1
|
Taheri A, Wang Z, Singal B, Guo F, Al-Bassam J. Cryo-EM structures of the tubulin cofactors reveal the molecular basis for the biogenesis of alpha/beta-tubulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577855. [PMID: 38405852 PMCID: PMC10889022 DOI: 10.1101/2024.01.29.577855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microtubule polarity and dynamic polymerization originate from the self-association properties of the a-tubulin heterodimer. For decades, it has remained poorly understood how the tubulin cofactors, TBCD, TBCE, TBCC, and the Arl2 GTPase mediate a-tubulin biogenesis from α- and β-tubulins. Here, we use cryogenic electron microscopy to determine structures of tubulin cofactors bound to αβ-tubulin. These structures show that TBCD, TBCE, and Arl2 form a heterotrimeric cage-like TBC-DEG assembly around the a-tubulin heterodimer. TBCD wraps around Arl2 and almost entirely encircles -tubulin, while TBCE forms a lever arm that anchors along the other end of TBCD and rotates α-tubulin. Structures of the TBC-DEG-αβ-tubulin assemblies bound to TBCC reveal the clockwise rotation of the TBCE lever that twists a-tubulin by pulling its C-terminal tail while TBCD holds -tubulin in place. Altogether, these structures uncover transition states in αβ-tubulin biogenesis, suggesting a vise-like mechanism for the GTP-hydrolysis dependent a-tubulin biogenesis mediated by TBC-DEG and TBCC. These structures provide the first evidence of the critical functions of the tubulin cofactors as enzymes that regulate the invariant organization of αβ-tubulin, by catalyzing α- and β-tubulin assembly, disassembly, and subunit exchange which are crucial for regulating the polymerization capacities of αβ-tubulins into microtubules.
Collapse
|
2
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
3
|
Nolasco S, Bellido J, Serna M, Carmona B, Soares H, Zabala JC. Colchicine Blocks Tubulin Heterodimer Recycling by Tubulin Cofactors TBCA, TBCB, and TBCE. Front Cell Dev Biol 2021; 9:656273. [PMID: 33968934 PMCID: PMC8100514 DOI: 10.3389/fcell.2021.656273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. In vitro assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Marina Serna
- Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
4
|
Zhang X, Chen X, Jiang J, Yu M, Yin Y, Ma Z. The tubulin cofactor A is involved in hyphal growth, conidiation and cold sensitivity in Fusarium asiaticum. BMC Microbiol 2015; 15:35. [PMID: 25886735 PMCID: PMC4342098 DOI: 10.1186/s12866-015-0374-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tubulin cofactor A (TBCA), one of the members of tubulin cofactors, is of great importance in microtubule functions through participating in the folding of α/β-tubulin heterodimers in Saccharomyces cerevisiae. However, little is known about the roles of TBCA in filamentous fungi. RESULTS In this study, we characterized a TBCA orthologue FaTBCA in Fusarium asiaticum. The deletion of FaTBCA caused dramatically reduced mycelial growth and abnormal conidiation. The FaTBCA deletion mutant (ΔFaTBCA-3) showed increased sensitivity to low temperatures and even lost the ability of growth at 4°C. Microscopic observation found that hyphae of ΔFaTBCA-3 exhibited blebbing phenotypes after shifting from 25 to 4°C for 1- or 3-day incubation and approximately 72% enlarged nodes contained several nuclei after 3-day incubation at 4°C. However, hyphae of the wild type incubated at 4°C were phenotypically indistinguishable from those incubated at 25°C. These results indicate that FaTBCA is involved in cell division under cold stress (4°C) in F. asiaticum. Unexpectedly, ΔFaTBCA-3 did not exhibit increased sensitivity to the anti-microtubule drug carbendazim although quantitative real-time assays showed that the expression of FaTBCA was up-regulated after treatment with carbendazim. In addition, pathogenicity assays showed that ΔFaTBCA-3 exhibited decreased virulence on wheat head and on non-host tomato. CONCLUSION Taken together, results of this study indicate that FaTBCA plays crucial roles in vegetative growth, conidiation, temperature sensitivity and virulence in F. asiaticum.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xiang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Jinhua Jiang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Menghao Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Fleming JR, Morgan RE, Fyfe PK, Kelly SM, Hunter WN. The architecture of Trypanosoma brucei tubulin-binding cofactor B and implications for function. FEBS J 2013; 280:3270-80. [PMID: 23627368 PMCID: PMC3806363 DOI: 10.1111/febs.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/01/2013] [Accepted: 04/23/2013] [Indexed: 01/01/2023]
Abstract
