1
|
Hussein AM, Abouelnaga AF, Obydah W, Saad S, Abass M, Yehia A, Ibrahim EM, Ahmed AT, Abulseoud OA. Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study. Pflugers Arch 2025; 477:371-391. [PMID: 39836224 PMCID: PMC11825635 DOI: 10.1007/s00424-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed F Abouelnaga
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Eman M Ibrahim
- Department of Anatomic Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed T Ahmed
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
3
|
Loeffler DA. Influence of Normal Aging on Brain Autophagy: A Complex Scenario. Front Aging Neurosci 2019; 11:49. [PMID: 30914945 PMCID: PMC6421305 DOI: 10.3389/fnagi.2019.00049] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Misfolded proteins are pathological findings in some chronic neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Aging is a major risk factor for these disorders, suggesting that the mechanisms responsible for clearing misfolded proteins from the brain, the ubiquitin-proteasome system and the autophagy-lysosomal pathway, may decline with age. Although autophagic mechanisms have been found to decrease with age in many experimental models, whether they do so in the brain is unclear. This review examines the literature with regard to age-associated changes in macroautophagy and chaperone-mediated autophagy (CMA) in the central nervous system (CNS). Beclin 1, LC3-II, and the LC3-II/LC3-I ratio have frequently been used to examine changes in macroautophagic activity, while lamp2a and HSPA8 (also known as hsc70) have been used to measure CMA activity. Three gene expression analyses found evidence for an age-related downregulation of macroautophagy in human brain, but no published studies were found of age-related changes in CMA in human brain, although cerebrospinal fluid concentrations of HSPA8 were reported to decrease with age. Most studies of age-related changes in brain autophagy in experimental animals have found age-related declines in macroautophagy, and macroautophagy is necessary for normal lifespan in Caenorhabditis elegans, Drosophila, and mice. However, the few studies of age-related changes in brain CMA in experimental animals have produced conflicting results. Investigations of the influence of aging on macroautophagy in experimental animals in systems other than the CNS have generally found an age-related decrease in Beclin 1, but conflicting results for LC3-II and the LC3-II/LC3-I ratio, while CMA decreases with age in most models. CONCLUSION: while indirect evidence suggests that brain autophagy may decrease with normal aging, this issue has not been investigated sufficiently, particularly in human brain. Measuring autophagic activity in the brain can be challenging because of differences in basal autophagic activity between experimental models, and the inability to include lysosomal inhibitors when measuring the LC3-II/LC3-I ratio in postmortem specimens. If autophagy does decrease in the brain with aging, then pharmacological interventions and/or lifestyle alterations to slow this decline could reduce the risk of developing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, United States
| |
Collapse
|
4
|
de Toda IM, Vida C, Ortega E, De La Fuente M. Hsp70 basal levels, a tissue marker of the rate of aging and longevity in mice. Exp Gerontol 2016; 84:21-28. [DOI: 10.1016/j.exger.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
5
|
Loeffler DA, Klaver AC, Coffey MP, Aasly JO, LeWitt PA. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress. Front Aging Neurosci 2016; 8:178. [PMID: 27507943 PMCID: PMC4960228 DOI: 10.3389/fnagi.2016.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
Age-associated declines in protein homeostasis mechanisms (“proteostasis”) are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = –0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = –0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: –0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain.
Collapse
Affiliation(s)
- David A Loeffler
- Departments of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Andrea C Klaver
- Departments of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Mary P Coffey
- Departments of Biostatistics, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Jan O Aasly
- Department of Neurology, St. Olav's Hospital Trondheim, Norway
| | - Peter A LeWitt
- Department of Neurology, Henry Ford West Bloomfield Hospital, West Bloomfield TownshipMI, USA; Department of Neurology, Wayne State University School of Medicine, DetroitMI, USA
| |
Collapse
|
6
|
Crum TS, Gleixner AM, Posimo JM, Mason DM, Broeren MT, Heinemann SD, Wipf P, Brodsky JL, Leak RK. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. J Neurochem 2015; 133:780-794. [PMID: 25640060 DOI: 10.1111/jnc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022]
Abstract
The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. The olfactory bulb is affected in the early phases of many age-related neurodegenerative disorders. Here, we described the impact of aging on multiple heat shock proteins (Hsps), such as Hsp70, in the female rat olfactory bulb in vivo. Using multiple proteasome and Hsp70 inhibitors (see schematic), we found that proteotoxicity elicited a compensatory increase in Hsp70 in primary olfactory bulb cells in vitro. Hsp70 then reduced the proteotoxic buildup of ubiquitinated proteins and robustly protected against cell death according to three independent viability assays. Thus, olfactory bulb neurons can mount impressive natural adaptations to proteotoxic injury, perhaps explaining why neurodegenerative disorders are so delayed in onset and so slow to progress.
