1
|
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet 2021; 17:e1009640. [PMID: 34214075 PMCID: PMC8282090 DOI: 10.1371/journal.pgen.1009640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Despite the societal importance of glucose fermentation in yeast, the mechanisms by which these cells detect and respond to glucose have remained obscure. Glucose detection requires a cell surface receptor coupled to a G protein that is comprised of two subunits, rather than the more typical heterotrimer: an α subunit Gpa2 and the β subunit Asc1 (or RACK1 in humans). Asc1/RACK1 also serves as a subunit of the ribosome, where it regulates the synthesis of proteins involved in glucose fermentation. This manuscript uses global metabolomics and transcriptomics to demonstrate the distinct roles of each G protein subunit in transmitting the glucose signal. Whereas Gpa2 is primarily involved in the metabolism of carbohydrates, Asc1/RACK1 contributes to production of amino acids necessary for protein synthesis and cell division. These findings reveal the initial steps of glucose signaling and several unique and complementary functions of the G protein subunits. More broadly, the integrated approach used here is likely to guide efforts to determine the topology of complex G protein and metabolic signaling networks in humans.
Collapse
|
2
|
Knockdown of the Ribosomal Protein eL29 in Mammalian Cells Leads to Significant Changes in Gene Expression at the Transcription Level. Cells 2020; 9:cells9051228. [PMID: 32429214 PMCID: PMC7291024 DOI: 10.3390/cells9051228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.
Collapse
|
3
|
Schmitt K, Valerius O. yRACK1/Asc1 proxiOMICs-Towards Illuminating Ships Passing in the Night. Cells 2019; 8:cells8111384. [PMID: 31689955 PMCID: PMC6912217 DOI: 10.3390/cells8111384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Diverse signals and stress factors regulate the activity and homeostasis of ribosomes in all cells. The Saccharomyces cerevisiae protein Asc1/yRACK1 occupies an exposed site at the head region of the 40S ribosomal subunit (hr40S) and represents a central hub for signaling pathways. Asc1 strongly affects protein phosphorylation and is involved in quality control pathways induced by translation elongation arrest. Therefore, it is important to understand the dynamics of protein formations in the Asc1 microenvironment at the hr40S. We made use of the in vivo protein-proximity labeling technique Biotin IDentification (BioID). Unbiased proxiOMICs from two adjacent perspectives identified nucleocytoplasmic shuttling mRNA-binding proteins, the deubiquitinase complex Ubp3-Bre5, as well as the ubiquitin E3 ligase Hel2 as neighbors of Asc1. We observed Asc1-dependency of hr40S localization of mRNA-binding proteins and the Ubp3 co-factor Bre5. Hel2 and Ubp3-Bre5 are described to balance the mono-ubiquitination of Rps3 (uS3) during ribosome quality control. Here, we show that the absence of Asc1 resulted in massive exposure and accessibility of the C-terminal tail of its ribosomal neighbor Rps3 (uS3). Asc1 and some of its direct neighbors together might form a ribosomal decision tree that is tightly connected to close-by signaling modules.
Collapse
Affiliation(s)
- Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Gerbasi VR, Browne CM, Samir P, Shen B, Sun M, Hazelbaker DZ, Galassie AC, Frank J, Link AJ. Critical Role for Saccharomyces cerevisiae Asc1p in Translational Initiation at Elevated Temperatures. Proteomics 2018; 18:e1800208. [PMID: 30285306 PMCID: PMC6461043 DOI: 10.1002/pmic.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/29/2018] [Indexed: 11/11/2022]
Abstract
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Collapse
Affiliation(s)
- Vincent R. Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher M. Browne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Dane Z. Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
5
|
RACK1 Specifically Regulates Translation through Its Binding to Ribosomes. Mol Cell Biol 2018; 38:MCB.00230-18. [PMID: 30201806 PMCID: PMC6234289 DOI: 10.1128/mcb.00230-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. RACK1 (receptor for activated C kinase 1) is a highly conserved scaffold protein, located on the 40S subunit near the mRNA exit channel. RACK1 is involved in a variety of intracellular contexts, both on and off the ribosomes, acting as a receptor for proteins in signaling, such as the protein kinase C (PKC) family. Here we show that the binding of RACK1 to ribosomes is essential for full translation of capped mRNAs and efficient recruitment of eukaryotic initiation factor 4E (eIF4E). In vitro, when RACK1 is partially depleted, supplementing the ribosome machinery with wild-type RACK1 restores the translational capability, whereas the addition of a RACK1 mutant that is unable to bind ribosomes does not. Outside the ribosome, RACK1 has a reduced half-life. By accumulating in living cells, free RACK1 exerts an inhibitory phenotype, impairing cell cycle progression and repressing global translation. Here we present RACK1 binding to ribosomes as a crucial way to regulate translation, possibly through interaction with known partners on or off the ribosome that are involved in signaling.
