1
|
Huber HF, Ainsworth HC, Quillen EE, Salmon A, Ross C, Azhar AD, Bales K, Basso MA, Coleman K, Colman R, Darusman HS, Hopkins W, Hotchkiss CE, Jorgensen MJ, Kavanagh K, Li C, Mattison JA, Nathanielsz PW, Saputro S, Scorpio DG, Sosa PM, Vallender EJ, Wang Y, Zeiss CJ, Shively CA, Cox LA. Comparative lifespan and healthspan of nonhuman primate species common to biomedical research. GeroScience 2025; 47:135-151. [PMID: 39585646 PMCID: PMC11872815 DOI: 10.1007/s11357-024-01421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
There is a critical need to generate age- and sex-specific survival curves to characterize chronological aging consistently across nonhuman primates (NHP) used in biomedical research. Sex-specific Kaplan-Meier survival curves were computed in 12 translational aging models: baboon, bonnet macaque, chimpanzee, common marmoset, coppery titi monkey, cotton-top tamarin, cynomolgus macaque, Japanese macaque, pigtail macaque, rhesus macaque, squirrel monkey, and vervet/African green. After employing strict inclusion criteria, primary results are based on 12,269 NHPs that survived to adulthood and died of natural/health-related causes. A secondary analysis was completed for 32,616 NHPs that died of any cause. Results show a pattern of reduced male survival among catarrhines (African and Asian primates), especially macaques, but not platyrrhines (Central and South American primates). For many species, median lifespans were lower than previously reported. An important consideration is that these analyses may offer a better reflection of healthspan than lifespan since research NHPs are typically euthanized for humane welfare reasons before their natural end of life. This resource represents the most comprehensive characterization of sex-specific lifespan and age-at-death distributions for 12 biomedically relevant species, to date. These results clarify relationships among NHP ages and provide a valuable resource for the aging research community, improving human-NHP age equivalencies, informing investigators of expected survival rates, providing a metric for comparisons in future studies, and contributing to understanding of factors driving lifespan differences within and among species.
Collapse
Affiliation(s)
| | | | - Ellen E Quillen
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam Salmon
- University of Texas Health Science Center, San Antonio, TX, USA
| | - Corinna Ross
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Adinda D Azhar
- Primate Research Center, IPB University, Bogor, Indonesia
| | - Karen Bales
- California National Primate Research Center, Davis, CA, USA
- University of California, Davis, CA, USA
| | - Michele A Basso
- Washington National Primate Research Center, Seattle, WA, USA
| | - Kristine Coleman
- Oregon National Primate Research Center, Hillsboro, OR, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Ricki Colman
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Huda S Darusman
- Primate Research Center, IPB University, Bogor, Indonesia
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - William Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | | | | | - Kylie Kavanagh
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
- University of Tasmania, Hobart, TAS, Australia
| | - Cun Li
- University of Wyoming, Laramie, WY, USA
| | - Julie A Mattison
- National Institute On Aging, National Institutes of Health, Gaithersburg, MD, USA
| | - Peter W Nathanielsz
- Texas Biomedical Research Institute, San Antonio, TX, USA
- University of Wyoming, Laramie, WY, USA
| | - Suryo Saputro
- Primate Research Center, IPB University, Bogor, Indonesia
| | - Diana G Scorpio
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Envol Biomedical, Immokalee, FL, USA
| | | | - Eric J Vallender
- Tulane National Primate Research Center, Covington, LA, USA
- New England Primate Research Center, Southborough, MA, USA
| | - Yaomin Wang
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Carol A Shively
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura A Cox
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Harper JM. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int J Mol Sci 2024; 25:7905. [PMID: 39063147 PMCID: PMC11277064 DOI: 10.3390/ijms25147905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Huntsville, TX 77341, USA
| |
Collapse
|
3
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
4
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
5
|
Gómez J, Mota-Martorell N, Jové M, Pamplona R, Barja G. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector. Exp Gerontol 2023; 174:112134. [PMID: 36849000 DOI: 10.1016/j.exger.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Mitochondria play a wide diversity of roles in cell physiology and have a key functional implication in cell bioenergetics and biology of free radicals. As the main cellular source of oxygen radicals, mitochondria have been postulated as the mediators of the cellular decline associated with the biological aging. Recent evidences have shown that mitochondrial free radical production is a highly regulated mechanism contributing to the biological determination of longevity which is species-specific. This mitochondrial free radical generation rate induces a diversity of adaptive responses and derived molecular damage to cell components, highlighting mitochondrial DNA damage, with biological consequences that influence the rate of aging of a given animal species. In this review, we explore the idea that mitochondria play a fundamental role in the determination of animal longevity. Once the basic mechanisms are discerned, molecular approaches to counter aging may be designed and developed to prevent or reverse functional decline, and to modify longevity.
Collapse
Affiliation(s)
- José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Rey Juan Carlos University, E28933 Móstoles, Madrid, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040 Madrid, Spain.
| |
Collapse
|
6
|
Perez-Cruz C, Rodriguez-Callejas JDD. The common marmoset as a model of neurodegeneration. Trends Neurosci 2023; 46:394-409. [PMID: 36907677 DOI: 10.1016/j.tins.2023.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
Human life expectancy has increased over the past few centuries, and the incidence of dementia in the older population is also projected to continue to rise. Neurodegenerative diseases are complex multifactorial conditions for which no effective treatments are currently available. Animal models are necessary to understand the causes and progression of neurodegeneration. Nonhuman primates (NHPs) offer significant advantages for the study of neurodegenerative disease. Among them, the common marmoset, Callithrix jacchus, stands out due to its easy handling, complex brain architecture, and occurrence of spontaneous beta-amyloid (Aβ) and phosphorylated tau aggregates with aging. Furthermore, marmosets present physiological adaptations and metabolic alterations associated with the increased risk of dementia in humans. In this review, we discuss the current literature on the use of marmosets as a model of aging and neurodegeneration. We highlight aspects of marmoset physiology associated with aging, such as metabolic alterations, which may help understand their vulnerability to developing a neurodegenerative phenotype that goes beyond normal aging.