Collapse
Affiliation(s)
- Tyler S Crum
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Amanda M Gleixner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Matthew T Broeren
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Scott D Heinemann
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Peter Wipf
- Departments of Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| |
Collapse
|
7
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
8
|
Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS, Leak RK. Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res 2014; 357:43-54. [PMID: 24723229 DOI: 10.1007/s00441-014-1852-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/17/2014] [Indexed: 12/17/2022]
Abstract
Many heat shock proteins are chaperones that help refold or degrade misfolded proteins and battle apoptosis. Because of their capacity to protect against protein misfolding, they may help keep diseases of aging at bay. A few reports have examined heat shock proteins (eg. Hsp25, Hsp60, Hsp70, and heat shock cognate 70 or Hsc70) as a function of age in the striatum and nigra. In the present study, we examined the impact of aging on Hsp25, heme oxygenase 1 (HO1 or Hsp32), Hsp40, Hsp60, Hsc70, Hsc/Hsp70 interacting protein (Hip), 78 kDa glucose-regulated protein (GRP78), Hsp90, and ubiquitinated proteins in the nigra and striatum of the female rat by infrared immunoblotting. Female animals are not typically examined in aging studies, adding further to the novelty of our study. Striatal HO1 and Hsp40 were both higher in middle-aged females than in the oldest group. Hsp60 levels were also highest in middle age in the nigra, but were highest in the oldest animals in the striatum. Striatal levels of Hsc70 and the co-chaperone Hip were lower in the oldest group relative to the youngest animals. In contrast, Hsp25 rose with advancing age in both regions. Hsp25 was also colocalized with tyrosine hydroxylase in nigral neurons. Ubiquitinated proteins exhibited a trend to rise in the oldest animals in both regions, and K48 linkage-specific ubiquitin rose significantly from 4-6 to 16-19 months in the striatum. Our study reveals a complex array of age-related changes in heat shock proteins. Furthermore, the age-related rises in some proteins, such as Hsp25, may reflect endogenous adaptations to cellular stress.
Collapse
Affiliation(s)
- A M Gleixner
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mott NN, Pak TR. Estrogen signaling and the aging brain: context-dependent considerations for postmenopausal hormone therapy. ISRN ENDOCRINOLOGY 2013; 2013:814690. [PMID: 23936665 PMCID: PMC3725729 DOI: 10.1155/2013/814690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
Recent clinical studies have spurred rigorous debate about the benefits of hormone therapy (HT) for postmenopausal women. Controversy first emerged based on a sharp increase in the risk of cardiovascular disease in participants of the Women's Health Initiative (WHI) studies, suggesting that decades of empirical research in animal models was not necessarily applicable to humans. However, a reexamination of the data from the WHI studies suggests that the timing of HT might be a critical factor and that advanced age and/or length of estrogen deprivation might alter the body's ability to respond to estrogens. Dichotomous estrogenic effects are mediated primarily by the actions of two high-affinity estrogen receptors alpha and beta (ER α & ER β ). The expression of the ERs can be overlapping or distinct, dependent upon brain region, sex, age, and exposure to hormone, and, during the time of menopause, there may be changes in receptor expression profiles, post-translational modifications, and protein:protein interactions that could lead to a completely different environment for E2 to exert its effects. In this review, factors affecting estrogen-signaling processes will be discussed with particular attention paid to the expression and transcriptional actions of ER β in brain regions that regulate cognition and affect.
Collapse
Affiliation(s)
- Natasha N. Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Toni R. Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
10
|
Abstract
Oxidative stress is recognized as an important environmental factor in aging; however, because reactive oxygen species (ROS) and related free radicals are normally produced both intra- and extracellularly, air-living organisms cannot avoid the risk of oxidative stress. Consequently, these organisms have evolved various anti-oxidant systems to prevent ROS, scavenge free radicals, repair damaged components and adaptive responses. This review will focus on the repair and adaptive response to oxidative stress, and summarize the changes of these systems as a result aging and their relationship to premature aging.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Functional Genomics, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| | | |
Collapse
|
11
|
Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats. Neurosci Lett 2010; 472:90-3. [PMID: 20144690 DOI: 10.1016/j.neulet.2010.01.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 12/12/2022]
Abstract
Normal aging is associated with chronic oxidative stress. In the basal ganglia, oxidative stress may contribute to the increased risk of Parkinson's disease in the elderly. Neurons are thought to actively utilize compensatory defense mechanisms, such as heat shock proteins (HSPs), to protect from persisting stress. Despite their protective role, little is known about HSP expression in the aging basal ganglia. The purpose of this study was to examine HSP expression in striatum, substantia nigra, globus pallidus and cortex in 6-, 18- and 30-month-old Fischer 344/Brown Norway rats. We found robust age-related increases in phosphorylated and total HSP25 in each brain region studied. Conversely, HSP72 (the inducible form of HSP70) was reduced with age, but only in the striatum. p38 MAPK, a protein implicated in activating HSP25, did not change with age, nor did HSC70 (the constitutive form of HSP70), or HSP60. These results suggest that HSP25 is especially responsive to age-related stress in the basal ganglia.