Tubulin-binding cofactor (TBC)-B is implicated in the presentation of α-tubulin ready to polymerize, and at the correct levels to form microtubules. Bioinformatics analyses, including secondary structure prediction, CD, and crystallography, were combined to characterize the molecular architecture of Trypanosoma brucei TBC-B. An efficient recombinant expression system was prepared, material-purified, and characterized by CD. Extensive crystallization screening, allied with the use of limited proteolysis, led to structures of the N-terminal ubiquitin-like and C-terminal cytoskeleton-associated protein with glycine-rich segment domains at 2.35-Å and 1.6-Å resolution, respectively. These are compact globular domains that appear to be linked by a flexible segment. The ubiquitin-like domain contains two lysines that are spatially conserved with residues known to participate in ubiquitinylation, and so may represent a module that, through covalent attachment, regulates the signalling and/or protein degradation associated with the control of microtubule assembly, catastrophe, or function. The TBC-B C-terminal cytoskeleton-associated protein with glycine-rich segment domain, a known tubulin-binding structure, is the only such domain encoded by the T. brucei genome. Interestingly, in the crystal structure, the peptide-binding groove of this domain forms intermolecular contacts with the C-terminus of a symmetry-related molecule, an association that may mimic interactions with the C-terminus of α-tubulin or other physiologically relevant partners. The interaction of TBC-B with the α-tubulin C-terminus may, in particular, protect from post-translational modifications, or simply assist in the shepherding of the protein into polymerization.
Collapse
Affiliation(s)
- Jennifer R Fleming
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeUK
| | - Rachel E Morgan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeUK
| | - Paul K Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeUK
| | - Sharon M Kelly
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - William N Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeUK
| |
Collapse
|
6
|
Lu L, Nan J, Mi W, Li LF, Wei CH, Su XD, Li Y. Crystal structure of tubulin folding cofactor A from Arabidopsis thaliana and its beta-tubulin binding characterization. FEBS Lett 2010; 584:3533-9. [PMID: 20638386 DOI: 10.1016/j.febslet.2010.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Microtubules are composed of polymerized alpha/beta-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures beta-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with beta-tubulin in plant. Furthermore, mutagenesis studies indicated that the alpha-helical regions of KIS participate in beta-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to beta-tubulin in plants.
Collapse
Affiliation(s)
- Lu Lu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Sarkar S, Haldar S, Hajra S, Sinha P. The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly. FEMS Yeast Res 2010; 10:660-73. [PMID: 20608984 DOI: 10.1111/j.1567-1364.2010.00655.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The budding yeast protein Sum1 is a transcription factor that associates with the histone deacetylase Hst1p or, in its absence, with Sir2p to form repressed chromatin. In this study, SUM1 has been identified as an allele-specific dosage suppressor of mutations in the major alpha-tubulin-coding gene TUB1. When cloned in a 2mu vector, SUM1 suppressed the cold-sensitive and benomyl-hypersensitive phenotypes associated with the tub1-1 mutation. The suppression was Hst1p- and Sir2p-independent, suggesting that it was not mediated by deacetylation events associated with Sum1p when it functions along with its known partner histone deacetylases. This protein was confined to the nucleus, but did not colocalize with the microtubules nor did it bind to alpha- or beta-tubulin. Cells deleted of SUM1 showed hypersensitivity to benomyl and cold-sensitive growth, phenotypes exhibited by mutants defective in microtubule function and cytoskeletal defects. These observations suggest that Sum1p is a novel regulator of microtubule function. We propose that as a dosage suppressor, Sum1p promotes the formation of microtubules by increasing the availability of the alphabeta-heterodimer containing the mutant alpha-tubulin subunit.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
8
|
Fedyanina OS. The alp1-1315 mutation of the tubulin-folding cofactor D gene delays the mitosis initiation in cdc25-22 mutant cells of Schizosaccharomyces pombe. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Toyama R, Chen X, Jhawar N, Aamar E, Epstein J, Reany N, Alon S, Gothilf Y, Klein DC, Dawid IB. Transcriptome analysis of the zebrafish pineal gland. Dev Dyn 2009; 238:1813-26. [PMID: 19504458 PMCID: PMC2946851 DOI: 10.1002/dvdy.21988] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pace maker. Here, we have used microarray technology to study the zebrafish pineal transcriptome. Analysis of gene expression at three larval and two adult stages revealed a highly dynamic transcriptional profile, revealing many genes that are highly expressed in the zebrafish pineal gland. Statistical analysis of the data based on Gene Ontology annotation indicates that many transcription factors are highly expressed during larval stages, whereas genes dedicated to phototransduction are preferentially expressed in the adult. Furthermore, several genes were identified that exhibit day/night differences in expression. Among the multiple candidate genes suggested by these data, we note the identification of a tissue-specific form of the unc119 gene with a possible role in pineal development.
