1
|
Dean DM, Codd LE, Constanza R, Segel XM. purpleoid 1 , a classic Drosophila eye color mutation, is an allele of the t-SNARE-encoding gene SNAP29. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001563. [PMID: 40270683 PMCID: PMC12015646 DOI: 10.17912/micropub.biology.001563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The Drosophila mutant eye color trait purpleoid ( pd ) was first observed by Calvin Bridges over a century ago. Although pd mutant strains have been maintained ever since, the pd locus has not been identified. Using complementation tests, genetic rescue, and DNA sequencing, we show that pd 1 is a missense mutation in SNAP29 ; this gene encodes a key component of the SNARE complex, which facilitates vesicle docking and fusion at cellular membranes. After describing how pd 1 was mapped, we discuss ways that the mutation could be used in future studies of eye pigmentation, SNARE complex assembly, and vesicle trafficking.
Collapse
Affiliation(s)
- Derek M. Dean
- Biology, Williams College, Williamstown, Massachusetts, United States
| | - Lillian E. Codd
- Biology, Williams College, Williamstown, Massachusetts, United States
| | - Ruben Constanza
- Biology, Williams College, Williamstown, Massachusetts, United States
| | - Xavier M. Segel
- Biology, Williams College, Williamstown, Massachusetts, United States
| |
Collapse
|
2
|
Ochi Y, Yamashita H, Sasaki S, Ogawa T, Yamada Y, Tago T, Satoh T, Satoh AK. Comprehensive study of SNAREs involved in the post-Golgi transport in Drosophila photoreceptors. Front Cell Dev Biol 2024; 12:1442192. [PMID: 39720007 PMCID: PMC11666571 DOI: 10.3389/fcell.2024.1442192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Polarized transport is essential for the construction of multiple plasma membrane domains within cells. Drosophila photoreceptors serve as excellent model systems for studying the mechanisms of polarized transport. We conducted a comprehensive soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) screening of the fly genome using RNAi knockdown and CRISPR/Cas9 somatic knockout combined with the CoinFLP system to identify SNAREs involved in post-Golgi trafficking. The results suggest that in post-Golgi transport, no SNARE is exclusively responsible for transport to a single specific plasma membrane domain. However, each SNARE shows some preference for certain membrane domains: the loss of nSyb, Ykt6, and Snap24/25 results in severe defects in rhabdomere transport, while the loss of Syx1A and Snap29 leads to significant impairments in basolateral transport. Together with the function of Syx1A, Snap25, and nSyb in the fusion of synaptic vesicles with the synaptic plasma membrane, these results suggest that SNAREs are not the sole determinants for vesicles to specify their target subdomains in the plasma membrane. Furthermore, rhodopsin transport to the rhabdomere requires two kinds of R-SNAREs, Ykt6 and nSyb, suggesting that multiple sets of post-Golgi SNAREs contribute in tandem or in cooperation, rather than in parallel.
Collapse
|
3
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Cotsworth S, Jackson CJ, Hallson G, Fitzpatrick KA, Syrzycka M, Coulthard AB, Bejsovec A, Marchetti M, Pimpinelli S, Wang SJH, Camfield RG, Verheyen EM, Sinclair DA, Honda BM, Hilliker AJ. Characterization of Gfat1 ( zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells 2022; 11:448. [PMID: 35159258 PMCID: PMC8834284 DOI: 10.3390/cells11030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.
Collapse
Affiliation(s)
- Shawn Cotsworth
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Catherine J. Jackson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Department of Plastic and Reconstructive Surgery, Institute for Surgical Research, University of Oslo, N-0424 Oslo, Norway
- The Department of Medical Biochemistry, Oslo University Hospital, N-0424 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, N-0424 Oslo, Norway
| | - Graham Hallson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Kathleen A. Fitzpatrick
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Allergan Canada, 500-85 Enterprise Blvd, Markham, ON L6G 0B5, Canada
| | | | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Marcella Marchetti
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Sergio Pimpinelli
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Simon J. H. Wang
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Robert G. Camfield
- BC Genome Science Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada;
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Donald A. Sinclair
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | | |
Collapse
|
6
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Verhage M, Sørensen JB. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020; 107:22-37. [PMID: 32559416 DOI: 10.1016/j.neuron.2020.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Neuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies." Here, we review the strikingly diverse clinical phenomenology and disease severity and the also remarkably diverse genetic mechanisms. We argue that disease severity generally scales with functional redundancy and, conversely, that the large effect of mutations in some SNARE genes is the price paid for extensive integration and exceptional specialization. Finally, we discuss how subtle differences in components being rate limiting in different types of neurons helps to explain the main symptoms.
Collapse
Affiliation(s)
- Matthijs Verhage
- Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Genetic and Molecular Analysis of Essential Genes in Centromeric Heterochromatin of the Left Arm of Chromosome 3 in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:1581-1595. [PMID: 30948422 PMCID: PMC6505167 DOI: 10.1534/g3.119.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large portion of the Drosophila melanogaster genome is contained within heterochromatic regions of chromosomes, predominantly at centromeres and telomeres. The remaining euchromatic portions of the genome have been extensively characterized with respect to gene organization, function and regulation. However, it has been difficult to derive similar data for sequences within centromeric (centric) heterochromatin because these regions have not been as amenable to analysis by standard genetic and molecular tools. Here we present an updated genetic and molecular analysis of chromosome 3L centric heterochromatin (3L Het). We have generated and characterized a number of new, overlapping deficiencies (Dfs) which remove regions of 3L Het. These Dfs were critically important reagents in our subsequent genetic analysis for the isolation and characterization of lethal point mutations in the region. The assignment of these mutations to genetically-defined essential loci was followed by matching them to gene models derived from genome sequence data: this was done by using molecular mapping plus sequence analysis of mutant alleles, thereby aligning genetic and physical maps of the region. We also identified putative essential gene sequences in 3L Het by using RNA interference to target candidate gene sequences. We report that at least 25, or just under 2/3 of loci in 3L Het, are essential for viability and/or fertility. This work contributes to the functional annotation of centric heterochromatin in Drosophila, and the genetic and molecular tools generated should help to provide important insights into the organization and functions of gene sequences in 3L Het.