Collapse
|
12
|
Jaeger PA, Wyss-Coray T. All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener 2009; 4:16. [PMID: 19348680 PMCID: PMC2679749 DOI: 10.1186/1750-1326-4-16] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/06/2009] [Indexed: 12/12/2022] Open
Abstract
Autophagy is the major pathway involved in the degradation of proteins and organelles, cellular remodeling, and survival during nutrient starvation. Autophagosomal dysfunction has been implicated in an increasing number of diseases from cancer to bacterial and viral infections and more recently in neurodegeneration. While a decrease in autophagic activity appears to interfere with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental as well and lead to cell death, suggesting the regulation of autophagy has an important role in cell fate decisions. An increasing number of model systems are now available to study the role of autophagy in the central nervous system and how it might be exploited to treat disease. We will review here the current knowledge of autophagy in the central nervous system and provide an overview of the various models that have been used to study acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Philipp A Jaeger
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, California, USA.
| | | |
Collapse
|
13
|
Freeman WM, VanGuilder HD, Bennett C, Sonntag WE. Cognitive performance and age-related changes in the hippocampal proteome. Neuroscience 2008; 159:183-95. [PMID: 19135133 DOI: 10.1016/j.neuroscience.2008.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/06/2008] [Accepted: 12/02/2008] [Indexed: 12/26/2022]
Abstract
Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using two-dimensional in-gel electrophoresis and MS/MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data were used.
Collapse
Affiliation(s)
- W M Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
14
|
Njemini R, Demanet C, Mets T. Aging-related differences in basal heat shock protein 70 levels in lymphocytes are linked to altered frequencies of lymphocyte subsets. Aging Cell 2008; 7:498-505. [PMID: 18489731 DOI: 10.1111/j.1474-9726.2008.00401.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell stress responses are ubiquitous in all organisms and are characterized by the induced synthesis of heat shock proteins (Hsp). Previous studies as well as recent reports by our group have consistently suggested that aging leads to an increase in the basal levels of Hsp70. Here we extend these studies by examining the differential Hsp70 response of peripheral blood lymphocyte (PBL) subsets. It is well established that with aging, one of the major changes in the T cell pool is an expansion of T cells with the memory phenotype as well as those deficient for the CD28 molecule. To determine if alterations in the frequency of T cell subsets might be responsible for the observations, we have carried out a more comprehensive flow cytometric analysis of the various phenotypes of PBL under unstimulated conditions. Cells were obtained from 10 young and 10 elderly normal subjects. The basal Hsp70 levels in the various PBL phenotypes were comparable between young and elderly subjects. However, different patterns of Hsp70 response were noticed among the PBL subtypes, which were similar in both young and elderly subjects. In particular, the memory cell phenotypes produced more Hsp70 than the naïve phenotypes. These results suggest that aging-related changes in basal Hsp70 levels in PBL are linked to the altered frequency of lymphocyte subsets and not to increases in aged lymphocytes per se. In addition, the increase in Hsp70 can be interpreted as the result of a tendency towards more pronounced cellular differentiation in aging.
Collapse
Affiliation(s)
- Rose Njemini
- Gerontology and FRIA research Group, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
15
|
Njemini R, Bautmans I, Lambert M, Demanet C, Mets T. Heat shock proteins and chemokine/cytokine secretion profile in ageing and inflammation. Mech Ageing Dev 2007; 128:450-4. [PMID: 17644159 DOI: 10.1016/j.mad.2007.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/04/2007] [Accepted: 06/09/2007] [Indexed: 11/29/2022]
Abstract
We have used a multiplex bead array assay to detect simultaneously 25 different circulating cytokines in 35 control subjects (young versus old) and 29 patients (young versus old) with acute infection. Intracellular PBMC levels of heat shock proteins (Hsp) were determined using flow cytometry. Levels of MIG and IL-6 were higher in the elderly normal subjects and patients, respectively, compared to their young counterparts. Hsp32, Hsp70 and Hsp90 were higher in elderly compared to young normal subjects. This difference disappeared for patients with inflammation who had increased levels of Hsp32, Hsp70 and Hsp90 compared to normal subjects. Most striking, a different pattern of association between cytokines and Hsp was noticed in healthy elderly subjects compared to the other groups of participants. It is concluded that age-related stress, possibly oxidative, which can down-regulate cytokine production with a concomitant up-regulation of Hsp production, could be involved in this differential pattern of association.
