1
|
Ahlawat N, Mahilkar A, Saini S. Resource presentation dictates genetic and phenotypic adaptation in yeast. BMC Ecol Evol 2025; 25:33. [PMID: 40234742 PMCID: PMC11998346 DOI: 10.1186/s12862-025-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Environments shape adaptive trajectories of populations, often leading to adaptive parallelism in identical, and divergence in different environments. However, how does the likelihood of these possibilities change with minute changes in the environment remain unclear. RESULTS In this study, we evolved Saccharomyces cerevisiae in environments which differed only in the manner in which the sugar source is presented to the population. In one set of populations, carbon was presented as a mixture of glucose-galactose, and in the other, as melibiose, a glucose-galactose disaccharide. Since the two environments differed in how the two monosaccharides are packaged, we call these environments 'synonymous'. Our results show that even subtle environmental differences can lead to differing phenotypic responses between the two sets of evolved populations. However, despite different adaptive responses, pleiotropic effects of adaptation are largely predictable. We also show that distinct genomic targets of adaptation between the two sets of evolved populations are functionally convergent. CONCLUSION This study highlights how subtle environmental differences dictate phenotypic and genetic adaptation of populations. Additionally, these results also suggest the predictive potential of ancestor's fitness in understanding pleiotropic responses. Our work underscores the importance of studying more such environments to understand the generality of adaptive responses in populations.
Collapse
Affiliation(s)
- Neetika Ahlawat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | - Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| |
Collapse
|
2
|
Anderson NW, Kirk L, Schraiber JG, Ragsdale AP. A path integral approach for allele frequency dynamics under polygenic selection. Genetics 2025; 229:1-63. [PMID: 39531638 DOI: 10.1093/genetics/iyae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence (E&R) experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a role in a given allele frequency change (AFC). Predicting AFCs under drift and selection, even for alleles contributing to simple, monogenic traits, has remained a challenging problem. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here, we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. We derive analytic expressions for the transition probability (i.e. the probability that an allele will change in frequency from x to y in time t) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of AFC to test for selection, as well as explore optimal design choices for E&R experiments to uncover the genetic architecture of polygenic traits under selection.
Collapse
Affiliation(s)
- Nathan W Anderson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd Kirk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua G Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Silvestro D, Latrille T, Salamin N. Toward a Semi-Supervised Learning Approach to Phylogenetic Estimation. Syst Biol 2024; 73:789-806. [PMID: 38916476 PMCID: PMC11639169 DOI: 10.1093/sysbio/syae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees. Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying biological processes, such as nucleotide substitutions, and the estimation of model parameters by maximum likelihood or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under complex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised deep-learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple sequence alignments and estimate per-site evolutionary rates and divergence without requiring a known phylogenetic tree. The accuracy of our predictions matched that of likelihood-based phylogenetic inference when rate heterogeneity followed a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon models. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million nucleotides from the clownfish clade. Our simulations also showed that the integration of per-site rates obtained by deep learning within a Bayesian framework led to significantly more accurate phylogenetic inference, particularly with respect to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a semi-supervised learning approach that combines deep-learning estimation of substitution rates, which allows for more flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessment of statistical support.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Thibault Latrille
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan BK, Schaudinn C, Lavigne R, Turner PE, Raschke MJ, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nat Commun 2024; 15:8572. [PMID: 39362854 PMCID: PMC11450229 DOI: 10.1038/s41467-024-52595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Spread of multidrug-resistant Pseudomonas aeruginosa strains threatens to render currently available antibiotics obsolete, with limited prospects for the development of new antibiotics. Lytic bacteriophages, the viruses of bacteria, represent a path to combat this threat. In vitro-directed evolution is traditionally applied to expand the bacteriophage host range or increase bacterial suppression in planktonic cultures. However, while up to 80% of human microbial infections are biofilm-associated, research towards targeted improvement of bacteriophages' ability to combat biofilms remains scarce. This study aims at an in vitro biofilm evolution assay to improve multiple bacteriophage parameters in parallel and the optimisation of bacteriophage cocktail design by exploiting a bacterial bacteriophage resistance trade-off. The evolved bacteriophages show an expanded host spectrum, improved antimicrobial efficacy and enhanced antibiofilm performance, as assessed by isothermal microcalorimetry and quantitative polymerase chain reaction, respectively. Our two-phage cocktail reveals further improved antimicrobial efficacy without incurring dual-bacteriophage-resistance in treated bacteria. We anticipate this assay will allow a better understanding of phenotypic-genomic relationships in bacteriophages and enable the training of bacteriophages against other desired pathogens. This, in turn, will strengthen bacteriophage therapy as a treatment adjunct to improve clinical outcomes of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Fabian Kunisch
- Faculty of Medicine, Universität Münster, Münster, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Claudia Campobasso
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Department of Biology, Università di Pisa, Pisa, Italy
| | | | - Selma Yildirim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, Berlin, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael J Raschke
- Faculty of Medicine, Universität Münster, Münster, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
| | - Mercedes Gonzalez Moreno
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
5
|
Castiglioni VG, Olmo-Uceda MJ, Martín S, Félix MA, González R, Elena SF. Experimental evolution of an RNA virus in Caenorhabditis elegans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105623. [PMID: 38901623 DOI: 10.1016/j.meegid.2024.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The discovery of Orsay virus (OrV), the first virus infecting wild populations of Caenorhabditis elegans, has boosted studies of viral immunity pathways in this nematode. Considering the many advantages that C. elegans offers for fundamental research in host-pathogen interactions, this pathosystem has high potential to become a model system for experimental virus evolution studies. However, the evolutionary constraints - i.e, the balance between genetic variation, selection, drift and historical contingency- operating in this pathosystem have barely been explored. Here we describe for the first time an evolution experiment of two different OrV strains in C. elegans. Comparison of the two ancestral strains showed differences in infectivity and sequence, and highlighted the importance of consistently normalize viral inocula for meaningful comparisons among strains. After 10 serial passages of evolution, we report slight changes in infectivity and non-synonymous mutations fixed in the evolved viral populations. In addition, we observed numerous minor variants emerging in the viral population. These minor variants were not randomly distributed along the genome but concentrated in polymorphic genomic regions. Overall, our work established the grounds for future experimental virus evolution studies using Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - María J Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Susana Martín
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Santa Fe Institute, Sant Fe, NM 87501, USA.
| |
Collapse
|
6
|
Anderson NW, Kirk L, Schraiber JG, Ragsdale AP. A Path Integral Approach for Allele Frequency Dynamics Under Polygenic Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599114. [PMID: 38915613 PMCID: PMC11195211 DOI: 10.1101/2024.06.14.599114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a roll in a given allele frequency change. Predicting how much allele frequencies change under drift and selection had remained an open problem well into the 21st century, even those contributing to simple, monogenic traits. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. In particular, we derive analytic expressions for the transition probability (i.e., the probability that an allele will change in frequency from x , to y in time t ) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of allele frequency change to test for selection, as well as explore optimal design choices for evolve-and-resequence experiments to uncover the genetic architecture of polygenic traits under selection.