Collapse
Affiliation(s)
- Reiko Toyama
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fedyanina OS, Book AJ, Grishchuk EL. Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 2009; 26:235-47. [PMID: 19330768 PMCID: PMC5705012 DOI: 10.1002/yea.1663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tubulin-folding cofactor D plays a major role in the formation of functional tubulin heterodimers, the subunits of microtubules (MTs) that are essential for cell division. Previous work has suggested that, in Schizosaccharomyces pombe, cofactor D function is required during G(1) or S phases of the cell cycle, and when it fails to function due to the temperature-sensitive mutation alp1-t1, cells are unable to segregate their chromosomes in the subsequent mitosis. Here we report that another mutation in the cofactor D gene, alp1-1315, causes failures in either the first or second mitosis in cells synchronized in G(1) or G(2) phases, respectively. Other results, however, suggest that the kinetics of viability loss in these mutants does not depend on progression through the cell cycle. When cofactor D function is perturbed in cells blocked in G(2), cytoplasmic MTs appear normal for 2-3 h but thereafter they disintegrate quickly, so that only a few short MTs remain. These residual MTs are, however, stably maintained, suggesting that they do not require active cofactor D function. The abrupt disassembly of MT cytoskeleton at restrictive temperature in non-cycling cofactor D mutant cells strongly suggests that the life-span of folded tubulin dimers might be downregulated. Indeed, this period is significantly shorter than the previously determined dissociation time of bovine tubulins in vitro. The death of mutant cells occurs inevitably after 2-3 h at restrictive temperature in the following mitosis, and is explained by the idea that MT structures formed in the absence of cofactor D cannot support normal cell division.
Collapse
|
11
|
Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Op18/Stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line. Exp Cell Res 2008; 314:1367-77. [PMID: 18262179 DOI: 10.1016/j.yexcr.2007.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 11/30/2022]
Abstract
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
12
|
La Carbona S, Le Goff C, Le Goff X. Fission yeast cytoskeletons and cell polarity factors: connecting at the cortex. Biol Cell 2007; 98:619-31. [PMID: 17042740 DOI: 10.1042/bc20060048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell polarity is a fundamental property of cells from unicellular to multicellular organisms. Most of the time, it is essential so that the cells can achieve their function. The fission yeast Schizosaccharomyces pombe is a powerful genetic model organism for studying the molecular mechanisms of the cell polarity process. Indeed, S. pombe cells are rod-shaped and cell growth is restricted at the poles. The accurate localization of the cell growth machinery at the cell cortex, which involves the actin cytoskeleton, depends on cell polarity pathways that are temporally and spatially regulated. The importance of interphase microtubules and cell polarity factors acting at the cortex of cell ends in this process has been shown. Here, we review recent advances in knowledge of molecular pathways leading to the establishment of a cellular axis in fission yeast. We also describe the role of cortical proteins and mitotic cytoskeletal rearrangements that control the symmetry of cell division.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 Av. du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | | | | |
Collapse
|
13
|
Fedyanina OS, Mardanov PV, Tokareva EM, McIntosh JR, Grishchuk EL. Chromosome segregation in fission yeast with mutations in the tubulin folding cofactor D. Curr Genet 2006; 50:281-94. [PMID: 17004072 DOI: 10.1007/s00294-006-0095-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Faithful chromosome segregation requires the combined activities of the microtubule-based mitotic spindle and the multiple proteins that form mitotic kinetochores. Here, we show that the fission yeast mitotic mutant, tsm1-512, is an allele of the tubulin folding chaperone, cofactor D. Chromosome segregation in this and in an additional cofactor D mutant depends on growth conditions that are monitored specifically by the mitotic checkpoint proteins Mad1, 2, 3 and Bub3. The temperature-sensitive mutants we have used disrupt the function of cofactor D to different extents, but both strains form a mitotic spindle in which the poles separate in anaphase. However, chromosome segregation is often unequal, apparently due to a defect in kinetochore-microtubule interactions. Mutations in cofactor D render cells particularly sensitive to the expression levels of a CENP-B-like protein, Abp1p, which works as an allele-specific, high-copy suppressor of cofactor D. This and other genetic interactions between cofactor D mutants and specific kinetochore and spindle components suggest their critical role in establishing the normal kinetochore-microtubule interface.
