1
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Jami-ElHirchi M, Pinent M, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction. Food Funct 2025. [PMID: 40231589 DOI: 10.1039/d5fo00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
At the neuromuscular junction (NMJ), which coordinates movement, postsynaptic-derived neurotrophic factors have neuroprotective functions and retrogradely regulate the exocytotic machinery involved in neurotransmitter release. In parallel, presynaptic autocrine muscarinic signaling plays a fundamental modulatory role in this synapse. We previously found that these signaling pathways are impaired in the aged neuromuscular system. In this follow-up study, we investigated an anti-aging strategy using grape seed procyanidin extract (GSPE), a common dietary antioxidant known for its neuroprotective properties in various pathologies, but its effects on the aged neuromuscular system remain unexplored. This study analyses whether GSPE can mitigate age-associated impairments in neurotrophic and muscarinic signaling within the neuromuscular system. We assessed the expression (protein levels) and activation (phosphorylation) of the key proteins in the brain-derived-neurotrophic-factor (BDNF)/neurotrophin 4 (NT-4) and muscarinic pathways in the extensor digitorum longus (EDL) muscles of aged rats, with comparisons to GSPE-treated aged rats and young controls. The results demonstrate that GSPE treatment prevents the most relevant aging-induced changes in neurotrophic and muscarinic receptor isoforms, downstream protein kinases, and their targets in the neurotransmitter exocytotic machinery. Nevertheless, GSPE was less effective at preventing alterations in some other proteins within these pathways, such as calcium channels, and did not modify several other molecules involved in these pathways, which remain unchanged during aging. Overall, this study highlights the neuroprotective potential of GSPE in preventing fundamental age-related molecular changes at the NMJ, which helps improve functionality and may increase the quality of life and lifespan in aged individuals.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Aleksandra Polishchuk
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Laia Just-Borràs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Carolina Silvera
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Meryem Jami-ElHirchi
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Marta Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Maria A Lanuza
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Erica Hurtado
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Josep Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
2
|
Lazarova M, Stefanova M, Denev P, Taseva T, Vassileva V, Tasheva K. Neuroprotective Effect of Marrubium vulgare Extract in Scopolamine-Induced Cognitive Impairment in Rats: Behavioral and Biochemical Approaches. BIOLOGY 2024; 13:426. [PMID: 38927306 PMCID: PMC11201232 DOI: 10.3390/biology13060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The potential of Marrubium vulgare to alleviate scopolamine (Sco)-induced deficits in spatial working memory has drawn considerable scientific interest. This effect is partly attributed to its potent antioxidant and acetylcholinesterase inhibitory (AChEI) activities. This study examined the effects of M. vulgare extract, standardized to marrubiin content, on recognition memory in healthy and Sco-treated rats. Male Wistar rats (200-250 g) were divided into four groups. The extract was orally administered for 21 days and Sco (2 mg/kg) was intraperitoneally injected for 11 consecutive days. Memory performance was assessed using the novel object recognition test. Levels of acetylcholine (ACh), noradrenaline (NA), serotonin (Sero), and brain-derived neurotrophic factor (BDNF) and the phosphorylation of cAMP response element-binding protein (p-CREB) were evaluated in the cortex and hippocampus via ELISA. BDNF and CREB expression levels were assessed using RT-PCR. The results showed that M. vulgare significantly alleviated Sco-induced memory impairment, preserved cholinergic function in the hippocampus, increased NA levels in the brain, and restored pCREB expression in the cortex following Sco-induced reduction. In healthy rats, the extract upregulated BDNF, pCREB, and Bcl2 expression. Our findings indicate that the neuroprotective effects of M. vulgare may be linked to the modulation of cholinergic function, regulation of NA neurotransmission, and influence on key memory-related molecules.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria;
| | - Teodora Taseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| |
Collapse
|
3
|
Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. J Adv Res 2023; 45:31-42. [PMID: 35618634 PMCID: PMC10006543 DOI: 10.1016/j.jare.2022.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Diminished brain insulin sensitivity is associated with reduced cognitive function. Docosahexaenoic acid (DHA) is known to maintain normal brain function. OBJECTIVES This study aimed to determine whether DHA impacts hippocampal insulin sensitivity and cognitive function in aged rats fed a high-fat diet (HFD). METHODS Eight-month-old female Sprague-Dawley rats were randomly divided into three groups (n = 50 each). Rats in the aged group, HFD group, and DHA treatment group received standard diet (10 kcal% fat), HFD (45 kcal% fat), and DHA-enriched HFD (45 kcal% fat, 1% DHA, W/W) for 10 months, respectively. Four-month-old female rats (n = 40) that received a standard diet served as young controls. Neuroinflammation, oxidative stress, amyloid formation, and tau phosphorylation in the hippocampus, as well as systemic glucose homeostasis and cognitive function, were tested. RESULTS DHA treatment relieved a block in the insulin signaling pathway and consequently protected aged rats against HFD-induced hippocampal insulin resistance. The beneficial effects were explained by a DHA-induced decrease in systemic glucose homeostasis dysregulation, hippocampal neuroinflammation and oxidative stress. In addition, DHA treatment broke the reciprocal cycle of hippocampal insulin resistance, Aβ burden, and tau hyperphosphorylation. Importantly, treatment of model rats with DHA significantly increased their cognitive capacity, as evidenced by their increased hippocampal-dependent learning and memory, restored neuron morphology, enhanced cholinergic activity, and activated cyclic AMP-response element-binding protein. CONCLUSION DHA improves cognitive function by enhancing hippocampal insulin sensitivity.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Ben Ni
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, P.R. China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Xia Xiang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
| |
Collapse
|
4
|
Wang YF, Shen ZC, Li J, Liang T, Lin XF, Li YP, Zeng W, Zou Q, Shen JL, Wang XY. Phytochemicals, biological activity, and industrial application of lotus seedpod ( Receptaculum Nelumbinis): A review. Front Nutr 2022; 9:1022794. [PMID: 36267901 PMCID: PMC9577462 DOI: 10.3389/fnut.2022.1022794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a well-known food and medicinal plant. Lotus seedpod (Receptaculum Nelumbinis) is the by-products during lotus products processing, which is considered as waste. Numerous studies have been conducted on its phytochemicals, biological activity and industrial application. However, the information on lotus seedpod is scattered and has been rarely summarized. In this review, summaries on preparation and identification of phytochemicals, the biological activities of extracts and phytochemicals, and applications of raw material, extracts and phytochemicals for lotus seedpod were made. Meanwhile, the future study trend was proposed. Recent evidence indicated that lotus seedpods extracts, obtained by non-organic and organic solvents, possessed several activities, which were influenced by extraction solvents and methods. Lotus seedpods were rich in phytochemicals categorized as different chemical groups, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, etc. These phytochemicals exhibited various bioactivities, including ameliorating cognitive impairment, antioxidation, antibacterial, anti-glycative, neuroprotection, anti-tyrosinase and other activities. Raw material, extracts and phytochemicals of lotus seedpods could be utilized as sources for biochar and biomass material, in food industry and as dye. This review gives well-understanding on lotus seedpod, and provides theoretical basis for its future research and application.