Collapse
Affiliation(s)
- Claudia Perez-Cruz
- Department of Pharmacology, Center of Research and Advance Studies (Cinvestav-I.P.N.), Av. Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| | - Juan de Dios Rodriguez-Callejas
- Department of Pharmacology, Center of Research and Advance Studies (Cinvestav-I.P.N.), Av. Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| |
Collapse
|
7
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
8
|
Almaida-Pagan PF, Lucas-Sanchez A, Martinez-Nicolas A, Terzibasi E, de Lama MAR, Cellerino A, Mendiola P, de Costa J. Membrane lipids and maximum lifespan in clownfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:53-65. [PMID: 34862943 PMCID: PMC8844168 DOI: 10.1007/s10695-021-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The longevity-homeoviscous adaptation (LHA) theory of ageing states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (Amphiprion percula and Amphiprion clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of ageing in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two Amphiprion species were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum lifespan, well in line with the predictions from the LHA theory of ageing. Nevertheless, contradictory data were obtained when the two Amphiprion species were compared to the shorter-lived C. viridis. These results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain.
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Alejandro Lucas-Sanchez
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eva Terzibasi
- Stazione Zoologica Anton Dohrn, Naples, Campania, Italy
| | - Maria Angeles Rol de Lama
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Pilar Mendiola
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jorge de Costa
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
9
|
Burnett SD, Karmakar M, Murphy WJ, Chiu WA, Rusyn I. A new approach method for characterizing inter-species toxicodynamic variability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:1020-1039. [PMID: 34427174 PMCID: PMC8530970 DOI: 10.1080/15287394.2021.1966861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-species differences in toxicodynamics are often a critical source of uncertainty in safety evaluations and typically dealt with using default adjustment factors. In vitro studies that use cells from different species demonstrated some success for estimating the relationships between life span and/or body weight and sensitivity to cytotoxicity; however, no apparent investigation evaluated the utility of these models for risk assessment. It was hypothesized that an in vitro model using dermal fibroblasts derived from diverse species and individuals might be utilized to inform the extent of inter-species and inter-individual variability in toxicodynamics. To test this hypothesis and characterize both inter-species and inter-individual variability in cytotoxicity, concentration-response cytotoxicity screening of 40 chemicals in primary dermal fibroblasts from 68 individuals of 54 diverse species was conducted. Chemicals examined included drugs, environmental pollutants, and food/flavor/fragrance agents; most of these were previously assessed either in vivo or in vitro for inter-species or inter-individual variation. Species included humans, the typical preclinical species and representatives from other orders of mammals and birds. Data demonstrated that both inter-species and inter-individual components of variability contribute to the observed differences in sensitivity to cell death. Further, it was found that the magnitude of the observed inter-species and inter-individual differences was chemical-dependent. This study contributes to the paradigm shift in risk assessment from reliance on in vivo toxicity testing to higher-throughput in vitro or alternative approaches, extending the strategy to replace use of default adjustment factors with experimental characterization of toxicodynamic inter-individual variability and to also address toxicodynamic inter-species variability.
Collapse
Affiliation(s)
- Sarah D. Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Moumita Karmakar
- Department of Statistics, Texas A&M University, College Station, TX 77843-4458, USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
10
|
Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. Physiology (Bethesda) 2021; 35:86-95. [PMID: 32024428 DOI: 10.1152/physiol.00034.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In cancer cells, glucose is primarily metabolized to pyruvate and then to lactate in the cytosol. By allowing the conversion of pyruvate to acetyl-CoA in mitochondria, melatonin reprograms glucose metabolism in cancer cells to a normal cell phenotype. Acetyl-CoA in the mitochondria also serves as a necessary co-factor for the rate-limiting enzyme in melatonin synthesis, thus ensuring melatonin production in mitochondria of normal cells.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Qiang Ma
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Voituron Y, Boël M, Roussel D. Mitochondrial threshold for H 2O 2 release in skeletal muscle of mammals. Mitochondrion 2020; 54:85-91. [PMID: 32738356 DOI: 10.1016/j.mito.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
The aim of the study was to evaluate the interplay between mitochondrial respiration and H2O2 release during the transition from basal non-phosphorylating to maximal phosphorylating states. We conducted a large scale comparative study of mitochondrial oxygen consumption, H2O2 release and electron leak (% H2O2/O) in skeletal muscle mitochondria isolated from mammal species ranging from 7 g to 500 kg. Mitochondrial fluxes were measured at different steady state rates in presence of pyruvate, malate, and succinate as respiratory substrates. Every species exhibited a burst of H2O2 release from skeletal muscle mitochondria at a low rate of oxidative phosphorylation, essentially once the activity of mitochondrial oxidative phosphorylation reached 26% of the maximal respiration. This threshold for ROS generation thus appears as a general characteristic of skeletal muscle mitochondria in mammals. These findings may have implications in situations promoting succinate accumulation within mitochondria, such as ischemia or hypoxia.
Collapse
Affiliation(s)
- Yann Voituron
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Mélanie Boël
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
13
|
Tan BL, Norhaizan ME. Oxidative Stress, Diet and Prostate Cancer. World J Mens Health 2020; 39:195-207. [PMID: 32648373 PMCID: PMC7994655 DOI: 10.5534/wjmh.200014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer has become the second leading cancer in men worldwide. Androgen plays an important role in normal functioning, development, and differentiation of the prostate, and thus is considered to be the most powerful candidate that mediates reactive oxygen species (ROS) balance in the prostate. The elevation of ROS has been associated with the progression and development of this disease. Conventional therapy has shown a high cure rate in patients with localized prostate cancer. Despite the patients respond favorably initially, this therapy fails to response in the advanced stage of the diseases even in the absence of androgens. Indeed, the onset and progression of prostate cancer could be prevented by changing dietary habits. Much information indicates that oxidative stress and prostate cancer can be modulated by dietary components rich in antioxidants. While there is substantial evidence to suggest an association between prostate cancer risk and ROS-mediated oxidative stress; therefore, the interactions and mechanisms of this phenomenon are worth to discuss further. This review aimed to discuss the mechanisms of action of oxidative stress involved in the progression of prostate cancer. We also highlighted how some of the vital dietary components dampen or exacerbate inflammation, oxidative stress, and prostate cancer. Overall, the reported information would provide a useful approach to the prevention of prostate cancer.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia.,Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
14
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 2020; 68:1775-1793. [PMID: 32096580 DOI: 10.1002/glia.23804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Collapse
Affiliation(s)
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | |
Collapse
|
15
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
16
|
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627. [DOI: 10.1016/j.exger.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
17
|
Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, Hertelendy P, Kinter M, Ballabh P, Süle Z, Farkas E, Baur JA, Sinclair DA, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol 2019; 24:101192. [PMID: 31015147 PMCID: PMC6477631 DOI: 10.1016/j.redox.2019.101192] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/17/2023] Open
Abstract
Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hypothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory and gait coordination. These findings are paralleled by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marta Noa Valcarcel-Ares
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neurosurgery, Medical School, University of Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsuzsanna Tucsek
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Hertelendy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Kinter
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Division of Neonatology, Department of Pediatrics, Albert Einstein College of Medicine, USA
| | - Zoltán Süle
- Department of Anatomy, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary; Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Gabriela Jimenez A. "The Same Thing That Makes You Live Can Kill You in the End": Exploring the Effects of Growth Rates and Longevity on Cellular Metabolic Rates and Oxidative Stress in Mammals and Birds. Integr Comp Biol 2019; 58:544-558. [PMID: 29982421 DOI: 10.1093/icb/icy090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All aerobic organisms are subjected to metabolic by-products known as reactive species (RS). RS can wreak havoc on macromolecules by structurally altering proteins and inducing mutations in DNA, among other deleterious effects. To combat accumulating damage, organisms have an antioxidant system to sequester RS before they cause cellular damage. The balance between RS production, antioxidant defences, and accumulated cellular damage is termed oxidative stress. Physiological ecologists, gerontologists, and metabolic biochemists have turned their attention to whether oxidative stress is the principal, generalized mechanism that mediates and limits longevity, growth rates, and other life-history trade-offs in animals, as may be the case in mammals and birds. At the crux of this theory lies the regulation and activities of the mitochondria with respect to the organism and its metabolic rate. At the whole-animal level, evolutionary theory suggests that developmental trajectories and growth rates can shape the onset and rate of aging. Mitochondrial function is important for aging since it is the main source of energy in cells, and the main source of RS. Altering oxidative stress levels, either increase in oxidative damage or reduction in antioxidants, has proven to also decrease growth rates, which implies that oxidative stress is a cost of, as well as a constraint on, growth. Yet, in nature, many animals exhibit fast growth rates that lead to higher loads of oxidative stress, which are often linked to shorter lifespans. In this article, I summarize the latest findings on whole-animal life history trade-offs, such as growth rates and longevity, and how these can be affected by mitochondrial cellular metabolism, and oxidative stress.