Collapse
|
9
|
Poe AR, Wang B, Sapar ML, Ji H, Li K, Onabajo T, Fazliyeva R, Gibbs M, Qiu Y, Hu Y, Han C. Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in Drosophila. Genetics 2019; 211:459-472. [PMID: 30504366 PMCID: PMC6366929 DOI: 10.1534/genetics.118.301736] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue-specific loss-of-function (LOF) analysis is essential for characterizing gene function. Here, we present a simple, yet highly efficient, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated tissue-restricted mutagenesis (CRISPR-TRiM) method for ablating gene function in Drosophila This binary system consists of a tissue-specific Cas9 and a ubiquitously expressed multi-guide RNA (gRNA) transgene. We describe convenient toolkits for making enhancer-driven Cas9 lines and multi-gRNAs that are optimized for mutagenizing somatic cells. We demonstrate that insertions or deletions in coding sequences more reliably cause somatic mutations than DNA excisions induced by two gRNAs. We further show that enhancer-driven Cas9 is less cytotoxic yet results in more complete LOF than Gal4-driven Cas9 in larval sensory neurons. Finally, CRISPR-TRiM efficiently unmasks redundant soluble N-ethylmaleimide-sensitive factor attachment protein receptor gene functions in neurons and epidermal cells. Importantly, Cas9 transgenes expressed at different times in the neuronal lineage reveal the extent to which gene products persist in cells after tissue-specific gene knockout. These CRISPR tools can be applied to analyze tissue-specific gene function in many biological processes.
Collapse
Affiliation(s)
- Amy R Poe
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Maria L Sapar
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Hui Ji
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Kailyn Li
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Tireniolu Onabajo
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Rushaniya Fazliyeva
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Mary Gibbs
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yue Qiu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yuzhao Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
10
|
Fuschini G, Cotrufo T, Ros O, Muhaisen A, Andrés R, Comella JX, Soriano E. Syntaxin-1/TI-VAMP SNAREs interact with Trk receptors and are required for neurotrophin-dependent outgrowth. Oncotarget 2018; 9:35922-35940. [PMID: 30542508 PMCID: PMC6267591 DOI: 10.18632/oncotarget.26307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
SNARE proteins are essential components of the machinery that regulates vesicle trafficking and exocytosis. Their role is critical for the membrane-fusion processes that occur during neurotransmitter release. However, research in the last decade has also unraveled the relevance of these proteins in membrane expansion and cytoskeletal rearrangements during developmental processes such as neuronal migration and growth cone extension and attraction. Neurotrophins are neurotrophic factors that are required for many cellular functions throughout the brain, including neurite outgrowth and guidance, synaptic formation, and plasticity. Here we show that neurotrophin Trk receptors form a specific protein complex with the t-SNARE protein Syntaxin 1, both in vivo and in vitro. We also demonstrate that blockade of Syntaxin 1 abolishes neurotrophin-dependent growth of axons in neuronal cultures and decreases exocytotic events at the tip of axonal growth cones. 25-kDa soluble N-ethylmaleimide-sensitive factor attachment protein and Vesicle-associated membrane protein 2 do not participate in the formation of this SNARE complex, while tetanus neurotoxin-insensitive vesicle-associated membrane protein interacts with Trk receptors; knockdown of this (v) SNARE impairs Trk-dependent outgrowth. Taken together, our results support the notion that an atypical SNARE complex comprising Syntaxin 1 and tetanus neurotoxin-insensitive vesicle-associated membrane protein is required for axonal neurotrophin function.
Collapse
Affiliation(s)
- Giulia Fuschini
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Rosa Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Joan X. Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
11
|
Ros O, Barrecheguren PJ, Cotrufo T, Schaettin M, Roselló-Busquets C, Vílchez-Acosta A, Hernaiz-Llorens M, Martínez-Marmol R, Ulloa F, Stoeckli ET, Araújo SJ, Soriano E. A conserved role for Syntaxin-1 in pre- and post-commissural midline axonal guidance in fly, chick, and mouse. PLoS Genet 2018; 14:e1007432. [PMID: 29912942 PMCID: PMC6029812 DOI: 10.1371/journal.pgen.1007432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 07/03/2018] [Accepted: 05/18/2018] [Indexed: 02/03/2023] Open
Abstract
Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms. Syntaxin-1 is a core factor in tethering synaptic vesicles and mediating their fusion to the cell membrane at the synapse. Thus, Syntaxin-1 mediates neurotransmission in the adult nervous system. Here we show that this protein is also involved in axonal guidance in the CNS of vertebrates and invertebrates during the development of the nervous system: our systematic analysis of the phenotypes in the nervous system midline of fly, chick, and mouse embryos mutant for Syntaxin-1 unveils an evolutionarily conserved role for this protein in midline axonal guidance. Further, we also dissect the contribution of other proteins regulating neuronal exocytosis in axonal development. We propose that the coupling of the guidance molecule machinery to proteins that regulate exocytosis is a general mechanism linking chemotropism to axonal growth.