Collapse
|
6
|
Tran Nguyen Hoang P, Ko JK, Gong G, Um Y, Lee SM. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:268. [PMID: 30288173 PMCID: PMC6162923 DOI: 10.1186/s13068-018-1269-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/21/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Engineered strains of Saccharomyces cerevisiae have significantly improved the prospects of biorefinery by improving the bioconversion yields in lignocellulosic bioethanol production and expanding the product profiles to include advanced biofuels and chemicals. However, the lignocellulosic biorefinery concept has not been fully applied using engineered strains in which either xylose utilization or advanced biofuel/chemical production pathways have been upgraded separately. Specifically, high-performance xylose-fermenting strains have rarely been employed as advanced biofuel and chemical production platforms and require further engineering to expand their product profiles. RESULTS In this study, we refactored a high-performance xylose-fermenting S. cerevisiae that could potentially serve as a platform strain for advanced biofuels and biochemical production. Through combinatorial CRISPR-Cas9-mediated rational and evolutionary engineering, we obtained a newly refactored isomerase-based xylose-fermenting strain, XUSE, that demonstrated efficient conversion of xylose into ethanol with a high yield of 0.43 g/g. In addition, XUSE exhibited the simultaneous fermentation of glucose and xylose with negligible glucose inhibition, indicating the potential of this isomerase-based xylose-utilizing strain for lignocellulosic biorefinery. The genomic and transcriptomic analysis of XUSE revealed beneficial mutations and changes in gene expression that are responsible for the enhanced xylose fermentation performance of XUSE. CONCLUSIONS In this study, we developed a high-performance xylose-fermenting S. cerevisiae strain, XUSE, with high ethanol yield and negligible glucose inhibition. Understanding the genomic and transcriptomic characteristics of XUSE revealed isomerase-based engineering strategies for improved xylose fermentation in S. cerevisiae. With high xylose fermentation performance and room for further engineering, XUSE could serve as a promising platform strain for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Phuong Tran Nguyen Hoang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
7
|
Opitz N, Schmitt K, Hofer-Pretz V, Neumann B, Krebber H, Braus GH, Valerius O. Capturing the Asc1p/ Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Mol Cell Proteomics 2017; 16:2199-2218. [PMID: 28982715 DOI: 10.1074/mcp.m116.066654] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
The Asc1 protein of Saccharomyces cerevisiae is a scaffold protein at the head region of ribosomal 40S that links mRNA translation to cellular signaling. In this study, proteins that colocalize with Asc1p were identified with proximity-dependent Biotin IDentification (BioID), an in vivo labeling technique described here for the first time for yeast. Biotinylated Asc1p-birA*-proximal proteins were identified and quantitatively verified against controls applying SILAC and mass spectrometry. The mRNA-binding proteins Sro9p and Gis2p appeared together with Scp160p, each providing ribosomes with nuclear transcripts. The cap-binding protein eIF4E (Cdc33p) and the eIF3/a-subunit (Rpg1p) were identified reflecting the encounter of proteins involved in the initiation of mRNA translation at the head region of ribosomal 40S. Unexpectedly, a protein involved in ribosome preservation (the clamping factor Stm1p), the deubiquitylation complex Ubp3p-Bre5p, the RNA polymerase II degradation factor 1 (Def1p), and transcription factors (Spt5p, Mbf1p) colocalize with Asc1p in exponentially growing cells. For Asc1R38D, K40Ep, a variant considered to be deficient in binding to ribosomes, BioID revealed its predominant ribosome localization. Glucose depletion replaced most of the Asc1p colocalizing proteins for additional ribosomal proteins, suggesting a ribosome aggregation process during early nutrient limitation, possibly concomitant with ribosomal subunit clamping. Overall, the characterization of the Asc1p microenvironment with BioID confirmed and substantiated our recent findings that the β-propeller broadly contributes to signal transduction influencing phosphorylation of colocalizing proteins (e.g. of Bre5p), and by that might affect nuclear gene transcription and the fate of ribosomes.