Collapse
|
19
|
Ibáñez-Contreras A, Hernández-Arciga U, Poblano A, Arteaga-Silva M, Hernández-Godínez B, Mendoza-Cuevas GI, Toledo-Pérez R, Alarcón-Aguilar A, González-Puertos VY, Konigsberg M. Electrical activity of sensory pathways in female and male geriatric Rhesus monkeys (Macaca mulatta), and its relation to oxidative stress. Exp Gerontol 2017; 101:80-94. [PMID: 29146475 DOI: 10.1016/j.exger.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Synapses loss during aging has been related to decreased neuronal excitability and reduced electrophysiological activity in the nervous system, as well as to increased brain damage. Those physiological and biochemical alterations have been related to the oxidative stress increase associated with old age. The main substrate of lipid peroxidation (LPX) in the central and peripheral nervous systems are the myelin sheaths, and their damage generates a delayed nerve conduction velocity. However, studies in which the neural conduction velocity is related to changes in the redox state are still lacking. Therefore, our aim was to correlate the sensory neural pathways delay in healthy geriatric Rhesus monkeys (Macaca mulatta) with the oxidative stress associated with physiological aging. Twenty-four monkeys were divided into four groups according to age and gender. Auditory, visual, and somatosensory evoked potentials were obtained. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity, as well as LPX, were determined from blood samples. Our results showed significant differences between the older and younger age groups in all neural generators of the different sensory pathways evaluated, along with an increase in LPX and the antioxidant enzymatic activities. It suggests that, even though the enzymatic activity was found to be higher in older monkeys, probably as a compensatory effect, it was not enough to avoid LPX damage and the declined electric activity associated with age.
Collapse
Affiliation(s)
- A Ibáñez-Contreras
- Posgrado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico; APREXBIO S.A.S. de C.V., Laboratorio de Primatología, Ciudad de México, México D.F., Mexico; Biología Integral para Vertebrados (BIOINVERT®), Unidad de Experimentación Animal, Estado de México, Mexico; Centro de Investigación, Proyecto CAMINA A.C. Unidad de Primates No Humanos, Ciudad de México, México D.F., Mexico; Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - U Hernández-Arciga
- Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - A Poblano
- Laboratorio de Neurofisiología Cognoscitiva, Instituto Nacional de Rehabilitación, Ciudad de México, México D.F., Mexico
| | - M Arteaga-Silva
- Depto. Biología de la Reproducción, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - B Hernández-Godínez
- Posgrado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico; APREXBIO S.A.S. de C.V., Laboratorio de Primatología, Ciudad de México, México D.F., Mexico; Biología Integral para Vertebrados (BIOINVERT®), Unidad de Experimentación Animal, Estado de México, Mexico; Centro de Investigación, Proyecto CAMINA A.C. Unidad de Primates No Humanos, Ciudad de México, México D.F., Mexico; Centro Nacional de Investigación en Instrumentación e Imagenología Médica (CI3M), Universidad Autónoma Metropolitana-Unidad Iztapalapa (UAM-I), México D.F., Mexico
| | - G I Mendoza-Cuevas
- APREXBIO S.A.S. de C.V., Laboratorio de Primatología, Ciudad de México, México D.F., Mexico; Biología Integral para Vertebrados (BIOINVERT®), Unidad de Experimentación Animal, Estado de México, Mexico; Centro de Investigación, Proyecto CAMINA A.C. Unidad de Primates No Humanos, Ciudad de México, México D.F., Mexico
| | - R Toledo-Pérez
- Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - A Alarcón-Aguilar
- Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - V Y González-Puertos
- Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico
| | - M Konigsberg
- Laboratorio de Bioenergética y envejecimiento celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México D.F., Mexico.
| |
Collapse
|
20
|
Delhaye J, Salamin N, Roulin A, Criscuolo F, Bize P, Christe P. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds. AGE (DORDRECHT, NETHERLANDS) 2016; 38:433-443. [PMID: 27572896 PMCID: PMC5266217 DOI: 10.1007/s11357-016-9940-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/22/2016] [Indexed: 05/29/2023]
Abstract
Mitochondrial respiration releases reactive oxygen species (ROS) as by-products that can damage the soma and may in turn accelerate ageing. Hence, according to "the oxidative stress theory of ageing", longer-lived organisms may have evolved mechanisms that improve mitochondrial function, reduce ROS production and/or increase cell resistance to oxidative damage. Cardiolipin, an important mitochondrial inner-membrane phospholipid, has these properties by binding and stabilizing mitochondrial inner-membrane proteins. Here, we investigated whether ROS production, cardiolipin content and cell membrane resistance to oxidative attack in freshly collected red blood cells (RBCs) are associated with longevity (range 5-35 years) in 21 bird species belonging to seven Orders. After controlling for phylogeny, body size and oxygen consumption, variation in maximum longevity was significantly explained by mitochondrial ROS production and cardiolipin content, but not by membrane resistance to oxidative attack. RBCs of longer-lived species produced less ROS and contained more cardiolipin than RBCs of shorter-lived species did. These results support the oxidative stress theory of ageing and shed light on mitochondrial cardiolipin as an important factor linking ROS production to longevity.