Collapse
|
14
|
Abstract
The development of the parathyroid glands involves complex embryonic processes of cell-specific differentiation and migration of the glands from their sites of origin in the pharynx and pharyngeal pouches to their final positions along the ventral midline of the pharyngeal and upper thoracic region. The recognition of several distinct genetic forms of isolated and syndromic hypoparathyroidism led us to review the recent findings on the molecular mechanisms of the development of the parathyroid glands. Although far from being understood, a special emphasis was given to the possible role of tubulin chaperone E (TBCE), which was implicated in the pathogenesis of the hypopathyroidism, retardation and dysmorphism (HRD) syndrome. The novel finding that TBCE plays a critical role in the formation of the parathyroid opens a novel domain of research, not anticipated previously, into the complex process of parathyroid development.
Collapse
Affiliation(s)
- Ruti Parvari
- Department of Developmental Genetics and Virology, Faculty of Health Sciences and National Institute for Biotechnology, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
15
|
Kortazar D, Fanarraga ML, Carranza G, Bellido J, Villegas JC, Avila J, Zabala JC. Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation. Exp Cell Res 2006; 313:425-36. [PMID: 17184771 DOI: 10.1016/j.yexcr.2006.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/29/2006] [Accepted: 09/05/2006] [Indexed: 12/30/2022]
Abstract
Tubulin folding cofactors B (TBCB) and E (TBCE) are alpha-tubulin binding proteins that, together with Arl2 and cofactors D (TBCD), A (TBCA or p14) and C (TBCC), participate in tubulin biogenesis. TBCD and TBCE have also been implicated in microtubule dynamics through regulation of tubulin heterodimer dissociation. Understanding the in vivo function of these proteins will shed light on the Kenny-Caffey/Sanjad-Sakati syndrome, an important human disorder associated with TBCE. Here we show that, when overexpressed, TBCB depolymerizes microtubules. We found that this function is based on the ability of TBCB to form a binary complex with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and in vitro. We also show that TBCE, TBCB and alpha-tubulin form a ternary complex after heterodimer dissociation, whereas the free beta-tubulin subunit is recovered by TBCA. These complexes might serve to escort alpha-tubulin towards degradation or recycling, depending on the cell requirements.
Collapse
Affiliation(s)
- D Kortazar
- Unidad de Metabolómica, CICbioGUNE, Parque Tecnológico de Bizkaia, 48160-Derio, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Nolasco S, Bellido J, Gonçalves J, Zabala JC, Soares H. Tubulin cofactor A gene silencing in mammalian cells induces changes in microtubule cytoskeleton, cell cycle arrest and cell death. FEBS Lett 2005; 579:3515-24. [PMID: 15963512 DOI: 10.1016/j.febslet.2005.05.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/26/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
17
|
Grynberg M, Jaroszewski L, Godzik A. Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization. BMC Bioinformatics 2003; 4:46. [PMID: 14536023 PMCID: PMC270062 DOI: 10.1186/1471-2105-4-46] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 10/10/2003] [Indexed: 12/02/2022] Open
Abstract
Background The correct folding and dimerization of tubulins, before their addition to the microtubular structure, needs a group of conserved proteins called cofactors A to E. The biochemical analysis of cofactors gave an insight to their general functions, however not much is known about the domain structure and detailed, molecular function of these proteins. Results Combining modelling and fold prediction tools, we present 3D models of all cofactors, including several previously unannotated domains of cofactors B-E. Apart from the new HEAT and Armadillo domains in cofactor D and an unusual spectrin-like domain in cofactor C, we have identified a new subfamily of ubiquitin-like domains in cofactors B and E. Together, these observations provide a reliable, molecular level model of cofactor complex. Conclusion Distant homology searches allowed the identification of unknown regions of cofactors as self-reliant domains and allow us to present a detailed hypothesis of how a cofactor complex performs its function.