Collapse
Affiliation(s)
- Rose Njemini
- Gerontology Department, Faculty of Medicine & Pharmacy, Vrije Universiteit Brussel, Belgium
| | | | | | | | | |
Collapse
|
16
|
Njemini R, Lambert M, Demanet C, Kooijman R, Mets T. Basal and infection-induced levels of heat shock proteins in human aging. Biogerontology 2007; 8:353-64. [PMID: 17211576 DOI: 10.1007/s10522-006-9078-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/13/2006] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (Hsp) are ubiquitously expressed proteins, which are highly inducible by a variety of stressful stimuli. As organisms age, various denatured proteins such as proteins modified by oxidation have been detected. Such abnormal proteins might serve as stress signals for the induction of Hsp, which plays indispensable roles in protecting proteins from denaturation. Although it is well known that the heat shock induced expression of Hsp decreases with age, little attention has been given to the unstimulated, basal levels of Hsp. Therefore, a study was performed to examine the expression pattern of various Hsp with aging, under normal physiological conditions in human peripheral blood cells. The basal levels of Hsp32, Hsp70 and Hsp90 increased significantly with age in controls but not patients. Moreover, the levels of Hsp32, Hsp70, Hsp90, but not Hsp27 correlated positively among each other, indicating both common and different regulatory mechanisms. Higher levels of Hsp32, Hsp70 and Hsp90 were noticed in patients with inflammation, a commonly occurring natural stimulant of Hsp production, compared to control subjects. The production of Hsp appeared to be related to the circulating levels of C-reactive protein and cytokines.
Collapse
Affiliation(s)
- Rose Njemini
- Gerontology and Geriatrics, Academic Hospital, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | | | | | | | | |
Collapse
|
17
|
Lee J, Kim H, Lee JM, Shin T. Immunohistochemical localization of heat shock protein 27 in the retina of pigs. Neurosci Lett 2006; 406:227-31. [PMID: 16930837 DOI: 10.1016/j.neulet.2006.07.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 10/25/2022]
Abstract
The expression of heat shock protein 27 (HSP27) was examined in the retinas of pigs. Western blot analysis detected the expression of HSP27 in the retinas of 1-day-old piglets and showed that it was enhanced in the retinas of 6-month-old adult pigs. Immunohistochemically, HSP27 immunostaining was seen mainly in ganglion cell bodies in the ganglion cell layer, and in some processes of astrocytes in the innermost nerve fiber layer. In 1-day-old piglets, HSP27 was detected weakly in the inner plexiform, inner nuclear cell, outer plexiform, and rod and cone layers. The HSP27 immunoreactivity across the retinal layers was enhanced in the retinas of 6-month-old pigs compared with newborn piglets. The HSP27 immunoreactivity in the radial processes of Müller cells was particularly prominent in adult pig retinas. In summary, this finding suggests that HSP27 plays an important role in signal transduction of glial cells and neuronal cells in the retina.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Department of Veterinary Medicine, Cheju National University, Jeju, South Korea
| | | | | | | |
Collapse
|
18
|
Calabrese V, Colombrita C, Sultana R, Scapagnini G, Calvani M, Butterfield DA, Stella AMG. Redox modulation of heat shock protein expression by acetylcarnitine in aging brain: relationship to antioxidant status and mitochondrial function. Antioxid Redox Signal 2006; 8:404-16. [PMID: 16677087 DOI: 10.1089/ars.2006.8.404] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is significant evidence to show that aging is characterized by a stochastic accumulation of molecular damage and by a progressive failure of maintenance and repair processes. Protective mechanisms exist in the brain which are controlled by vitagenes and include members of the heat shock system, heme oxygenase-I, and Hsp70 as critical determinants of brain stress tolerance. Given the broad cytoprotective properties of the heat shock response, molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. Acetyl-L-carnitine is proposed as a therapeutic agent for several neurodegenerative disorders, and the present study reports that treatment for 4 months of senescent rats with acetyl-L-carnitine induces heme oxygenase-1 as well as Hsp70 and SOD-2. This effect was associated with upregulation of GSH levels, prevention of age-related changes in mitochondrial respiratory chain complex expression, and decrease in protein carbonyls and HNE formation. We hypothesize that maintenance or recovery of the activity of vitagenes may delay the aging process and decrease the risk of age-related diseases. Particularly, modulation of endogenous cellular defense mechanisms via acetyl-L-carnitine may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.
Collapse
Affiliation(s)
- V Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Pardue S, Wang S, Miller MM, Morrison-Bogorad M. Elevated levels of inducible heat shock 70 proteins in human brain. Neurobiol Aging 2006; 28:314-24. [PMID: 16413087 DOI: 10.1016/j.neurobiolaging.2005.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 11/22/2005] [Accepted: 12/06/2005] [Indexed: 11/29/2022]
Abstract
Differential expression of heat shock genes can modulate protein folding and stress-related cell death. There have been no comparisons of their levels of expression in animals and humans. Levels of expression of heat shock 70 genes in human brain were compared to levels in non-stressed and heat-stressed brain of rat. Levels of hsp70 proteins in human brain were 43-fold higher than in non-stressed rat brain and 14-fold higher than highest induced levels in brains of heat-shocked rats. Levels of constitutively synthesized hsc70 proteins were approximately 1.5-fold higher in human than in rat. Higher levels of hsp70 proteins in human brain may serve to protect brain cells against stress-related death or dysfunction throughout the lifespan.
