1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Gao X, Yu J, Zhang L, Shi H, Yan Y, Han Y, Fang M, Liu Y, Wu C, Fan S, Huang C. Mulberrin extends lifespan in Caenorhabditis elegans through detoxification function. J Appl Toxicol 2024; 44:833-845. [PMID: 38291015 DOI: 10.1002/jat.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
Mulberrin, a naturally occurring flavone found in mulberry and Romulus Mori, exhibits diverse biological functions. Here, we showed that mulberrin extended both the lifespan and healthspan in C. elegans. Moreover, mulberrin increased the worms' resistance to toxicants and activated the expression of detoxification genes. The longevity-promoting effect of mulberrin was attenuated in nuclear hormone receptor (NHR) homologous nhr-8 and daf-12 mutants, indicating that the lifespan extending effects of mulberrin in C. elegans may depend on nuclear hormone receptors NHR-8/DAF-12. Further analyses revealed the potential associations between the longevity effects of mulberrin and the insulin/insulin-like growth factor signaling (IIS) and adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways. Together, our findings suggest that mulberrin may prolong lifespan and healthspan by activating detoxification functions mediated by nuclear receptors.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyuan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Li M, Gao F, Zhu L, Li J, Xiang J, Xi Y, Xiang X. Geographic origin shapes the adaptive divergences of Rotaria rotatoria (Rotifera, Bdelloidea) to thermal stress: Insights from ecology and transcriptomics. Ecol Evol 2024; 14:e11307. [PMID: 38665893 PMCID: PMC11043679 DOI: 10.1002/ece3.11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Global warming has raised concerns regarding the potential impact on aquatic biosafety and health. To illuminate the adaptive mechanisms of bdelloid rotifers in response to global warming, the ecological and transcriptomic characteristics of two strains (HX and ZJ) of Rotaria rotatoria were investigated at 25°C and 35°C. Our results showed an obvious genetic divergence between the two geographic populations. Thermal stress significantly reduced the average lifespan of R. rotatoria in both strains, but increased the offspring production in the ZJ strain. Furthermore, the expression levels of genes Hsp70 were significantly upregulated in the HX strain, while GSTo1 and Cu/Zn-SOD were on the contrary. In the ZJ strain, the expression levels of genes Hsp70, CAT2, and GSTo1 were upregulated under thermal stress. Conversely, a significant decrease in the expression level of the Mn-SOD gene was observed in the ZJ strain under thermal stress. Transcriptomic profiling analysis revealed a total of 105 and 5288 differentially expressed genes (DEGs) in the HX and ZJ strains under thermal stress, respectively. The PCA results showed clear differences in gene expression pattern between HX and ZJ strains under thermal stress. Interestingly, compared to the HX strain, numerous downregulated DEGs in the ZJ strain were enriched into pathways related to metabolism under thermal stress, suggesting that rotifers from the ZJ strain prioritize resource allocation to reproduction by suppressing costly metabolic processes. This finding is consistent with the life table results. This study provides new insights into the adaptive evolution of aquatic animals in the context of global climate change.
Collapse
Affiliation(s)
- Meng Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Fan Gao
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Lingyun Zhu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jianan Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jinjin Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Yilong Xi
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| | - Xianling Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
5
|
Menzel R, Zhang X, Pietrucik T, Bathelt A, Ruess L. Omega-3 PUFA and the fitness and cognition of the nematode Caenorhabditis elegans under different environmental conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110925. [PMID: 38040326 DOI: 10.1016/j.cbpb.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Many invertebrate species possess the metabolic ability to synthesize long-chain ω3 polyunsaturated fatty acids (PUFA) de novo. Due to their diverse effects on membrane architecture, neuroplasticity, growth and reproduction, PUFA have a high potential to positively influence the fitness of an organism. But how and when do these supposed advantages actually come into play? Other species, that are often closely related, pass natural selection without this special metabolic ability. The ω3-PUFA rich model organism Caenorhabditis elegans (Nematoda) and its mutant fat-1(wa9), lacking these PUFA, are a suitable test system. We analyzed potential impairments in reproduction and growth in a soil assay. Further, chemotaxis after aversive olfactory, associative learning and integration of a second sensory signal were assessed on agar plates. Moreover, we analyzed the phospholipid pattern of both C. elegans strains and further free-living nematodes species at different temperatures. While the phenotypic effects were rather small under standard conditions, lowering the temperature to 15 or even 10 °C or reducing the soil moisture, led to significant limitations, with the investigated parameters for neuroplasticity being most impaired. The ω3-PUFA free C. elegans mutant strain fat-1 did not adapt the fatty acid composition of its phospholipids to a decreasing temperature, while ω3-PUFA containing nematodes proportionally increased this PUFA group. In contrats, other ω3-PUFA free nematode species produced significantly more ω6-PUFA. Thus, the ability to synthesize long-chain ω3-PUFA de novo likely is fundamental for an increase in neuroplasticity and an efficient way for regulating membrane fluidity to maintain their functionality.