Collapse
Affiliation(s)
- Jessica Delhaye
- Department of Ecology and Evolution, Quartier Sorge, bâtiment Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, Quartier Sorge, bâtiment Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, Quartier Sorge, bâtiment Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Pierre Bize
- Department of Ecology and Evolution, Quartier Sorge, bâtiment Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Institute of Biological and Environmental Sciences, University of Aberdeen, AB24 2TZ, Aberdeen, UK
| | - Philippe Christe
- Department of Ecology and Evolution, Quartier Sorge, bâtiment Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
22
|
Lowenstine LJ, McManamon R, Terio KA. Comparative Pathology of Aging Great Apes: Bonobos, Chimpanzees, Gorillas, and Orangutans. Vet Pathol 2015; 53:250-76. [PMID: 26721908 DOI: 10.1177/0300985815612154] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The great apes (chimpanzees, bonobos, gorillas, and orangutans) are our closest relatives. Despite the many similarities, there are significant differences in aging among apes, including the human ape. Common to all are dental attrition, periodontitis, tooth loss, osteopenia, and arthritis, although gout is uniquely human and spondyloarthropathy is more prevalent in apes than humans. Humans are more prone to frailty, sarcopenia, osteoporosis, longevity past reproductive senescence, loss of brain volume, and Alzheimer dementia. Cerebral vascular disease occurs in both humans and apes. Cardiovascular disease mortality increases in aging humans and apes, but coronary atherosclerosis is the most significant type in humans. In captive apes, idiopathic myocardial fibrosis and cardiomyopathy predominate, with arteriosclerosis of intramural coronary arteries. Similar cardiac lesions are occasionally seen in wild apes. Vascular changes in heart and kidneys and aortic dissections in gorillas and bonobos suggest that hypertension may be involved in pathogenesis. Chronic kidney disease is common in elderly humans and some aging apes and is linked with cardiovascular disease in orangutans. Neoplasms common to aging humans and apes include uterine leiomyomas in chimpanzees, but other tumors of elderly humans, such as breast, prostate, lung, and colorectal cancers, are uncommon in apes. Among the apes, chimpanzees have been best studied in laboratory settings, and more comparative research is needed into the pathology of geriatric zoo-housed and wild apes. Increasing longevity of humans and apes makes understanding aging processes and diseases imperative for optimizing quality of life in all the ape species.
Collapse
Affiliation(s)
- L J Lowenstine
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA Mountain Gorilla Veterinary Project-Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - R McManamon
- Zoo and Exotic Animal Pathology Service, Infectious Diseases Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - K A Terio
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, Maywood, IL, USA
| |
Collapse
|
23
|
Springo Z, Tarantini S, Toth P, Tucsek Z, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging Exacerbates Pressure-Induced Mitochondrial Oxidative Stress in Mouse Cerebral Arteries. J Gerontol A Biol Sci Med Sci 2015; 70:1355-9. [PMID: 25631392 PMCID: PMC4612385 DOI: 10.1093/gerona/glu244] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies demonstrate that in addition to the increased prevalence of hypertension in old patients, the deleterious cerebrovascular effects of hypertension (including atherosclerosis, stroke, and vascular cognitive impairment) are also exacerbated in elderly individuals. The cellular mechanisms by which aging and hypertension interact to promote cerebrovascular pathologies are not well understood. To test the hypothesis that aging exacerbates high pressure-induced mitochondrial oxidative stress, we exposed isolated segments of the middle cerebral arteries of young (3 months) and aged (24 months) C57BL/6 mice to 60 or 140 mmHg intraluminal pressure and assessed changes in mitochondrial reactive oxygen species production using a mitochondria-targeted redox-sensitive fluorescent indicator dye (MitoSox) by confocal microscopy. Perinuclear MitoSox fluorescence was significantly stronger in high pressure-exposed middle cerebral arteries compared with middle cerebral arteries of the same animals exposed to 60 mmHg, indicating that high pressure increases mitochondrial reactive oxygen species production in the smooth muscle cells of cerebral arteries. Comparison of young and aged middle cerebral arteries showed that aging exacerbates high pressure-induced mitochondrial reactive oxygen species production in cerebral arteries. We propose that increased mechanosensitive mitochondrial oxidative stress may potentially exacerbate cerebrovascular injury and vascular inflammation in aging.
Collapse
Affiliation(s)
- Zsolt Springo
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center.
| |
Collapse
|
24
|
Wu J, Zhao F, Zhao Y, Guo Z. Mitochondrial reactive oxygen species and complex II levels are associated with the outcome of hepatocellular carcinoma. Oncol Lett 2015; 10:2347-2350. [PMID: 26622849 DOI: 10.3892/ol.2015.3621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/28/2015] [Indexed: 01/11/2023] Open
Abstract
In the present study, two oxidative stress parameters, reactive oxygen species (ROS) and mitochondrial respiratory complex II, were evaluated in the mitochondria of hepatocellular carcinoma (HCC) cells to determine the association between these parameters and the carcinogenesis and clinical outcome of HCC. High levels of ROS and low levels of complex II were found to be associated with reduced post-operative survival in HCC patients using the log-rank test. Furthermore, multivariate analysis confirmed that the levels of ROS [relative risk (RR)=2.867; 95% confidence interval (CI), 1.062-7.737; P=0.038] and complex II (RR=5.422; 95% CI, 1.273-23.088; P=0.022) were independent predictors for the survival of patients with HCC. Therefore, the analysis of ROS and complex II levels may provide a useful research and therapeutic tool for the prediction of HCC prognosis and treatment.
Collapse
Affiliation(s)
- Jianhua Wu
- Experimental Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Fei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yufei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Xue L, Li J, Li Y, Chu C, Xie G, Qin J, Yang M, Zhuang D, Cui L, Zhang H, Fu X. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR. Int J Clin Exp Med 2015; 8:4911-4921. [PMID: 26131064 PMCID: PMC4483848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC.