Collapse
Affiliation(s)
- Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Wei Zeng
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jian-Lin Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China,*Correspondence: Xiao-Yin Wang,
| |
Collapse
|
5
|
Chiang NN, Lin TH, Teng YS, Sun YC, Chang KH, Lin CY, Hsieh-Li HM, Su MT, Chen CM, Lee-Chen GJ. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in ΔK280 Tau RD-DsRed SH-SY5Y Cells. Front Aging Neurosci 2022; 13:758895. [PMID: 34975454 PMCID: PMC8714935 DOI: 10.3389/fnagi.2021.758895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.
Collapse
Affiliation(s)
- Ni-Ni Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Shan Teng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
6
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
7
|
Ruan W, Shen S, Xu Y, Ran N, Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Hong Y, Choi YH, Han YE, Oh SJ, Lee A, Lee B, Magnan R, Ryu SY, Choi CW, Kim MS. Central Administration of Ampelopsin A Isolated from Vitis vinifera Ameliorates Cognitive and Memory Function in a Scopolamine-Induced Dementia Model. Antioxidants (Basel) 2021; 10:antiox10060835. [PMID: 34073796 PMCID: PMC8225166 DOI: 10.3390/antiox10060835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive degeneration of the function of the central nervous system or peripheral nervous system and the decline of cognition and memory abilities. The dysfunctions of the cognitive and memory battery are closely related to inhibitions of neurotrophic factor (BDNF) and brain-derived cAMP response element-binding protein (CREB) to associate with the cholinergic system and long-term potentiation. Vitis vinifera, the common grapevine, is viewed as the important dietary source of stilbenoids, particularly the widely-studied monomeric resveratrol to be used as a natural compound with wide-ranging therapeutic benefits on neurodegenerative diseases. Here we found that ampelopsin A is a major compound in V. vinifera and it has neuroprotective effects on experimental animals. Bath application of ampelopsin A (10 ng/µL) restores the long-term potentiation (LTP) impairment induced by scopolamine (100 μM) in hippocampal CA3-CA1 synapses. Based on these results, we administered the ampelopsin A (10 ng/µL, three times a week) into the third ventricle of the brain in C57BL/6 mice for a month. Chronic administration of ampelopsin A into the brain ameliorated cognitive memory-behaviors in mice given scopolamine (0.8 mg/kg, i.p.). Studies of mice’s hippocampi showed that the response of ampelopsin A was responsible for the restoration of the cholinergic deficits and molecular signal cascades via BDNF/CREB pathways. In conclusion, the central administration of ampelopsin A contributes to increasing neurocognitive and neuroprotective effects on intrinsic neuronal excitability and behaviors, partly through elevated BDNF/CREB-related signaling.
Collapse
Affiliation(s)
- Yuni Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Yun-Hyeok Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Rebecca Magnan
- Department of Neuroscience, Pomona College, Claremont, CA 91711, USA;
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon 34122, Korea;
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
- Correspondence: (C.W.C.); (M.S.K.)
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Correspondence: (C.W.C.); (M.S.K.)
| |
Collapse
|
9
|
Shi D, Tan Q, Ruan J, Tian Z, Wang X, Liu J, Liu X, Liu Z, Zhang Y, Sun C, Niu Y. Aging-related markers in rat urine revealed by dynamic metabolic profiling using machine learning. Aging (Albany NY) 2021; 13:14322-14341. [PMID: 34016789 PMCID: PMC8202887 DOI: 10.18632/aging.203046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022]
Abstract
The process of aging and metabolism is intimately intertwined; thus, developing biomarkers related to metabolism is critical for delaying aging. However, few studies have identified reliable markers that reflect aging trajectories based on machine learning. We generated metabolomic profiles from rat urine using ultra-performance liquid chromatography/mass spectrometry. This was dynamically collected at four stages of the rat's age (20, 50, 75, and 100 weeks) for both the training and test groups. Partial least squares-discriminant analysis score plots revealed a perfect separation trajectory in one direction with increasing age in the training and test groups. We further screened 25 aging-related biomarkers through the combination of four algorithms (VIP, time-series, LASSO, and SVM-RFE) in the training group. They were validated in the test group with an area under the curve of 1. Finally, six metabolites, known or novel aging-related markers, were identified, including epinephrine, glutarylcarnitine, L-kynurenine, taurine, 3-hydroxydodecanedioic acid, and N-acetylcitrulline. We also found that, except for N-acetylcitrulline (p < 0.05), the identified aging-related metabolites did not differ between tumor-free and tumor-bearing rats at 100 weeks (p > 0.05). Our findings reveal the metabolic trajectories of aging and provide novel biomarkers as potential therapeutic antiaging targets.