Collapse
Affiliation(s)
- Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Pablo José Barrecheguren
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Martina Schaettin
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alba Vílchez-Acosta
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ramón Martínez-Marmol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail: (ETS); (SJA); (ES)
| | - Sofia J. Araújo
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Vall d´Hebron Institute of Research (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| |
Collapse
|
12
|
Backhaus P, Langenhan T, Neuser K. Effects of transgenic expression of botulinum toxins in Drosophila. J Neurogenet 2017; 30:22-31. [PMID: 27276193 DOI: 10.3109/01677063.2016.1166223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clostridial neurotoxins (botulinum toxins and tetanus toxin) disrupt neurotransmitter release by cleaving neuronal SNARE proteins. We generated transgenic flies allowing for conditional expression of different botulinum toxins and evaluated their potential as tools for the analysis of synaptic and neuronal network function in Drosophila melanogaster by applying biochemical assays and behavioral analysis. On the biochemical level, cleavage assays in cultured Drosophila S2 cells were performed and the cleavage efficiency was assessed via western blot analysis. We found that each botulinum toxin cleaves its Drosophila SNARE substrate but with variable efficiency. To investigate the cleavage efficiency in vivo, we examined lethality, larval peristaltic movements and vision dependent motion behavior of adult Drosophila after tissue-specific conditional botulinum toxin expression. Our results show that botulinum toxin type B and botulinum toxin type C represent effective alternatives to established transgenic effectors, i.e. tetanus toxin, interfering with neuronal and non-neuronal cell function in Drosophila and constitute valuable tools for the analysis of synaptic and network function.
Collapse
Affiliation(s)
- Philipp Backhaus
- a Department of Neurophysiology , Institute of Physiology, University of Würzburg , Würzburg , Germany
| | - Tobias Langenhan
- a Department of Neurophysiology , Institute of Physiology, University of Würzburg , Würzburg , Germany
| | - Kirsa Neuser
- a Department of Neurophysiology , Institute of Physiology, University of Würzburg , Würzburg , Germany ;,b Carl-Ludwig-Institute for Physiology, Medical Faculty , University of Leipzig , Leipzig , Germany
| |
Collapse
|
13
|
Time-coded neurotransmitter release at excitatory and inhibitory synapses. Proc Natl Acad Sci U S A 2016; 113:E1108-15. [PMID: 26858411 DOI: 10.1073/pnas.1525591113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits.
Collapse
|
14
|
Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep 2016; 14:1258-1271. [PMID: 26832407 DOI: 10.1016/j.celrep.2015.12.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP) and RNA sequencing (RNA-seq) at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3' UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.
Collapse
Affiliation(s)
- Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, P.O. Box 951606, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Jason M McEwen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
15
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
16
|
Wu YJ, Tejero R, Arancillo M, Vardar G, Korotkova T, Kintscher M, Schmitz D, Ponomarenko A, Tabares L, Rosenmund C. Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol 2015. [PMID: 26203110 DOI: 10.1152/jn.00577.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STX1 is a major neuronal syntaxin protein located at the plasma membrane of the neuronal tissues. Rodent STX1 has two highly similar paralogs, STX1A and STX1B, that are thought to be functionally redundant. Interestingly, some studies have shown that the distribution patterns of STX1A and STX1B at the central and peripheral nervous systems only partially overlapped, implying that there might be differential functions between these paralogs. In the current study, we generated an STX1B knockout (KO) mouse line and studied the impact of STX1B removal in neurons of several brain regions and the neuromuscular junction (NMJ). We found that either complete removal of STX1B or selective removal of it from forebrain excitatory neurons in mice caused premature death. Autaptic hippocampal and striatal cultures derived from STX1B KO mice still maintained efficient neurotransmission compared with neurons from STX1B wild-type and heterozygous mice. Interestingly, examining high-density cerebellar cultures revealed a decrease in the spontaneous GABAergic transmission frequency, which was most likely due to a lower number of neurons in the STX1B KO cultures, suggesting that STX1B is essential for neuronal survival in vitro. Moreover, our study also demonstrated that although STX1B is dispensable for the formation of the mouse NMJ, it is required to maintain the efficiency of neurotransmission at the nerve-muscle synapse.
Collapse
Affiliation(s)
- Yuan-Ju Wu
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain; and
| | - Marife Arancillo
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gülcin Vardar
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Korotkova
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Michael Kintscher
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexey Ponomarenko
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain; and
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany;
| |
Collapse
|
17
|
Genetic influences on response to novel objects and dimensions of personality in Papio baboons. Behav Genet 2015; 45:215-27. [PMID: 25604451 DOI: 10.1007/s10519-014-9702-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Behavioral variation within and between populations and species of the genus Papio has been studied extensively, but little is known about the genetic causes of individual- or population-level differences. This study investigates the influence of genetic variation on personality (sometimes referred to as temperament) in baboons and identifies a candidate gene partially responsible for the variation in that phenotype. To accomplish these goals, we examined individual variation in response to both novel objects and an apparent novel social partner (using a mirror test) among pedigreed baboons (n = 578) from the Southwest National Primate Research Center. We investigated the frequency and duration of individual behaviors in response to novel objects and used multivariate factor analysis to identify trait-like dimensions of personality. Exploratory factor analysis identified two distinct dimensions of personality within this population. Factor 1 accounts for 46.8 % of the variance within the behavioral matrix, and consists primarily of behaviors related to the "boldness" of the subject. Factor 2 accounts for 18.8 % of the variation, and contains several "anxiety" like behaviors. Several specific behaviors, and the two personality factors, were significantly heritable, with the factors showing higher heritability than most individual behaviors. Subsequent analyses show that the behavioral reactions observed in the test protocol are associated with animals' social behavior observed later in their home social groups. Finally we used linkage analysis to map quantitative trait loci for the measured phenotypes. Single nucleotide polymorphisms in a positional candidate gene (SNAP25) are associated with variation in one of the personality factors, and CSF levels of homovanillic acid and 3-methoxy-4-hydroxyphenylglycol. This study documents heritable variation in personality among baboons and suggests that sequence variation in SNAP25 may influence differences in behavior and neurochemistry in these nonhuman primates.