Collapse
Affiliation(s)
- Lijian Xue
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Jinhui Li
- Henan Science & Technology Exchange Center with Foreign CountriesZhengzhou, China
| | - Yang Li
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Chu Chu
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Guantao Xie
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Jin Qin
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Mingfeng Yang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Liuxin Cui
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
26
|
Relationship between biomarkers of inflammation, oxidative stress and endothelial/microcirculatory function in successful aging versus healthy youth: a transversal study. BMC Geriatr 2015; 15:41. [PMID: 25888078 PMCID: PMC4393601 DOI: 10.1186/s12877-015-0044-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a functional decline of endothelial- dependent vasodilatation in the aging process. The aims of this study were to investigate if various microcirculatory parameters could correlate to anthropometrical variables, oxidative stress and inflammatory biomarkers in successful aging and compare the results to young healthy controls. METHODS Healthy elderly women (HE, 74.0 ± 8.7 years, n = 11) and young controls (YC, 23.1 ± 3.6 years, n = 24) were evaluated through nailfold videocapillaroscopy (NVC), venous occlusion plethysmography (VOP) and laboratorial analysis. Functional capillary density (FCD) and diameters, maximum red blood cell velocity (RBCVmax) during the reactive hyperemia response/RBCVbaseline after 1 min arterial occlusion at the finger base, time to reach RBCVmax were determined by NVC, peak increment of forearm blood flow (FBF) during the reactive hyperemia response (%Hyper) and after 0.4 mg sublingual nitroglycerin (%Nitro) by VOP and lipidogram, fibrinogen, fasting and postload glucose, oxidized LDL-cholesterol (oxLDL), sICAM, sVCAM, sE-Selectin, interleukines 1 and 6 and TNF-α by laboratorial analysis. Correlations and linear multiple regression (LMR) between %Hyper, %Nitro, microcirculatory parameters, oxidative stress and inflammatory biomarkers were investigated. RESULTS sVCAM, sE-Selectin and oxLDL were higher and RBCVmax/RBCVbaseline and %Hyper lower in HE, while %Nitro and FCD remained unchanged. Fibrinogen, LDL-cholesterol, oxLDL correlated negatively to %Hyper while sVCAM correlated negatively to %Hyper and RBCVmax/RBCVbaseline. Healthy aged women presented dilated capillaries with sustained perfusion and endothelial dysfunction with preserved vascular smooth muscle reactivity. Fibrinogen, LDL-cholesterol, oxidized-LDL and sVCAM correlated negatively to endothelial function but not to microcirculatory parameters. Oxidized-LDL and sVCAM could determine %Hyper through LMR. CONCLUSION Oxidized-LDL and sVCAM might be used as endothelial dysfunction biomarkers for elderly with normal cardiovascular risk factors.
Collapse
|
27
|
Roussel D, Salin K, Dumet A, Romestaing C, Rey B, Voituron Y. Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs. J Exp Biol 2015; 218:3222-8. [DOI: 10.1242/jeb.126086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Body size is a central biological parameter affecting most biological processes (especially energetics) and mitochondria is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frogs (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen due to their differences in adult body mass. We found that the mitochondrial coupling efficiency was markedly increased with animal size, which lead to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared to the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher radical oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower radical oxygen species than those from the smaller frogs. Collectively, the data shows that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms.
Collapse
Affiliation(s)
- Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Karine Salin
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Adeline Dumet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Lyon, France
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yann Voituron
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| |
Collapse
|
28
|
Mikuła-Pietrasik J, Sosińska P, Murias M, Michalak M, Wierzchowski M, Piechota M, Sikora E, Książek K. Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy-trans-Stilbene, Retards Senescence of Mesothelial Cells via Hormetic-Like Prooxidative Mechanism. J Gerontol A Biol Sci Med Sci 2014; 70:1169-80. [DOI: 10.1093/gerona/glu172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
|
29
|
Banki E, Sosnowska D, Tucsek Z, Gautam T, Toth P, Tarantini S, Tamas A, Helyes Z, Reglodi D, Sonntag WE, Csiszar A, Ungvari Z. Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci 2014; 70:665-74. [PMID: 25136000 DOI: 10.1093/gerona/glu116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 01/16/2023] Open
Abstract
Aging impairs angiogenic capacity of cerebromicrovascular endothelial cells (CMVECs) promoting microvascular rarefaction, but the underlying mechanisms remain elusive. PACAP is an evolutionarily conserved neuropeptide secreted by endothelial cells and neurons, which confers important antiaging effects. To test the hypothesis that age-related changes in autocrine PACAP signaling contributes to dysregulation of endothelial angiogenic capacity, primary CMVECs were isolated from 3-month-old (young) and 24-month-old (aged) Fischer 344 x Brown Norway rats. In aged CMVECs, expression of PACAP was decreased, which was associated with impaired capacity to form capillary-like structures, impaired adhesiveness to collagen (assessed using electric cell-substrate impedance sensing [ECIS] technology), and increased apoptosis (caspase3 activity) when compared with young cells. Overexpression of PACAP in aged CMVECs resulted in increased formation of capillary-like structures, whereas it did not affect cell adhesion. Treatment with recombinant PACAP also significantly increased endothelial tube formation and inhibited apoptosis in aged CMVECs. In young CMVECs shRNA knockdown of autocrine PACAP expression significantly impaired tube formation capacity, mimicking the aging phenotype. Cellular and mitochondrial reactive oxygen species production (dihydroethidium and MitoSox fluorescence, respectively) were increased in aged CMVECs and were unaffected by PACAP. Collectively, PACAP exerts proangiogenic effects and age-related dysregulation of autocrine PACAP signaling may contribute to impaired angiogenic capacity of CMVECs in aging.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - Danuta Sosnowska
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Zsuzsanna Tucsek
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Szentágothai Research Center, and
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center, University of Pécs, Hungary. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center, University of Pécs, Hungary. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center.
| |
Collapse
|
30
|
Csiszar A, Gautam T, Sosnowska D, Tarantini S, Banki E, Tucsek Z, Toth P, Losonczy G, Koller A, Reglodi D, Giles CB, Wren JD, Sonntag WE, Ungvari Z. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol 2014; 307:H292-306. [PMID: 24906921 DOI: 10.1152/ajpheart.00307.2014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was upregulated in aged CMVECs, and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and upregulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen, and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-κB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic, and anti-inflammatory cellular effects, preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may improve cerebrovascular function and prevent vascular cognitive impairment.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary;
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Eszter Banki
- Department of Anatomy, MTA-PTE Lendulet Research Group, Medical School, University of Pecs, Pecs, Hungary
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gyorgy Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE Lendulet Research Group, Medical School, University of Pecs, Pecs, Hungary
| | - Cory B Giles
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary
| |
Collapse
|
31
|
Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, Giles CB, Wren JD, Koller A, Ballabh P, Sonntag WE, Ungvari Z, Csiszar A. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 2014; 69:1339-52. [PMID: 24895269 DOI: 10.1093/gerona/glu080] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet-fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood-brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging.