Collapse
Affiliation(s)
- Nathan W. Anderson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd Kirk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron P. Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Zion S, Katz S, Hershberg R. Escherichia coli adaptation under prolonged resource exhaustion is characterized by extreme parallelism and frequent historical contingency. PLoS Genet 2024; 20:e1011333. [PMID: 38885285 PMCID: PMC11213340 DOI: 10.1371/journal.pgen.1011333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Like many other non-sporulating bacterial species, Escherichia coli is able to survive prolonged periods of resource exhaustion, by entering a state of growth called long-term stationary phase (LTSP). In July 2015, we initiated a set of evolutionary experiments aimed at characterizing the dynamics of E. coli adaptation under LTSP. In these experiments populations of E. coli were allowed to initially grow on fresh rich media, but were not provided with any new external growth resources since their establishment. Utilizing whole genome sequencing data obtained for hundreds of clones sampled at 12 time points spanning the first six years of these experiments, we reveal several novel aspects of the dynamics of adaptation. First, we show that E. coli continuously adapts genetically, up to six years under resource exhaustion, through the highly convergent accumulation of mutations. We further show that upon entry into LTSP, long-lasting lineages are established. This lineage structure is in itself convergent, with similar lineages arising across independently evolving populations. The high parallelism with which adaptations occur under LTSP, combined with the LTSP populations' lineage structure, enable us to screen for pairs of loci displaying a significant association in the occurrence of mutations, suggestive of a historical contingency. We find that such associations are highly frequent and that a third of convergently mutated loci are involved in at least one such association. Combined our results demonstrate that LTSP adaptation is characterized by remarkably high parallelism and frequent historical contingency.
Collapse
Affiliation(s)
- Shira Zion
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol 2024; 90:e0028624. [PMID: 38624196 PMCID: PMC11107170 DOI: 10.1128/aem.00286-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.
Collapse
Affiliation(s)
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Serena Johnson
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Emily J. Stevens
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - R. Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Bailes CL, Biggs KRH, Scott L, Wichman HA, Schwartz EJ. Genetic and functional basis of the reduction effect in bacteriophage ΦX174. Virology 2023; 588:109905. [PMID: 39492403 DOI: 10.1016/j.virol.2023.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
The ΦX174 reduction effect describes a plasmid-based inhibitory phenomenon that mimics the superinfection inhibition found in wild phage populations. In this effect, when a portion of the ΦX174 genome - the 3' end of the pilot protein gene (H), the 5' end of the replication gene (A), and the H-A intergenic region - is present on a plasmid in the host cell, almost complete protection from phage infection occurs. Here we demonstrate that only the phage pilot protein H portion of the plasmid is sufficient for the observed inhibition, that protein synthesis is necessary for inhibition to occur, that inserting the entire H gene in the plasmid may also impart a blocking effect, and that partial to complete recovery from this inhibition is possible with minimal viral evolution.
Collapse
Affiliation(s)
- Clayton L Bailes
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Karin R H Biggs
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Holly A Wichman
- Department of Biological Sciences and Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Elissa J Schwartz
- School of Biological Sciences and Department of Mathematics & Statistics, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Jewel D, Pham Q, Chatterjee A. Virus-assisted directed evolution of biomolecules. Curr Opin Chem Biol 2023; 76:102375. [PMID: 37542745 PMCID: PMC10870257 DOI: 10.1016/j.cbpa.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 08/07/2023]
Abstract
Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
11
|
Geiler-Samerotte K, Lang GI. Best Practices in Microbial Experimental Evolution. J Mol Evol 2023; 91:237-240. [PMID: 37209159 PMCID: PMC10885815 DOI: 10.1007/s00239-023-10119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Kerry Geiler-Samerotte
- School of Life Sciences and Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA.
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
12
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
13
|
Cano AV, Gitschlag BL, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias and the predictability of evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220055. [PMID: 37004719 PMCID: PMC10067271 DOI: 10.1098/rstb.2022.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Predicting evolutionary outcomes is an important research goal in a diversity of contexts. The focus of evolutionary forecasting is usually on adaptive processes, and efforts to improve prediction typically focus on selection. However, adaptive processes often rely on new mutations, which can be strongly influenced by predictable biases in mutation. Here, we provide an overview of existing theory and evidence for such mutation-biased adaptation and consider the implications of these results for the problem of prediction, in regard to topics such as the evolution of infectious diseases, resistance to biochemical agents, as well as cancer and other kinds of somatic evolution. We argue that empirical knowledge of mutational biases is likely to improve in the near future, and that this knowledge is readily applicable to the challenges of short-term prediction. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Alejandro V. Cano
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bryan L. Gitschlag
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hana Rozhoňová
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Arlin Stoltzfus
- Office of Data and Informatics, Material Measurement Laboratory, National Institute of Standards and Technology, Rockville, MD 20899, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Lyberger K, Schoener TW. Differential genotype response to increased resource abundance helps explain parallel evolution of Daphnia populations in the wild. Ecol Evol 2023; 13:e9896. [PMID: 36937075 PMCID: PMC10015367 DOI: 10.1002/ece3.9896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Under controlled laboratory conditions, previous studies have shown that selection can produce repeatable evolutionary trajectories. Yet, the question remains for many of these studies if, given identical starting populations, evolution in the wild proceeds in a non-random direction. In the present study, we investigated the extent to which rapid evolution in the wild is parallel by monitoring the genetic composition of replicate populations of Daphnia in field mesocosms containing two clonal genotypes. We found parallel changes across all nine mesocosms, in which the same genotype increased in frequency. To probe whether genotype-specific response to resource abundance could have led to this frequency change, we conducted a life-history assay under high-resource abundance and low-resource abundance. We found that resource exploitation differed by genotype, in that, while one genotype (the winner in the field mesocosms) was more fit than the other genotype at high resources, the other genotype performed slightly better at low resources. We suspect that levels of resource abundance found in the summer field mesocosms had values in which the genotype better with abundant resources had the advantage. These findings suggest that variation in certain traits associated with resource acquisition can drive genotype frequency change.