Collapse
Affiliation(s)
- Dan Shi
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qilong Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jingqi Ruan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jinxiao Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xin Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhipeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yuntao Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yucun Niu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| |
Collapse
|
10
|
Gorny N, Kelly MP. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. VITAMINS AND HORMONES 2021; 115:265-316. [PMID: 33706951 DOI: 10.1016/bs.vh.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not only important to consider how hormones may change with age, but also how downstream signaling pathways that couple to hormone receptors may change. Among these hormone-coupled signaling pathways are the 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) intracellular second messenger cascades. Here, we test the hypothesis that dysfunction of cAMP and/or cGMP synthesis, execution, and/or degradation occurs in the brain during healthy and pathological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Although most studies report lower cyclic nucleotide signaling in the aged brain, with further reductions noted in the context of age-related diseases, there are select examples where cAMP signaling may be elevated in select tissues. Thus, therapeutics would need to target cAMP/cGMP in a tissue-specific manner if efficacy for select symptoms is to be achieved without worsening others.
Collapse
Affiliation(s)
- Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michy P Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Gong X, Xu L, Fang X, Zhao X, Du Y, Wu H, Qian Y, Ma Z, Xia T, Gu X. Protective effects of grape seed procyanidin on isoflurane-induced cognitive impairment in mice. PHARMACEUTICAL BIOLOGY 2020; 58:200-207. [PMID: 32114864 PMCID: PMC7067175 DOI: 10.1080/13880209.2020.1730913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
Context: Oxidative imbalance-induced cognitive impairment is among the most urgent clinical concerns. Isoflurane has been demonstrated to impair cognitive function via an increase in oxidative stress. GSP has strong antioxidant capacities, suggesting potential cognitive benefits.Objective: This study investigates whether GSP pre-treatment can alleviate isoflurane-induced cognitive dysfunction in mice.Materials and methods: C57BL/6J mice were pre-treated with either GSP 25-100 mg/kg/d for seven days or GSP 100-400 mg/kg as a single dose before the 6 h isoflurane anaesthesia. Cognitive functioning was examined using the fear conditioning tests. The levels of SOD, p-NR2B and p-CREB in the hippocampus were also analysed.Results: Pre-treatment with either a dose of GSP 50 mg/kg/d for seven days or a single dose of GSP 200 mg/kg significantly increased the % freezing time in contextual tests on the 1st (72.18 ± 12.39% vs. 37.60 ± 8.93%; 78.27 ± 8.46% vs. 52.72 ± 2.64%), 3rd (93.80 ± 7.62% vs. 52.94 ± 14.10%; 87.65 ± 10.86% vs. 52.89 ± 1.73%) and 7th (91.36 ± 5.31% vs. 64.09 ± 14.46%; 93.78 ± 3.92% vs. 79.17 ± 1.79%) day after anaesthesia. In the hippocampus of mice exposed to isoflurane, GSP 200 mg/kg increased the total SOD activity on the 1st and 3rd day and reversed the decreased activity of the NR2B/CREB pathway.Discussion and conclusions: These findings suggest that GSP improves isoflurane-induced cognitive dysfunction by protecting against perturbing antioxidant enzyme activities and NR2B/CREB pathway. Therefore, GSP may possess a potential prophylactic role in isoflurane-induced and other oxidative stress-related cognitive decline.
Collapse
Affiliation(s)
- Xiangdan Gong
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Zhao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Ying Du
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Hao Wu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
12
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
13
|
Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of β-carotene-nanoemulsions. Food Res Int 2019; 127:108738. [PMID: 31882082 DOI: 10.1016/j.foodres.2019.108738] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023]
Abstract
The impact of lotus seedpod proanthocyanidin (LSPC) on the functional properties of β-carotene-loaded whey-protein stabilized nanoemulsions was investigated. LSPC was selected because it is known to exhibit strong antioxidant activity, as well as having various health benefits. Physically stable nanoemulsions containing small anionic droplets (d < 0.15 μm; ζ = -27 mV) could be formed at pH 6.5 using whey protein-LSPC complexes as natural emulsifiers. The physical and chemical stabilities of the nanoemulsions were then measured when they were incubated at different pH values. LSPC addition promoted droplet aggregation at pH 4, but not at pH 3, 6.5, or 8, which was mainly attributed to its ability to reduce the electrostatic repulsion between the lipid droplets at pH 4. LSPC was shown to have stronger antioxidant activity than catechin and epicatechin. Our results show that the chemical stability of β-carotene nanoemulsions could be considerably improved by adding LSPC. We believe that LSPC-whey protein complexes can be used as effective emulsifiers and antioxidants in nutraceutical-loaded nanoemulsions, which may be useful for developing more efficacious functional foods and beverages.