Collapse
Affiliation(s)
- S Pardue
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, United States
| | | | | | | |
Collapse
|
20
|
Njemini R, Lambert M, Demanet C, Mets T. Heat Shock Protein 32 in Human Peripheral Blood Mononuclear Cells: Effect of Aging and Inflammation. J Clin Immunol 2005; 25:405-17. [PMID: 16160909 DOI: 10.1007/s10875-005-5361-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to assess the influence of age and acute infection on the production of Hsp32 in human peripheral blood cells, using flow cytometry. Thirty-five controls and 31 patients with acute infection participated. We found that the age and inflammatory status correlated positively with Hsp32 levels in both heat shocked (HS) and non-HS monocytes and lymphocytes. In addition, the HS response of Hsp32 was different in these peripheral blood cells; whereas HS exerted an up-regulation in the levels of Hsp32 in monocytes, a significant decrease in Hsp32 levels was noticed for lymphocytes. We found significant relationships between circulating C-reactive protein as well as interleukin-6 and the levels of Hsp32 in cells. We conclude that Hsp32 is up-regulated in the elderly as well as in individuals with inflammation, and that the HS response of Hsp32 is different in monocytes as compared to lymphocytes.
Collapse
Affiliation(s)
- Rose Njemini
- Geriatric Unit, Academic Hospital, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
21
|
Li S, Zheng J, Carmichael ST. Increased oxidative protein and DNA damage but decreased stress response in the aged brain following experimental stroke. Neurobiol Dis 2005; 18:432-40. [PMID: 15755669 DOI: 10.1016/j.nbd.2004.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 11/17/2004] [Accepted: 12/10/2004] [Indexed: 11/22/2022] Open
Abstract
Aged individuals experience the highest rate of stroke and have less functional recovery, but do not have larger infarcts. We hypothesized that aged individuals experience greater sublethal damage in peri-infarct cortex. Focal cortical stroke was produced in aged and young adult animals. After 30 min, 1, 3 and 5 days brain sections and Western blot were used to analyze markers of apoptotic cell death, oxidative DNA and protein damage, heat shock protein (HSP) 70 induction, total neuronal number and infarct size. Focal stroke produces significantly more oxidative DNA and protein damage and fewer cells with HSP70 induction in peri-infarct cortex of aged animals. There is no difference in infarct size or the number of cells undergoing apoptosis between aged and young adults. Stroke in the aged brain is associated with a greater degree of DNA and protein damage and a reduced stress response in intact, surviving tissue that surrounds the infarct.
Collapse
Affiliation(s)
- Songlin Li
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
22
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|
23
|
Ikematsu K, Tsuda R, Kondo T, Kondo H, Ozawa K, Ogawa S, Nakasono I. The expression of ‘150-kDa oxygen regulated protein (ORP-150)’ in human brain and its relationship with duration time until death. Leg Med (Tokyo) 2004; 6:97-101. [PMID: 15039052 DOI: 10.1016/j.legalmed.2003.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/27/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
The expression of oxygen regulated protein 150-kDa (ORP-150) was strongly induced in human brain under the hypoxic conditions. We examined the expression of ORP-150 in the brain samples, and discussed its significance in forensic practice. The cerebral cortexes of 31 cases (asphyxia: 9 cases, hypothermia: 4, exsanguinations: 5, CO intoxication (CO): 6, sudden cardiac death (SCD): 7) were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibody and the number of ORP-150 positive cells were counted. In the multiple linear regression method, the estimated regression coefficient of ORP-150 on age was significant (P=0.039) thus, we could find that the ORP-150 expression level depended on age. Using analysis of covariance, we compared the means of ORP-150, LSMEAN, which means hypothetic average value excluding influence of age, for each cause of death. The LSMEAN+/-SE was 84.74+/-9.03 in hypothermia, 57.52+/-6.34 in asphyxia, 46.68+/-6.70 in CO, 24.84+/-8.05 in exsanguinations, and 16.24+/-7.35 in SCD. As a result of the analysis, the LSMEAN of the ORP-150 expression level was related to the cause of death. There might be differences in the duration of brain ischemia before death. For example, SCD is presumed to be instant death, while brain ischemia continues for several minutes in asphyxia, CO and exsanguinations, and for several hours in hypothermia cases. Therefore, the immunohistochemical and morphometrical analysis of ORP-150 in the brain may be very useful to determine the duration of brain ischemia before death in forensic autopsy cases.
Collapse
Affiliation(s)
- Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of Translational Medical Sciences, Course of Medical and Dental Sciences, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki City, 852-8523, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem 2003; 278:47199-208. [PMID: 12972428 DOI: 10.1074/jbc.m306769200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of parkin function is linked to autosomal recessive juvenile parkinsonism. Here we show that proteotoxic stress and short C-terminal truncations induce misfolding of parkin. As a consequence, wild-type parkin was depleted from a high molecular weight complex and inactivated by aggregation. Similarly, the pathogenic parkin mutant W453Stop, characterized by a C-terminal deletion of 13 amino acids, spontaneously adopted a misfolded conformation. Mutational analysis indicated that C-terminal truncations exceeding 3 amino acids abolished formation of detergent-soluble parkin. In the cytosol scattered aggregates of misfolded parkin contained the molecular chaperone Hsp70. Moreover, increased expression of chaperones prevented aggregation of wild-type parkin and promoted folding of the W453Stop mutant. Analyzing parkin folding in vitro indicated that parkin is aggregation-prone and that its folding is dependent on chaperones. Our study demonstrates that C-terminal truncations impede parkin folding and reveal a new mechanism for inactivation of parkin.