Collapse
Affiliation(s)
- Nadine Opitz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Verena Hofer-Pretz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Bettina Neumann
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Heike Krebber
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gerhard H Braus
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
8
|
Gallo S, Manfrini N. Working hard at the nexus between cell signaling and the ribosomal machinery: An insight into the roles of RACK1 in translational regulation. ACTA ACUST UNITED AC 2015; 3:e1120382. [PMID: 26824030 DOI: 10.1080/21690731.2015.1120382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023]
Abstract
RACK1 is a ribosome-associated protein which functions as a receptor for activated PKCs. It also acts as a scaffold for many other proteins involved in diverse signaling pathways, e.g. Src, JNK, PDE4D and FAK signaling. With such a broad interactome, RACK1 has been suggested to function as a linker between cell signaling and the translation machinery. Accordingly, RACK1 modulates translation at different levels in several model organisms. For instance, it regulates ribosome stalling and mRNA quality control in yeasts and promotes translation efficiency downstream of specific cellular stimuli in mammals. However, the molecular mechanism by which RACK1 exerts these roles is widely uncharacterized. Moreover, the full list of ribosome-recruited RACK1 interactors still needs characterization. Here we discuss in vivo and in vitro findings to better delineate the roles of RACK1 in regulating ribosome function and translation.
Collapse
Affiliation(s)
- Simone Gallo
- Molecular Histology and Cell Growth Unit; National Institute of Molecular Genetics - INGM "Romeo and Enrica Invernizzi" ; Milan, Italy
| | - Nicola Manfrini
- Molecular Histology and Cell Growth Unit; National Institute of Molecular Genetics - INGM "Romeo and Enrica Invernizzi" ; Milan, Italy
| |
Collapse
|
9
|
The Gβ-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genet Biol 2015; 81:120-31. [DOI: 10.1016/j.fgb.2015.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023]
|
10
|
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, Calamita P, Sanvito F, Biffo S. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70:1439-50. [PMID: 23212600 PMCID: PMC11113757 DOI: 10.1007/s00018-012-1215-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.
Collapse
Affiliation(s)
- Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Simone Gallo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Magri
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Daniela Brina
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Pesce
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Piera Calamita
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|
11
|
Galvão FC, Rossi D, Silveira WDS, Valentini SR, Zanelli CF. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 2013; 8:e60140. [PMID: 23573236 PMCID: PMC3613415 DOI: 10.1371/journal.pone.0060140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.
Collapse
Affiliation(s)
- Fabio Carrilho Galvão
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene 2013; 33:1124-34. [PMID: 23455324 DOI: 10.1038/onc.2013.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/17/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.
Collapse
|
13
|
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 2012; 12:87-105. [PMID: 23071099 DOI: 10.1074/mcp.m112.017277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators.
Collapse
Affiliation(s)
- Nicole Rachfall
- Institute of Microbiology and Genetics, Georg-August Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Siso MIG, Becerra M, Maceiras ML, Vázquez ÁV, Cerdán ME. The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnol Lett 2012; 34:2161-73. [DOI: 10.1007/s10529-012-1039-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
|
15
|
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 2012; 14:966-76. [PMID: 22842922 PMCID: PMC3434236 DOI: 10.1038/ncb2549] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/29/2012] [Indexed: 12/21/2022]
Abstract
Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.