Collapse
Affiliation(s)
- Zsuzsanna Tucsek
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center.
| | - Peter Toth
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center.
| | - Stefano Tarantini
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Danuta Sosnowska
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Tripti Gautam
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Junie P Warrington
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Cory B Giles
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - Praveen Ballabh
- Departments of Pediatrics, Anatomy and Cell Biology, New York Medical College-Westchester Medical Center, Valhalla
| | - William E Sonntag
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Zoltan Ungvari
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. Department of Physiology, University of Oklahoma Health Sciences Center.
| | - Anna Csiszar
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. Department of Physiology, University of Oklahoma Health Sciences Center
| |
Collapse
|
32
|
Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014; 20:2465-77. [PMID: 23472672 DOI: 10.1089/ars.2013.5257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE High levels of reactive oxygen species can facilitate DNA and protein damage beyond the control of endogenous antioxidants, resulting in oxidative stress. Oxidative stress then triggers inflammation, which can lead to pathological conditions. In genetically susceptible individuals, the conglomeration of oxidative stress and inflammation can enhance autoreactive immune cell activation, causing beta-cell destruction in autoimmune type 1 diabetes. As a means of shielding pancreatic islets, manganese porphyrin (MnP) oxidoreductant treatment has been tested in a number of reported studies. RECENT ADVANCES MnP affects both innate and adaptive immune cell responses, blocking nuclear factor kappa-B activation, proinflammatory cytokine secretion, and T helper 1 T-cell responses. As a result, MnP treatment protects against type 1 diabetes onset in nonobese diabetic mice and stabilizes islets for cellular transplantation. CRITICAL ISSUES MnP displays global immunosuppressive properties, exemplified by decreased cytokine production from all T-helper cell subsets. This quality may impact infection control in the setting of autoimmunity. Nonetheless, because of their cytoprotective and immunomodulatory function, MnPs should be considered as a safer alternative to other clinical immunosuppressive agents (i.e., rapamycin) for transplantation. FUTURE DIRECTIONS Although MnP likely affects only redox-sensitive targets, the mechanism behind global T-cell immunosuppression and the outcome on infection clearance will have to be elucidated. Based on the increased primary engraftment seen with MnP use, protection against primary nonfunction in porcine to human xenotransplants would likely be enhanced. Further, a better understanding of MnP oxidoreductase function may allow for its use in other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Diabetes Institute , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
33
|
Jimenez AG, Cooper-Mullin C, Anthony NB, Williams JB. Cellular metabolic rates in cultured primary dermal fibroblasts and myoblast cells from fast-growing and control Coturnix quail. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:23-30. [DOI: 10.1016/j.cbpa.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/30/2022]
|
34
|
Csiszár A, Csiszar A, Pinto JT, Gautam T, Kleusch C, Hoffmann B, Tucsek Z, Toth P, Sonntag WE, Ungvari Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 2014; 70:303-13. [PMID: 24642904 DOI: 10.1093/gerona/glu029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system. To study their cellular uptake and cellular effects, we treated primary cerebromicrovascular endothelial cells isolated from aged F344xBN rats with resveratrol encapsulated in fusogenic liposomes (FL-RSV). To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dye, DiR, and resveratrol in cerebromicrovascular endothelial cells was confirmed using flow cytometry and confocal microscopy and high-performance liquid chromatography electrochemical detection. Treatment of aged cerebromicrovascular endothelial cells with FL-RSV activated Nrf2 (assessed with a reporter gene assay), significantly decreased cellular production of reactive oxygen species (assessed by a flow cytometry-based H2DCFDA fluorescence method), and inhibited apoptosis. Taken together, encapsulation of resveratrol into novel fusogenic liposomes significantly enhances the delivery of resveratrol into aged cells, which subsequently results in rapid activation of cellular Nrf2-driven antioxidant defense mechanisms. Our studies provide proof-of-concept for the development of a novel, translationally relevant interventional strategy for prevention and/or control of oxidative stress-related pathophysiological conditions in aging.
Collapse
Affiliation(s)
- Agnes Csiszár
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | | | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Christian Kleusch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | | | | |
Collapse
|
35
|
Tackney J, Cawthon RM, Coxworth JE, Hawkes K. Blood cell telomere lengths and shortening rates of chimpanzee and human females. Am J Hum Biol 2014; 26:452-60. [PMID: 24633909 DOI: 10.1002/ajhb.22538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 02/07/2014] [Accepted: 02/17/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Slower rates of aging distinguish humans from our nearest living cousins. Chimpanzees rarely survive their forties while large fractions of women are postmenopausal even in high-mortality hunter-gatherer populations. Cellular and molecular mechanisms for these somatic aging differences remain to be identified, though telomeres might play a role. To find out, we compared telomere lengths across age-matched samples of female chimpanzees and women. METHODS We used a monochrome multiplex quantitative polymerase chain reaction to assay canonical telomere repeats in blood cells from captive female chimpanzees (65 individuals; age: 6.2-56.7 years) and compared them to the same measure in human females (43 individuals; age: 7.4-57.3 years). RESULTS Our samples showed little difference in attrition rates between the species (~0.022 T/S per year for chimpanzees and ~0.012 T/S per year for humans with overlapping 95% confidence intervals), but telomeres were twice as long in chimpanzees as in humans (T/S ratios = 2.70 and 1.26, respectively). CONCLUSIONS Based on the longevity differences, we initially hypothesized that telomere shortening rates would be faster in chimpanzees than in humans. Instead, it is shorter telomere length that appears to be the derived state in humans. This comparison indicates that better characterization of physiological aging in our closest living relatives will be indispensable for understanding the evolution of distinctive human longevity.
Collapse
Affiliation(s)
- Justin Tackney
- Department of Anthropology, University of Utah, Salt Lake City, Utah, 84112
| | | | | | | |
Collapse
|
36
|
Barja G. Correlations with longevity and body size: to correct or not correct? J Gerontol A Biol Sci Med Sci 2014; 69:1096-8. [PMID: 24568930 DOI: 10.1093/gerona/glu020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology-II, Complutense University of Madrid (UCM), Madrid, Spain.
| |
Collapse
|
37
|
Jimenez AG, Van Brocklyn J, Wortman M, Williams JB. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds. PLoS One 2014; 9:e87349. [PMID: 24498080 PMCID: PMC3907555 DOI: 10.1371/journal.pone.0087349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/19/2013] [Indexed: 11/20/2022] Open
Abstract
In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - James Van Brocklyn
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Matthew Wortman
- Cancer Institute, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joseph B. Williams
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
38
|
Abstract
Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates' slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates' slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates' slow metabolic rates contribute to their characteristically slow life histories.