Collapse
|
18
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Xu H, Mohtashami M, Stewart B, Boulianne G, Trimble WS. Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS One 2014; 9:e91471. [PMID: 24626111 PMCID: PMC3953403 DOI: 10.1371/journal.pone.0091471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Each membrane fusion event along the secretory and endocytic pathways requires a specific set of SNAREs to assemble into a 4-helical coiled-coil, the so-called trans-SNARE complex. Although most SNAREs contribute one helix to the trans-SNARE complex, members of the SNAP-25 family contribute two helixes. We report the characterization of the Drosophila homologue of SNAP-29 (dSNAP-29), which is expressed throughout development. Unlike the other SNAP-25 like proteins in fruit fly (i.e., dSNAP-25 and dSNAP-24), which form SDS-resistant SNARE complexes with their cognate SNAREs, dSNAP-29 does not participate in any SDS-resistant complexes, despite its interaction with dsyntaxin1 and dsyntaxin16 in vitro. Immunofluorescence studies indicated that dSNAP-29 is distributed in various tissues, locating in small intracellular puncta and on the plasma membrane, where it associates with EH domain-containing proteins implicated in the endocytic pathway. Overexpression and RNAi studies suggested that dSNAP-29 mediates an essential process in Drosophila development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| | - Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gabrielle Boulianne
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William S. Trimble
- Cell Biology Program, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 2013; 76:333-63. [PMID: 24274737 DOI: 10.1146/annurev-physiol-021113-170338] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | | |
Collapse
|
21
|
Rohena L, Neidich J, Truitt Cho M, Gonzalez KD, Tang S, Devinsky O, Chung WK. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis 2013; 1:e26314. [PMID: 25003006 PMCID: PMC3932847 DOI: 10.4161/rdis.26314] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022] Open
Abstract
Whole exome sequencing using a parent-child trio design to identify de novo mutations provides an efficient method to identify novel genes for rare diseases with low reproductive fitness that are difficult to study by more classical genetic methods of linkage analysis. We describe a 15 y old female with severe static encephalopathy, intellectual disability, and generalized epilepsy. After extensive metabolic and genetic testing, whole exome sequencing identified a novel de novo variant in Synaptosomal-associated protein-25 (SNAP25), c.142G > T p.Phe48Val alteration. This variant is predicted to be damaging by all prediction algorithms. SNAP25 is part of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complex which is involved in exocytotic release of neurotransmitters. Genetic alterations in Snap25 in animal models can cause anxiety-related behavior, ataxia and seizures. We suggest that SNAP25 mutations in humans are a novel genetic cause of intellectual disability and epilepsy.
Collapse
Affiliation(s)
- Luis Rohena
- Children's Hospital of New York; New York City, NY USA
| | | | | | | | - Sha Tang
- Ambry Genetics; Aliso Viejo, CA USA
| | | | - Wendy K Chung
- Columbia University Medical Center; New York City, NY USA
| |
Collapse
|
22
|
Megighian A, Zordan M, Pantano S, Scorzeto M, Rigoni M, Zanini D, Rossetto O, Montecucco C. Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J Cell Sci 2013; 126:3134-40. [PMID: 23687382 DOI: 10.1242/jcs.123802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SNARE proteins VAMP/synaptobrevin, SNAP-25 and syntaxin are core components of the apparatus that mediates neurotransmitter release. They form a heterotrimeric complex, and an undetermined number of SNARE complexes assemble to form a super-complex. Here, we present a radial model of this nanomachine. Experiments performed with botulinum neurotoxins led to the identification of one arginine residue in SNAP-25 and one aspartate residue in syntaxin (R206 and D253 in Drosophila melanogaster). These residues are highly conserved and predicted to play a major role in the protein-protein interactions between SNARE complexes by forming an ionic couple. Accordingly, we generated transgenic Drosophila lines expressing SNAREs mutated in these residues and performed an electrophysiological analysis of their neuromuscular junctions. Our results indicate that SNAP-25-R206 and syntaxin-D253 play a major role in neuroexocytosis and support a radial assembly of several SNARE complexes interacting via the ionic couple formed by these two residues.
Collapse
Affiliation(s)
- Aram Megighian
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 56 B, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Torregrosa-Hetland CJ, Villanueva J, Garcia-Martínez V, Expósito-Romero G, Francés MDM, Gutiérrez LM. Cortical F-actin affects the localization and dynamics of SNAP-25 membrane clusters in chromaffin cells. Int J Biochem Cell Biol 2012; 45:583-92. [PMID: 23220175 DOI: 10.1016/j.biocel.2012.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/22/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
It has been proposed recently that the F-actin cytoskeleton organizes the relative disposition of the SNARE proteins and calcium channels that form part of the secretory machinery in chromaffin cells, a neurosecretory model. To test this idea, we used confocal microscopy do determine if DsRed-SNAP-25 microdomains, which define the final sites of exocytosis along with syntaxin-1, preferentially remain in contact with F-actin cortical structures labelled by lifeact-EGFP. A quantitative analysis showed that in cells over-expressing these constructs there is a preferential colocalization, rather than a random distribution of SNAP-25 patches. To analyze the possible interactions between these proteins, we designed FRET experiments and tested whether treatment with agents that affect F-actin mobility would modify SNAP-25 movement. The significant FRET efficiencies detected suggest that direct molecular interactions occur, whereas dynamic experiments using TIRFM revealed that attenuation of cortical F-actin movement clearly diminishes the mobility of SNAP-25 clusters. Taken together, these data can be explained by a model that associates components of the secretory machinery to the F-actin cortex through flexible links.
Collapse
Affiliation(s)
- Cristina J Torregrosa-Hetland
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Carretera Nacional 332 s/n, 03550 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Safieddine S, El-Amraoui A, Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 2012; 35:509-28. [PMID: 22715884 DOI: 10.1146/annurev-neuro-061010-113705] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions.