Collapse
|
14
|
Xu J, Gao H, Zhang L, Rong S, Yang W, Ma C, Chen M, Huang Q, Deng Q, Huang F. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J Pineal Res 2019; 67:e12584. [PMID: 31050371 DOI: 10.1111/jpi.12584] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Brain insulin resistance, induced by neuroinflammation and oxidative stress, contributes to neurodegeneration, that is, processes that are associated with Aβ accumulation and TAU hyperphosphorylation. Here, we tested the effect of chronic administration of melatonin (MLT) on brain insulin resistance and cognition deficits caused by a high-fat diet (HFD) in aged rats. Results showed that MLT supplementation attenuated peripheral insulin resistance and lowered hippocampal oxidative stress levels. Activated microglia and astrocytes and hippocampal levels of TNF-α in HFD-fed rats were reduced by MLT treatment. Melatonin also prevented HFD-induced increases in beta-amyloid (Aβ) accumulation and TAU phosphorylation in the hippocampus. In addition, impairments of brain insulin signaling elicited by long-term HFD were restored by MLT treatment, as confirmed by ex vivo insulin stimulation. Importantly, MLT reversed HFD-induced cognitive decline as measured by a water maze test, normalized hippocampal LTP and restored CREB activity and BDNF levels as well as cholinergic neuronal activity in the hippocampus. Collectively, these findings indicate that MLT may exhibit substantial protective effects on cognition, via restoration of brain insulin signaling.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meng Chen
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
15
|
Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and Alzheimer’s Disease. Mol Neurobiol 2019; 56:5556-5567. [DOI: 10.1007/s12035-019-1469-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
16
|
Procyanidins Extracted from Lotus Seedpod Ameliorate Amyloid- β-Induced Toxicity in Rat Pheochromocytoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4572893. [PMID: 30538801 PMCID: PMC6230407 DOI: 10.1155/2018/4572893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, which is characterized by extracellular senile plaque deposits, intracellular neurofibrillary tangles, and neuronal apoptosis. Amyloid-β (Aβ) plays a critical role in AD that may cause oxidative stress and downregulation of CREB/BDNF signaling. Anti-Aβ effect has been discussed as a potential therapeutic strategy for AD. This study aimed to identify the amelioration of procyanidins extracted from lotus seedpod (LSPC) on Aβ-induced damage with associated pathways for AD treatment. Rat pheochromocytoma (PC12) cells incubated with Aβ25–35 serve as an Aβ damage model to evaluate the effect of LSPC in vitro. Our findings illustrated that LSPC maintained the cellular morphology from deformation and reduced apoptosis rates of cells induced by Aβ25–35. The mechanisms of LSPC to protect cells from Aβ-induced damage were based on its regulation of oxidation index and activation of CREB/BDNF signaling, including brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP-responsive element-binding (CREB), protein kinase B (also known as AKT), and the extracellular signal-regulated kinase (ERK). Of note, by high-performance liquid chromatography-tandem mass spectroscopy (LC-MS/MS), several metabolites were detected to accumulate in vivo, part of which could take primary responsibility for the amelioration of Aβ-induced damage on PC12 cells. Taken together, our research elucidated the effect of LSPC on neuroprotection through anti-Aβ, indicating it as a potential pretreatment for Alzheimer's disease.
Collapse
|
17
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
18
|
Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 2018; 42:281-291. [PMID: 29175000 PMCID: PMC5732030 DOI: 10.1016/j.cellsig.2017.11.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3',5'-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3',5'-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, VA Bldg 1, 3rd Floor, D-12, Columbia, SC 29209, United States.
| |
Collapse
|
19
|
Kim SE, Han JH, Ko IG, Kim CJ, Kim KH. Alpha1-adrenergic receptor antagonist tamsulosin ameliorates aging-induced memory impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus of old-aged rats. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1404492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee Medical Center, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University School of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
20
|
Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats. Psychopharmacology (Berl) 2017; 234:3037-3053. [PMID: 28733814 DOI: 10.1007/s00213-017-4690-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease is an age-related neurodegenerative disorder characterized clinically by a progressive loss of memory and cognitive functions resulting in severe dementia. Ipriflavone (IPRI) is a non-hormonal, semi-synthetic isoflavone, clinically used in some countries for the treatment and prevention of postmenopausal osteoporosis. Moreover, ipriflavone is a non-peptidomimetic small molecule AChE inhibitor with an improved bioavailability after systemic administration, due to its efficient blood-brain barrier permeability in comparison with peptidomimetic inhibitors. OBJECTIVE The present study aimed to evaluate the possible enhancing effects of IPRI on memory impairments caused by scopolamine administration. METHODS Male rats were administered IPRI (50 mg/kg, oral) 2 h before scopolamine injection (2 mg/kg, intraperitoneally injected) daily for 4 weeks. Effects of IPRI on acetylcholinesterase activity, amyloid-β precursor processing, and neuroplasticity in the rats' hippocampus were investigated. RESULTS Daily administration of IPRI reverted memory impairment caused by scopolamine as measured by the reduction of the escape latency. IPRI significantly alleviated the oxidative stress and restored the mRNA expression of both cAMP-response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Furthermore, it significantly increased the expression of ADAM10 and ADAM17 (two putative α-secretase enzymes) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) that associated with decreased expression of β-secretase (BACE) in the hippocampus. Finally, both the amyloid-β (Aβ) and Tau pathologies were reduced. CONCLUSIONS IPRI showed promising neuroprotective effects against scopolamine-induced memory dysfunction in rats. These findings contributed to the stimulation of α-secretase enzymes, the activation of MAPK/ERK1/2, and the alleviation of oxidative stress.
