products (spores) that do not inherit wtf4. Here, we show that the Wtf4 proteins can function outside of gametogenesis and in a distantly related species, Saccharomyces cerevisiae. The Wtf4poison protein forms dispersed, toxic aggregates. The Wtf4antidote can co-assemble with the Wtf4poison and promote its trafficking to vacuoles. We show that neutralization of the Wtf4poison requires both co-assembly with the Wtf4antidote and aggregate trafficking, as mutations that disrupt either of these processes result in cell death in the presence of the Wtf4 proteins. This work reveals that wtf parasites can exploit protein aggregate management pathways to selectively destroy spores.
Collapse
Affiliation(s)
| | - Anthony C Mok
- Stowers Institute for Medical ResearchKansas CityUnited States
- University of Missouri-Kansas CityKansas CityUnited States
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Kexi Yi
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Tejbir S Kandola
- Stowers Institute for Medical ResearchKansas CityUnited States
- Open UniversityMilton KeynesUnited Kingdom
| | - Andrew M Hunn
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Scott McCroskey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Julia L Snyder
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Sean A McKinney
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Randal Halfmann
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
9
|
Cui Y, Zhao Q, Hu S, Jiang L. Vacuole Biogenesis in Plants: How Many Vacuoles, How Many Models? TRENDS IN PLANT SCIENCE 2020; 25:538-548. [PMID: 32407694 DOI: 10.1016/j.tplants.2020.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 05/22/2023]
Abstract
Vacuoles are the largest membrane-bounded organelles and have essential roles in plant growth and development, but several important questions on the biogenesis and dynamics of lytic vacuoles (LVs) remain. Here, we summarize and discuss recent research and models of vacuole formation, and propose, with testable hypotheses, that besides inherited vacuoles, plant cells can also synthesize LVs de novo from multiple organelles and routes in response to growth and development or external factors. Therefore, LVs may be further classified into different subgroups and/or populations with different pH, cargos, and functions, among which multivesicular body (MVB)-derived small vacuoles are the main source for central vacuole formation in arabidopsis root cortical cells.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
10
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Yadav PK, Rajasekharan R. The m 6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells. J Biol Chem 2017; 292:13727-13744. [PMID: 28655762 DOI: 10.1074/jbc.m117.783761] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
N6-Methyladenosine (m6A) is among the most common modifications in eukaryotic mRNA. The role of yeast m6A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m6A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m6A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m6A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m6A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m6A methylation in lysosome-related functions and diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- From the Lipidomic Centre, Department of Lipid Science, and.,the Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India
| | - Ram Rajasekharan
- From the Lipidomic Centre, Department of Lipid Science, and .,the Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India
| |
Collapse
|
12
|
Hill SM, Hanzén S, Nyström T. Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 2017; 18:377-391. [PMID: 28193623 PMCID: PMC5331209 DOI: 10.15252/embr.201643458] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
The accumulation of damaged and aggregated proteins is a hallmark of aging and increased proteotoxic stress. To limit the toxicity of damaged and aggregated proteins and to ensure that the damage is not inherited by succeeding cell generations, a system of spatial quality control operates to sequester damaged/aggregated proteins into inclusions at specific protective sites. Such spatial sequestration and asymmetric segregation of damaged proteins have emerged as key processes required for cellular rejuvenation. In this review, we summarize findings on the nature of the different quality control sites identified in yeast, on genetic determinants required for spatial quality control, and on how aggregates are recognized depending on the stress generating them. We also briefly compare the yeast system to spatial quality control in other organisms. The data accumulated demonstrate that spatial quality control involves factors beyond the canonical quality control factors, such as chaperones and proteases, and opens up new venues in approaching how proteotoxicity might be mitigated, or delayed, upon aging.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sarah Hanzén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
13
|
Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry. Proc Natl Acad Sci U S A 2015; 112:11977-82. [PMID: 26351681 DOI: 10.1073/pnas.1506054112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.