Collapse
|
16
|
Kouba T, Rutkai E, Karásková M, Valášek LS. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res 2011; 40:2683-99. [PMID: 22123745 PMCID: PMC3315329 DOI: 10.1093/nar/gkr1083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional in that its deletion, despite being lethal, does not affect eIF3 integrity. Here, we show that a short C-terminal truncation and two clustered mutations directly disturbing the PCI domain produce lethal or slow growth phenotypes and significantly reduce amounts of 40S-bound eIF3 and eIF5 in vivo. The extreme C-terminus directly interacts with blades 1–3 of the small ribosomal protein RACK1/ASC1, which is a part of the 40S head, and, consistently, deletion of the ASC1 coding region likewise affects eIF3 association with ribosomes. The PCI domain per se shows strong but unspecific binding to RNA, for the first time implicating this typical protein–protein binding domain in mediating protein–RNA interactions also. Importantly, as our clustered mutations severely reduce RNA binding, we conclude that the c/NIP1 C-terminal region forms an important intermolecular bridge between eIF3 and the 40S head region by contacting RACK1/ASC1 and most probably 18S rRNA.
Collapse
Affiliation(s)
- Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, v.v.i., Prague, the Czech Republic
| | | | | | | |
Collapse
|
17
|
Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 2010; 76:1507-15. [PMID: 20081005 DOI: 10.1128/aem.02135-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD(+) and NADPH/NADP(+) under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD(+) and NADP(+) regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.
Collapse
|
18
|
Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. EUKARYOTIC CELL 2008; 7:1895-905. [PMID: 18806211 DOI: 10.1128/ec.00018-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28 degrees C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The DeltaKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis.
Collapse
|
19
|
Regmi S, Rothberg KG, Hubbard JG, Ruben L. The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis. Mol Microbiol 2008; 70:724-45. [PMID: 18786142 PMCID: PMC2581647 DOI: 10.1111/j.1365-2958.2008.06443.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Sandesh Regmi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | | | | | | |
Collapse
|
20
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|
21
|
de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, Heck AJR, Slijper M. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. MICROBIOLOGY-SGM 2008; 153:3864-3878. [PMID: 17975095 DOI: 10.1099/mic.0.2007/009969-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.
Collapse
Affiliation(s)
- Marco J L de Groot
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Bas van Breukelen
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Theo A Knijnenburg
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Erik A F de Hulster
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel J T Reinders
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Jack T Pronk
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Albert J R Heck
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Monique Slijper
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
22
|
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, López Marín S, Hoppert M, Streckfuss-Bömeke K, Fischer C, Braus GH. The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Mol Cell Proteomics 2007; 6:1968-79. [PMID: 17704055 DOI: 10.1074/mcp.m700184-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient starvation results in the interaction of Saccharomyces cerevisiae cells with each other and with surfaces. Adhesive growth requires the expression of the FLO11 gene regulated by the Ras/cAMP/cAMP-dependent protein kinase, the Kss1p/MAPK, and the Gcn4p/general amino acid control pathway, respectively. Proteomics two-dimensional DIGE experiments revealed post-transcriptionally regulated proteins in response to amino acid starvation including the ribosomal protein Cpc2p/Asc1p. This putative translational regulator is highly conserved throughout the eukaryotic kingdom and orthologous to mammalian RACK1. Deletion of CPC2/ASC1 abolished amino acid starvation-induced adhesive growth and impaired basal expression of FLO11 and its activation upon starvation in haploid cells. In addition, the diploid Flo11p-dependent pseudohyphal growth during nitrogen limitation was CPC2/ASC1-dependent. A more detailed analysis revealed that a CPC2/ASC1 deletion caused increased sensitivity to cell wall drugs suggesting that the gene is required for general cell wall integrity. Phosphoproteome and Western hybridization data indicate that Cpc2p/Asc1p affected the phosphorylation of the translational initiation factors eIF2 alpha and eIF4A and the ribosome-associated complex RAC. A crucial role of Cpc2p/Asc1p at the ribosomal interface coordinating signal transduction, translation initiation, and transcription factor formation was corroborated.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zeller CE, Parnell SC, Dohlman HG. The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 2007; 282:25168-76. [PMID: 17591772 DOI: 10.1074/jbc.m702569200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
24
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
25
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kleinschmidt M, Schulz R, Braus GH. The yeast CPC2/ASC1 gene is regulated by the transcription factors Fhl1p and Ifh1p. Curr Genet 2006; 49:218-28. [PMID: 16402205 DOI: 10.1007/s00294-005-0049-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/28/2005] [Accepted: 12/04/2005] [Indexed: 11/30/2022]
Abstract
CPC2/ASC1 is one of the most abundantly transcribed genes in Saccharomyces cerevisiae. It encodes a ribosome-associated Gbeta-like WD protein, which is highly conserved from yeast to man. Here, we show that CPC2 transcription depends on the carbon source and is induced during utilization of the sugar glucose. CPC2 promoter deletion and insertion analyses identified two upstream activation sequence elements for CPC2, which are required for basal expression and regulation. One of these upstream activation sequence elements has an ATGTACGGATGT motif, which has previously been described as a putative binding site for the forkhead-like transcription factor Fhl1p. Deletion of FHL1 reduces CPC2 transcription significantly in presence of glucose, but has no effect when the non-fermentable carbon source ethanol is provided. Increased amounts of the Fhl1p co-regulator Ifh1p induce CPC2 transcription even when ethanol is utilized. These data suggest that the interaction between Fhl1p and Ifh1p is critical for the regulation of CPC2 transcription during utilization of different carbon sources.