Collapse
|
21
|
ω-3PUFAs prevent MK-801-induced cognitive impairment in schizophrenic rats via the CREB/BDNF/TrkB pathway. ACTA ACUST UNITED AC 2017; 37:491-495. [PMID: 28786073 DOI: 10.1007/s11596-017-1762-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Indexed: 01/05/2023]
Abstract
This study was to determine the protective effect of ω-3 polyunsaturated fatty acids (ω-3PUFAs) on MK-801-induced cognitive impairment in schizophrenia (SZ) rats and the underlying mechanism. A rat model of schizophrenia was induced by MK-801. The cognitive function of rats was assessed using a Morris water maze. The number of hippocampal neurons was measured by Nissl staining. The expression of CREB, p-CREB, BDNF, TrkB, p-TrkB, AKT, p-AKT, ERK, and p-ERK in the hippocampus of rats was detected by Western blotting. The results showed that ω-3PUFAs attenuated MK-801-induced cognitive impairment and hippocampal neurons loss, reversed the injury of the CREB/BDNF/TrkB pathway induced by MK-801, and antagonized MK-801-induced down-regulation of p-AKT and p-ERK in the hippocampus of rats. In conclusion, ω-3PUFAs enhances the CREB/BDNF/TrkB pathway by activating ERK and AKT, thereby increasing the synaptic plasticity and decreasing neuron loss, and antagonizing MK-801-induced cognitive impairment in schizophrenic rats.
Collapse
|
22
|
Liu Y, Ni C, Li Z, Yang N, Zhou Y, Rong X, Qian M, Chui D, Guo X. Prophylactic Melatonin Attenuates Isoflurane‐Induced Cognitive Impairment in Aged Rats through Hippocampal Melatonin Receptor 2 – cAMP Response Element Binding Signalling. Basic Clin Pharmacol Toxicol 2017; 120:219-226. [PMID: 27515785 DOI: 10.1111/bcpt.12652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yajie Liu
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Cheng Ni
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Zhengqian Li
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Ning Yang
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Yang Zhou
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Xiaoying Rong
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Min Qian
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Dehua Chui
- Neuroscience Research Institute & Department of Neurobiology Peking University Beijing China
| | - Xiangyang Guo
- Department of Anesthesiology Peking University Third Hospital Beijing China
| |
Collapse
|
23
|
Sui Z, Qi C, Huang Y, Ma S, Wang X, Le G, Sun J. Aqueous extracts from asparagus stems prevent memory impairments in scopolamine-treated mice. Food Funct 2017; 8:1460-1467. [DOI: 10.1039/c7fo00028f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous extracts fromAsparagus officinalisL. reversed scopolamine-induced cognitive impairments by increasing acetylcholine and expression of BDNF and CREB.
Collapse
Affiliation(s)
- Zifang Sui
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi214122
| | - Ce Qi
- School of Food Science and Technology
- Jiangnan University
- Wuxi214122
- China
| | - Yunxiang Huang
- Asparagus Engineering Technology Research Centre of Hebei
- Qinhuangdao 066004
- China
- Hebei Province Asparagus Industry Technology Research Institute
- Qinhuangdao 066004
| | - Shufeng Ma
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi214122
| | - Xinguo Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi214122
- China
| | - Guowei Le
- School of Food Science and Technology
- Jiangnan University
- Wuxi214122
- China
| | - Jin Sun
- School of Food Science and Technology
- Jiangnan University
- Wuxi214122
- China
| |
Collapse
|
24
|
Benmansour S, Arroyo LD, Frazer A. Comparison of the Antidepressant-Like Effects of Estradiol and That of Selective Serotonin Reuptake Inhibitors in Middle-Aged Ovariectomized Rats. Front Aging Neurosci 2016; 8:311. [PMID: 28066235 PMCID: PMC5174113 DOI: 10.3389/fnagi.2016.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 01/04/2023] Open
Abstract
This study investigated the effect of age and that of the post-ovariectomy (OVX) time interval on the antidepressant (AD)-like effects of estradiol (E2) and selective serotonin reuptake inhibitors (SSRIs) in middle-aged (10 month) OVX rats (10m-OVX). Acute or chronic effects of these treatments in 10m-OVX were compared with those (1) in young adult (4-month) OVX rats (4m-OVX) or with older (14-month) OVX rats (14m-OVX), at a short time: 2 weeks post-OVX (+2w) and (2) in 10m-OVX rats after a longer times: 4 or 8 months post-OVX (+4m or +8m). Using in vivo chronoamperometry in the CA3 region of the hippocampus, E2 at 20 pmol, a dose shown previously to inhibit the serotonin transporter (SERT) in 4m-OVX, had no effect in 10m-OVX+2w. A higher dose of E2 (40 pmol) increased T80 value, a measure of serotonin or 5-hydroxytryptamine (5-HT) clearance, and also blocked the ability of fluvoxamine to increase T80. By contrast, estradiol had no effects on SERT function in 10m-OVX+4m, even at a higher dose than 40 pmol. Fluvoxamine slowed 5-HT clearance in 10m-OVX at +2w, +4m and +8m post-OVX as it did in the 4m-OVX. Using the forced swim test, 2 weeks treatment with E2 (5 μg/day), a dose shown previously to induce AD-like effects in 4m-OVX, had no effect in 10m-OVX+2w. However, a higher dose (10 μg/day) of E2 induced an AD-like effect as demonstrated by significantly increased swimming behavior and decreased immobility. This effect was not seen in 10m-OVX+4m. By contrast, significant AD-like effects were obtained in 14m-OVX+2w, thereby demonstrating that the lack of an AD effect of E2 is due to the 4-month hormone withdrawal and not to an age effect. After 2 weeks treatment with the SSRI sertraline, similar AD-like effects were obtained in 10m-OVX tested at +2w, +4m or +8m post-OVX as those found in 4m-OVX. Thus, the potency of estradiol to produce effects consistent with inhibition of the SERT was not only decreased in older rats but its effects were markedly diminished the longer hormonal depletion occurred. By contrast, the ability of SSRIs to inhibit the SERT was not affected either by age or the length of hormonal depletion.