Collapse
|
14
|
Tsai IT, Lin JL, Chiang YH, Chuang YC, Liang SS, Chuang CN, Huang TN, Wang TF. Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis. Autophagy 2013; 10:285-95. [PMID: 24345927 PMCID: PMC5396080 DOI: 10.4161/auto.27192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Jyun-Liang Lin
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yi-Hsuan Chiang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan
| | - Shu-Shan Liang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Ting-Fang Wang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| |
Collapse
|
15
|
Eastwood M, Cheung S, Lee K, Moffat J, Meneghini M. Developmentally Programmed Nuclear Destruction during Yeast Gametogenesis. Dev Cell 2012; 23:35-44. [DOI: 10.1016/j.devcel.2012.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/08/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
16
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
17
|
McMurray MA, Thorner J. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr Biol 2008; 18:1203-8. [PMID: 18701287 DOI: 10.1016/j.cub.2008.07.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/03/2023]
Abstract
Septins are conserved proteins found in hetero-oligomeric complexes that are incorporated into distinct structures during cell division and differentiation; yeast septins Cdc3, Cdc10, Cdc11, and Cdc12 form hetero-octamers and polymerize into filaments, which form a "collar" at the mother-bud neck [1]. Posttranslational modifications, nucleotide binding, and protein-protein and protein-lipid interactions influence assembly and disassembly of septin structures [2], but whether individual septins are used repeatedly to build higher-order assemblies was not known. We used fluorescence-based pulse-chase methods to visualize the fate of pre-existing (old) and newly synthesized (new) molecules of two septins, Cdc10 and Cdc12. They were recycled through multiple mitotic divisions, and old and new molecules were incorporated indistinguishably into the collar. Likewise, old and new subunits intermixed within hetero-octamers, indicating that exchange occurs at this organizational level. Remarkably, in meiosis, Cdc10 made during vegetative growth was reutilized to build sporulation-specific structures and reused again during spore germination for budding and during subsequent mitotic divisions. Although Cdc12 also persisted during sporulation, it was excluded from septin structures and replaced by another subunit, Spr3; only new Cdc12 populated the collar of germinating spores. Thus, mechanisms governing septin incorporation are specific to each subunit and to the developmental state of the cell.
Collapse
Affiliation(s)
- Michael A McMurray
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
18
|
The yeast lysosome-like vacuole: endpoint and crossroads. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:650-63. [PMID: 18786576 DOI: 10.1016/j.bbamcr.2008.08.003] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.
Collapse
|
19
|
Suda Y, Nakanishi H, Mathieson EM, Neiman AM. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:2009-17. [PMID: 17905927 PMCID: PMC2168413 DOI: 10.1128/ec.00238-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Opposing fission and fusion events maintain the yeast mitochondrial network. Six proteins regulate these membrane dynamics during mitotic growth-Dnm1p, Mdv1p, and Fis1p mediate fission; Fzo1p, Mgm1p, and Ugo1p mediate fusion. Previous studies established that mitochondria fragment and rejoin at distinct stages during meiosis and sporulation, suggesting that mitochondrial fission and fusion are required during this process. Here we report that strains defective for mitochondrial fission alone, or both fission and fusion, complete meiosis and sporulation. However, visualization of mitochondria in sporulating cultures reveals morphological defects associated with the loss of fusion and/or fission proteins. Specifically, mitochondria collapse to one side of the cell and fail to fragment during presporulation. In addition, mitochondria are not inherited equally by newly formed spores, and mitochondrial DNA nucleoid segregation defects give rise to spores lacking nucleoids. This nucleoid inheritance defect is correlated with an increase in petite spore colonies. Unexpectedly, mitochondria fragment in mature tetrads lacking fission proteins. The latter finding suggests either that novel fission machinery operates during sporulation or that mechanical forces generate the mitochondrial fragments observed in mature spores. These results provide evidence of fitness defects caused by fission mutations and reveal new phenotypes associated with fission and fusion mutations.