Collapse
Affiliation(s)
- Kelsey Lyberger
- Department of Evolution and Ecology, Center for Population BiologyUniversity of California DavisDavisCaliforniaUSA
| | - Thomas W. Schoener
- Department of Evolution and Ecology, Center for Population BiologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
15
|
Lippi G, Henry BM, Plebani M. A Simple Epidemiologic Model for Predicting Impaired Neutralization of New SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:128. [PMID: 36679973 PMCID: PMC9863154 DOI: 10.3390/vaccines11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
This study is aimed at developing a simple epidemiologic model that could help predict the impaired neutralization of new SARS-CoV-2 variants. We explored the potential association between neutralization of recent and more prevalent SARS-CoV-2 sublineages belonging to the Omicron family (i.e., BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1 and XBB.1) expressed as FFRNT50 (>50% suppression of fluorescent foci fluorescent focus reduction neutralization test) in recipients of four doses of monovalent mRNA-based coronavirus disease 2019 (COVID-19) vaccines, with epidemiologic variables like emergence date and number of spike protein mutations of these sublineages, cumulative worldwide COVID-19 cases and cumulative number of COVID-19 vaccine doses administered worldwide at the time of SARS-CoV-2 Omicron sublineage emergence. In the univariate analysis, the FFRNT50 value for the different SARS-CoV-2 Omicron sublineages was significantly associated with all such variables except with the number of spike protein mutations. Such associations were confirmed in the multivariate analysis, which enabled the construction of the equation: “−0.3917 × [Emergence (date)] + 1.403 × [COVID-19 cases (million)] − 121.8 × [COVID-19 Vaccine doses (billion)] + 18,250”, predicting the FFRNT50 value of the five SARS-CoV-2 Omicron sublineages with 0.996 accuracy (p = 0.013). We have shown in this work that a simple mathematical approach, encompassing a limited number of widely available epidemiologic variables, such as emergence date of new variants and number of COVID-19 cases and vaccinations, could help identifying the emergence and surge of future lineages with major propensity to impair humoral immunity.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Brandon M. Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mario Plebani
- Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
16
|
Jagdish T, Nguyen Ba AN. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr Opin Genet Dev 2022; 75:101943. [PMID: 35752001 DOI: 10.1016/j.gde.2022.101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Experimental evolution with microbial model systems has transformed our understanding of the basic rules underlying ecology and evolution. Experiments leveraging evolution as a central feature put evolutionary theories to the test, and modern sequencing and engineering tools then characterized the molecular basis of adaptation. As theory and experimentations refined our understanding of evolution, a need to increase throughput and experimental complexity has emerged. Here, we summarize recent technologies that have made high-throughput experiments practical and highlight studies that have capitalized on these tools, defining an exciting new era in microbial experimental evolution. Multiple research directions previously limited by experimental scale are now accessible for study and we believe applying evolutionary lessons from in vitro studies onto these applied settings has the potential for major innovations and discoveries across ecology and medicine.
Collapse
Affiliation(s)
- Tanush Jagdish
- Department of Molecular and Cellular Biology and The Program for Systems Synthetic and Quantitative Biology, Harvard University, Cambridge, United States.
| | - Alex N Nguyen Ba
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Boezen D, Ali G, Wang M, Wang X, van der Werf W, Vlak JM, Zwart MP. Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genet 2022; 18:e1009806. [PMID: 35666722 PMCID: PMC9203023 DOI: 10.1371/journal.pgen.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed. Virus populations can evolve rapidly, driven by the large number of mutations that occur during virus replication. It is challenging to measure mutation rates because selection will affect which mutations are observed: beneficial mutations are overrepresented in virus populations, while deleterious mutations are selected against and therefore underrepresented. Few mutation rates have been estimated for viruses with large DNA genomes, and there are no estimates for any insect virus. Here, we estimate the mutation rate for an alphabaculovirus, a virus that infects caterpillars and has a large, 134 kilobase pair DNA genome. To ensure that selection did not bias our estimate of mutation rate, we studied which mutations occurred in a large artificial region inserted into the virus genome, where mutations did not affect viral fitness. We deep sequenced evolved virus populations, and compared the distribution of observed mutants to predictions from a simulation model to estimate mutation rate. We found evidence for a relatively low mutation rate, of one mutation in every 10 million bases replicated. This estimate is in line with expectations for a DNA virus with self-correcting replication machinery and a large genome.
Collapse
Affiliation(s)
- Dieke Boezen
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ghulam Ali
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manli Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Amicone M, Borges V, Alves MJ, Isidro J, Zé-Zé L, Duarte S, Vieira L, Guiomar R, Gomes JP, Gordo I. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol Med Public Health 2022; 10:142-155. [PMID: 35419205 PMCID: PMC8996265 DOI: 10.1093/emph/eoac010] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background and objectives To understand how organisms evolve, it is fundamental to study how mutations emerge and establish. Here, we estimated the rate of mutation accumulation of SARS-CoV-2 in vitro and investigated the repeatability of its evolution when facing a new cell type but no immune or drug pressures. Methodology We performed experimental evolution with two strains of SARS-CoV-2, one carrying the originally described spike protein (CoV-2-D) and another carrying the D614G mutation that has spread worldwide (CoV-2-G). After 15 passages in Vero cells and whole genome sequencing, we characterized the spectrum and rate of the emerging mutations and looked for evidences of selection across the genomes of both strains. Results From the frequencies of the mutations accumulated, and excluding the genes with signals of selection, we estimate a spontaneous mutation rate of 1.3 × 10 -6 ± 0.2 × 10-6 per-base per-infection cycle (mean across both lineages of SARS-CoV-2 ± 2SEM). We further show that mutation accumulation is larger in the CoV-2-D lineage and heterogeneous along the genome, consistent with the action of positive selection on the spike protein, which accumulated five times more mutations than the corresponding genomic average. We also observe the emergence of mutators in the CoV-2-G background, likely linked to mutations in the RNA-dependent RNA polymerase and/or in the error-correcting exonuclease protein. Conclusions and implications These results provide valuable information on how spontaneous mutations emerge in SARS-CoV-2 and on how selection can shape its genome toward adaptation to new environments. Lay Summary: Each time a virus replicates inside a cell, errors (mutations) occur. Here, via laboratory propagation in cells originally isolated from the kidney epithelium of African green monkeys, we estimated the rate at which the SARS-CoV-2 virus mutates-an important parameter for understanding how it can evolve within and across humans. We also confirm the potential of its Spike protein to adapt to a new environment and report the emergence of mutators-viral populations where mutations occur at a significantly faster rate.
Collapse
Affiliation(s)
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Maria João Alves
- Centre for Vectors and Infectious Diseases Research, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sílvia Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Raquel Guiomar
- National Reference Laboratory for Influenza and Other Respiratory Viruses, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Corresponding authors. Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal. E-mail: ; Instituto Gulbenkian de Ciência, Oeiras, Portugal. E-mail:
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Corresponding authors. Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal. E-mail: ; Instituto Gulbenkian de Ciência, Oeiras, Portugal. E-mail:
| |
Collapse
|
19
|
Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. THE ISME JOURNAL 2022; 16:488-499. [PMID: 34429521 PMCID: PMC8776855 DOI: 10.1038/s41396-021-01085-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Marine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.
Collapse
|
20
|
Soares ADA, Wardil L, Klaczko LB, Dickman R. Hidden role of mutations in the evolutionary process. Phys Rev E 2021; 104:044413. [PMID: 34781575 DOI: 10.1103/physreve.104.044413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
Mutations not only alter allele frequencies in a genetic pool but may also determine the fate of an evolutionary process. Here we study which allele fixes in a one-step, one-way model including the wild type and two adaptive mutations. We study the effect of the four basic evolutionary mechanisms-genetic drift, natural selection, mutation, and gene flow-on mutant fixation and its kinetics. Determining which allele is more likely to fix is not simply a question of comparing fitnesses and mutation rates. For instance, if the allele of interest is less fit than the other, then not only must it have a greater mutation rate, but also its mutation rate must exceed a specific threshold for it to prevail. We find exact expressions for such conditions. Our conclusions are based on the mathematical description of two extreme but important regimes, as well as on simulations.