Collapse
Affiliation(s)
- Ralph Menzel
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| | - Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Tamara Pietrucik
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Antonia Bathelt
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
6
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Wu F, Wei H, Chen X, Du Z, Huang Y, Shi H, Yang Y, Du A, Ma G. Fatty acid- and retinol-binding protein 6 does not control worm fatty acid content in Caenorhabditis elegans but might play a role in Haemonchus contortus parasitism. Parasit Vectors 2023; 16:230. [PMID: 37430357 DOI: 10.1186/s13071-023-05836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Nematodes have lost the ability to synthesise necessary lipids de novo and have complementally evolved the capacity to acquire fatty acids and their derivatives from a diet or host animal. Nematode-specific fatty acid- and retinol-binding protein (FAR) family is one approach that facilitates lipid acquisition, representing an Achilles heel and potential target against roundworms of socioeconomic significance. However, little is known about their detailed functional roles in either free-living or parasitic nematodes. METHODS A genome-wide identification and curation were performed to screen the FAR family members of Haemonchus contortus. Their transcription patterns in worms were also analysed to identify the targets. Ligand binding assay and molecular docking were conducted to verify the fatty acid binding activities of FAR proteins of interest. RNA interference (RNAi) and heterologous expression (rescuing) experiments were designed to explore the potential roles of the selected FAR protein in nematodes. Localisation of the protein was shown in sections of paraffin-embedded worms after an immunohistochemistry (IHC) assay. RESULTS Here, an orthologue of far-6 in the model organism Caenorhabditis elegans (Ce-far-6) was functionally characterised in a parasitic nematode, H. contortus (Hc-far-6). It is demonstrated that knockdown of Ce-far-6 gene did not affect worm fat content, reproduction, or lifespan, but decreased worm body length at an early life stage of C. elegans. In particular, the Ce-far-6 mutant associated phenotype was completely rescued by Hc-far-6, suggesting a conserved functional role. Surprisingly, there were distinct tissue expression patterns of FAR-6 in the free-living C. elegans and parasitic H. contortus. High transcriptional level of Hc-far-6 and dominant expression of FAR-6 in the intestine of the parasitic stage of H. contortus link this gene/protein to nematode parasitism. CONCLUSIONS These findings substantially enhance our understanding of far genes and the associated lipid biology of this important parasitic nematode at a molecular level, and the approaches established are readily applicable to the studies of far genes in a broad range of parasites.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haidian Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530004, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hengzhi Shi
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Cheng JY, Yu PH, Xia X, Zhang R, Wang LH, Fang JC, Hoffmann AA, Luo GH. Identification of a fatty acid synthase gene (FAS1) from Laodelphax striatellus planthoppers contributing to fecundity. INSECT SCIENCE 2023; 30:599-610. [PMID: 36308064 DOI: 10.1111/1744-7917.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/15/2023]
Abstract
Fatty acid synthase (FAS) is a multifunctional enzyme that plays an important role in the formation of fatty acids. The fatty acids take part in many processes, such as cell signaling and energy metabolism, and in insects they are important in both cuticular hydrocarbon (CHC) formation and reproduction. Here we characterized the sequence structure and function of an FAS from the small brown planthopper (SBPH), Laodelphax striatellus. The full-length open reading frame (ORF) sequence of LsFAS1 was 7122 bp, encoding a predicted protein of 2373 amino acid residues. There were 7 functional domains in the LsFAS1 protein sequence. Gene expression screening by real-time quantitative polymerase chain reaction (RT-qPCR) showed that LsFAS1 was expressed in all developmental stages. Relative expression was highest at the 4th-instar and female adult stages. Among different tissues, the expression level of LsFAS1 in the ovary was the highest. Phylogenetic analysis showed that LsFAS1 clustered in a clade with 2 FASs from Nilaparvata lugens. Furthermore, these 3 FASs are related to cockroach BgFAS and locust LmFAS. After RNA interference-mediated knock-down, most treated insects died at eclosion. In addition, the lifespan of dsFAS1-treated female adults was shorter than that of the dsGFP-injected control, and offspring production decreased. Also, the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes decreased. Virgin females dissected at days 2 and 4 post-eclosion showed many matured oocytes in planthoppers treated with dsGFP but not with dsFAS1. These data highlight the importance of LsFAS1 in SBPH, including a role in reproduction.
Collapse
Affiliation(s)
- Jia-Yan Cheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pei-Han Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xue Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Li-Hua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Guang-Hua Luo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
9
|
Perez MA, Clostio AJ, Houston IR, Ruiz J, Magtanong L, Dixon SJ, Watts JL. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. PLoS Genet 2022; 18:e1010436. [PMID: 36178986 PMCID: PMC9555615 DOI: 10.1371/journal.pgen.1010436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/12/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lipids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as an antioxidant, but this has not been tested in animal models. In this study, we used C. elegans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalogens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in both wild type and ether-lipid deficient mutants can be rescued in several ways that change the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids (PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcriptional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our studies reveal important differences in how dietary lipids influence germ cell ferroptosis versus whole-body peroxide-induced oxidative stress. These studies highlight a potentially beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.
Collapse
Affiliation(s)
- Marcos A. Perez
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Andrea J. Clostio
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Isabel R. Houston
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Jimena Ruiz
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Leslie Magtanong
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jennifer L. Watts
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
10
|
Savini M, Folick A, Lee YT, Jin F, Cuevas A, Tillman MC, Duffy JD, Zhao Q, Neve IA, Hu PW, Yu Y, Zhang Q, Ye Y, Mair WB, Wang J, Han L, Ortlund EA, Wang MC. Lysosome lipid signalling from the periphery to neurons regulates longevity. Nat Cell Biol 2022; 24:906-916. [PMID: 35681008 PMCID: PMC9203275 DOI: 10.1038/s41556-022-00926-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.