Collapse
Affiliation(s)
- Steven W Gorsich
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
21
|
Wang X, McMahon MA, Shelton SN, Nampaisansuk M, Ballard JL, Goodman JM. Multiple targeting modules on peroxisomal proteins are not redundant: discrete functions of targeting signals within Pmp47 and Pex8p. Mol Biol Cell 2004; 15:1702-10. [PMID: 14742703 PMCID: PMC379268 DOI: 10.1091/mbc.e03-11-0810] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/05/2004] [Accepted: 01/10/2004] [Indexed: 11/11/2022] Open
Abstract
Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed "redundant" because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for targeting to proliferated peroxisomes in Saccharomyces cerevisiae. We now report that the analogous TMD4R, which cannot target to proliferated peroxisomes, targets at least as well, or much better (depending on strain and growth conditions) in cells containing only basal (i.e., nonproliferated) peroxisomes. These data suggest differences in the targeting pathway among peroxisome populations. Pex8p, a peripheral protein facing the matrix, contains a typical carboxy terminal targeting sequence (PTS1) that has been shown to be nonessential for targeting, indicating the existence of a second targeting domain (not yet defined in S. cerevisiae); thus, its function was unknown. We show that targeting to basal peroxisomes, but not to proliferated peroxisomes, is more efficient with the PTS1 than without it. Our results indicate that multiple targeting signals within peroxisomal proteins extend coverage among heterogeneous populations of peroxisomes and increase efficiency of targeting in some metabolic states.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Known prions (infectious proteins) are self-propagating amyloids or conformationally altered proteins, but in theory an enzyme necessary for its own activation could also be a prion (or a gene composed of protein). We show that yeast protease B is such a prion, called [beta].[beta] is infectious, reversibly curable, and its de novo generation is induced by overexpression of the pro-protease. Present in normal cells but masked by the functionally redundant protease A, [beta] is advantageous during starvation and necessary for sporulation. We propose that other enzymes whose active, modified, form is necessary for their maturation might also be prions.
Collapse
Affiliation(s)
- B Tibor Roberts
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
23
|
Meaden PG, Arneborg N, Guldfeldt LU, Siegumfeldt H, Jakobsen M. Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock. Yeast 1999; 15:1211-22. [PMID: 10487923 DOI: 10.1002/(sici)1097-0061(19990915)15:12<1211::aid-yea448>3.0.co;2-h] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vital lipophilic dye N-(3-triethylammoniumpropyl)-4-[6-(4-(diethylamino)phenyl]hexatrie nyl ) pyridinium dibromide (FM 4-64) was used to study the effect of ethanol stress and heat shock on endocytosis in the yeast Saccharomyces cerevisiae. Yeast cells stained with FM 4-64 were placed in a culture chamber and the internalization of the dye was monitored by fluorescence microscopy during perfusion of the cells with fresh growth medium. In the absence of ethanol in the perfusion medium, the internalization of FM 4-64 from the plasma membrane to the vacuolar membrane by yeast cells harvested from the exponential phase of growth was completed in 30 min. The presence of 6% (v/v) ethanol in the perfusion medium had no obvious effect on the internalization of FM 4-64 from the plasma membrane, but did lead to an accumulation of the dye in endocytic intermediates. Consequently, vacuolar membrane staining was delayed. Cells stained with FM 4-64 and subjected to heat shock displayed a similar effect, with endocytic intermediates becoming more prominent with the severity of the heat shock. For both ethanol stress and heat shock, vacuolar morphology altered from segregated structures to a single, large organelle. The findings of this study reinforce previous observations that ethanol stress and heat shock induce similar responses in yeast.
Collapse
Affiliation(s)
- P G Meaden
- ICBD, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
| | | | | | | | | |
Collapse
|
24
|
Abstract
FM1-43 and similar styryl dyes have proven useful as probes for membrane trafficking because they reversibly stain membranes, are impermeable to membranes, and are more fluorescent when bound to membranes than when in solution. Because these dyes stain membranes in an activity-dependent manner, they are ideal for studies of neurotransmitter release mechanisms such as synaptic vesicle recycling, exocytosis, and endocytosis. FM dyes have been used in conjunction with other techniques such as fluorescent calcium indicator dyes and electrophysiological techniques to elucidate mechanisms of presynaptic calcium homeostasis and modulation of neurotransmitter release. Presynaptic membranes have been marked by FM dyes in studies of synaptogenesis and reinnervation. As a probe for endocytosed membranes, these dyes have been used to examine vacuole formation in yeast. These versatile membrane dyes are useful in a variety of applications.