Collapse
Affiliation(s)
- Alexandre de Aquino Soares
- Departamento de Física, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Wardil
- Departamento de Física, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Louis Bernard Klaczko
- Departmento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), C. P. 6109, 13083-970 Campinas, São Paulo, Brazil
| | - Ronald Dickman
- Departamento de Física and National Institute of Science and Technology for Complex Systems, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Horton JS, Flanagan LM, Jackson RW, Priest NK, Taylor TB. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021; 12:6092. [PMID: 34667151 PMCID: PMC8526746 DOI: 10.1038/s41467-021-26286-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
Mutational hotspots can determine evolutionary outcomes and make evolution repeatable. Hotspots are products of multiple evolutionary forces including mutation rate heterogeneity, but this variable is often hard to identify. In this work, we reveal that a near-deterministic genetic hotspot can be built and broken by a handful of silent mutations. We observe this when studying homologous immotile variants of the bacteria Pseudomonas fluorescens, AR2 and Pf0-2x. AR2 resurrects motility through highly repeatable de novo mutation of the same nucleotide in >95% lines in minimal media (ntrB A289C). Pf0-2x, however, evolves via a number of mutations meaning the two strains diverge significantly during adaptation. We determine that this evolutionary disparity is owed to just 6 synonymous variations within the ntrB locus, which we demonstrate by swapping the sites and observing that we are able to both break (>95% to 0%) and build (0% to 80%) a deterministic mutational hotspot. Our work reveals a key role for silent genetic variation in determining adaptive outcomes.
Collapse
Affiliation(s)
- James S Horton
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Louise M Flanagan
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicholas K Priest
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
22
|
Madgwick PG, Kanitz R. Evolution of resistance under alternative models of selective interference. J Evol Biol 2021; 34:1608-1623. [PMID: 34449949 PMCID: PMC9293239 DOI: 10.1111/jeb.13919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023]
Abstract
The use of multiple pesticides or drugs can lead to a simultaneous selection pressure for resistance alleles at different loci. Models of resistance evolution focus on how this can delay the spread of resistance through a population, but often neglect how this can also reduce the probability that a resistance allele spreads. This neglected factor has been studied in a parallel literature as selective interference. Models of interference use alternative constructions of fitness, where selection coefficients from different loci either add or multiply. Although these are equivalent under weak selection, the two constructions make alternative predictions under the strong selection that characterizes resistance evolution. Here, simulations are used to examine the effects of interference on the probability of fixation and time to fixation of a new and strongly beneficial mutation in the presence of another strongly beneficial allele with variable starting frequency. The results from simulations show a complicated pattern of effects. The key result is that, under multiplicativity, the presence of the strongly beneficial allele leads to a small reduction in the probability of fixation for the new beneficial mutation up to ~10%, and a negligible increase in the average time to fixation up to ~2%, whereas under additivity, the effect is more substantial at up to ~50% for the probability of fixation and ~100% for the average time to fixation. Consequently, the effect of interference is only an important feature of resistance evolution under additivity. Current evidence from studies of experimental evolution provides widespread support for the basic features of additivity, which suggests that interference may afford resistance a different pattern of evolution than other adaptations: rather than the gradual and simultaneous selection of many alleles with small effects, the rapid evolution of resistance may involve the sequential selection of alleles with large effects.
Collapse
Affiliation(s)
- Philip G Madgwick
- Syngenta, Jealott's Hill International Research Centre, Bracknell, UK
| | | |
Collapse
|
23
|
Biggs KRH, Bailes CL, Scott L, Wichman HA, Schwartz EJ. Ecological Approach to Understanding Superinfection Inhibition in Bacteriophage. Viruses 2021; 13:1389. [PMID: 34372595 PMCID: PMC8310164 DOI: 10.3390/v13071389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
In microbial communities, viruses compete with each other for host cells to infect. As a consequence of competition for hosts, viruses evolve inhibitory mechanisms to suppress their competitors. One such mechanism is superinfection exclusion, in which a preexisting viral infection prevents a secondary infection. The bacteriophage ΦX174 exhibits a potential superinfection inhibition mechanism (in which secondary infections are either blocked or resisted) known as the reduction effect. In this auto-inhibitory phenomenon, a plasmid containing a fragment of the ΦX174 genome confers resistance to infection among cells that were once permissive to ΦX174. Taking advantage of this plasmid system, we examine the inhibitory properties of the ΦX174 reduction effect on a range of wild ΦX174-like phages. We then assess how closely the reduction effect in the plasmid system mimics natural superinfection inhibition by carrying out phage-phage competitions in continuous culture, and we evaluate whether the overall competitive advantage can be predicted by phage fitness or by a combination of fitness and reduction effect inhibition. Our results show that viral fitness often correctly predicts the winner. However, a phage's reduction sequence also provides an advantage to the phage in some cases, modulating phage-phage competition and allowing for persistence where competitive exclusion was expected. These findings provide strong evidence for more complex dynamics than were previously thought, in which the reduction effect may inhibit fast-growing viruses, thereby helping to facilitate coexistence.
Collapse
Affiliation(s)
- Karin R. H. Biggs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - Clayton L. Bailes
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Elissa J. Schwartz
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
- Department of Mathematics & Statistics, Washington State University, P.O. Box 643113, Pullman, WA 99164, USA
| |
Collapse
|
24
|
Bailey SF, Alonso Morales LA, Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 2021; 13:6300525. [PMID: 34132772 PMCID: PMC8410137 DOI: 10.1093/gbe/evab141] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be 'seen' by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
25
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
26
|
Ramazzotti D, Angaroni F, Maspero D, Gambacorti-Passerini C, Antoniotti M, Graudenzi A, Piazza R. VERSO: A comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples. PATTERNS (NEW YORK, N.Y.) 2021; 2:100212. [PMID: 33728416 PMCID: PMC7953447 DOI: 10.1016/j.patter.2021.100212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
We introduce VERSO, a two-step framework for the characterization of viral evolution from sequencing data of viral genomes, which is an improvement on phylogenomic approaches for consensus sequences. VERSO exploits an efficient algorithmic strategy to return robust phylogenies from clonal variant profiles, also in conditions of sampling limitations. It then leverages variant frequency patterns to characterize the intra-host genomic diversity of samples, revealing undetected infection chains and pinpointing variants likely involved in homoplasies. On simulations, VERSO outperforms state-of-the-art tools for phylogenetic inference. Notably, the application to 6,726 amplicon and RNA sequencing samples refines the estimation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution, while co-occurrence patterns of minor variants unveil undetected infection paths, which are validated with contact tracing data. Finally, the analysis of SARS-CoV-2 mutational landscape uncovers a temporal increase of overall genomic diversity and highlights variants transiting from minor to clonal state and homoplastic variants, some of which fall on the spike gene. Available at: https://github.com/BIMIB-DISCo/VERSO.