Collapse
Affiliation(s)
- Marzia Savini
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andrew Folick
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yi-Tang Lee
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - André Cuevas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew C Tillman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon D Duffy
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Qian Zhao
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isaiah A Neve
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center of Epigenetics and Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Yuan D, Li S, Shang Z, Wan M, Lin Y, Zhang Y, Feng Y, Xu L, Xiao L. Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biol 2021; 19:178. [PMID: 34461887 PMCID: PMC8407040 DOI: 10.1186/s12915-021-01111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Nematodes are a widespread and diverse group comprising free-living and parasitic species, some of which have major detrimental effects on crops, animals, and human health. Genomic comparisons of nematodes may help reveal the genetic bases for the evolution of parasitic lifestyles. Fatty acid and retinol-binding proteins (FARs) are thought to be unique to nematodes and play essential roles in their development, reproduction, infection, and possibly parasitism through promoting the uptake, transport, and distribution of lipid and retinol. However, the evolution of FAR family proteins across the phylum Nematoda remains elusive. Results We report here the evolutionary relationship of the FAR gene family across nematodes. No FAR was found in Trichocephalida species and Romanomermis culicivorax from Clade I, and FAR could be found in species from Clades III, IV, and V. FAR proteins are conserved in Clade III species and separated into three clusters. Tandem duplications and high divergence events lead to variable richness and low homology of FARs in Steinernema of Clade IVa, Strongyloides of Clade IVb, and intestinal parasitic nematodes from Clades Vc and Ve. Moreover, different richness and sequence variations of FARs in pine wood, root-knot, stem, and cyst nematodes might be determined by reproduction mode or parasitism. However, murine lungworm Angiostrongylus and bovine lungworm Dictyocaulus viviparus from Clade Vd have only 3–4 orthologs of FAR. RNA-seq data showed that far genes, especially far-1 and far-2, were highly expressed in most nematodes. Angiostrongylus cantonensis FAR-1 and FAR-3 have low sequence homology and distinct ligand-binding properties, leading to differences in the cavity volume of proteins. These data indicate that FAR proteins diverged early and experienced low selective pressure to form genus-level diversity. The far genes are present in endophyte or root-colonized bacteria of Streptomyces, Kitasatospora sp., Bacillus subtilis, and Lysobacter, suggesting that bacterial far genes might be derived from plant-parasitic nematodes by horizontal gene transfer. Conclusions Data from these comparative analyses have provided insights into genus-level diversity of FAR proteins in the phylum Nematoda. FAR diversification provides a glimpse into the complicated evolution history across free-living and parasitic nematodes. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01111-3.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Song Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziyu Shang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Muchun Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|
14
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
15
|
Guha S, Calarco S, Gachet MS, Gertsch J. Juniperonic Acid Biosynthesis is Essential in Caenorhabditis Elegans Lacking Δ6 Desaturase ( fat-3) and Generates New ω-3 Endocannabinoids. Cells 2020; 9:cells9092127. [PMID: 32961767 PMCID: PMC7564282 DOI: 10.3390/cells9092127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, the C20:4 polyunsaturated fatty acid arachidonic acid (AA) plays important roles as a phospholipid component, signaling molecule and precursor of the endocannabinoid-prostanoid axis. Accordingly, the absence of AA causes detrimental effects. Here, compensatory mechanisms involved in AA deficiency in Caenorhabditis elegans were investigated. We show that the ω-3 C20:4 polyunsaturated fatty acid juniperonic acid (JuA) is generated in the C. elegansfat-3(wa22) mutant, which lacks Δ6 desaturase activity and cannot generate AA and ω-3 AA. JuA partially rescued the loss of function of AA in growth and development. Additionally, we observed that supplementation of AA and ω-3 AA modulates lifespan of fat-3(wa22) mutants. We described a feasible biosynthetic pathway that leads to the generation of JuA from α-linoleic acid (ALA) via elongases ELO-1/2 and Δ5 desaturase which is rate-limiting. Employing liquid chromatography mass spectrometry (LC-MS/MS), we identified endocannabinoid-like ethanolamine and glycerol derivatives of JuA and ω-3 AA. Like classical endocannabinoids, these lipids exhibited binding interactions with NPR-32, a G protein coupled receptor (GPCR) shown to act as endocannabinoid receptor in C. elegans. Our study suggests that the eicosatetraenoic acids AA, ω-3 AA and JuA share similar biological functions. This biosynthetic plasticity of eicosatetraenoic acids observed in C. elegans uncovers a possible biological role of JuA and associated ω-3 endocannabinoids in Δ6 desaturase deficiencies, highlighting the importance of ALA.
Collapse
|
16
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
17
|
Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans. GENES AND NUTRITION 2020; 15:1. [PMID: 32015763 PMCID: PMC6988283 DOI: 10.1186/s12263-020-0659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Background Excessive intake of carbohydrates and fats causes over-nutrition, leading to a variety of diseases and complications. Here, we characterized the effects of different types of sugar and lipids on the growth and development of Caenorhabditis elegans. Methods We measured the lifespan, reproductive capacity, and length of nematodes after sugars and lipids treatment alone and co-treatment of sugars and lipids. Furthermore, we studied the mechanisms underlying the damage caused by high-sucrose and high-stearic acid on C.elegans by using transcriptome sequencing technology. Results The results showed that a certain concentration of sugar and lipid promoted the growth and development of nematodes. However, excessive sugars and lipids shortened the lifespan and length of nematodes and destroyed their reproductive capacity. Based on the results of the orthogonal test, we selected 400 mmol/L sucrose and 500 μg/mL stearic acid to model a high-sugar and high-lipid diet for C. elegans. Conclusion High-sugar and high-lipid intake altered the expression of genes involved in biofilm synthesis, genes that catalyze the synthesis and degradation of endogenous substances, and genes involved in innate immunity, resulting in physiological damage. Furthermore, we explored the protective effect of resveratrol on high-sugar and high-lipid damage to nematodes. Resveratrol plays a role in repairing by participating in the metabolism of foreign substances and reducing cellular oxidative stress.