Collapse
Affiliation(s)
- Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St, 02-106 Warsaw, Poland
- The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Lukasz Jaroszewski
- current address Bioinformatics Core for Joint Center for Structural Genomics, UCSD, 9500 Gillman Dr. La Jolla, CA 92093, USA
| | - Adam Godzik
- The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Kobayashi A, Kubota S, Mori N, McLaren MJ, Inana G. Photoreceptor synaptic protein HRG4 (UNC119) interacts with ARL2 via a putative conserved domain. FEBS Lett 2003; 534:26-32. [PMID: 12527357 DOI: 10.1016/s0014-5793(02)03766-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human retinal gene 4 (HRG4) (UNC119) is a photoreceptor synaptic protein of unknown function, shown when mutated to cause retinal degeneration in a patient and in a confirmatory transgenic model. ADP-ribosylation factor-like protein 2 (ARL2) was identified as an interactor of HRG4 by the yeast two-hybrid strategy. The presence of ARL2 in the retina and co-localization with HRG4 was confirmed by Western blot and double immunofluorescence analysis, respectively. The interaction of ARL2 with HRG4 was further confirmed by co-immunoprecipitation and direct binding analysis. Phosphodiesterase delta (PDEdelta) is an ARL2-binding protein homologous to HRG4. Amino acid residues of PDEdelta involved in binding ARL2 and forming a hydrophobic pocket were shown to be highly conserved in HRG4, suggesting similarity in binding mechanism and function.
Collapse
Affiliation(s)
- Akira Kobayashi
- Bascom Palmer Eye Institute, University of Miami School of Medicine, 1638 N.W. 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The plant microtubule cytoskeleton forms unique arrays during cell division and morphogenesis. Recent studies have addressed the biogenesis, turnover, spatio-temporal organisation and cellular function of microtubules. The results suggest that both conserved eukaryotic mechanisms and plant-specific modifications determine microtubule dynamics and function.
Collapse
Affiliation(s)
- Ulrike Mayer
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076, Tübingen, Germany.
| | | |
Collapse
|
20
|
Bommel H, Xie G, Rossoll W, Wiese S, Jablonka S, Boehm T, Sendtner M. Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J Cell Biol 2002; 159:563-9. [PMID: 12446740 PMCID: PMC2173089 DOI: 10.1083/jcb.200208001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progressive motor neuronopathy (pmn) mutant mice have been widely used as a model for human motoneuron disease. Mice that are homozygous for the pmn gene defect appear healthy at birth but develop progressive motoneuron disease, resulting in severe skeletal muscle weakness and respiratory failure by postnatal week 3. The disease starts at the motor endplates, and then leads to axonal loss and finally to apoptosis of the corresponding cell bodies. We localized the genetic defect in pmn mice to a missense mutation in the tubulin-specific chaperone E (Tbce) gene on mouse chromosome 13. The human orthologue maps to chromosome 1q42.3. The Tbce gene encodes a protein (cofactor E) that is essential for the formation of primary alpha-tubulin and beta-tubulin heterodimeric complexes. Isolated motoneurons from pmn mutant mice exhibit shorter axons and axonal swelling with irregularly structured beta-tubulin and tau immunoreactivity. Thus, the pmn gene mutation provides the first genetic evidence that alterations in tubulin assembly lead to retrograde degeneration of motor axons, ultimately resulting in motoneuron cell death.
Collapse
Affiliation(s)
- Heike Bommel
- Institute of Clinical Neurobiology, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Tubulin folding cofactors control the availability of tubulin subunits and microtubule stability in eukaryotic cells. Recent work on Arabidopsis mutants has provided a new experimental system for understanding the cellular functions of tubulin folding cofactors.
Collapse
Affiliation(s)
- Dan Szymanski
- Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, W. Lafayette, Indiana 47907-1150, USA.
| |
Collapse
|
22
|
Abstract
Microtubules and microfilaments play important roles in cell morphogenesis. The picture emerging from drug studies and molecular-genetic analyses of mutant higher plants defective in cell morphogenesis shows that the roles played by them remain the same in both tip-growing and diffuse-growing cells. Microtubules are important for establishing and maintaining growth polarity whereas actin microfilaments deliver the materials required for growth to specified sites. The recent cloning of several cell morphogenesis genes has revealed that conserved mechanisms as well as novel signal transduction pathways spatially organize the plant cytoskeleton.