Collapse
Affiliation(s)
- Daniele Ramazzotti
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Davide Maspero
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
| | | | - Marco Antoniotti
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Alex Graudenzi
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
27
|
Bons E, Leemann C, Metzner KJ, Regoes RR. Long-term experimental evolution of HIV-1 reveals effects of environment and mutational history. PLoS Biol 2020; 18:e3001010. [PMID: 33370289 PMCID: PMC7793244 DOI: 10.1371/journal.pbio.3001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/08/2021] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
An often-returning question for not only HIV-1, but also other organisms, is how predictable evolutionary paths are. The environment, mutational history, and random processes can all impact the exact evolutionary paths, but to which extent these factors contribute to the evolutionary dynamics of a particular system is an open question. Especially in a virus like HIV-1, with a large mutation rate and large population sizes, evolution is expected to be highly predictable if the impact of environment and history is low, and evolution is not neutral. We investigated the effect of environment and mutational history by analyzing sequences from a long-term evolution experiment, in which HIV-1 was passaged on 2 different cell types in 8 independent evolutionary lines and 8 derived lines, 4 of which involved a switch of the environment. The experiments lasted for 240–300 passages, corresponding to approximately 400–600 generations or almost 3 years. The sequences show signs of extensive parallel evolution—the majority of mutations that are shared between independent lines appear in both cell types, but we also find that both environment and mutational history significantly impact the evolutionary paths. We conclude that HIV-1 evolution is robust to small changes in the environment, similar to a transmission event in the absence of an immune response or drug pressure. We also find that the fitness landscape of HIV-1 is largely smooth, although we find some evidence for both positive and negative epistatic interactions between mutations. Analysis of the longest evolutionary experiment with HIV-1 to-date reveals continuous viral adaptation over several years. The authors quantify the environment-specific mutations that arise and determine the fraction of mutations that co-occur with significantly different frequencies than expected by chance.
Collapse
Affiliation(s)
- Eva Bons
- Department of Environmental Systems Sciences, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail: (KJM); (RRR)
| | - Roland R. Regoes
- Department of Environmental Systems Sciences, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- * E-mail: (KJM); (RRR)
| |
Collapse
|
28
|
Hill T, Unckless RL. Recurrent evolution of high virulence in isolated populations of a DNA virus. eLife 2020; 9:e58931. [PMID: 33112738 PMCID: PMC7685711 DOI: 10.7554/elife.58931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here, we describe the recurrent evolution of a virulent strain of a DNA virus, which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types recurrently evolved at least four times in the past ~30,000 years, three times in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host-immune system and an increased virulence compared to the low viral titer type.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Robert L Unckless
- The Department of Molecular Biosciences, University of KansasLawrenceUnited States
| |
Collapse
|
29
|
Hossain MT, Yokono T, Kashiwagi A. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment. Viruses 2020; 12:v12060638. [PMID: 32545482 PMCID: PMC7354602 DOI: 10.3390/v12060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022] Open
Abstract
Single-stranded (ss)RNA viruses are thought to evolve rapidly due to an inherently high mutation rate. However, it remains unclear how ssRNA viruses adapt to novel environments and/or how many and what types of substitutions are needed to facilitate this evolution. In this study, we followed the adaptation of the ssRNA bacteriophage Qβ using thermally adapted Escherichia coli as a host, which can efficiently grow at temperatures between 37.2 and 45.3 °C. This made it possible to evaluate Qβ adaptation to the highest known temperature that supports growth, 45.3 °C. We found that Qβ was capable of replication at this temperature; within 114 days (~1260 generations), we detected more than 34 novel point mutations in the genome of the thermally adapted Qβ population, representing 0.8% of the total Qβ genome. In addition, we returned the 45.3 °C-adapted Qβ populations to 37.2 °C and passaged them for 8 days (~124 generations). We found that the reverse-adapted Qβ population showed little to no decrease in fitness. These results indicate that Qβ can evolve in response to increasing temperatures in a short period of time with the accumulation of point mutations.
Collapse
Affiliation(s)
- Md. Tanvir Hossain
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
| | - Toma Yokono
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Akiko Kashiwagi
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
- Correspondence: ; Tel.: +81-172-39-3789
| |
Collapse
|
30
|
The developing toolkit of continuous directed evolution. Nat Chem Biol 2020; 16:610-619. [DOI: 10.1038/s41589-020-0532-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
|
31
|
Finally, a Role Befitting A star: Strongly Conserved, Unessential Microvirus A* Proteins Ensure the Product Fidelity of Packaging Reactions. J Virol 2020; 94:JVI.01593-19. [PMID: 31666371 DOI: 10.1128/jvi.01593-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
In microviruses, 60 copies of the positively charged DNA binding protein J guide the single-stranded DNA genome into the icosahedral capsid. Consequently, ∼12% of the genome is icosahedrally ordered within virions. Although the internal volume of the ϕX174, G4, and α3 capsids are nearly identical, their genome lengths vary widely from 5,386 (ϕX174) to 6,067 (α3) nucleotides. As the genome size increases, the J protein's length and charge decreases. The ϕX174 J protein is 37 amino acids long and has a charge of +12, whereas the 23-residue G4 and α3 proteins have respective +6 and +8 charges. While the large ϕX174 J protein can substitute for the smaller ones, the converse is not true. Thus, the smallest genome, ϕX174, requires the more stringent J protein packaging guide. To investigate this further, a chimeric virus (ϕXG4J) was generated by replacing the indigenous ϕX174 J gene with that of G4. The resulting mutant, ϕXG4J, was not viable on the level of plaque formation without ϕX174 J gene complementation. During uncomplemented infections, capsids dissociated during packaging or quickly thereafter. Those that survived were significantly less stable and infectious than the wild type. Complementation-independent ϕXG4J variants were isolated. They contained duplications that increased genome size by as much as 3.8%. Each duplication started at nucleotide 991, creating an additional DNA substrate for the unessential but highly conserved A* protein. Accordingly, ϕXG4J viability and infectivity was also restored by the exogenous expression of a cloned A* gene.IMPORTANCE Double-stranded DNA viruses typically package their genomes into a preformed capsid. In contrast, single-stranded RNA viruses assemble their coat proteins around their genomes via extensive nucleotide-protein interactions. Single-stranded DNA (ssDNA) viruses appear to blend both strategies, using nucleotide-protein interactions to organize their genomes into preformed shells, likely by a controlled process. Chaotic genome-capsid associations could inhibit packaging or genome release during the subsequent infection. This process appears to be partially controlled by the unessential A* protein, a shorter version of the essential A protein that mediates rolling-circle DNA replication. Protein A* may elevate fitness by ensuring the product fidelity of packaging reactions. This phenomenon may be widespread in ssDNA viruses that simultaneously synthesize and package DNA with rolling circle and rolling circle-like DNA replication proteins. Many of these viruses encode smaller, unessential, and/or functionally undefined in-frame versions of A/A*-like proteins.