Collapse
Affiliation(s)
- A J Cochilla
- Department of Physiology and Biophysics, University of Colorado Medical School 80262, USA.
| | | | | |
Collapse
|
25
|
Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science 1998; 282:699-705. [PMID: 9784122 DOI: 10.1126/science.282.5389.699] [Citation(s) in RCA: 1218] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diploid cells of budding yeast produce haploid cells through the developmental program of sporulation, which consists of meiosis and spore morphogenesis. DNA microarrays containing nearly every yeast gene were used to assay changes in gene expression during sporulation. At least seven distinct temporal patterns of induction were observed. The transcription factor Ndt80 appeared to be important for induction of a large group of genes at the end of meiotic prophase. Consensus sequences known or proposed to be responsible for temporal regulation could be identified solely from analysis of sequences of coordinately expressed genes. The temporal expression pattern provided clues to potential functions of hundreds of previously uncharacterized genes, some of which have vertebrate homologs that may function during gametogenesis.
Collapse
Affiliation(s)
- S Chu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 1998; 143:333-49. [PMID: 9786946 PMCID: PMC2132834 DOI: 10.1083/jcb.143.2.333] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Revised: 09/01/1998] [Indexed: 12/22/2022] Open
Abstract
The Saccharomyces cerevisiae Dnm1 protein is structurally related to dynamin, a GTPase required for membrane scission during endocytosis. Here we show that Dnm1p is essential for the maintenance of mitochondrial morphology. Disruption of the DNM1 gene causes the wild-type network of tubular mitochondrial membranes to collapse to one side of the cell but does not affect the morphology or distribution of other cytoplasmic organelles. Dnm1 proteins containing point mutations in the predicted GTP-binding domain or completely lacking the GTP-binding domain fail to rescue mitochondrial morphology defects in a dnm1 mutant and induce dominant mitochondrial morphology defects in wild-type cells. Indirect immunofluorescence reveals that Dnm1p is distributed in punctate structures at the cell cortex that colocalize with the mitochondrial compartment. These Dnm1p-containing structures remain associated with the spherical mitochondria found in an mdm10 mutant strain. In addition, a portion of Dnm1p cofractionates with mitochondrial membranes during differential sedimentation and sucrose gradient fractionation of wild-type cells. Our results demonstrate that Dnm1p is required for the cortical distribution of the mitochondrial network in yeast, a novel function for a dynamin-related protein.
Collapse
Affiliation(s)
- D Otsuga
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 1998; 143:359-73. [PMID: 9786948 PMCID: PMC2132826 DOI: 10.1083/jcb.143.2.359] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Revised: 08/25/1998] [Indexed: 01/09/2023] Open
Abstract
Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during yeast mating. Fzo1p is a mitochondrial integral membrane protein with its GTPase domain exposed to the cytoplasm. Point mutations that alter conserved residues in the GTPase domain do not affect Fzo1p localization but disrupt mitochondrial fusion. Suborganellar fractionation suggests that Fzo1p spans the outer and is tightly associated with the inner mitochondrial membrane. This topology may be required to coordinate the behavior of the two mitochondrial membranes during the fusion reaction. We propose that the fuzzy onions family of transmembrane GTPases act as molecular switches to regulate a key step in mitochondrial membrane docking and/or fusion.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM. Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell 1998; 9:917-30. [PMID: 9529388 PMCID: PMC25318 DOI: 10.1091/mbc.9.4.917] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1998] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1delta and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.
Collapse
Affiliation(s)
- A D Roeder
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
29
|
Hermann GJ, King EJ, Shaw JM. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 1997; 137:141-53. [PMID: 9105043 PMCID: PMC2139847 DOI: 10.1083/jcb.137.1.141] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|