Collapse
Affiliation(s)
- Malte Kleinschmidt
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077, Göttingen, Germany
| | | | | |
Collapse
|
27
|
Volta V, Ceci M, Emery B, Bachi A, Petfalski E, Tollervey D, Linder P, Marchisio PC, Piatti S, Biffo S. Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochem Biophys Res Commun 2005; 337:89-94. [PMID: 16188229 DOI: 10.1016/j.bbrc.2005.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Tif6p (eIF6) is necessary for 60S biogenesis, rRNA maturation and must be released from 60S to permit 80S assembly and translation. We characterized Tif6p interactors. Tif6p is mostly on 66S-60S pre-ribosomes, partly free. Tif6p complex(es) contain nucleo-ribosomal factors and Asc1p. Surprisingly, Tif6p particle contains the low-abundance endonuclease Sen34p. We analyzed Sen34p role on rRNA/tRNA synthesis, in vivo. Sen34p depletion impairs tRNA splicing and causes unexpected 80S accumulation. Accordingly, Sen34p overexpression causes 80S decrease and increased polysomes which suggest increased translational efficiency. With delayed kinetics, Sen34p depletion impairs rRNA processing. We conclude that Sen34p is absolutely required for tRNA splicing and that it is a rate-limiting element for efficient translation. Finally, we confirm that Tif6p accompanies 27S pre-rRNA maturation to 25S rRNA and we suggest that Sen34p endonuclease in Tif6p complex may affect also rRNA maturation.
Collapse
Affiliation(s)
- Viviana Volta
- Molecular Histology and Cell Growth, DIBIT-HSR, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol Cell Biol 2005; 25:4075-91. [PMID: 15870279 PMCID: PMC1087712 DOI: 10.1128/mcb.25.10.4075-4091.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to previous steady-state analyses of the O(2)-responsive transcriptome, here we examined the dynamics of the response to short-term anaerobiosis (2 generations) in both catabolite-repressed (glucose) and derepressed (galactose) cells, assessed the specific role that Msn2 and Msn4 play in mediating the response, and identified gene networks using a novel clustering approach. Upon shifting cells to anaerobic conditions in galactose medium, there was an acute ( approximately 10 min) yet transient (<45 min) induction of Msn2- and/or Msn4-regulated genes associated with the remodeling of reserve energy and catabolic pathways during the switch from mixed respiro-fermentative to strictly fermentative growth. Concomitantly, MCB- and SCB-regulated networks associated with the G(1)/S transition of the cell cycle were transiently down-regulated along with rRNA processing genes containing PAC and RRPE motifs. Remarkably, none of these gene networks were differentially expressed when cells were shifted in glucose, suggesting that a metabolically derived signal arising from the abrupt cessation of respiration, rather than O(2) deprivation per se, elicits this "stress response." By approximately 0.2 generation of anaerobiosis in both media, more chronic, heme-dependent effects were observed, including the down-regulation of Hap1-regulated networks, derepression of Rox1-regulated networks, and activation of Upc2-regulated ones. Changes in these networks result in the functional remodeling of the cell wall, sterol and sphingolipid metabolism, and dissimilatory pathways required for long-term anaerobiosis. Overall, this study reveals that the acute withdrawal of oxygen can invoke a metabolic state-dependent "stress response" but that acclimatization to oxygen deprivation is a relatively slow process involving complex changes primarily in heme-regulated gene networks.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
29
|
Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J. Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. PLANT PHYSIOLOGY 2005; 137:848-62. [PMID: 15734919 PMCID: PMC1065386 DOI: 10.1104/pp.104.053637] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 05/18/2023]
Abstract
Analysis of 80S ribosomes of Arabidopsis (Arabidopsis thaliana) by use of high-speed centrifugation, sucrose gradient fractionation, one- and two-dimensional gel electrophoresis, liquid chromatography purification, and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization) identified 74 ribosomal proteins (r-proteins), of which 73 are orthologs of rat r-proteins and one is the plant-specific r-protein P3. Thirty small (40S) subunit and 44 large (60S) subunit r-proteins were confirmed. In addition, an ortholog of the mammalian receptor for activated protein kinase C, a tryptophan-aspartic acid-domain repeat protein, was found to be associated with the 40S subunit and polysomes. Based on the prediction that each r-protein is present in a single copy, the mass of the Arabidopsis 80S ribosome was estimated as 3.2 MD (1,159 kD 40S; 2,010 kD 60S), with the 4 single-copy rRNAs (18S, 26S, 5.8S, and 5S) contributing 53% of the mass. Despite strong evolutionary conservation in r-protein composition among eukaryotes, Arabidopsis 80S ribosomes are variable in composition due to distinctions in mass or charge of approximately 25% of the r-proteins. This is a consequence of amino acid sequence divergence within r-protein gene families and posttranslational modification of individual r-proteins (e.g. amino-terminal acetylation, phosphorylation). For example, distinct types of r-proteins S15a and P2 accumulate in ribosomes due to evolutionarily divergence of r-protein genes. Ribosome variation is also due to amino acid sequence divergence and differential phosphorylation of the carboxy terminus of r-protein S6. The role of ribosome heterogeneity in differential mRNA translation is discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| | | | | | | |
Collapse
|
30
|
Baum S, Bittins M, Frey S, Seedorf M. Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochem J 2004; 380:823-30. [PMID: 15012629 PMCID: PMC1224212 DOI: 10.1042/bj20031962] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/24/2004] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
Scp160p interacts in an mRNA-dependent manner with translating ribosomes via multiple RNA-binding heterogeneous nuclear ribonucleoprotein K-homology (KH) domains. In the present study, we show by protein-protein cross-linking that Scp160p is in close proximity to translation elongation factor 1A and the WD40 (Trp-Asp 40)-repeat containing protein Asc1p at ribosomes. Analysis of a truncation mutant revealed that the C-terminus of Scp160p is essential for ribosome binding and that Cys(1067) at the C-terminus of Scp160p is required to obtain these cross-links. The interaction of Scp160p with ribosomes depends on Asc1p. In fast-growing yeast cells, nearly all Asc1p is tightly bound to ribosomes, but it can also be present in a ribosome-free form depending on growth conditions. The functional homologue of Asc1p, mammalian RACK1 (receptor of activated C kinase), was previously characterized as an adaptor protein bridging activated signalling molecules with their substrates. Our results suggest that Scp160p connects specific mRNAs, ribosomes and a translation factor with an adaptor for signalling molecules. These interactions might regulate the translation activity of ribosomes programmed with specific mRNAs.
Collapse
Affiliation(s)
- Sonja Baum
- Center of Molecular Biology at University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol Cell Biol 2004; 24:8276-87. [PMID: 15340087 PMCID: PMC515043 DOI: 10.1128/mcb.24.18.8276-8287.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.