Collapse
|
32
|
Dreier C, Resa-Infante P, Thiele S, Stanelle-Bertram S, Walendy-Gnirß K, Speiseder T, Preuss A, Müller Z, Klenk HD, Stech J, Gabriel G. Mutations in the H7 HA and PB1 genes of avian influenza a viruses increase viral pathogenicity and contact transmission in guinea pigs. Emerg Microbes Infect 2020; 8:1324-1336. [PMID: 31503518 PMCID: PMC6746284 DOI: 10.1080/22221751.2019.1663131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Avian influenza A viruses (AIV) of the H7 subtype continue to evolve posing a pandemic threat. However, molecular markers of H7N7 AIV pathogenicity and transmission in mammals remain poorly understood. In this study, we performed a systematic in vitro and in vivo analysis by comparing an H7N7 highly pathogenic AIV and its ferret adapted variant. Passaging an H7N7 AIV in ferrets led to six mutations in genes encoding the viral polymerase complex and the viral surface proteins. Here, we show that mutations in the H7 hemagglutinin gene cause increased pathogenicity in mice. Contact transmission between guinea pigs required additional mutations in the gene encoding the polymerase subunit PB1. Thus, particular vigilance is required with respect to HA and PB1 mutations as predictive molecular markers to assess the pandemic risk posed by emerging H7 avian influenza viruses.
Collapse
Affiliation(s)
- Carola Dreier
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Current address: University of Ulm , Ulm , Germany
| | - Patricia Resa-Infante
- Institute of Virology, University of Veterinary Medicine , Hannover , Germany.,Current address: IrsiCaixa AIDS Research Institute , Barcelona , Spain
| | - Swantje Thiele
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Stephanie Stanelle-Bertram
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Kerstin Walendy-Gnirß
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Thomas Speiseder
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Annette Preuss
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Zacharias Müller
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Hans-Dieter Klenk
- Institute for Virology, Philipps University of Marburg , Marburg , Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute , Greifswald , Germany
| | - Gülsah Gabriel
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Institute of Virology, University of Veterinary Medicine , Hannover , Germany
| |
Collapse
|
33
|
Jack BR, Boutz DR, Paff ML, Smith BL, Wilke CO. Transcript degradation and codon usage regulate gene expression in a lytic phage. Virus Evol 2019; 5:vez055. [PMID: 31908847 PMCID: PMC6938266 DOI: 10.1093/ve/vez055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately sixty genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and ribonucleases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high-throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to targeted degradation as a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.
Collapse
Affiliation(s)
- Benjamin R Jack
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew L Paff
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bartram L Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Corresponding author: E-mail:
| |
Collapse
|
34
|
Wasik BR, Voorhees IEH, Barnard KN, Alford-Lawrence BK, Weichert WS, Hood G, Nogales A, Martínez-Sobrido L, Holmes EC, Parrish CR. Influenza Viruses in Mice: Deep Sequencing Analysis of Serial Passage and Effects of Sialic Acid Structural Variation. J Virol 2019; 93:e01039-19. [PMID: 31511393 PMCID: PMC6854484 DOI: 10.1128/jvi.01039-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses have regularly jumped to new host species to cause epidemics or pandemics, an evolutionary process that involves variation in the viral traits necessary to overcome host barriers and facilitate transmission. Mice are not a natural host for influenza virus but are frequently used as models in studies of pathogenesis, often after multiple passages to achieve higher viral titers that result in clinical disease such as weight loss or death. Here, we examine the processes of influenza A virus infection and evolution in mice by comparing single nucleotide variations of a human H1N1 pandemic virus, a seasonal H3N2 virus, and an H3N2 canine influenza virus during experimental passage. We also compared replication and sequence variation in wild-type mice expressing N-glycolylneuraminic acid (Neu5Gc) with those seen in mice expressing only N-acetylneuraminic acid (Neu5Ac). Viruses derived from plasmids were propagated in MDCK cells and then passaged in mice up to four times. Full-genome deep sequencing of the plasmids, cultured viruses, and viruses from mice at various passages revealed only small numbers of mutational changes. The H3N2 canine influenza virus showed increases in frequency of sporadic mutations in the PB2, PA, and NA segments. The H1N1 pandemic virus grew well in mice, and while it exhibited the maintenance of some minority mutations, there was no clear evidence for adaptive evolution. The H3N2 seasonal virus did not establish in the mice. Finally, there were no clear sequence differences associated with the presence or absence of Neu5Gc.IMPORTANCE Mice are commonly used as a model to study the growth and virulence of influenza A viruses in mammals but are not a natural host and have distinct sialic acid receptor profiles compared to humans. Using experimental infections with different subtypes of influenza A virus derived from different hosts, we found that evolution of influenza A virus in mice did not necessarily proceed through the linear accumulation of host-adaptive mutations, that there was variation in the patterns of mutations detected in each repetition, and that the mutation dynamics depended on the virus examined. In addition, variation in the viral receptor, sialic acid, did not affect influenza virus evolution in this model. Overall, our results show that while mice provide a useful animal model for influenza virus pathology, host passage evolution will vary depending on the specific virus tested.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian E H Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Grace Hood
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- College of Veterinary Medicine, University of Queensland, Gatton, Queensland, Australia
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
35
|
Kang M, Kim K, Choe D, Cho S, Kim SC, Palsson B, Cho BK. Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During Adaptive Laboratory Evolution. Front Microbiol 2019; 10:1845. [PMID: 31474949 PMCID: PMC6706779 DOI: 10.3389/fmicb.2019.01845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution (ALE) is used to find causal mutations that underlie improved strain performance under the applied selection pressure. ALE studies have revealed that mutator populations tend to outcompete their non-mutator counterparts following the evolutionary trajectory. Among them, mutS-inactivated mutator cells, characterize d by a dysfunctional methyl-mismatch repair system, are frequently found in ALE experiments. Here, we examined mutS inactivation as an approach to facilitate ALE of Escherichia coli. The wild-type E. coli MG1655 and mutS knock-out derivative (ΔmutS) were evolved in parallel for 800 generations on lactate or glycerol minimal media in a serial-transfer experiment. Whole-genome re-sequencing of each lineage at 100-generation intervals revealed that (1) mutations emerge rapidly in the ΔmutS compared to in the wild-type strain; (2) mutations were more than fourfold higher in the ΔmutS strain at the end-point populations compared to the wild-type strain; and (3) a significant number of random mutations accumulated in the ΔmutS strains. We then measured the fitness of the end-point populations on an array of non-adaptive carbon sources. Interestingly, collateral fitness increases on non-adaptive carbon sources were more pronounced in the ΔmutS strains than the parental strain. Fitness measurement of single mutants revealed that the collateral fitness increase seen in the mutator lineages can be attributed to a pool of random mutations. Together, this study demonstrates that short-term mutator ALE extensively expands possible genotype space, resulting in versatile bacteria with elevated fitness levels across various carbon sources.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
36
|
Bertels F, Leemann C, Metzner KJ, Regoes R. Parallel evolution of HIV-1 in a long-term experiment. Mol Biol Evol 2019; 36:2400-2414. [PMID: 31251344 PMCID: PMC6805227 DOI: 10.1093/molbev/msz155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Environmental Systems Sciences, ETH Zurich, Zurich.,Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Roland Regoes
- Department of Environmental Systems Sciences, ETH Zurich, Zurich
| |
Collapse
|
37
|
Bons E, Regoes RR. Virus dynamics and phyloanatomy: Merging population dynamic and phylogenetic approaches. Immunol Rev 2019; 285:134-146. [PMID: 30129202 DOI: 10.1111/imr.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In evolutionary biology and epidemiology, phylodynamic methods are widely used to infer population biological characteristics, such as the rates of replication, death, migration, or, in the epidemiological context, pathogen spread. More recently, these methods have been used to elucidate the dynamics of viruses within their hosts. Especially the application of phylogeographic approaches has the potential to shed light on anatomical colonization pathways and the exchange of viruses between distinct anatomical compartments. We and others have termed this phyloanatomy. Here, we review the promise and challenges of phyloanatomy, and compare them to more classical virus dynamics and population genetic approaches. We argue that the extremely strong selection pressures that exist within the host may represent the main obstacle to reliable phyloanatomic analysis.