Collapse
Affiliation(s)
- Saloua Benmansour
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Luis D Arroyo
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Alan Frazer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San AntonioTX, USA; South Texas Veterans Health Care System, San AntonioTX, USA
| |
Collapse
|
25
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Imbesi R, Loreto C, Castorina S, Giunta S. Protective effects of high Tryptophan diet on aging-induced passive avoidance impairment and hippocampal apoptosis. Brain Res Bull 2016; 128:76-82. [PMID: 27889579 DOI: 10.1016/j.brainresbull.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022]
Abstract
In our previous work we have shown that L-Tryptophan (TrP) enriched diet prevents the age-induced decline of hippocampal Serotonin (5-HT) production. Considering that loss or reduction in 5-HT neurotransmission may contribute to age-related cognitive decline, here we have investigated the effect of such diet on passive avoidance (PA) behavior, cell death, pro- and anti- apoptotic molecules (BAX, Bcl-2 and Caspase-3) and an important transcription factor involved in synaptic plasticity and memory (CREB). The increase in 5-HT neurotransmission in the Hippocampus (Hp) of aged rats was induced by 1 month of high TrP administration. In the first phase of our study we found that high TrP diet improves PA behaviour of aged rats and this correlated with a decrease of TUNEL positive cells in all hippocampal regions tested (CA1, CA2, CA3, DG). Interestingly, the Hp of aged animals fed with high TrP diet showed a significant downregulation of proapoptotic proteins, caspase-3 and BAX, and an increase of antiapoptotic molecules Bcl-2 as indicated by Western Blot and immunohistochemical analyses. Also, high TrP diet partially rescued the age-induced inhibition of hippocampal CREB phosphorylation. Altogether, our data suggest that enhanced TrP intake, and in consequence a potential increase in 5-HT neurotransmission, might be beneficial in preventing age-related detrimental features by inhibition of hippocampal apoptosis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| |
Collapse
|
26
|
Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci 2016; 8:57. [PMID: 27047373 PMCID: PMC4801859 DOI: 10.3389/fnagi.2016.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
27
|
Gong YS, Guo J, Hu K, Gao YQ, Xie BJ, Sun ZD, Yang EN, Hou FL. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose. Exp Gerontol 2016; 74:21-8. [DOI: 10.1016/j.exger.2015.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
28
|
Long-Term Dietary Alpha-Linolenic Acid Supplement Alleviates Cognitive Impairment Correlate with Activating Hippocampal CREB Signaling in Natural Aging Rats. Mol Neurobiol 2015; 53:4772-86. [PMID: 26328539 DOI: 10.1007/s12035-015-9393-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022]
Abstract
Alpha-linolenic acid (ALA) is a major precursor of the essential n-3 polyunsaturated fatty acid (PUFA), whose deficiency alters the structure and function of membranes and induces cerebral dysfunctions. The major purpose of this study was to investigate the protective effect of prolonged ALA intake on cognitive function during natural aging. Female Sprague-Dawley rats aged 6 months were chronically treated with ALA and/or lard per day for 12 months. Regular diet-treated rats, both young and old (4 and 18 months old, respectively) served as controls. Rats fed on regular diet during aging showed memory deficits in Morris water maze, which were further exacerbated by lard intake. However, supplementation with ALA for 12 months dose-dependently improved the performance in spatial working memory tasks. Memory performance correlated well with the activation of cAMP response element-binding protein (CREB) and increases in both levels of brain-derived neurotrophic factor (BDNF) and its specific receptor tyrosine kinase B (TrkB) phosphorylation in the hippocampus. Further study identified that hippocampal extracellular signal-related kinase (ERK) and Akt rather than calcium calmodulin kinase IV (CaMKIV) and protein kinase A (PKA), the upstream signalings of CREB, were also activated by ALA supplement. Moreover, memory improvement was accompanied with alterations of hippocampal synaptic structure and number, suggestive of enhancement in synaptic plasticity. Together, these results suggest that long-term dietary intake of ALA enhances CREB/BDNF/TrkB pathway through the activation of ERK and Akt signalings in hippocampus, which contributes to its ameliorative effects on cognitive deficits in natural aging.
Collapse
|
29
|
Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction. Neurochem Int 2015; 89:191-7. [PMID: 26235983 DOI: 10.1016/j.neuint.2015.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/22/2022]
Abstract
Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.