Collapse
|
18
|
Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:17. [PMID: 31307392 PMCID: PMC6631683 DOI: 10.1186/s12861-019-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/04/2019] [Indexed: 02/04/2023]
Abstract
Background Caenorhabditis elegans seam cells serve as a good model to understand how genes and signaling pathways interact to control asymmetric cell fates. The stage-specific pattern of seam cell division is coordinated by a genetic network that includes WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, as well as heterochronic microRNAs (miRNAs) and their downstream targets. Mutations in pry-1, a negative regulator of WNT signaling that belongs to the Axin family, were shown to cause seam cell defects; however, the mechanism of PRY-1 action and its interactions with miRNAs remain unclear. Results We found that pry-1 mutants in C. elegans exhibit seam cell, cuticle, and alae defects. To examine this further, a miRNA transcriptome analysis was carried out, which showed that let-7 (miR-48, miR-84, miR-241) and lin-4 (lin-4, miR-237) family members were upregulated in the absence of pry-1 function. Similar phenotypes and patterns of miRNA overexpression were also observed in C. briggsae pry-1 mutants, a species that is closely related to C. elegans. RNA interference-mediated silencing of wrm-1 and lit-1 in the C. elegans pry-1 mutants rescued the seam cell defect, whereas pop-1 silencing enhanced the phenotype, suggesting that all three proteins are likely important for PRY-1 function in seam cells. We also found that these miRNAs were overexpressed in pop-1 hypomorphic animals, suggesting that PRY-1 may be required for POP-1-mediated miRNA suppression. Analysis of the let-7 and lin-4-family heterochronic targets, lin-28 and hbl-1, showed that both genes were significantly downregulated in pry-1 mutants, and furthermore, lin-28 silencing reduced the number of seam cells in mutant animals. Conclusions Our results show that PRY-1 plays a conserved role to maintain normal expression of heterochronic miRNAs in nematodes. Furthermore, we demonstrated that PRY-1 acts upstream of the WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, and miRNA target genes in seam cell development. Electronic supplementary material The online version of this article (10.1186/s12861-019-0197-5) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Anderson SM, Cheesman HK, Peterson ND, Salisbury JE, Soukas AA, Pukkila-Worley R. The fatty acid oleate is required for innate immune activation and pathogen defense in Caenorhabditis elegans. PLoS Pathog 2019; 15:e1007893. [PMID: 31206555 PMCID: PMC6597122 DOI: 10.1371/journal.ppat.1007893] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fatty acids affect a number of physiological processes, in addition to forming the building blocks of membranes and body fat stores. In this study, we uncover a role for the monounsaturated fatty acid oleate in the innate immune response of the nematode Caenorhabditis elegans. From an RNAi screen for regulators of innate immune defense genes, we identified the two stearoyl-coenzyme A desaturases that synthesize oleate in C. elegans. We show that the synthesis of oleate is necessary for the pathogen-mediated induction of immune defense genes. Accordingly, C. elegans deficient in oleate production are hypersusceptible to infection with diverse human pathogens, which can be rescued by the addition of exogenous oleate. However, oleate is not sufficient to drive protective immune activation. Together, these data add to the known health-promoting effects of monounsaturated fatty acids, and suggest an ancient link between nutrient stores, metabolism, and host susceptibility to bacterial infection. The evolution of multicellular organisms has been shaped by their interactions with pathogenic microorganisms. The microscopic nematode C. elegans eats bacteria for food and has evolved inducible immune defenses toward ingested pathogens that are coordinated within intestinal epithelial cells. C. elegans, therefore, presents a genetic system to characterize the requirements for the activation of innate immune defenses. Here, we show that the monounsaturated fatty acid oleate is necessary for the induction of innate immune defenses and for protection against bacterial pathogens, which defines a new link between metabolism and the regulation of anti-pathogen responses in a metazoan host.
Collapse
Affiliation(s)
- Sarah M. Anderson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Hilary K. Cheesman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Nicholas D. Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - J. Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexander A. Soukas
- Center for Human Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bouyanfif A, Jayarathne S, Koboziev I, Moustaid-Moussa N. The Nematode Caenorhabditis elegans as a Model Organism to Study Metabolic Effects of ω-3 Polyunsaturated Fatty Acids in Obesity. Adv Nutr 2019; 10:165-178. [PMID: 30689684 PMCID: PMC6370270 DOI: 10.1093/advances/nmy059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/06/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a complex disease that is influenced by several factors, such as diet, physical activity, developmental stage, age, genes, and their interactions with the environment. Obesity develops as a result of expansion of fat mass when the intake of energy, stored as triglycerides, exceeds its expenditure. Approximately 40% of the US population suffers from obesity, which represents a worldwide public health problem associated with chronic low-grade adipose tissue and systemic inflammation (sterile inflammation), in part due to adipose tissue expansion. In patients with obesity, energy homeostasis is further impaired by inflammation, oxidative stress, dyslipidemia, and metabolic syndrome. These pathologic conditions increase the risk of developing other chronic diseases including diabetes, hypertension, coronary artery disease, and certain forms of cancer. It is well documented that several bioactive compounds such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are able to reduce adipose and systemic inflammation and blood triglycerides and, in some cases, improve glucose intolerance and insulin resistance in vertebrate animal models of obesity. A promising model organism that is gaining tremendous interest for studies of lipid and energy metabolism is the nematode Caenorhabditis elegans. This roundworm stores fats as droplets within its hypodermal and intestinal cells. The nematode's transparent skin enables fat droplet visualization and quantification with the use of dyes that have affinity to lipids. This article provides a review of major research over the past several years on the use of C. elegans to study the effects of ω-3 PUFAs on lipid metabolism and energy homeostasis relative to metabolic diseases.
Collapse
Affiliation(s)
- Amal Bouyanfif
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Shasika Jayarathne
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Iurii Koboziev
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| |
Collapse
|
21
|
Pandey R, Sharma M, Saluja D. SIN-3 as a key determinant of lifespan and its sex dependent differential role on healthspan in C aenorhabditis elegans. Aging (Albany NY) 2018; 10:3910-3937. [PMID: 30541942 PMCID: PMC6326684 DOI: 10.18632/aging.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023]
Abstract
Aging/senescence includes not just decline in lifespan but also etiologies of age associated morbidities which are inadequately understood. Extensive research has been undertaken to delineate the pathways and generate mutants with extended lifespan. However, little is known about the health status of these long lived mutants in the background of important genetic perturbations. Caenorhabditis elegans is one of the leading in vivo model organisms to study aging. Deletion of SIN-3, a transcription coregulator in C. elegans has been shown to reduce the lifespan of the mutant worms by half as compared to the wild-type and isogenic controls. The current study focuses on the effect of SIN-3 deletion on the healthspan of the worms. We find that not only are sin-3 mutants more susceptible to stress, but the overall stress intolerance and physiological decline is sex dependent. The severity of the phenotype is more pronounced in hermaphrodites as compared to the males carrying the same mutation with respect to the controls. The results further suggest that genetic perturbation along with the gender play an important role in determining the lifespan, healthspan and overall fitness of an organism.