Collapse
Affiliation(s)
- Eva Bons
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Blount ZD, Lenski RE, Losos JB. Contingency and determinism in evolution: Replaying life’s tape. Science 2018; 362:362/6415/eaam5979. [DOI: 10.1126/science.aam5979] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Collapse
Affiliation(s)
- Zachary D. Blount
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan B. Losos
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
39
|
Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat Commun 2018; 9:4698. [PMID: 30409965 PMCID: PMC6224464 DOI: 10.1038/s41467-018-07164-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
Cyanophages of the Myoviridae family include generalist viruses capable of infecting a wide range of hosts including those from different cyanobacterial genera. While the influence of phages on host evolution has been studied previously, it is not known how the infection of distinct hosts influences the evolution of cyanophage populations. Here, using an experimental evolution approach, we investigated the adaptation of multiple cyanophage populations to distinct cyanobacterial hosts. We show that when infecting an "optimal" host, whose infection is the most efficient, phage populations accumulated only a few mutations. However, when infecting "sub-optimal" hosts, different mutations spread in the phage populations, leading to rapid diversification into distinct subpopulations. Based on our results, we propose a model demonstrating how shifts in microbial abundance, which lead to infection of "sub-optimal" hosts, act as a driver for rapid diversification of viral populations.
Collapse
Affiliation(s)
- Hagay Enav
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel. .,Department of Microbiome Science, Max-Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| | - Shay Kirzner
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Department of Computer Sciences, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
40
|
A decade of genome sequencing has revolutionized studies of experimental evolution. Curr Opin Microbiol 2018; 45:149-155. [DOI: 10.1016/j.mib.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 11/20/2022]
|
41
|
Schönherz AA, Forsberg R, Guldbrandtsen B, Buitenhuis AJ, Einer-Jensen K. Introduction of Viral Hemorrhagic Septicemia Virus into Freshwater Cultured Rainbow Trout Is Followed by Bursts of Adaptive Evolution. J Virol 2018; 92:e00436-18. [PMID: 29643236 PMCID: PMC5974487 DOI: 10.1128/jvi.00436-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), a rhabdovirus infecting teleost fish, has repeatedly crossed the boundary from marine fish species to freshwater cultured rainbow trout. These naturally replicated cross-species transmission events permit the study of general and repeatable evolutionary events occurring in connection with viral emergence in a novel host species. The purpose of the present study was to investigate the adaptive molecular evolution of the VHSV glycoprotein, one of the key virus proteins involved in viral emergence, following emergence from marine species into freshwater cultured rainbow trout. A comprehensive phylogenetic reconstruction of the complete coding region of the VHSV glycoprotein was conducted, and adaptive molecular evolution was investigated using a maximum likelihood approach to compare different codon substitution models allowing for heterogeneous substitution rate ratios among amino acid sites. Evidence of positive selection was detected at six amino acid sites of the VHSV glycoprotein, within the signal peptide, the confirmation-dependent major neutralizing epitope, and the intracellular tail. Evidence of positive selection was found exclusively in rainbow trout-adapted virus isolates, and amino acid combinations found at the six sites under positive selection pressure differentiated rainbow trout- from non-rainbow trout-adapted isolates. Furthermore, four adaptive sites revealed signs of recurring identical changes across phylogenetic groups of rainbow trout-adapted isolates, suggesting that repeated VHSV emergence in freshwater cultured rainbow trout was established through convergent routes of evolution that are associated with immune escape.IMPORTANCE This study is the first to demonstrate that VHSV emergence from marine species into freshwater cultured rainbow trout has been accompanied by bursts of adaptive evolution in the VHSV glycoprotein. Furthermore, repeated detection of the same adaptive amino acid sites across phylogenetic groups of rainbow trout-adapted isolates indicates that adaptation to rainbow trout was established through parallel evolution. In addition, signals of convergent evolution toward the maintenance of genetic variation were detected in the conformation-dependent neutralizing epitope or in close proximity to disulfide bonds involved in the structural conformation of the neutralizing epitope, indicating adaptation to immune response-related genetic variation across freshwater cultured rainbow trout.
Collapse
Affiliation(s)
- Anna A Schönherz
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Albert J Buitenhuis
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
42
|
Lázaro E, Arribas M, Cabanillas L, Román I, Acosta E. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures. Sci Rep 2018; 8:8080. [PMID: 29795535 PMCID: PMC5967308 DOI: 10.1038/s41598-018-26443-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/11/2018] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages are the most numerous biological entities on Earth. They are on the basis of most ecosystems, regulating the diversity and abundance of bacterial populations and contributing to the nutrient and energy cycles. Bacteriophages have two well differentiated phases in their life cycle, one extracellular, in which they behave as inert particles, and other one inside their hosts, where they replicate to give rise to a progeny. In both phases they are exposed to environmental conditions that often act as selective pressures that limit both their survival in the environment and their ability to replicate, two fitness traits that frequently cannot be optimised simultaneously. In this study we have analysed the evolutionary ability of an RNA bacteriophage, the bacteriophage Qβ, when it is confronted with a temperature increase that affects both the extracellular and the intracellular media. Our results show that Qβ can optimise its survivability when exposed to short-term high temperature extracellular heat shocks, as well as its replicative ability at higher-than-optimal temperature. Mutations responsible for simultaneous adaptation were the same as those selected when adaptation to each condition proceeded separately, showing the absence of important trade-offs between survival and reproduction in this virus.
Collapse
Affiliation(s)
- Ester Lázaro
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain. .,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - María Arribas
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Laura Cabanillas
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Ismael Román
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Esther Acosta
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
43
|
Obolski U, Ram Y, Hadany L. Key issues review: evolution on rugged adaptive landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:012602. [PMID: 29051394 DOI: 10.1088/1361-6633/aa94d4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.