Collapse
|
30
|
Lee B, Sur B, Shim J, Hahm DH, Lee H. Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. Altern Ther Health Med 2014; 14:338. [PMID: 25231482 PMCID: PMC4180318 DOI: 10.1186/1472-6882-14-338] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Background Acupuncture is an alternative therapy that is widely used to treat various neurodegenerative diseases and effectively improve cognitive and memory impairment. The aim of this study was to examine whether acupuncture stimulation at the Baihui (GV20) acupoint improves memory defects caused by scopolamine (SCO) administration in rats. We also investigated the effects of acupuncture stimulation at GV20 on the cholinergic system as well as the expression of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) in the hippocampus. Methods SCO (2 mg/kg, i.p.) was administered to male rats once daily for 14 days. Acupuncture stimulation at GV20 was performed for 5 min before SCO injection. After inducing cognitive impairment via SCO administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test to assess behavior. Results Acupuncture stimulation at GV20 improved memory impairment as measured by the PAT and reduced the escape latency for finding the platform in the MWM test. Acupuncture stimulation at GV20 significantly alleviated memory-associated decreases in the levels of choline acetyltransferase (ChAT), BDNF and CREB proteins in the hippocampus. Additionally, acupuncture stimulation at GV20 significantly restored the expression of choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), BDNF and CREB mRNA in the hippocampus. These results demonstrate that acupuncture stimulation at GV20 exerts significant neuroprotective effects against SCO-induced neuronal impairment and memory dysfunction in rats. Conclusions These findings suggest that acupuncture stimulation at GV20 might be useful in various neurodegenerative diseases to improve cognitive functioning via stimulating cholinergic enzyme activities and regulating BDNF and CREB expression in the brain.
Collapse
|
31
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Baicalin improves chronic corticosterone-induced learning and memory deficits via the enhancement of impaired hippocampal brain-derived neurotrophic factor and cAMP response element-binding protein expression in the rat. J Nat Med 2013; 68:132-43. [DOI: 10.1007/s11418-013-0782-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
32
|
Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 2013; 1516:93-109. [PMID: 23623816 DOI: 10.1016/j.brainres.2013.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/20/2022]
Abstract
It is well known that alongside senescence there is a gradual decline in cognitive ability, most noticeably certain kinds of memory such as working, episodic, spatial, and long term memory. However, until recently, not much has been known regarding the specific mechanisms responsible for the decline in cognitive ability with age. Over the past decades, researchers have become more interested in cAMP signaling, and its downstream transcription factor cAMP response element binding protein (CREB) in the context of senescence. However, there is still a lack of understanding on what ultimately causes the cognitive deficits observed with senescence. This review will focus on the changes in intracellular signaling in the brain, more specifically, alterations in cAMP/CREB signaling in aging. In addition, the downstream effects of altered cAMP signaling on cognitive ability with age will be further discussed. Overall, understanding the senescent-related changes that occur in cAMP/CREB signaling could be important for the development of novel drug targets for both healthy aging, and pathological aging such as Alzheimer's disease.
Collapse
|
33
|
Zhou G, Xiong W, Zhang X, Ge S. Retrieval of Consolidated Spatial Memory in the Water Maze Is Correlated with Expression of pCREB and Egr1 in the Hippocampus of Aged Mice. Dement Geriatr Cogn Dis Extra 2013; 3:39-47. [PMID: 23569457 PMCID: PMC3618049 DOI: 10.1159/000348349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective To study the relationship of the expression of phosphorylated cyclic AMP response element-binding protein (pCREB) and early growth response protein 1 (Egr1) in the hippocampus of aged mice with retrieval of consolidated spatial memory in a water maze. Methods Twenty-four aged mice were allocated into no training or probe test (naïve), no training but exposed to the same probe test (NTPRT), received training and probe test (PRT), and received training but no probe test (NPRT) groups. Twelve mice were trained in a water maze over 14 days. After the final probe trial on day 15, all mice were anesthetized and the brains were removed. pCREB immunoreactivity (pCREB-ir) and Egr1 immunoreactivity (Egr1-ir) in the hippocampal CA1 and CA3 areas were examined. Results pCREB-ir and Egr1-ir in the CA1 and CA3 areas of the NPRT and PRT groups were significantly higher than those of the naïve and NTPRT groups, and those in the PRT group were significantly higher than in the NPRT group. In all groups, pCREB-ir was significantly higher in the CA3 area compared to the CA1 area, while Egr1-ir was significantly higher in the CA1 area compared to the CA3 area. Conclusion Retrieval, as well as formation, of consolidated spatial memory in the water maze is correlated with expression of pCREB and Egr1 in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Guoxia Zhou
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China ; Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China ; Department of Anesthesia, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
34
|
Morris KA, Gold PE. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments. Exp Gerontol 2013; 48:115-27. [PMID: 23201424 PMCID: PMC3557608 DOI: 10.1016/j.exger.2012.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanisms needed to upregulate memory processes. In the first experiment, young adult and old rats were trained on an inhibitory avoidance task with immediate post-training injections of aCSF or glucose into the dorsal hippocampus. Old rats had significant memory impairments compared to young rats 7 days after training. Intrahippocampal injections of glucose reversed age-related deficits, improving memory scores in old rats to values seen in young rats. A second experiment examined age-related changes in activation of the transcription factor CREB, which is widely implicated in memory formation and may act downstream of hormonal and metabolic signals. Activation was assessed in response to training with systemic injections of epinephrine and glucose at doses known to enhance memory. Young adult and old rats were trained on inhibitory avoidance with immediate post-training systemic injections of saline, epinephrine, or glucose. After training, old rats had significant impairments in CREB phosphorylation in area CA1 and the dentate gyrus region of the hippocampus, and in the basolateral and lateral amygdala. Epinephrine and glucose attenuated age-related deficits in CREB phosphorylation, but were more effective in the amygdala and hippocampus, respectively. Together, these results support the view that age-related changes in blood glucose responses to epinephrine contribute to memory impairments, which may be related to alterations in regional patterns of CREB phosphorylation.
Collapse
Affiliation(s)
- Ken A. Morris
- Neuroscience Program and College of Medicine, University of Illinois at Urbana-Champaign IL 61801
| | - Paul E. Gold
- Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
35
|
Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br J Nutr 2013; 110:420-5. [PMID: 23312069 DOI: 10.1017/s0007114512005338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility.