Collapse
Affiliation(s)
- Renu Pandey
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| | - Meenakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| |
Collapse
|
22
|
PRY-1/Axin signaling regulates lipid metabolism in Caenorhabditis elegans. PLoS One 2018; 13:e0206540. [PMID: 30403720 PMCID: PMC6221325 DOI: 10.1371/journal.pone.0206540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023] Open
Abstract
The nematode Caenorhabditis elegans constitutes a leading animal model to study how signaling pathway components function in conserved biological processes. Here, we describe the role of an Axin family member, PRY-1, in lipid metabolism. Axins are scaffolding proteins that play crucial roles in signal transduction pathways by physically interacting with multiple factors and coordinating the assembly of protein complexes. Genome-wide transcriptome profiling of a pry-1 mutant revealed differentially regulated genes that are associated with lipid metabolism such as vitellogenins (yolk lipoproteins), fatty acid desaturases, lipases, and fatty acid transporters. Consistent with these categorizations, we found that pry-1 is crucial for the maintenance of lipid levels. Knockdowns of vit genes in a pry-1 mutant background restored lipid levels, suggesting that vitellogenins contribute to PRY-1 function in lipid metabolic processes. Additionally, lowered expression of desaturases and lipidomic analysis provided evidence that fatty acid synthesis is reduced in pry-1 mutants. Accordingly, an exogenous supply of oleic acid restored depleted lipids in somatic tissues of worms. Overall, our findings demonstrate that PRY-1/Axin signaling is essential for lipid metabolism and involves the regulation of yolk proteins.
Collapse
|
23
|
Machado ML, Arantes LP, Gubert P, Zamberlan DC, da Silva TC, da Silveira TL, Boligon A, Soares FAA. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways. PLoS One 2018; 13:e0204023. [PMID: 30252861 PMCID: PMC6155532 DOI: 10.1371/journal.pone.0204023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/01/2018] [Indexed: 11/30/2022] Open
Abstract
Ilex paraguariensis is a well-known plant that is widely consumed in South America, primarily as a drink called mate. Mate is described to have stimulant and medicinal properties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an extract of this plant as a possible modulator of fat storage to control lipid metabolism in worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenorhabditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of consumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein 16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral parameters, body length, total body energy expenditure and overall survival were analyzed. Total body energy expenditure was determined by the oxygen consumption rate in N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knockout, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression 20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respective control group, without affecting bacterial growth and energetic balance, while nhr-49(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguariensis increased the oxygen consumption in N2 worms, but not in mutant strains, increased N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We demonstrate for the first time that I. paraguariensis can decrease fat storage and increase body energy expenditure in worms. These effects depend on the purinergic system (ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and energy consumption.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Leticia Priscilla Arantes
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila Gubert
- Centro de Ciências Biológicas e da Saúde, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Daniele Coradini Zamberlan
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Boligon
- Departamento da Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Galles C, Prez GM, Penkov S, Boland S, Porta EOJ, Altabe SG, Labadie GR, Schmidt U, Knölker HJ, Kurzchalia TV, de Mendoza D. Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Sci Rep 2018; 8:6398. [PMID: 29686301 PMCID: PMC5913221 DOI: 10.1038/s41598-018-24925-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.
Collapse
Affiliation(s)
- Celina Galles
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Gastón M Prez
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Sebastian Boland
- Department of Genetics and Complex Diseases and Department of Cell Biology, Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, MA, 02115, USA
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Silvia G Altabe
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Ulrike Schmidt
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
25
|
Navarro-Herrera D, Aranaz P, Eder-Azanza L, Zabala M, Hurtado C, Romo-Hualde A, Martínez JA, González-Navarro CJ, Vizmanos JL. Dihomo-gamma-linolenic acid induces fat loss in C. elegans in an omega-3-independent manner by promoting peroxisomal fatty acid β-oxidation. Food Funct 2018; 9:1621-1637. [PMID: 29465730 DOI: 10.1039/c7fo01625e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation. Both omega-3 and omega-6 fatty acids induced a reduction of fat content in C. elegans, with linoleic, gamma-linolenic and dihomo-gamma-linolenic acids being the most effective ones. These three FAs are sequential metabolites especially in omega-6 PUFA synthesis pathway and the effects seem to be primarily due to dihomo-gamma-linolenic acid, and independent of its transformation into omega-3 or arachidonic acid. Gene expression analyses suggest that peroxisomal beta oxidation is the main mechanism involved in the observed effect. These results point out the importance of further analysis of the activity of these omega-6 FAs, due to their potential application in obesity and related diseases.
Collapse
Affiliation(s)
- David Navarro-Herrera
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Paula Aranaz
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Laura Eder-Azanza
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Zabala
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Cristina Hurtado
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Romo-Hualde
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - J Alfredo Martínez
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain and Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain
| | - Carlos J González-Navarro
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - José L Vizmanos
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
26
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
27
|
Caires R, Sierra-Valdez FJ, Millet JR, Herwig JD, Roan E, Vásquez V, Cordero-Morales JF. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep 2017; 21:246-258. [DOI: 10.1016/j.celrep.2017.09.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
|
28
|
Chen WW, Yi YH, Chien CH, Hsiung KC, Ma TH, Lin YC, Lo SJ, Chang TC. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging. Sci Rep 2016; 6:32021. [PMID: 27535493 PMCID: PMC4989181 DOI: 10.1038/srep32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yung-Hsiang Yi
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Cheng-Hao Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Kuei-Ching Hsiung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yi-Chun Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Szecheng J Lo
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
29
|
Xu B, You LL, Wu Y, Ding J, Ge LQ, Wu JC. Transmission Electron Microscopy (TEM) Observations of Female Oocytes From Nilaparvata lugens (Hemiptera: Delphacidae): Antibiotic Jinggangmycin (JGM)-Induced Stimulation of Reproduction and Associated Changes in Hormone Levels. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1677-82. [PMID: 27247297 PMCID: PMC4981076 DOI: 10.1093/jee/tow085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 05/20/2023]
Abstract
Previous studies have demonstrated that the agricultural antibiotic jinggangmycin (JGM) stimulates reproduction in the brown planthopper Nilaparvata lugens Stål and that the stimulation of brown planthopper reproduction induced by JGM is regulated by the fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) genes. However, a key issue in the stimulation of reproduction induced by pesticides involves the growth and development of oocytes. Therefore, the present study investigated oocyte changes via transmission electron microscopy (TEM) and changes in hormone levels (juvenile hormones (JH) and 20-hydroxyecdysone (20 E)) in JGM-treated females. TEM observations showed that the size of the lipid droplets in the oocytes of JGM-treated females, compared with those in the oocytes of the control females, significantly reduced by 32.6 and 29.8% at 1 and 2 d after emergence (1 and 2 DAE), respectively. In addition, the JH levels of JGM-treated females at 1 and 2 DAE were increased by 49.7 and 45.7%, respectively, whereas 20 E levels decreased by 36.0 and 30.0%, respectively. We conclude that JGM treatments lead to substantial changes in lipid metabolism, which are directly and indirectly related to stimulation of reproduction of brown planthopper together with our previous findings.