Collapse
Affiliation(s)
- Vincent R Gerbasi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave. South, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|
32
|
Shor B, Calaycay J, Rushbrook J, McLeod M. Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. J Biol Chem 2003; 278:49119-28. [PMID: 12972434 DOI: 10.1074/jbc.m303968200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cpc2/RACK1 is a highly conserved WD domain protein found in all eucaryotes. Cpc2/RACK1 functions on mammalian signal transduction pathways most notably as an adaptor protein for the betaII protein kinase C isozyme. In single cell eucaryotes, Cpc2/RACK1 regulates growth, differentiation, and entry into G0 stationary phase. The exact biochemical function of Cpc2/RACK1 is unknown. Here, we provide evidence that Cpc2 is associated with the ribosome. Using immunoaffinity purification, we isolated ribosomal proteins in association with Cpc2/RACK1. Polysome and ribosomal subunit analysis using velocity gradient centrifugation of cell lysates demonstrated that Cpc2 co-sediments with the 40 S ribosomal subunit and with polysomes. Conditions known to disrupt ribosome structure alter sedimentation of the ribosome and of Cpc2/RACK1 coordinately. Loss of cpc2 does not dramatically alter the rate of cellular protein synthesis but causes a decrease in the steady state level of numerous proteins, some of which regulate methionine metabolism. Whereas real time PCR analysis demonstrated that transcriptional mechanisms are responsible for down-regulation of some of these proteins, one protein, ribosomal protein L25, is probably regulated at the level of translation.
Collapse
Affiliation(s)
- Boris Shor
- Morse Institute for Molecular Genetics, Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brookyln, New York 1120-2098, USA
| | | | | | | |
Collapse
|
33
|
Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. EUKARYOTIC CELL 2002; 1:22-32. [PMID: 12455968 PMCID: PMC118051 DOI: 10.1128/ec.01.1.22-32.2002] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
34
|
Burke PV, Kwast KE. Oxygen dependence of expression of cytochrome C and cytochrome C oxidase genes in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:197-208. [PMID: 10849661 DOI: 10.1007/0-306-46825-5_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- P V Burke
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, USA
| | | |
Collapse
|
35
|
Lombardía LJ, Cadahía-Rodríguez JL, Freire-Picos MA, González-Siso MI, Rodríguez-Torres AM, Cerdán ME. Transcript analysis of 203 novel genes from Saccharomyces cerevisiae in hap1 and rox1 mutant backgrounds. Genome 2000; 43:881-6. [PMID: 11081979 DOI: 10.1139/g00-049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hap1 and Rox1 are transcriptional regulators that bind regulatory sites in the promoters of oxygen-regulated genes in Saccharomyces cerevisiae. Hap1 is a heme-responsive activator of genes induced in aerobic conditions and Rox1 is a repressor of hypoxic genes in aerobic conditions. We have studied transcriptional regulation of a pool of 203 open reading frames (ORFs) from chromosomes IV, VII, and XIV in wild-type, hap1, and rox1 mutant genetic backgrounds in an attempt to extend the family of oxygen and heme regulated genes. Only three ORFs are significantly repressed by Rox1 but they cannot be considered as typical hypoxic genes because they are not overexpressed during hypoxia.
Collapse
Affiliation(s)
- L J Lombardía
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Murray JM, Johnson DI. Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 2000; 154:155-65. [PMID: 10628977 PMCID: PMC1460887 DOI: 10.1093/genetics/154.1.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.
Collapse
Affiliation(s)
- J M Murray
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
37
|
Sartori G, Aldegheri L, Mazzotta G, Lanfranchi G, Tournu H, Brown AJ, Carignani G. Characterization of a new hemoprotein in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:5032-7. [PMID: 9988749 DOI: 10.1074/jbc.274.8.5032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae gene YNL234w encodes a 426-amino acid-long protein that shares significant similarities with the globin family. Compared with known globins from unicellular organisms, the Ynl234wp polypeptide is characterized by an unusual structure. In this protein, a central putative heme-binding domain of about 140 amino acids is flanked by two sequences of about 160 and 120 amino acids, respectively, which share no similarity with known polypeptides. Northern analysis indicates that YNL234w transcription is very low in cells grown under normal aerobic conditions but is induced by oxygen-limited growth conditions and by other stress conditions such as glucose repression, heat shock, osmotic stress, and nitrogen starvation. However, the deletion of the gene had no detectable effect on yeast growth. The Ynl234wp polypeptide has been expressed in Escherichia coli, and the hemoprotein nature of the recombinant protein was demonstrated by heme staining after SDS/polyacrylamide gel electrophoresis and spectroscopic analysis. Our data indicate that purified recombinant Ynl234wp possesses a noncovalently bound heme molecule that is predominantly found in a low spin form.
Collapse
Affiliation(s)
- G Sartori
- Dipartimento di Chimica Biologica, viale G. Colombo, 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|