Collapse
Affiliation(s)
- Saaid Safieddine
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, F75015, Paris, France.
| | | | | |
Collapse
|
25
|
Abstract
The molecular mechanisms underlying the homeostatic modulation of presynaptic neurotransmitter release are largely unknown. We have previously used an electrophysiology-based forward genetic screen to assess the function of >400 neuronally expressed genes for a role in the homeostatic control of synaptic transmission at the neuromuscular junction of Drosophila melanogaster. This screen identified a critical function for dysbindin, a gene linked to schizophrenia in humans (Dickman and Davis, 2009). Biochemical studies in other systems have shown that Snapin interacts with Dysbindin, prompting us to test whether Snapin might be involved in the mechanisms of synaptic homeostasis. Here, we demonstrate that loss of snapin blocks the homeostatic modulation of presynaptic vesicle release following inhibition of postsynaptic glutamate receptors. This is true for both the rapid induction of synaptic homeostasis induced by pharmacological inhibition of postsynaptic glutamate receptors, and the long-term expression of synaptic homeostasis induced by the genetic deletion of the muscle-specific GluRIIA glutamate receptor subunit. Loss of snapin does not alter baseline synaptic transmission, synapse morphology, synapse growth, or the number or density of active zones, indicating that the block of synaptic homeostasis is not a secondary consequence of impaired synapse development. Additional genetic evidence suggests that snapin functions in concert with dysbindin to modulate vesicle release and possibly homeostatic plasticity. Finally, we provide genetic evidence that the interaction of Snapin with SNAP25, a component of the SNARE complex, is also involved in synaptic homeostasis.
Collapse
|
26
|
Distinct presynaptic and postsynaptic dismantling processes of Drosophila neuromuscular junctions during metamorphosis. J Neurosci 2010; 30:11624-34. [PMID: 20810883 DOI: 10.1523/jneurosci.0410-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse remodeling is a widespread and fundamental process that underlies the formation of neuronal circuitry during development and in adaptation to physiological and/or environmental changes. However, the mechanisms of synapse remodeling are poorly understood. Synapses at the neuromuscular junction (NMJ) in Drosophila larvae undergo dramatic and extensive remodeling during metamorphosis to generate adult-specific synapses. To explore the molecular and cellular processes of synapse elimination, we performed confocal microscopy, live imaging, and electron microscopy (EM) of NMJ synapses during the early stages of metamorphosis in Drosophila in which the expressions of selected genes were genetically altered. We report that the localization of the postsynaptic scaffold protein Disc large (Dlg) becomes diffuse first and then undetectable, as larval muscles undergo histolysis, whereas presynaptic vesicles aggregate and are retrogradely transported along axons in synchrony with the formation of filopodia-like structures along NMJ elaborations and retraction of the presynaptic plasma membrane. EM revealed that the postsynaptic subsynaptic reticulum vacuolizes in the early stages of synapse dismantling concomitant with diffuse localization of Dlg. Ecdysone is the major hormone that drives metamorphosis. Blockade of the ecdysone signaling specifically in presynaptic neurons by expression of a dominant-negative form of ecdysone receptors delayed presynaptic but not postsynaptic dismantling. However, inhibition of ecdysone signaling, as well as ubiquitination pathway or apoptosis specifically in postsynaptic muscles, arrested both presynaptic and postsynaptic dismantling. These results demonstrate that presynaptic and postsynaptic dismantling takes place through different mechanisms and that the postsynaptic side plays an instructive role in synapse dismantling.
Collapse
|
27
|
Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 2010; 11:514-22. [PMID: 20383202 PMCID: PMC4022039 DOI: 10.1038/nrn2839] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
Collapse
Affiliation(s)
- Hugo J Bellen
- Department ofNeuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
28
|
Wasser CR, Kavalali ET. Leaky synapses: regulation of spontaneous neurotransmission in central synapses. Neuroscience 2009; 158:177-88. [PMID: 18434032 PMCID: PMC2662333 DOI: 10.1016/j.neuroscience.2008.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 03/08/2008] [Indexed: 01/25/2023]
Abstract
The mechanisms underlying spontaneous neurotransmitter release are not well understood. Under physiological as well as pathophysiological circumstances, spontaneous fusion events can set the concentration of ambient levels of neurotransmitter within the synaptic cleft and in the extracellular milieu. In the brain, unregulated release of excitatory neurotransmitters, exacerbated during pathological conditions such as stroke, can lead to neuronal damage and death. In addition, recent findings suggest that under physiological circumstances spontaneous release events can trigger postsynaptic signaling events independent of evoked neurotransmitter release. Therefore, elucidation of mechanisms underlying spontaneous neurotransmission may help us better understand the functional significance of this form of release and provide tools for its selective manipulation. For instance, our recent investigations indicate that the level of cholesterol in the synapse plays a critical role in limiting spontaneous synaptic vesicle fusion. Therefore, alterations in synaptic cholesterol metabolism can be a critical determinant of glutamatergic neurotransmission at rest. This article aims to provide a closer look into our current understanding of the mechanisms underlying spontaneous neurotransmission and the signaling triggered by these unitary release events.
Collapse
Affiliation(s)
- Catherine R. Wasser
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T. Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
29
|
Kloepper TH, Kienle CN, Fasshauer D. SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol Biol Evol 2008; 25:2055-68. [PMID: 18621745 DOI: 10.1093/molbev/msn151] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vesicle trafficking between intracellular compartments of eukaryotic cells is mediated by conserved protein machineries. In each trafficking step, fusion of the vesicle with the acceptor membrane is driven by a set of distinctive soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins that assemble into tight 4-helix bundle complexes between the fusing membranes. During evolution, about 20 primordial SNARE types were modified independently in different eukaryotic lineages by episodes of duplication and diversification. Here we show that 2 major changes in the SNARE repertoire occurred in the evolution of animals, each reflecting a main overhaul of the endomembrane system. In addition, we found several lineage-specific losses of distinct SNAREs, particularly in nematodes and platyhelminthes. The first major transformation took place during the transition to multicellularity. The primary event that occurred during this transformation was an increase in the numbers of endosomal SNAREs, but the SNARE-related factor lethal giant larvae also emerged. Apparently, enhanced endosomal sorting capabilities were an advantage for early multicellular animals. The second major transformation during the rise of vertebrates resulted in a robust expansion of the secretory set of SNAREs, which may have helped develop a more versatile secretory apparatus.