Collapse
Affiliation(s)
- Bing Xu
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| | - Lin-Lin You
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| | - You Wu
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| | - Jun Ding
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| | - Lin-Quan Ge
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| | - Jin-Cai Wu
- School of Plant Protection, Yangzhou University, Yangzhou 220059, P.R. China (; ; ; ; ; )
| |
Collapse
|
30
|
Zhang Y, Wang H, Zhang J, Hu Y, Zhang L, Wu X, Su X, Li T, Zou X, Liang B. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:310-319. [PMID: 26806391 DOI: 10.1016/j.bbalip.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/13/2015] [Accepted: 01/17/2016] [Indexed: 11/23/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.
Collapse
Affiliation(s)
- Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haizhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ying Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyun Wu
- Key Laboratory of Puer Tea Science, Ministry of Education (Yunnan Agricultural University), Kunming 650201, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215006, China
| | - Tingting Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215006, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
31
|
Watts JL. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids. J Clin Med 2016; 5:jcm5020019. [PMID: 26848697 PMCID: PMC4773775 DOI: 10.3390/jcm5020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
32
|
Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome. Arch Biochem Biophys 2016; 589:27-37. [DOI: 10.1016/j.abb.2015.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
33
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
34
|
Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression. J Proteomics 2015; 130:140-9. [PMID: 26388431 DOI: 10.1016/j.jprot.2015.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 11/23/2022]
Abstract
The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report documented the influence of foliar JGM sprays on ovarian protein content. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) protocols to analyze ovarian proteins of BPH females following JGM spray (JGM-S) and topical application (JGM-T). We recorded changes in expression of 284 proteins (142↑ and 142↓) in JGM-S compared to the JGM-S control group (S-control); 267 proteins were differentially expressed (130↑ and 137↓) in JGM-T compared to the JGM-T control group (T-control), of which, 22 proteins were up-regulated in both groups. Comparing the JGM-S to the JGM-T group, 114 proteins were differentially expressed (62↑ and 52↓). Based on the biological significance of fatty acids, pathway annotation and enrichment analysis, we designed a dsRNA construct to silence a gene encoding fatty acid synthase (FAS). FAS was more highly expressed in JGM-S vs S-control and JGM-S vs JGM-T groups. The dsFAS treatment reduced fecundity by about 46% and reduced ovarian and fat body fatty acid concentrations in JGM-S-treated females relative to controls. We infer FAS provides critically needed fatty acids to support JGM-enhanced fecundity in BPH.
Collapse
|
35
|
Sheng M, Hosseinzadeh A, Muralidharan SV, Gaur R, Selstam E, Tuck S. Aberrant fat metabolism in Caenorhabditis elegans mutants with defects in the defecation motor program. PLoS One 2015; 10:e0124515. [PMID: 25849533 PMCID: PMC4388766 DOI: 10.1371/journal.pone.0124515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisin-family, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steady-state levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.
Collapse
Affiliation(s)
- Ming Sheng
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ava Hosseinzadeh
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Rahul Gaur
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Selstam
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
36
|
CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem J 2014; 464:61-71. [DOI: 10.1042/bj20140848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CYP-13A12 of the nematode Caenorhabditis elegans was characterized after heterologous expression in insect cells as a PUFA epoxygenase producing eicosanoids. These metabolites function as signalling molecules in the regulation of the O2-ON response, a rapid increase of locomotion in response to anoxia/reoxygenation.
Collapse
|
37
|
The expression of pre- and postcopulatory sexually selected traits reflects levels of dietary stress in guppies. PLoS One 2014; 9:e105856. [PMID: 25170940 PMCID: PMC4149491 DOI: 10.1371/journal.pone.0105856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Environmental and ecological conditions can shape the evolution of life history traits in many animals. Among such factors, food or nutrition availability can play an important evolutionary role in moderating an animal's life history traits, particularly sexually selected traits. Here, we test whether diet quantity and/or composition in the form of omega-3 long chain polyunsaturated fatty acids (here termed ‘n3LC’) influence the expression of pre- and postcopulatory traits in the guppy (Poecilia reticulata), a livebearing poeciliid fish. We assigned males haphazardly to one of two experimental diets supplemented with n3LC, and each of these diet treatments was further divided into two diet ‘quantity’ treatments. Our experimental design therefore explored the main and interacting effects of two factors (n3LC content and diet quantity) on the expression of precopulatory (sexual behaviour and sexual ornamentation, including the size, number and spectral properties of colour spots) and postcopulatory (the velocity, viability, number and length of sperm) sexually selected traits. Our study revealed that diet quantity had significant effects on most of the pre- and postcopulatory traits, while n3LC manipulation had a significant effect on sperm traits and in particular on sperm viability. Our analyses also revealed interacting effects of diet quantity and n3LC levels on courtship displays, and the area of orange and iridescent colour spots in the males’ colour patterns. We also confirmed that our dietary manipulations of n3LC resulted in the differential uptake of n3LC in body and testes tissues in the different n3LC groups. This study reveals the effects of diet quantity and n3LC on behavioural, ornamental and ejaculate traits in P. reticulata and underscores the likely role that diet plays in maintaining the high variability in these condition-dependent sexual traits.
Collapse
|
38
|
Raabe RC, Mathies LD, Davies AG, Bettinger JC. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans. PLoS One 2014; 9:e105999. [PMID: 25162400 PMCID: PMC4146551 DOI: 10.1371/journal.pone.0105999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.