Collapse
Affiliation(s)
- Jaideep Mathur
- Botanical Institute III, University of Köln, Gyrhofstrasse 15, 50931, Köln, Germany
| | | |
Collapse
|
23
|
Kirik V, Mathur J, Grini PE, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville JM, Hülskamp M. Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. Curr Biol 2002; 12:1519-23. [PMID: 12225668 DOI: 10.1016/s0960-9822(02)01109-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biogenesis of microtubules comprises several steps, including the correct folding of alpha- and beta-tubulin and heterodimer formation. In vitro studies and the genetic analysis in yeast revealed that, after translation, alpha- and beta-tubulin are processed by several chaperonins and microtubule-folding cofactors (TFCs) to produce assembly-competent alpha-/beta-tubulin heterodimers. One of the TFCs, TFC-C, does not exist in yeast, and a potential function of TFC-C is thus based only on the biochemical analysis. In this study and in a very recently published study by Steinborn and coworkers, the analysis of the Arabidopsis porcino (por) mutant has shown that TFC-C is important for microtubule function in vivo. The predicted POR protein shares weak amino acid similarity with the human TFC-C (hTFC-C). Our finding that hTFC-C under the control of the ubiquitously expressed 35S promoter can rescue the por mutant phenotype shows that the POR gene encodes the Arabidopsis ortholog of hTFC-C. The analysis of plants carrying a GFP:POR fusion construct showed that POR protein is localized in the cytoplasm and is not associated with microtubules. While, in por mutants, microtubule density was indistinguishable from wild-type, their organization was affected.
Collapse
Affiliation(s)
- Victor Kirik
- University of Köln, Botanical Institute III, Gyrhofstr. 15, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kirik V, Grini PE, Mathur J, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville JM, Hülskamp M. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance. THE PLANT CELL 2002; 14:2265-76. [PMID: 12215519 PMCID: PMC150769 DOI: 10.1105/tpc.003020] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Accepted: 05/17/2002] [Indexed: 05/18/2023]
Abstract
The control of the stoichiometric balance of alpha- and beta-tubulin is important during microtubule biogenesis. This process involves several tubulin-folding cofactors (TFCs), of which only TFC A is not essential in mammalian in vitro systems or in vivo in yeast. Here, we show that the TFC A gene is important in vivo in plants. The Arabidopsis gene KIESEL (KIS) shows sequence similarity to the TFC A gene. Expression of the mouse TFC A gene under the control of the 35S promoter rescues the kis mutation, indicating that KIS is the Arabidopsis ortholog of TFC A. kis plants exhibit a range of defects similar to the phenotypes associated with impaired microtubule function: plants are reduced in size and show meiotic defects, cell division is impaired, and trichomes are bulged and less branched. Microtubule density was indistinguishable from that of the wild type, but microtubule organization was affected in trichomes and hypocotyl cells of dark-grown kis plants. The kis phenotype was rescued by overexpression of an alpha-tubulin, indicating that KIS is involved in the control of the correct balance of alpha- and beta-tubulin monomers.
Collapse
Affiliation(s)
- Victor Kirik
- Botanical Institute III, University of Köln, Gyrhofstrasse 15, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Caplow M, Fee L. Dissociation of the tubulin dimer is extremely slow, thermodynamically very unfavorable, and reversible in the absence of an energy source. Mol Biol Cell 2002; 13:2120-31. [PMID: 12058074 PMCID: PMC117629 DOI: 10.1091/mbc.e01-10-0089] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The finding that exchange of tubulin subunits between tubulin dimers (alpha-beta + alpha'beta' <--> alpha'beta + alphabeta') does not occur in the absence of protein cofactors and GTP hydrolysis conflicts with the assumption that pure tubulin dimer and monomer are in rapid equilibrium. This assumption underlies the many physical chemical measurements of the K(d) for dimer dissociation. To resolve this discrepancy we used surface plasmon resonance to determine the rate constant for dimer dissociation. The half-time for dissociation was approximately 9.6 h with tubulin-GTP, 2.4 h with tubulin-GDP, and 1.3 h in the absence of nucleotide. A Kd equal to 10(-11) M was calculated from the measured rate for dissociation and an estimated rate for association. Dimer dissociation was found to be reversible, and dimer formation does not require GTP hydrolysis or folding information from protein cofactors, because 0.2 microM tubulin-GDP incubated for 20 h was eluted as dimer when analyzed by size exclusion chromatography. Because 20 h corresponds to eight half-times for dissociation, only monomer would be present if dissociation were an irreversible reaction and if dimer formation required GTP or protein cofactors. Additional evidence for a 10(-11) M K(d) was obtained from gel exclusion chromatography studies of 0.02-2 nM tubulin-GDP. The slow dissociation of the tubulin dimer suggests that protein tubulin cofactors function to catalyze dimer dissociation, rather than dimer assembly. Assuming N-site-GTP dissociation is from monomer, our results agree with the 16-h half-time for N-site GTP in vitro and 33 h half-life for tubulin N-site-GTP in CHO cells.