Collapse
Affiliation(s)
- Tobias H Kloepper
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
30
|
Boylan KLM, Mische S, Li M, Marqués G, Morin X, Chia W, Hays TS. Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet 2008; 4:e36. [PMID: 18282112 PMCID: PMC2242817 DOI: 10.1371/journal.pgen.0040036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/26/2007] [Indexed: 01/27/2023] Open
Abstract
The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.
Collapse
Affiliation(s)
- Kristin L. M Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mingang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Guillermo Marqués
- Department of Cell Biology, The University of Alabama at Birmingham, Alabama, United States of America
| | - Xavier Morin
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), CNRS UMR6216 INSERM-Université de la Méditerrannée, Marseilles, France
| | - William Chia
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Thomas S Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
32
|
Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM. Open syntaxin docks synaptic vesicles. PLoS Biol 2008; 5:e198. [PMID: 17645391 PMCID: PMC1914072 DOI: 10.1371/journal.pbio.0050198] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 05/17/2007] [Indexed: 11/19/2022] Open
Abstract
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark T Palfreyman
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Shigeki Watanabe
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Shawn Olsen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Mutations in a Drosophila alpha2delta voltage-gated calcium channel subunit reveal a crucial synaptic function. J Neurosci 2008; 28:31-8. [PMID: 18171920 DOI: 10.1523/jneurosci.4498-07.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-dependent calcium channels regulate many aspects of neuronal biology, including synaptic transmission. In addition to their alpha1 subunit, which encodes the essential voltage gate and selective pore, calcium channels also contain auxiliary alpha2delta, beta, and gamma subunits. Despite progress in understanding the biophysical properties of calcium channels, the in vivo functions of these auxiliary subunits remain unclear. We have isolated mutations in the gene encoding an alpha2delta calcium channel subunit (d alpha2delta-3) using a forward genetic screen in Drosophila. Null mutations in this gene are embryonic lethal and can be rescued by expression in the nervous system, demonstrating that the essential function of this subunit is neuronal. The photoreceptor phenotype of d alpha2delta-3 mutants resembles that of the calcium channel alpha1 mutant cacophony (cac), suggesting shared functions. We have examined in detail genotypes that survive to the third-instar stage. Electrophysiological recordings demonstrate that synaptic transmission is severely impaired in these mutants. Thus the alpha2delta calcium channel subunit is critical for calcium-dependent synaptic function. As such, this Drosophila isoform is the likely partner to the presynaptic calcium channel alpha1 subunit encoded by the cac locus. Consistent with this hypothesis, cacGFP fluorescence at the neuromuscular junction is reduced in d alpha2delta-3 mutants. This is the first characterization of an alpha2delta-3 mutant in any organism and indicates a necessary role for alpha2delta-3 in presynaptic vesicle release and calcium channel expression at active zones.
Collapse
|
34
|
Ohyama T, Verstreken P, Ly CV, Rosenmund T, Rajan A, Tien AC, Haueter C, Schulze KL, Bellen HJ. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol 2007; 179:1481-96. [PMID: 18158335 PMCID: PMC2373489 DOI: 10.1083/jcb.200710061] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/14/2007] [Indexed: 02/08/2023] Open
Abstract
Posttranslational modification through palmitoylation regulates protein localization and function. In this study, we identify a role for the Drosophila melanogaster palmitoyl transferase Huntingtin-interacting protein 14 (HIP14) in neurotransmitter release. hip14 mutants show exocytic defects at low frequency stimulation and a nearly complete loss of synaptic transmission at higher temperature. Interestingly, two exocytic components known to be palmitoylated, cysteine string protein (CSP) and SNAP25, are severely mislocalized at hip14 mutant synapses. Complementary DNA rescue and localization experiments indicate that HIP14 is required solely in the nervous system and is essential for presynaptic function. Biochemical studies indicate that HIP14 palmitoylates CSP and that CSP is not palmitoylated in hip14 mutants. Furthermore, the hip14 exocytic defects can be suppressed by targeting CSP to synaptic vesicles using a chimeric protein approach. Our data indicate that HIP14 controls neurotransmitter release by regulating the trafficking of CSP to synapses.
Collapse
Affiliation(s)
- Tomoko Ohyama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Drosophila huntingtin-interacting protein 14 is a presynaptic protein required for photoreceptor synaptic transmission and expression of the palmitoylated proteins synaptosome-associated protein 25 and cysteine string protein. J Neurosci 2007; 27:12874-83. [PMID: 18032660 DOI: 10.1523/jneurosci.2464-07.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Palmitoylation affects the trafficking, stability, aggregation, and/or functional activity of a substantial number of neuronal proteins. We identified mutations in dHIP14, the Drosophila homolog of the human palmitoyl transferase, Huntingtin-interacting protein 14 (HIP14). HIP14 was previously reported to localize primarily to Golgi and to palmitoylate the neuronal proteins synaptosome-associated protein 25 (SNAP-25), PSD-95 (postsynaptic density-95), GAD65, Synaptotagmin, and Huntingtin in mammalian neurons. We find dHIP14 to be an essential maternal effect gene required for photoreceptor synaptic transmission and for proper in vivo expression of the palmitoylated presynaptic proteins SNAP-25 and cysteine string protein. In non-neuronal cells in the fly, dHIP14 protein is found in Golgi. However, in fly neurons, we find dHIP14 primarily in presynaptic terminals, something we also observe with HIP14. In mammalian neurons, we also find a significant fraction of HIP14 colocalizing with a synaptic vesicle marker. Based on localization of the palmitoyl transferase HIP14 within the presynaptic nerve terminal, we propose palmitoylation as a possible mechanism that may be operating to rapidly regulate synaptic efficacy.