Collapse
Affiliation(s)
- Richard C. Raabe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Vásquez V, Krieg M, Lockhead D, Goodman MB. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 2014; 6:70-80. [PMID: 24388754 DOI: 10.1016/j.celrep.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 12/01/2022] Open
Abstract
Mechanoelectrical transduction (MeT) channels embedded in neuronal cell membranes are essential for touch and proprioception. Little is understood about the interplay between native MeT channels and membrane phospholipids, in part because few techniques are available for altering plasma membrane composition in vivo. Here, we leverage genetic dissection, chemical complementation, and optogenetics to establish that arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, enhances touch sensation and mechanoelectrical transduction activity while incorporated into membrane phospholipids in C. elegans touch receptor neurons (TRNs). Because dynamic force spectroscopy reveals that AA modulates the mechanical properties of TRN plasma membranes, we propose that this polyunsaturated fatty acid (PUFA) is needed for MeT channel activity. These findings establish that polyunsaturated phospholipids are crucial determinants of both the biochemistry and mechanics of mechanoreceptor neurons and reinforce the idea that sensory mechanotransduction in animals relies on a cellular machine composed of both proteins and membrane lipids.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean Lockhead
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Deline ML, Vrablik TL, Watts JL. Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans. J Vis Exp 2013. [PMID: 24326396 DOI: 10.3791/50879] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acid sodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.
Collapse
|
41
|
Vrablik TL, Watts JL. Polyunsaturated fatty acid derived signaling in reproduction and development: insights from Caenorhabditis elegans and Drosophila melanogaster. Mol Reprod Dev 2013; 80:244-59. [PMID: 23440886 DOI: 10.1002/mrd.22167] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/13/2013] [Indexed: 12/24/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of critical functions in biological systems. PUFAs modulate the biophysical properties of membranes and, along with their derivatives, the eicosanoids and endocannabinoids, form a wide array potent lipid signaling molecules. Much of our early understanding of PUFAs and PUFA-derived signaling stems from work in mammals; however, technological advances have made comprehensive lipid analysis possible in small genetic models such as Caenorhabditis elegans and Drosophila melanogaster. These models have a number of advantages, such as simple anatomy and genome-wide genetic screening techniques, which can broaden our understanding of fatty-acid-derived signaling in biological systems. Here we review what is known about PUFAs, eicosanoids, and endocannabinoids in the development and reproduction of C. elegans and D. melanogaster. Fatty acid signaling appears to be fundamental for multicellular organisms, and simple invertebrates often employ functionally similar pathways. In particular, studies in C. elegans and Drosophila are providing insight into the roles of PUFAs and PUFA-derived signaling in early developmental processes, such as meiosis, fertilization, and early embryonic cleavage.
Collapse
Affiliation(s)
- Tracy L Vrablik
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
42
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
43
|
O'Rourke EJ, Kuballa P, Xavier R, Ruvkun G. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 2013; 27:429-40. [PMID: 23392608 DOI: 10.1101/gad.205294.112] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adaptation to nutrient scarcity depends on the activation of metabolic programs to efficiently use internal reserves of energy. Activation of these programs in abundant food regimens can extend life span. However, the common molecular and metabolic changes that promote adaptation to nutritional stress and extend life span are mostly unknown. Here we present a response to fasting, enrichment of ω-6 polyunsaturated fatty acids (PUFAs), which promotes starvation resistance and extends Caenorhabditis elegans life span. Upon fasting, C. elegans induces the expression of a lipase, which in turn leads to an enrichment of ω-6 PUFAs. Supplementing C. elegans culture media with these ω-6 PUFAs increases their resistance to starvation and extends their life span in conditions of food abundance. Supplementation of C. elegans or human epithelial cells with these ω-6 PUFAs activates autophagy, a cell recycling mechanism that promotes starvation survival and slows aging. Inactivation of C. elegans autophagy components reverses the increase in life span conferred by supplementing the C. elegans diet with these fasting-enriched ω-6 PUFAs. We propose that the salubrious effects of dietary supplementation with ω-3/6 PUFAs (fish oils) that have emerged from epidemiological studies in humans may be due to a similar activation of autophagic programs.
Collapse
Affiliation(s)
- Eyleen J O'Rourke
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
44
|
Webster CM, Deline ML, Watts JL. Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 2012; 373:14-25. [PMID: 23064027 DOI: 10.1016/j.ydbio.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Polyunsaturated fatty acids serve both structural and functional roles as membrane components and precursors for a number of different factors involved in inflammation and signaling. These fatty acids are required in the human diet, although excess dietary intake of omega-6 fatty polyunsaturated fatty acids may have a negative influence on human health. In the model nematode, Caenorhabditis elegans, dietary exposure to dihomo-gamma-linolenic acid (DGLA), an omega-6 fatty acid, causes the destruction of germ cells and leads to sterility. In this study we used genetic and microscopic approaches to further characterize this phenomenon. We found that strains carrying mutations in genes involved in lipid homeostasis enhanced sterility phenotypes, while mutations reducing the activity of the conserved insulin/IGF signaling pathway suppressed sterility phenotypes. Exposure to a mild heat stress prior to omega-6 fatty acid treatment led to an adaptive or hormetic response, resulting in less sterility. Mutations in skn-1 and knockdown of genes encoding phase II detoxification enzymes led to increased sterility in the presence of dietary DGLA. Thus, detoxification systems and genetic changes that increase overall stress responses protect the germ cells from destruction. Microscopic analyses revealed that dietary DGLA leads to deterioration of germ cell membranes in the proliferative and transition zones of the developing germ line. Together, these data demonstrate that specific omega-6 polyunsaturated fatty acids, or molecules derived from them, are transported to the germ line where they disrupt the rapidly expanding germ cell membranes, leading to germ cell death.