Collapse
Affiliation(s)
- Konstanze F Winklhofer
- Department of Cellular Biochemistry, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
25
|
Njemini R, Lambert M, Demanet C, Vanden Abeele M, Vandebosch S, Mets T. The induction of heat shock protein 70 in peripheral mononuclear blood cells in elderly patients: a role for inflammatory markers. Hum Immunol 2003; 64:575-85. [PMID: 12770787 DOI: 10.1016/s0198-8859(03)00068-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The induction of heat shock proteins (Hsp) is the response to a plethora of stress signals including hyperthermia, physical stress, and various disease states. Although changes in Hsp expression are associated with certain diseases, the question as to whether this is an adaptation to a particular pathophysiologic state or a reflection of the suboptimal cellular environment associated with the disease remains open. In this study we have investigated the effects of inflammatory mediators on the induction of Hsp 70 in human peripheral mononuclear blood cells using flow cytometry. We demonstrate that without heat shock, the levels of the inflammatory mediators are positively related to Hsp 70 production in monocytes. On the contrary, negative correlations were found between heat induced Hsp 70 production and interleukin-6 (IL-6), as well as various markers of inflammation. These observations are in agreement with the antagonistic effects between heat stress and the inflammatory mediators on the activation of Hsp promoter.
Collapse
Affiliation(s)
- Rose Njemini
- Geriatric Unit, Academic Hospital, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Hirose W, Ikematsu K, Tsuda R. Age-associated increases in heme oxygenase-1 and ferritin immunoreactivity in the autopsied brain. Leg Med (Tokyo) 2003; 5 Suppl 1:S360-6. [PMID: 12935634 DOI: 10.1016/s1344-6223(02)00133-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heme oxygenase-1 (HO-1) is a 32 kDa heat shock protein (HSP) that catalyzes heme to biliverdin, free iron and carbon monoxide in the brain. Furthermore, the release of free ferrous ion by HO-1 plays an essential role in ferritin synthesis, and ferritin stores iron either for intracellular utilization, or for detoxification. It is well known that HO-1 immunoreactivity is enhanced greatly in neurons and glia of the hippocampus and cerebral cortex in various pathophysiological conditions. The expression of HSP 70 is well known for the age-associated increase, but the expression modalities of HO-1 and ferritin associated with aging are still unknown. A study was therefore performed to examine the correlations in the expression of HO-1 and ferritin with age using immunohistochemistry. We investigated 31 autopsied brains (3-84-year-olds) without traumatic brain injury and neurodegenerative disease. The specimens were taken from the cerebral cortex and hippocampus. In the cerebral cortex, age (aging) had a statistically significant positive correlation with HO-1 (r=0.894, P<0.01) and ferritin (r=0.731, P<0.01). In the hippocampus, age had a significant positive correlation with only HO-1 (r=0.660, P<0.01). These results showed that HO-1 and ferritin underwent an age-related increase in human brain, especially in the cerebral cortex. Our results also indicate that various stress responses may persist in the aged human brain.
Collapse
Affiliation(s)
- Wataru Hirose
- Division of Forensic Pathology and Science, Department of Translational Medical Sciences, Course of Medical and Dental Sciences, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki City, Nagasaki, 852-8523, Japan
| | | | | |
Collapse
|
27
|
Söti C, Csermely P. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem Int 2002; 41:383-9. [PMID: 12213225 DOI: 10.1016/s0197-0186(02)00043-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperones are highly conserved proteins responsible for the preservation and repair of the correct conformation of cellular macromolecules, such as proteins, RNAs, etc. Environmental stress leads to chaperone (heat-shock protein, stress protein) induction reflecting the protective role of chaperones as a key factor for cell survival and in repairing cellular damage after stress. The present review summarizes our current knowledge about the chaperone-deficiency in the aging process, as well as the possible involvement of chaperones in neurodegenerative diseases, such as in Alzheimer's, Parkinson's, Huntington- and prion-related diseases. We also summarize a recent theory implying chaperones as "buffers" of variations in the human genome, which role probably increased during the last 200 years of successful medical practice minimizing natural selection. Chaperone-buffered, silent mutations may be activated during the aging process, which leads to the phenotypic exposure of previously hidden features and might contribute to the onset of polygenic diseases, such as atherosclerosis, cancer, diabetes and several neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Söti
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 8 Budapest, Hungary
| | | |
Collapse
|
28
|
Abstract
BACKGROUND Numerous gerontogene mutants leading to dramatic life extensions have been identified in the nematode Caenorhabditis elegans over the last 20 years. Analysis of these mutants has provided a basis for understanding the mechanisms driving the aging process(es). Several distinct mechanisms including an altered rate of aging, increased resistance to stress, decreased metabolic rate, or alterations in a program causing organismic aging and death have been proposed to underlie these mutants. RESULTS Whole-genome analysis of gene expression during chronological aging of the worm provides a rich database of age-specific changes in gene expression and represents one way to distinguish among these models. Using a rigorous statistical model with multiple replicates, we find that a relatively small number of genes (only 164) show statistically significant changes in transcript levels as aging occurs (<1% of the genome). Expression of heat shock proteins decreases, while expression of certain transposases increases in older worms, and these findings are consistent with a higher mortality risk due to a failure in homeostenosis and destabilization of the genome in older animals. Finally, a specific subset of genes is coordinately altered both during chronological aging and in the transition from the reproductive form to the dauer, demonstrating a mechanistic overlap in aging between these two processes. CONCLUSIONS We have performed a whole-genome analysis of changes in gene expression during aging in C. elegans that provides a molecular description of C. elegans senescence.