Collapse
|
39
|
Song J, Ke SF, Zhou CC, Zhang SL, Guan YF, Xu TY, Sheng CQ, Wang P, Miao CY. Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. J Gerontol A Biol Sci Med Sci 2014; 69:44-57. [PMID: 23946338 DOI: 10.1093/gerona/glt122] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Calorie restriction (CR) is one of the most reproducible treatments for weight loss and slowing aging. However, how CR induces these metabolic alterations is not fully understood. In this work, we studied whether nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for nicotinamide adenine dinucleotide biosynthesis, plays a role in CR-induced beneficial metabolic effects using a specific inhibitor of NAMPT (FK866). CR upregulated NAMPT mRNA and protein levels in rat skeletal muscle and white adipose tissue. Inhibition of NAMPT activity by FK866 in rats did not affect the SIRT1 upregulation by CR but suppressed the CR-induced SIRT1 activity and deacetylation of Forkhead box protein O1/peroxisome proliferator-activated receptor γ coactivator-1α. Inhibition of NAMPT activity by FK866 also attenuated the CR-induced SIRT3 activity, evidenced by deacetylation of superoxide dismutase-2. Furthermore, FK866 not only weakened the CR-induced decrease of oxidative stress (dichlorofluorescin signal, superoxide , and malondialdehyde levels), but also greatly attenuated the CR-induced improvements of antioxidative activity (total superoxide dismutase, glutathione, and glutathione/oxidized glutathione ratio) and mitochondrial biogenesis (mRNA levels of nuclear respiratory factor 1, cytochrome c oxidase IV, peroxisome proliferator-activated receptor-γ coactivator-1α, and transcription factor A, mitochondrial and citrate synthase activity). At last, FK866 blocked the CR-induced insulin sensitizing, Akt signaling activation, and endothelial nitric oxide synthase phosphorylation. Collectively, our data provide the first evidence that the CR-induced beneficial effects in oxidative stress, mitochondrial biogenesis, and metabolic adaptation require NAMPT.
Collapse
Affiliation(s)
- Jie Song
- Department of Pharmacology, Second Military Medical University, Room 506, 325 Guo He Road, Yangpu District, Shanghai 200433, China. or
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 2013; 306:H299-308. [PMID: 24322615 DOI: 10.1152/ajpheart.00744.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moment-to-moment adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling is essential for the maintenance of normal neuronal function. Increased oxidative stress that occurs with aging was shown to impair neurovascular coupling, which likely contributes to a significant age-related decline in higher cortical function, increasing the risk for vascular cognitive impairment. Resveratrol is a polyphenolic compound that exerts significant antiaging protective effects in large vessels, but its effects on the cerebromicrovasculature remain poorly defined. The present study was undertaken to investigate the capacity of resveratrol to improve neurovascular coupling in aging. In aged (24-mo-old) C57BL/6 mice N(ω)-nitro-l-arginine methyl ester-sensitive, nitric oxide-mediated CBF responses to whisker stimulation and to the endothelium-dependent dilator acethylcholine (ACh) were impaired compared with those in young (3-mo-old) mice. Treatment of aged mice with resveratrol rescued neurovascular coupling and ACh-induced responses, which was associated with downregulation of cortical expression of NADPH oxidase and decreased levels of biomarkers of oxidative/nitrative stress (3-nitrotyrosine, 8-isoprostanes). Resveratrol also attenuated age-related increases in reactive oxygen species (ROS) production in cultured cerebromicrovascular endothelial cells (DCF fluorescence, flow cytometry). In conclusion, treatment with resveratrol rescues cortical neurovascular coupling responses to increased neuronal activity in aged mice, likely by restoring cerebromicrovascular endothelial function via downregulation of NADPH oxidase-derived ROS production. Beneficial cerebromicrovascular effects of resveratrol may contribute to its protective effects on cognitive function in aging.
Collapse
Affiliation(s)
- Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
42
|
Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, Szalai G, Sonntag WE, Ungvari Z, Csiszar A. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci 2013; 69:1212-26. [PMID: 24269929 DOI: 10.1093/gerona/glt177] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals.
Collapse
Affiliation(s)
- Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - Gabor Szalai
- Department of Biological Sciences, University of South Carolina, Columbia
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City.
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
43
|
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 2013; 19:1420-45. [PMID: 23642158 PMCID: PMC3791058 DOI: 10.1089/ars.2012.5148] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University , Madrid, Spain
| |
Collapse
|
44
|
Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak F, Gautam T, Csiszar A, Sonntag WE. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci 2013; 68:1443-57. [PMID: 23689827 DOI: 10.1093/gerona/glt057] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebromicrovascular rarefaction is believed to play a central role in cognitive impairment in patients receiving whole-brain irradiation therapy. To elucidate the mechanism underlying the deleterious effects of γ-irradiation on the cerebral microcirculation, rat primary cerebromicrovascular endothelial cells (CMVECs) were irradiated in vitro. We found that in CMVECs, γ-irradiation (2-8 Gy) elicited increased DNA damage, which was repaired less efficiently in CMVECs compared with neurons, microglia, and astrocytes. Increased genomic injury in CMVECs associated with increased apoptotic cell death. In the surviving cells, γ-irradiation promotes premature senescence (indicated by SA-β-galactosidase positivity and upregulation of p16 (INK4a) ), which was associated with impaired angiogenic capacity (decreased proliferation and tube-forming capacity). γ-Irradiated CMVECs acquired a senescence-associated secretory phenotype, characterized by upregulation of proinflammatory cytokines and chemokines (including IL-6, IL-1α, and MCP-1). Collectively, increased vulnerability of γ-irradiated CMVECs and their impaired angiogenic capacity likely contribute to cerebromicrovascular rarefaction and prevent regeneration of the microvasculature postirradiation. The acquisition of a senescence-associated secretory phenotype in irradiated CMVECs is biologically highly significant as changes in the cytokine microenvironment in the hippocampus may affect diverse biological processes relevant for normal neuronal function (including regulation of neurogenesis and the maintenance of the blood brain barrier).