Collapse
Affiliation(s)
- Michael Caplow
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA.
| | | |
Collapse
|
26
|
Guasch A, Aloria K, Pérez R, Avila J, Zabala JC, Coll M. Three-dimensional structure of human tubulin chaperone cofactor A. J Mol Biol 2002; 318:1139-49. [PMID: 12054808 DOI: 10.1016/s0022-2836(02)00185-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
alpha and beta-Tubulin fold in a series of chaperone-assisted steps. At least five protein cofactors are involved in the post-chaperonin tubulin folding pathway and required to maintain the supply of tubulin; some of them also participate in microtubule dynamics. The first tubulin chaperone identified in the tubulin folding pathway was cofactor A (CoA). Here we describe the three-dimensional structure of human CoA at 1.7 A resolution, determined by multiwavelength anomalous diffraction (MAD). The structure is a monomer with a rod-like shape and consists of a three-alpha-helix bundle, or coiled coil, with the second helix kinked by a proline break, offering a convex surface at one face of the protein. The helices are connected by short turns, one of them, between alpha2 and alpha3, including a 3(10)-helix. Peptide mapping analysis and competition experiments with peptides show that CoA interacts with beta-tubulin via the three alpha-helical regions but not with the rod-end loops. The main interaction occurs with the middle kinked alpha2 helix, at the convex face of the rod. Strong 3D structural homology is found with the Hsp70 chaperone cofactor BAG domain, suggesting that these proteins define a family of cofactors of simple compact architecture. Further structural homology is found with alpha-spectrin/alpha-actinin repeats, all are rods of identical length of ten helical turns. We propose to call these three-helix bundles alpha ten modules.
Collapse
Affiliation(s)
- Alicia Guasch
- Instituto de Biología Molecular de Barcelona, CSIC, Jordi Girona 18-26, E-08034, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Bartolini F, Bhamidipati A, Thomas S, Schwahn U, Lewis SA, Cowan NJ. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem 2002; 277:14629-34. [PMID: 11847227 DOI: 10.1074/jbc.m200128200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the X-linked retinitis pigmentosa 2 gene cause progressive degeneration of photoreceptor cells. The retinitis pigmentosa 2 protein (RP2) is similar in sequence to the tubulin-specific chaperone cofactor C. Together with cofactors D and E, cofactor C stimulates the GTPase activity of native tubulin, a reaction regulated by ADP-ribosylation factor-like 2 protein. Here we show that in the presence of cofactor D, RP2 protein also stimulates the GTPase activity of tubulin. We find that this function is abolished by mutation in an arginine residue that is conserved in both cofactor C and RP2. Notably, mutations that alter this arginine codon cause familial retinitis pigmentosa. Our data imply that this residue acts as an "arginine finger" to trigger the tubulin GTPase activity and suggest that loss of this function in RP2 contributes to retinal degeneration. We also show that in Saccharomyces cerevisiae, both cofactor C and RP2 partially complement the microtubule phenotype resulting from deletion of the cofactor C homolog, demonstrating their functional overlap in vivo. Finally, we find that RP2 interacts with GTP-bound ADP ribosylation factor-like 3 protein, providing a link between RP2 and several retinal-specific proteins, mutations in which also cause retinitis pigmentosa.
Collapse
Affiliation(s)
- Francesca Bartolini
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
28
|
Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 2002; 16:959-71. [PMID: 11959844 PMCID: PMC152350 DOI: 10.1101/gad.221702] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant microtubules are organized into specific cell cycle-dependent arrays that have been implicated in diverse cellular processes, including cell division and organized cell expansion. Mutations in four Arabidopsis genes collectively called the PILZ group result in lethal embryos that consist of one or a few grossly enlarged cells. The mutant embryos lack microtubules but not actin filaments. Whereas the cytokinesis-specific syntaxin KNOLLE is not localized properly, trafficking of the putative auxin efflux carrier PIN1 to the plasma membrane is normal. The four PILZ group genes were isolated by map-based cloning and are shown to encode orthologs of mammalian tubulin-folding cofactors (TFCs) C, D, and E, and associated small G-protein Arl2 that mediate the formation of alpha/beta-tubulin heterodimers in vitro. The TFC C ortholog, PORCINO, was detected in cytosolic protein complexes and did not colocalize with microtubules. Another gene with a related, although weaker, embryo-lethal phenotype, KIESEL, was shown to encode a TFC A ortholog. Our genetic ablation of microtubules shows their requirement in cell division and vesicle trafficking during cytokinesis, whereas cell growth is mediated by microtubule-independent vesicle trafficking to the plasma membrane during interphase.