Collapse
Affiliation(s)
- Christopher M Webster
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| | | | | |
Collapse
|
45
|
Monroig O, Navarro JC, Dick JR, Alemany F, Tocher DR. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:411-422. [PMID: 22160425 DOI: 10.1007/s10126-011-9423-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 05/31/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential compounds for common octopus (Octopus vulgaris), but precise dietary requirements have not been determined due, in part, to the inherent difficulties of performing feeding trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) requirements for paralarval stages of the common octopus through characterisation of the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study, we isolated a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation in recombinant yeast showed that the octopus Fad exhibited Δ5-desaturation activity towards saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the yeast's endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and desaturated exogenously added PUFA substrates 20:4n-3 and 20:3n-6 to 20:5n-3 (EPA) and 20:4n-6 (ARA), respectively. Although the Δ5 Fad enables common octopus to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 20:3n-6, either in the diet or by limited endogenous synthesis from C(18) PUFA, might indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus Δ5 Fad can also participate in the biosynthesis of non-methylene-interrupted FA, PUFA that are generally uncommon in vertebrates but have been found previously in marine invertebrates, including molluscs, and now also confirmed to be present in specific tissues of common octopus.
Collapse
Affiliation(s)
- Oscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | |
Collapse
|
46
|
Vrablik TL, Watts JL. Emerging roles for specific fatty acids in developmental processes. Genes Dev 2012; 26:631-7. [PMID: 22474257 DOI: 10.1101/gad.190777.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Animals synthesize a vast range of fatty acids serving diverse cellular functions. The roles of specific fatty acids in early development are just beginning to be characterized. In the March 15, 2012, issue of Genes & Development, Kniazeva and colleagues (pp. 554-566) describe how the particular combination of a branched chain fatty acid and an acyl-CoA synthetase is required for critical cellular processes during early embryogenesis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Tracy L Vrablik
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
47
|
Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem J 2011; 435:689-700. [PMID: 21309752 DOI: 10.1042/bj20101942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caenorhabditis elegans harbours several CYP (cytochrome P450) genes that are homologous with mammalian CYP isoforms important to the production of physiologically active AA (arachidonic acid) metabolites. We tested the hypothesis that mammals and C. elegans may share similar basic mechanisms of CYP-dependent eicosanoid formation and action. We focused on CYP33E2, an isoform related to the human AA-epoxygenases CYP2C8 and CYP2J2. Co-expression of CYP33E2 with the human NADPH-CYP reductase in insect cells resulted in the reconstitution of an active microsomal mono-oxygenase system that metabolized EPA (eicosapentaenoic acid) and, with lower activity, also AA to specific sets of regioisomeric epoxy- and hydroxy-derivatives. The main products included 17,18-epoxyeicosatetraenoic acid from EPA and 19-hydroxyeicosatetraenoic acid from AA. Using nematode worms carrying a pCYP33E2::GFP reporter construct, we found that CYP33E2 is exclusively expressed in the pharynx, where it is predominantly localized in the marginal cells. RNAi (RNA interference)-mediated CYP33E2 expression silencing as well as treatments with inhibitors of mammalian AA-metabolizing CYP enzymes, significantly reduced the pharyngeal pumping frequency of adult C. elegans. These results demonstrate that EPA and AA are efficient CYP33E2 substrates and suggest that CYP-eicosanoids, influencing in mammals the contractility of cardiomyocytes and vascular smooth muscle cells, may function in C. elegans as regulators of the pharyngeal pumping activity.
Collapse
|
48
|
Reisner K, Lehtonen M, Storvik M, Jantson T, Lakso M, Callaway JC, Wong G. Trans fat diet causes decreased brood size and shortened lifespan in Caenorhabditis elegans delta-6-desaturase mutant fat-3. J Biochem Mol Toxicol 2011; 25:269-79. [PMID: 21308896 DOI: 10.1002/jbt.20386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023]
Abstract
Trans-fatty acids (TFAs) enter the diet through industrial processes and can cause adverse human health effects. The present study was aimed to examine the effects of dietary cis- and trans-fatty acids on the model organism Caenorhabditis elegans. Cis- or trans-18:1n9 triglycerides (25 μM) caused no apparent changes in the numbers of viable progeny of wild-type N2 animals. However, in fat-3 mutants lacking delta-6-desaturase, the trans-isomer caused modest decreases in lifespan and progeny after three generations. Long-chain polyunsaturated fatty acids (PUFA) profiles were significantly altered in fat-3 mutants compared to wild type but were not altered after exposure to dietary cis- or trans-18:1n9. Genome-wide expression analysis of fat-3 mutants revealed hundreds of changes. Several genes involved in fat metabolism (acs-2, fat-7, mdt-15) were significantly increased by cis- or trans-18:1n9 without discrimination between isomers. These results provide support for the hypothesis that dietary trans fats are detrimental to development and aging.
Collapse
Affiliation(s)
- Kaja Reisner
- Department of Biosciences, University of Eastern Finland, Kuopio 70211, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Edmonds JW, Prasain JK, Dorand D, Yang Y, Hoang HD, Vibbert J, Kubagawa HM, Miller MA. Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction. Dev Cell 2010; 19:858-71. [PMID: 21145501 PMCID: PMC3026445 DOI: 10.1016/j.devcel.2010.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/24/2010] [Accepted: 11/05/2010] [Indexed: 12/31/2022]
Abstract
Abnormalities in insulin/IGF-1 signaling are associated with infertility, but the molecular mechanisms are not well understood. Here we use liquid chromatography with electrospray ionization tandem mass spectrometry to show that the C. elegans insulin/FOXO pathway regulates the metabolism of locally acting lipid hormones called prostaglandins. C. elegans prostaglandins are synthesized without prostaglandin G/H synthase homologs, the targets of nonsteroidal anti-inflammatory drugs. Our results support the model that insulin signaling promotes the conversion of oocyte polyunsaturated fatty acids (PUFAs) into F-series prostaglandins that guide sperm to the fertilization site. Reduction in insulin signaling activates DAF-16/FOXO, which represses the transcription of germline and intestinal genes required to deliver PUFAs to oocytes in lipoprotein complexes. Nutritional and neuroendocrine cues target this mechanism to control prostaglandin metabolism and reproductive output. Prostaglandins may be conserved sperm guidance factors and widespread downstream effectors of insulin actions that influence both reproductive and nonreproductive processes.
Collapse
Affiliation(s)
- Johnathan W. Edmonds
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Dixon Dorand
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Youfeng Yang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Hieu D. Hoang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jack Vibbert
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Homare M. Kubagawa
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
50
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|