Collapse
Affiliation(s)
- James Lund
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bodega G, Hernández C, Suárez I, Martín M, Fernández B. HSP70 constitutive expression in rat central nervous system from postnatal development to maturity. J Histochem Cytochem 2002; 50:1161-8. [PMID: 12185193 DOI: 10.1177/002215540205000902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We studied the level of the basal (constitutive) HSP70 expression (inducible and constitutive forms) in the central nervous system (CNS) of male and female rats from the postnatal period to maturity. HSP70 levels were analyzed by immunoblotting in five different areas (cortex, hippocampus, hypothalamus, cerebellum, and spinal cord). The highest levels of HSP70 were found in juvenile rats and decreased progressively until reaching baseline levels between 2 and 4 months. A slight and nonsignificant increase in aged (2-year-old) rats compared with adult subjects was observed in some cerebral areas (cerebral cortex, hippocampus, and cerebellum). In the first weeks of postnatal development, HSP70 immunoreactivity was distributed throughout CNS sections and no specific immunopositive cells could be clearly determined. In adult animals, strong immunostaining was observed in some large neurons (Purkinje neurons and mesencephalic and spinal cord motor neurons), some perivascular and subpial astrocytes, and ependymocytes. Immunoelectron microscopy revealed that HSP70 in these cells is located in the perinuclear area and in mitochondria, rough endoplasmic reticulum, and microtubules. In neurons, strong immunolabeling was also observed in synaptic membranes. The postnatal time course of HSP70 levels and the location and size of HSP70-immunopositive cells suggest that HSP70 constitutively expressed in the rat CNS may be mainly determined by the degree of development and metabolic activity of the neural cells.
Collapse
Affiliation(s)
- Guillermo Bodega
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | | | | | |
Collapse
|
30
|
Helfert RH, Glatz FR, Wilson TS, Ramkumar V, Hughes LF. Hsp70 in the inferior colliculus of Fischer-344 rats: effects of age and acoustic stress. Hear Res 2002; 170:155-65. [PMID: 12208549 DOI: 10.1016/s0378-5955(02)00487-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heat shock proteins 72 and 73 (hsp72 and hsp73) were studied in the inferior colliculus (IC) of Fischer-344 rats to determine if their levels are altered during normal aging and following exposure to intense acoustic noise. Three age groups of rats (3, 18, and 25 months) were exposed to ambient sound (control) or broad-band noise at 108 dB sound pressure level (0.0004 dyn/cm2) for 30 min. Western blotting procedures were used to measure hsp72 and hsp73 in ICs and cerebella (positive control). Immunohistochemistry was performed using 3-month olds to study the localization patterns of hsp72 and hsp73 in both structures. The IC and cerebellum exhibited immunolabeling over neuronal somata and proximal dendrites. Ambient levels of hsp72 in supernatants from aged rats were reduced 56.5%+/-7.8% in the IC relative to 3-month olds. This decrease may render the IC more susceptible to stress-related damage. An increase in constitutive hsp73 (350.7%+/-70.4%) was observed in IC pellet fractions from animals exposed to the 108-dB noise when compared to the ambient-noise controls, suggestive of a lipoprotective role for hsp73. This elevation was consistent across age groups. No noise-induced changes in hsp72 were detectable in the IC, indicating that loud sounds may not be an appropriate stimulus for hsp72 induction in this structure.