Collapse
|
44
|
Structural changes of tailless bacteriophage ΦX174 during penetration of bacterial cell walls. Proc Natl Acad Sci U S A 2017; 114:13708-13713. [PMID: 29229840 DOI: 10.1073/pnas.1716614114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Unlike tailed bacteriophages, which use a preformed tail for transporting their genomes into a host bacterium, the ssDNA bacteriophage ΦX174 is tailless. Using cryo-electron microscopy and time-resolved small-angle X-ray scattering, we show that lipopolysaccharides (LPS) form bilayers that interact with ΦX174 at an icosahedral fivefold vertex and induce single-stranded (ss) DNA genome ejection. The structures of ΦX174 complexed with LPS have been determined for the pre- and post-ssDNA ejection states. The ejection is initiated by the loss of the G protein spike that encounters the LPS, followed by conformational changes of two polypeptide loops on the major capsid F proteins. One of these loops mediates viral attachment, and the other participates in making the fivefold channel at the vertex contacting the LPS.
Collapse
|
45
|
Miller CR, Van Leuven JT, Wichman HA, Joyce P. Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking. Theor Popul Biol 2017; 122:97-109. [PMID: 29198859 DOI: 10.1016/j.tpb.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Fitness landscapes map genotypes to organismal fitness. Their topographies depend on how mutational effects interact - epistasis - andare important for understanding evolutionary processes such as speciation, the rate of adaptation, the advantage of recombination, and the predictability versus stochasticity of evolution. The growing amount of data has made it possible to better test landscape models empirically. We argue that this endeavor will benefit from the development and use of meaningful basic models against which to compare more complex models. Here we develop statistical and computational methods for fitting fitness data from mutation combinatorial networks to three simple models: additive, multiplicative and stickbreaking. We employ a Bayesian framework for doing model selection. Using simulations, we demonstrate that our methods work and we explore their statistical performance: bias, error, and the power to discriminate among models. We then illustrate our approach and its flexibility by analyzing several previously published datasets. An R-package that implements our methods is available in the CRAN repository under the name Stickbreaker.
Collapse
Affiliation(s)
- Craig R Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Department of Mathematics, University of Idaho, Moscow, ID 83844, United States.
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States
| | - Holly A Wichman
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Paul Joyce
- Department of Mathematics, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
46
|
Abstract
While mutational biases strongly influence neutral molecular evolution, the role of mutational biases in shaping the course of adaptation is less clear. Here we consider the frequency of transitions relative to transversions among adaptive substitutions. Because mutation rates for transitions are higher than those for transversions, if mutational biases influence the dynamics of adaptation, then transitions should be overrepresented among documented adaptive substitutions. To test this hypothesis, we assembled two sets of data on putatively adaptive amino acid replacements that have occurred in parallel during evolution, either in nature or in the laboratory. We find that the frequency of transitions in these data sets is much higher than would be predicted under a null model where mutation has no effect. Our results are qualitatively similar even if we restrict ourself to changes that have occurred, not merely twice, but three or more times. These results suggest that the course of adaptation is biased by mutation.
Collapse
Affiliation(s)
- Arlin Stoltzfus
- Genome-scale Measurements Group, Material Measurement Laboratory, NIST, and Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
47
|
Additive Phenotypes Underlie Epistasis of Fitness Effects. Genetics 2017; 208:339-348. [PMID: 29113978 DOI: 10.1534/genetics.117.300451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/03/2017] [Indexed: 11/18/2022] Open
Abstract
Gene interactions, or epistasis, play a large role in determining evolutionary outcomes. The ruggedness of fitness landscapes, and thus the predictability of evolution and the accessibility of high-fitness genotypes, is determined largely by the pervasiveness of epistasis and the degree of correlation between similar genotypes. We created all possible pairings of three sets of five beneficial first-step mutations fixed during adaptive walks under three different regimes: selection on growth rate alone, on growth rate and thermal stability, and on growth rate and pH stability. All 30 double-mutants displayed negative, antagonistic epistasis with regard to growth rate and fitness, but positive epistasis and additivity were common for the stability phenotypes. This suggested that biophysically simple phenotypes, such as capsid stability, may on average behave more additively than complex phenotypes like viral growth rate. Growth rate epistasis was also smaller in magnitude when the individual effects of single mutations were smaller. Significant sign epistasis, such that the effect of a mutation that is beneficial in the wild-type background is deleterious in combination with a second mutation, emerged more frequently in intragenic mutational pairings than in intergenic pairs, and was evident in nearly half of the double-mutants, indicating that the fitness landscape is moderately uncorrelated and of intermediate ruggedness. Together, our results indicated that mutations may interact additively with regard to phenotype when considered at a basic, biophysical level, but that epistasis arises as a result of pleiotropic interactions between the individual components of complex phenotypes and diminishing returns arising from intermediate phenotypic optima.
Collapse
|
48
|
Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of Potato Virus Y. J Virol 2017; 91:JVI.00690-17. [PMID: 28592544 PMCID: PMC5533922 DOI: 10.1128/jvi.00690-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid).IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes.
Collapse
|
49
|
Warsi OM, Dykhuizen DE. Evolutionary implications of Liebig's law of the minimum: Selection under low concentrations of two nonsubstitutable nutrients. Ecol Evol 2017; 7:5296-5309. [PMID: 28770068 PMCID: PMC5528229 DOI: 10.1002/ece3.3096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/09/2017] [Accepted: 04/25/2017] [Indexed: 11/05/2022] Open
Abstract
Interactions between different axes of an organism's niche determine the evolutionary trajectory of a population. An extreme case of these interactions is predicted from ecological theory in Liebig's law of the minimum. This law states that in environments where multiple nutrients are in relatively low concentrations, only one nutrient will affect the growth of the organism. This implies that the evolutionary response of the population would be dictated by the most growth-limiting nutrient. Alternatively, it is possible that an initial adaptation to the most limiting nutrient results in other nutrients present in low concentration affecting the evolutionary dynamics of the population. To test these hypotheses, we conducted twelve evolution experiments in chemostats using Escherichia coli populations: four under nitrogen limitation, four under magnesium limitation, and four in which both nitrogen and magnesium are in low concentrations. In the last environment, only magnesium seems to limit growth (Low Nitrogen Magnesium Limited environment, LNML). We observe a decrease in nitrogen concentration in the LNML environment over the course of our evolution experiment indicating that nitrogen might become limiting in these environments. Genetic reconstruction results show that clones adapted to magnesium limitation have genes involved in nitrogen starvation, that is, glnG (nitrogen starvation transcriptional regulator) and amtB (transport protein) to be upregulated only in the LNML environment as compared to magnesium-limiting environments. Together, our results highlights that in low-nutrient environments, adaptation to the growth-limiting nutrient results in other nutrients at low concentrations to play a role in the evolutionary dynamics of the population.
Collapse
Affiliation(s)
- Omar M. Warsi
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNYUSA
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | | |
Collapse
|
50
|
Stern A, Yeh MT, Zinger T, Smith M, Wright C, Ling G, Nielsen R, Macadam A, Andino R. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 2017; 169:35-46.e19. [PMID: 28340348 DOI: 10.1016/j.cell.2017.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tal Zinger
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Matt Smith
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guy Ling
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rasmus Nielsen
- Department of Integrative Biology; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Macadam
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|