Collapse
|
36
|
Schwarz TL. Transmitter release at the neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:105-44. [PMID: 17137926 DOI: 10.1016/s0074-7742(06)75006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Thomas L Schwarz
- Program in Neurobiology, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
38
|
Stewart BA, Pearce J, Bajec M, Khorana R. Disruption of synaptic development and ultrastructure byDrosophila NSF2 alleles. J Comp Neurol 2005; 488:101-11. [PMID: 15912502 DOI: 10.1002/cne.20603] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
First identified as the cytosolic component that restored intra-Golgi vesicle trafficking following N-ethylmaleimide poisoning, N-ethylmaleimide-sensitive factor (NSF) was later shown to be an ATPase that participates in many vesicular trafficking events. Current models hold that NSF disassembles postfusion SNARE protein complexes, allowing them to participate in further rounds of vesicle cycling. To further understand the role of NSF in neural function, we have embarked on genetic studies of Drosophila NSF2. In one approach, we employed transgenic flies that carry a dominant-negative form of NSF2 (NSF(E/Q)). When expressed in neurons this construct suppresses synaptic transmission, increases activity-dependent fatigue of transmitter release, and reduces the functional size of the pool of vesicles available for release. Unexpectedly, it also induced pronounced overgrowth of the neuromuscular junction. The aim of the present study was twofold. First, we sought to determine if the neuromuscular junction (NMJ) overgrowth phenotype is present throughout development. Second, we examined NSF2(E/Q) larval synapses by serial section electron microscopy in order to determine if there are ultrastructural correlates to the observed physiological and morphological phenotypes. We indeed found that the NMJ overgrowth phenotype is present at the embryonic neuromuscular synapse. Likewise, at the ultrastructural level, we found considerable alterations in the number and distribution of synapses and active zones, whereas the number of vesicles present was not changed. From these data we conclude that a primary phenotype of the NSF2(E/Q) transgene is a developmental one and that alteration in the number and distribution of active zones contributes to the NSF2(E/Q) physiological phenotype.
Collapse
Affiliation(s)
- Bryan A Stewart
- Department of Life Sciences and Zoology, University of Toronto at Scarborough, Ontario, Canada.
| | | | | | | |
Collapse
|
39
|
Buschbeck EK, Hoy RR. The development of a long, coiled, optic nerve in the stalk-eyed fly Cyrtodiopsis whitei. Cell Tissue Res 2005; 321:491-504. [PMID: 16010600 DOI: 10.1007/s00441-005-1142-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/06/2005] [Indexed: 02/02/2023]
Abstract
In the stalk-eyed fly Cyrtodiopsis whitei (Diopsidae; Diptera), the relatively long optic nerve develops within the tight lumen of a very short eyestalk. Axonal growth is generally considered in terms of path finding, selective fasciculation, and towing. Physical forces that are necessary for axon lengthening are generated either by the growth cone or by the growth of surrounding tissues. Therefore, it is surprising to encounter a loosely coiled nerve apparently lacking any attachments that could allow for pull, or towing, of the nerve. In this study, we used histological sections and whole-mount preparations to confirm that the optic nerve of the stalk-eyed fly indeed elongates without the external application of tension to the nerve. Secondly, we examined the distribution of cytoskeletal elements and selected proteins that may be involved in axon extension. Staining against the vesicle fusion proteins SNAP-24 and SNAP-25 consistently results in stronger staining in the rapidly extending optic nerve than in a control nerve, suggesting a possible role of these proteins in the extension process. On a gross morphological level, SNAP-24/25 as well as the cytoskeletal elements actin and tubulin are uniformly distributed throughout the lengths of the growing nerve, suggesting that nerve elongation is distributed rather than localized. Finally, we identified glia as a possible source for tension within the nerve bundle. Glia proliferate rapidly in the optic nerve but not in the control nerve. Much work continues to focus on the growth of axons in culture, but this study is one of the few that considers the dynamics of nerve bundle extension as a whole.
Collapse
Affiliation(s)
- Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| | | |
Collapse
|
40
|
Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Südhof T, Bruns D. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 2005; 24:2114-26. [PMID: 15920476 PMCID: PMC1150890 DOI: 10.1038/sj.emboj.7600696] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 05/03/2005] [Indexed: 11/09/2022] Open
Abstract
SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.
Collapse
Affiliation(s)
- Maria Borisovska
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| | - Ying Zhao
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| | | | - Nataliya Glyvuk
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| | - Shigeo Takamori
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulf Matti
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| | - Jens Rettig
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| | - Thomas Südhof
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Dieter Bruns
- Department of Physiology, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
41
|
Schulze SR, Sinclair DAR, Fitzpatrick KA, Honda BM. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 2005; 169:2165-77. [PMID: 15687284 PMCID: PMC1449577 DOI: 10.1534/genetics.103.023341] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin comprises a transcriptionally repressive chromosome compartment in the eukaryotic nucleus; this is exemplified by the silencing effect it has on euchromatic genes that have been relocated nearby, a phenomenon known as position-effect variegation (PEV), first demonstrated in Drosophila melanogaster. However, the expression of essential heterochromatic genes within these apparently repressive regions of the genome presents a paradox, an understanding of which could provide key insights into the effects of chromatin structure on gene expression. To date, very few of these resident heterochromatic genes have been characterized to any extent, and their expression and regulation remain poorly understood. Here we report the cloning and characterization of two proximal heterochromatic genes in D. melanogaster, located deep within the centric heterochromatin of the left arm of chromosome 3. One of these genes, RpL15, is uncharacteristically small, is highly expressed, and encodes an essential ribosomal protein. Its expression appears to be compromised in a genetic background deficient for heterochromatin protein 1 (HP1), a protein associated with gene silencing in these regions. The second gene in this study, Dbp80, is very large and also appears to show a transcriptional dependence upon HP1; however, it does not correspond to any known lethal complementation group and is likely to be a nonessential gene.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Cell Survival
- Chromatin/genetics
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/metabolism