Collapse
Affiliation(s)
- Robert H Helfert
- Department of Surgery, Southern Illinois University School of Medicine, P.O. Box 19638, Springfield, IL 62794-9638, USA.
| | | | | | | | | |
Collapse
|
31
|
Njemini R, Abeele MV, Demanet C, Lambert M, Vandebosch S, Mets T. Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J Clin Immunol 2002; 22:195-205. [PMID: 12148594 DOI: 10.1023/a:1016036724386] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have investigated the effect of age and of the presence of proinflammatory cytokines on Hsp 70 production in human peripheral blood mononuclear cells, using flow cytometry. Twenty-seven women and 23 men, all apparently healthy, participated in the study. At 37 degrees C, the percentage of Hsp 70-producing monocytes and lymphocytes, as well as the level of Hsp 70 in monocytes, were negatively influenced by age. After exposure of the cells to 42 degrees C, the increase of Hsp 70 production was more pronounced in monocytes than in lymphocytes; both the intensity of Hsp 70 production and the percentage of Hsp 70-producing cells were negatively influenced by the age of the subjects, as well for monocytes as for lymphocytes. There was a negative correlation between the intensity of Hsp 70 production by monocytes exposed to 42 degrees C and the serum levels of tumor necrosis factor-alpha and interleukin-6. In conclusion, in human monocytes and lymphocytes, heat-induced Hsp 70 production is reduced with increasing age and is negatively influenced in monocytes by proinflammatory cytokines.
Collapse
Affiliation(s)
- R Njemini
- Geriatric Unit, Academic Hospital, Free University Brussels (VUB), Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Unno K, Asakura H, Shibuya Y, Kaihou M, Fukatsu H, Okada S, Oku N. Stress Response Caused by Chronic Alcohol Intake in Aged Rat Brain. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02636.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
David JC, Tanguay RM, Grongnet JF. Perinatal expression of heat shock proteins HSC 70 and HSP 70 in neural and non neural tissues of the piglet. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:91-9. [PMID: 11412895 DOI: 10.1016/s0165-3806(01)00143-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stress of different kinds during early perinatal life can result in severe consequences for further development. To determine possible involvement of heat shock proteins in brain development, the expression of HSC 70 and HSP 70 was determined in brain regions (cerebellum, cortex, hippocampus, hypothalamus and striatum) and non neural tissues (liver, lungs and kidneys) at birth and during early development of the piglet. In brain regions, HSC 70 expression was decreased during the few hours following birth. With the exception of cortex, hippocampus and kidney where a decrease of expression was observed, HSP 70 did not show significant changes during early development. These results are discussed in terms of using the piglet model of development to study the effect of different kinds of stress like hypoxia or temperature changes on brain development.
Collapse
Affiliation(s)
- J C David
- Laboratoire des Sciences Animales, Ecole Nationale Supérieure Agronomique, 65 rue de St. Brieuc, 35042 Rennes Cedex, France.
| | | | | |
Collapse
|
34
|
Abstract
Free radicals produced during normal metabolism cause damage to macromolecules. The free radical theory of aging proposes that the organism is unable to repair all of them and that, with time, unrepaired damages accumulate and put the organism at risk: in other words, free radicals provoke aging and death. This article reviews both the results of adding antioxidants to food on longevity in Drosophila melanogaster, as well as the studies on antioxidant enzymes (inactivation in vivo, null mutants, overexpression). It is concluded that antioxidant enzymes are probably poorly connected to the normal aging process, but they allow the organism to cope with stressful conditions.
Collapse
|
35
|
Walters TJ, Ryan KL, Mason PA. Regional distribution of Hsp70 in the CNS of young and old food-restricted rats following hyperthermia. Brain Res Bull 2001; 55:367-74. [PMID: 11489344 DOI: 10.1016/s0361-9230(01)00502-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We examined the effect of aging on the capacity of the brain to produce heat shock protein (Hsp70) in response to heat stress, using high-powered microwaves (HPM, 2.06 GHz, 2.2 W/cm(2)) to induce hyperthermia for periods so brief that thermoregulatory factors were functionally eliminated as confounding variables. Unanesthetized young (6 months) and old (25 months) male, food-restricted Sprague-Dawley rats were exposed to HPM to induce a mean peak tympanic temperature (T(ty)) of 42.2 degrees C within 30 s. T(ty) returned to <40.0 degrees C within 6 min post-exposure in both age groups. Rats were euthanized 6 or 24 h later for immunohistochemical determination of Hsp70 accumulation in 10 brain regions. HPM exposure induced significant increases in 7 of the 10 regions. There were no significant differences observed in the pattern or density of Hsp70 accumulation between the young and old rats at 6 h post-HPM exposure, with the exception of the medial vestibular nucleus, which demonstrated significantly greater Hsp70 accumulation in the old rats. There were significant differences between the age groups at 24 h post-exposure, however, there was no general pattern; i.e., depending on the brain region, aged rats displayed significantly greater, lesser, or similar increases in Hsp70 expression compared with young. Taken together, these results demonstrate that the brain of aged, food-restricted rats does not display a loss of capacity to accumulate Hsp70 in response to heat stress.
Collapse
Affiliation(s)
- T J Walters
- Air Force Research Laboratory, Directed Energy Bioeffects Division, Radio Frequency Radiation Branch, Brooks Air Force Base, TX, USA.
| | | | | |
Collapse
|