Collapse
|
45
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
46
|
Ungvari Z, Tucsek Z, Sosnowska D, Toth P, Gautam T, Podlutsky A, Csiszar A, Losonczy G, Valcarcel-Ares MN, Sonntag WE, Csiszar A. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci 2012; 68:877-91. [PMID: 23239824 DOI: 10.1093/gerona/gls242] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tucsek Z, Gautam T, Sonntag WE, Toth P, Saito H, Salomao R, Szabo C, Csiszar A, Ungvari Z. Aging exacerbates microvascular endothelial damage induced by circulating factors present in the serum of septic patients. J Gerontol A Biol Sci Med Sci 2012. [PMID: 23183901 DOI: 10.1093/gerona/gls232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The elderly patients show a significantly elevated mortality rate during sepsis than younger patients, due to their higher propensity to microvascular dysfunction and consequential multiorgan failure. We tested whether aging renders vascular endothelial cells more susceptible to damage induced by inflammatory factors present in the circulation during sepsis. Primary microvascular endothelial cells derived from young (3 months) and aged (24 months) Fischer 344 × Brown Norway rats were treated with sera obtained from sepsis patients and healthy controls. Oxidative stress (MitoSox fluorescence), death receptor activation (caspase 8 activity), and apoptotic cell death (caspase 3 activity) induced by treatment with septic sera were exacerbated in aged endothelial cells as compared with responses obtained in young cells. Induction of heme oxygenase-1 and thrombomodulin in response to treatment with septic sera was impaired in aged endothelial cells. Treatment with septic sera elicited greater increases in tumor necrosis factor-α expression in aged endothelial cells, as compared with young cells, whereas induction of inducible nitric oxide synthase, intercellular adhesion molecule-1, and vascular cell adhesion molecule did not differ between the two groups. Collectively, aging increases sensitivity of microvascular endothelial cells (MVECs) to oxidative stress and cellular damage induced by inflammatory factors present in the circulation during septicemia. We hypothesize that these responses may contribute to the increased vulnerability of elderly patients to multiorgan failure associated with sepsis.
Collapse
Affiliation(s)
- Zsuzsanna Tucsek
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ungvari Z, Sosnowska D, Mason JB, Gruber H, Lee SW, Schwartz TS, Brown MK, Storm NJ, Fortney K, Sowa J, Byrne AB, Kurz T, Levy E, Sonntag WE, Austad SN, Csiszar A, Ridgway I. Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A Biol Sci Med Sci 2012; 68:521-9. [PMID: 23051979 DOI: 10.1093/gerona/gls193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisomerase inhibitors, agents that cross-link DNA or impair genomic integrity through DNA alkylation or methylation) and to mitochondrial oxidative stressors in three bivalve mollusc species with dramatically differing life spans: Arctica islandica (ocean quahog), Mercenaria mercenaria (northern quahog), and the Atlantic bay scallop, Argopecten irradians irradians (maximum species life spans: >500, >100, and ~2 years, respectively). With all stressors, the short-lived A i irradians were significantly less resistant than the two longer lived species. Arctica islandica were consistently more resistant than M mercenaria to mortality induced by oxidative stressors as well as DNA methylating agent nitrogen mustard and the DNA alkylating agent methyl methanesulfonate. The same trend was not observed for genotoxic agents that act through cross-linking DNA. In contrast, M mercenaria tended to be more resistant to epirubicin and genotoxic stressors, which cause DNA damage by inhibiting topoisomerases. To our knowledge, this is the first study comparing resistance to genotoxic stressors in bivalve mollusc species with disparate longevities. In line with previous studies of comparative stress resistance and longevity, our data extends, at least in part, the evidence for the hypothesis that an association exists between longevity and a general resistance to multiplex stressors, not solely oxidative stress. This work also provides justification for further investigation into the interspecies differences in stress response signatures induced by a diverse array of stressors in short-lived and long-lived bivalves, including pharmacological agents that elicit endoplasmic reticulum stress and cellular stress caused by activation of innate immunity.
Collapse
Affiliation(s)
- Zoltan Ungvari
- 1Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Csiszar A, Sosnowska D, Tucsek Z, Gautam T, Toth P, Losonczy G, Colman RJ, Weindruch R, Anderson RM, Sonntag WE, Ungvari Z. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells. J Gerontol A Biol Sci Med Sci 2012; 68:235-49. [PMID: 22904098 DOI: 10.1093/gerona/gls158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Moderate caloric restriction (CR) without malnutrition increases healthspan in virtually every species studied, including nonhuman primates. In mice, CR exerts significant microvascular protective effects resulting in increased microvascular density in the heart and the brain, which likely contribute to enhanced tolerance to ischemia and improved cardiac performance and cognitive function. Yet, the underlying mechanisms by which CR confer microvascular protection remain elusive. To test the hypothesis that circulating factors triggered by CR regulate endothelial angiogenic capacity, we treated cultured human endothelial cells with sera derived from Macaca mulatta on long-term (over 10 years) CR. Cells treated with sera derived from ad-libitum-fed control monkeys served as controls. We found that factors present in CR sera upregulate vascular endothelial growth factor (VEGF) signaling and stimulate angiogenic processes, including endothelial cell proliferation and formation of capillary-like structures. Treatment with CR sera also tended to increase cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology) and adhesion to collagen. Collectively, we find that circulating factors induced by CR promote endothelial angiogenic processes, suggesting that increased angiogenesis may be a potential mechanism by which CR improves cardiac function and prevents vascular cognitive impairment.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Valcarcel-Ares MN, Gautam T, Warrington JP, Bailey-Downs L, Sosnowska D, de Cabo R, Losonczy G, Sonntag WE, Ungvari Z, Csiszar A. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A Biol Sci Med Sci 2012; 67:821-9. [PMID: 22219515 DOI: 10.1093/gerona/glr229] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2) plays a key role in preserving a healthy endothelial phenotype and maintaining the functional integrity of the vasculature. Previous studies demonstrated that aging is associated with Nrf2 dysfunction in endothelial cells, which alters redox signaling and likely promotes the development of large vessel disease. Much less is known about the consequences of Nrf2 dysfunction at the level of the microcirculation. To test the hypothesis that Nrf2 regulates angiogenic capacity of endothelial cells, we determined whether disruption of Nrf2 signaling (by siRNA knockdown of Nrf2 and overexpression of Keap1, the cytosolic repressor of Nrf2) impairs angiogenic processes in cultured human coronary arterial endothelial cells stimulated with vascular endothelial growth factor and insulin-like growth factor-1. In the absence of functional Nrf2, coronary arterial endothelial cells exhibited impaired proliferation and adhesion to vitronectin and collagen. Disruption of Nrf2 signaling also reduced cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology) and impaired the ability of coronary arterial endothelial cells to form capillary-like structures. Collectively, we find that Nrf2 is essential for normal endothelial angiogenic processes, suggesting that Nrf2 dysfunction may be a potential mechanism underlying impaired angiogenesis and microvascular rarefaction in aging.
Collapse
Affiliation(s)
- M Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|