Collapse
|
36
|
Lee B, Sur B, Park J, Shin H, Kwon S, Yeom M, Kim SJ, Kim K, Shim I, Yin CS, Lee H, Hahm DH. Fucoidan ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats via activation of cholinergic system and regulation of cAMP-response element-binding protein and brain-derived neurotrophic factor expressions. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2137-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Morris KA, Gold PE. Age-related impairments in memory and in CREB and pCREB expression in hippocampus and amygdala following inhibitory avoidance training. Mech Ageing Dev 2012; 133:291-9. [PMID: 22445851 PMCID: PMC3359401 DOI: 10.1016/j.mad.2012.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 01/09/2023]
Abstract
This experiment examined whether age-related changes in CREB and pCREB contribute to the rapid forgetting seen in aged animals. Young (3-month-old) and aged (24-month-old) Fischer-344 rats received inhibitory avoidance training with a low (0.2 mA, 0.4 s) or moderate (0.5 mA, 0.5 s) foot shock; memory was measured 7 days later. Other rats were euthanized 30 min after training, and CREB and pCREB expression levels were examined in the hippocampus, amygdala, and piriform cortex using immunohistochemistry. CREB levels decreased with age in the hippocampus and amygdala. After training with either shock level, young rats exhibited good memory and increases in pCREB levels in the hippocampus and amygdala. Aged rats exhibited good memory for the moderate but not the low shock but did not show increases in pCREB levels after either shock intensity. These results suggest that decreases in total CREB and in pCREB activation in the hippocampus and amygdala may contribute to rapid forgetting in aged rats. After moderate foot shock, the stable memory in old rats together with absence of CREB activation suggests either that CREB was phosphorylated in a spatiotemporal pattern other than analyzed here or that the stronger training conditions engaged alternate mechanisms that promote long-lasting memory.
Collapse
Affiliation(s)
- Ken A. Morris
- Neuroscience Program, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
- College of Medicine, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | - Paul E. Gold
- Neuroscience Program, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
- Departments of Psychology, Psychiatry, Molecular and Integrative Physiology, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
38
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:79-89. [PMID: 22563252 PMCID: PMC3339292 DOI: 10.4196/kjpp.2012.16.2.79] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/17/2012] [Accepted: 03/03/2012] [Indexed: 01/06/2023]
Abstract
We examine whether Phellodendron amurense (PA) and its major alkaloid compound, berberine (BER), improved memory defects caused by administering scopolamine in rats. Effects of PA and BER on the acetylcholinergic system and pro-inflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses for 14 days of PA (100 and 200 mg/kg, i.p.) and BER (20 mg/kg, i.p.) 30 min before scopolamine injection (2 mg/kg, i.p.). Daily administration of PA and BER improved memory impairment as measured by the passive avoidance test and reduced the escape latency for finding the platform in the Morris water maze test. Administration of PA and BER significantly alleviated memory-associated decreases in cholinergic immunoreactivity and restored brain-derived neurotrophic factor and cAMP-response element-binding protein mRNA expression in the hippocampus. PA and BER also decreased significantly the expression of proinflammatory cytokines such as interleukin-1β, tumor necrosis factor-α and cyclooxygenase-2 mRNA in the hippocampus. These results demonstrated that PA and BER had significant neuroprotective effects against neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that PA and BER may be useful as therapeutic agents for improving cognitive functioning by stimulating cholinergic enzyme activity and alleviating inflammatory responses.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
39
|
Li M, Dai FR, Du XP, Yang QD, Zhang X, Chen Y. Infusion of BDNF into the nucleus accumbens of aged rats improves cognition and structural synaptic plasticity through PI3K-ILK-Akt signaling. Behav Brain Res 2012; 231:146-53. [PMID: 22446058 DOI: 10.1016/j.bbr.2012.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/04/2012] [Accepted: 03/07/2012] [Indexed: 01/24/2023]
Abstract
To investigate the involvement of the nucleus accumbens (NAc) in cognitive impairment and the therapeutic effects of brain-derived neurotrophic factor (BDNF) in an animal model of cognitive deficit, we infused BDNF into the NAc of cognitively impaired aged rats. Cognition was evaluated by Morris water maze test. Structural synaptic plasticity was measured by Golgi staining. Brain tissue homogenization was used to measure the changes in signal molecules. Cultured PC-12 cells expressing tyrosine kinase receptor (Trk) B/p75 neurotrophin receptor (p75(NTR)), p75(NTR) or TrkA/p75(NTR) receptors were used for BDNF stimulation assays. Significant decreases in the levels of BDNF, phosphatidylinositol-3-kinase (PI3K) and integrin-linked kinase (ILK) activity, protein kinase B (Akt) Ser⁴⁷³ phosphorylation, dendritic branching, and density of dendritic spines on medium spiny neurons were observed in the NAc. Importantly, infusion of BDNF restored cognition, synaptic plasticity, and cell signaling. In cultured PC-12 cells, BDNF activated PI3K/Akt signaling through the TrkB receptor, whereas stimulation of ILK/Akt occurred through TrkA/p75(NTR) heteroreceptor. Our study suggested that the decreased BDNF level and its downstream signaling as well as loss of synaptic plasticity in the NAc are associated with cognitive impairments in aged rats. The BDNF-activated PI3K-Akt and ILK-Akt signaling play a key role in structural synaptic plasticity. Our study also suggested that BDNF could be a mechanism-based treatment for dementia.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22:153-69. [DOI: 10.1515/rns.2011.018] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|