- Drosophila Proteins/biosynthesis
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Exons
- Female
- Gene Silencing
- Genetic Complementation Test
- Germ-Line Mutation
- Heterochromatin/chemistry
- Heterochromatin/genetics
- Heterozygote
- Introns
- Male
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phenotype
- Polymerase Chain Reaction
- Ribosomal Proteins/biosynthesis
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sex Factors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transgenes
- Wings, Animal/embryology
- Wings, Animal/pathology
Collapse
Affiliation(s)
- Sandra R Schulze
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
42
|
Nazarian J, Bouri K, Hoffman EP. Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction. Physiol Genomics 2004; 21:70-80. [PMID: 15623565 DOI: 10.1152/physiolgenomics.00227.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuromuscular junction (NMJ) is a regionally specialized area of myofibers defined, in part, by specific gene expression from underlying myonuclei. We sought to obtain a more complete picture of the mRNA transcripts and proteins playing a role in NMJ formation and maintenance using laser capture microdissection (LCM) and to define expression profiles of the nuclear domain at the NMJ. NMJs (800) were isolated from normal mouse tibialis anterior muscle by LCM, with an equal amount of adjacent non-NMJ regions isolated. Many known components of the NMJ were found significantly differentially expressed. Three differentially expressed potential novel components of the NMJ were chosen for further study, and each was validated by immunostaining with and without blocking peptides (3/3), quantitative RT-PCR (3/3), and in situ hybridization (1/3). The three genes validated were dual-specificity phosphatase-6 (DUSP6), ribosomal receptor-binding protein-1 (RRBP1), and vacuolar protein sorting-26 (VPS26). Query of each of these novel components in a 27-time point in vivo muscle regeneration series showed expression commensurate with previously known NMJ markers (nestin, alpha-ACh receptor). Understanding and discovering elements responsible for the integrity and function of NMJs is relevant to understanding neuromuscular diseases such as spinal muscular atrophy. Our LCM-based mRNA expression profiling provided us with new means of identification of specific genes potentially responsible for NMJ stability and function and new candidates for involvement in disease pathogenesis.
Collapse
Affiliation(s)
- Javad Nazarian
- The Institute for Biomedical Sciences, George Washington University, Washington, District of Columbia, USA
| | | | | |
Collapse
|
43
|
Weimer RM, Richmond JE. Synaptic vesicle docking: a putative role for the Munc18/Sec1 protein family. Curr Top Dev Biol 2004; 65:83-113. [PMID: 15642380 DOI: 10.1016/s0070-2153(04)65003-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Robby M Weimer
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- J Douglas Armstrong
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, EH1 2QL, UK.
| | | | | |
Collapse
|
45
|
Abstract
The SNARE superfamily has become, since its discovery approximately a decade ago, the most intensively studied element of the protein machinery involved in intracellular trafficking. Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. Although common themes have emerged from structural and functional studies of SNAREs and other components of the eukaryotic membrane fusion machinery, there is still much to learn about how the assembly and activity of this machinery is choreographed in living cells.
Collapse
Affiliation(s)
- Daniel Ungar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Robby M Weimer
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | |
Collapse
|
47
|
Szule JA, Coorssen JR. Revisiting the role of SNAREs in exocytosis and membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:121-35. [PMID: 12914953 DOI: 10.1016/s0167-4889(03)00095-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For over a decade SNARE hypotheses have been proposed to explain the mechanism of membrane fusion, yet the field still lacks sufficient evidence to conclusively identify the minimal components of native fusion. Consequently, debate concerning the postulated role(s) of SNAREs in membrane fusion continues. The focus of this review is to revisit original literature with a current perspective. Our analysis begins with the earliest studies of clostridial toxins, leading to various cellular and molecular approaches that have been used to test for the roles of SNAREs in exocytosis. We place much emphasis on distinguishing between specific effects on membrane fusion and effects on other critical steps in exocytosis. Although many systems can be used to study exocytosis, few permit selective access to specific steps in the pathway, such as membrane fusion. Thus, while SNARE proteins are essential to the physiology of exocytosis, assay limitations often prevent definitive conclusions concerning the molecular mechanism of membrane fusion. In all, the SNAREs are more likely to function upstream as modulators or priming factors of fusion.
Collapse
Affiliation(s)
- Joseph A Szule
- Cellular and Molecular Neurobiology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
48
|
Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, Backlund PS, Zimmerberg J. Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Sci 2003; 116:2087-97. [PMID: 12692190 DOI: 10.1242/jcs.00374] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SNAREs such as VAMP, SNAP-25 and syntaxin are essential for intracellular trafficking, but what are their exact molecular roles and how are their interactions with other proteins manifest? Capitalizing on the differential sensitivity of SNAREs to exogenous proteases, we quantified the selective removal of identified SNAREs from native secretory vesicles without loss of fusion competence. Using previously established fusion assays and a high sensitivity immunoblotting protocol, we analyzed the relationship between these SNARE proteins and Ca2+-triggered membrane fusion. Neither the extent of fusion nor the number of intermembrane fusion complexes per vesicle were correlated with the measured density of identified egg cortical vesicle (CV) SNAREs. Without syntaxin, CVs remained fusion competent. Surprisingly, for one (but not another) protease the Ca2+ dependence of fusion was correlated with CV SNARE density, suggesting a native protein complex that associates with SNAREs, the architecture of which ensures high Ca2+ sensitivity. As SNAREs may function during CV docking in vivo, and as further proteolysis after SNARE removal eventually ablates fusion, we hypothesize that the triggered steps of regulated fusion (Ca2+ sensitivity and the catalysis and execution of fusion) require additional proteins that function downstream of SNAREs.
Collapse
Affiliation(s)
- Jens R Coorssen
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.
Collapse
Affiliation(s)
- Ruud F G Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (VUA), De Boelelaan 1087, The Netherlands
| | | |
Collapse
|
50
|
Xue M, Zhang B. Do SNARE proteins confer specificity for vesicle fusion? Proc Natl Acad Sci U S A 2002; 99:13359-61. [PMID: 12374848 PMCID: PMC129673 DOI: 10.1073/pnas.232565999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mingshan Xue
- Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|