Collapse
|
29
|
Tzafrir I, McElver JA, Liu Cm CM, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW. Diversity of TITAN functions in Arabidopsis seed development. PLANT PHYSIOLOGY 2002. [PMID: 11788751 DOI: 10.1104/pp.010911] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome proteins (condensins and cohesins) required for chromosome function at mitosis. Another TTN gene product (TTN5) is related to the ARL2 class of GTP-binding proteins. Here, we identify four additional TTN genes and present a general model for the titan phenotype. TTN1 was cloned after two tagged alleles were identified through a large-scale screen of T-DNA insertion lines. The predicted gene product is related to tubulin-folding cofactor D, which interacts with ARL2 in fission yeast (Schizosaccharomyces pombe) and humans to regulate tubulin dynamics. We propose that TTN5 and TTN1 function in a similar manner to regulate microtubule function in seed development. The titan phenotype can therefore result from disruption of chromosome dynamics (ttn3, ttn7, and ttn8) or microtubule function (ttn1 and ttn5). Three other genes have been identified that affect endosperm nuclear morphology. TTN4 and TTN9 appear to encode plant-specific proteins of unknown function. TTN6 is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. Disruption of this gene may reduce the stability of the structural maintenance of chromosome complex. Further analysis of the TITAN network should help to elucidate the regulation of microtubule function and chromosome dynamics in seed development.
Collapse
Affiliation(s)
- Iris Tzafrir
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The fission yeast, Schizosaccharomyces pombe, has been used as a model eukaryote to study processes such as the cell cycle and cell morphology. In this single-celled organism, growing in a straight line and maintaining the nucleus in the centre of the cell depend on intracellular positional information. Microtubules and microtubular transport are important for generating positional information within the fission yeast cell, and these molecular mechanisms are also probably relevant for generating positional information in other eukaryotic cells.
Collapse
Affiliation(s)
- J Hayles
- Cell Cycle Laboratory, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|
31
|
Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC. Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 2001; 135:219-29. [PMID: 11580271 DOI: 10.1006/jsbi.2001.4386] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microtubule cytoskeleton consists of a highly organized network of microtubule polymers bound to their accessory proteins: microtubule-associated proteins, molecular motors, and microtubule-organizing proteins. The microtubule subunits are heterodimers composed of one alpha-tubulin polypeptide and one beta-tubulin polypeptide that should undergo a complex folding processing before they achieve a quaternary structure that will allow their incorporation into the polymer. Due to the extremely high protein concentration that exists at the cell cytoplasm, there are alpha- and beta-tubulin interacting proteins that prevent the unwanted interaction of these polypeptides with the surrounding protein pool during folding, thus allowing microtubule dynamics. Several years ago, the development of a nondenaturing electrophoretic technique made it possible to identify different tubulin intermediate complexes during tubulin biogenesis in vitro. By these means, the cytosolic chaperonin containing TCP-1 (CCT or TriC) and prefoldin have been demonstrated to intervene through tubulin and actin folding. Various other cofactors also identified along the alpha- and beta-tubulin postchaperonin folding route are now known to have additional roles in tubulin biogenesis such as participating in the synthesis, transport, and storage of alpha- and beta-tubulin. The future characterization of the tubulin-binding sites to these proteins, and perhaps other still unknown proteins, will help in the development of chemicals that could interfere with tubulin folding and thus modulating microtubule dynamics. In this paper, current knowledge of the above postchaperonin folding cofactors, which are in fact chaperones involved in tubulin heterodimer quaternary structure achievement, will be reviewed.
Collapse
Affiliation(s)
- M Lopez-Fanarraga
- Departamento de Biología Molecular-Unidad Asociada al Centro de Investigaciones Biológicas (CSIC), Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | | | | | | | | |
Collapse
|
32
|
|