1
|
Luo Z, Wang Q, Fan X, Koh XQ, Loh XJ, Wu C, Li Z, Wu YL. ROS-Driven Nanoventilator for MRSA-Induced Acute Lung Injury Treatment via In Situ Oxygen Supply, Anti-Inflammation and Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406060. [PMID: 40106334 DOI: 10.1002/advs.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Indexed: 03/22/2025]
Abstract
Hypoxia, inflammatory response and pathogen (bacterial or viral) infection are the three main factors that lead to death in patients with acute lung injury (ALI). Among them, hypoxia activates the expression of HIF-1α, further exacerbating the production of ROS and inflammatory response. Currently, anti-inflammatory and pathogen elimination treatment strategies have effectively alleviated infectious pneumonia, but improving lung hypoxia still faces challenges. Here, a vancomycin-loaded nanoventilator (SCVN) containing superoxide dismutase (SOD) and catalase (CAT) is developed, which is prepared by encapsulating SOD, CAT and vancomycin into a nanocapsule by in situ polymerization. This nanocapsule can effectively improve the stability and loading rate of enzymes, and enhance their enzyme cascade efficiency, thereby efficiently consuming •O2 - and H2O2 to generate O2 in situ and reducing ROS level. More interestingly, in situ O2 supply can effectively relieve lung hypoxia to reduce HIF-1α expression and balance the number of M1/M2 macrophages to reduce the levels of TNF-α, IL-1β and IL-6, thereby alleviating the inflammatory response. Meanwhile, vancomycin can target and kill MRSA, fundamentally solving the cause of pneumonia. This nanoventilator with antibacterial, anti-inflammatory, ROS scavenging and in situ O2 supply functions will provide a universal clinical treatment strategy for ALI caused by pathogens.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Qi Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Xue Qi Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Caisheng Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Republic of Singapore
| | - Yun-Long Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Schaenman JM, Pickering H, Reed EF, Rossetti M, Seligman B, Weigt SS, Shino M, Sayah D, Belperio J, Hu A, Prosper A, Ruchalski K, Ardehali A, Biniwale R. T cell immune senescence is associated with frailty and sarcopenia in lung transplant candidates. JHLT OPEN 2025; 7:100199. [PMID: 40144851 PMCID: PMC11935382 DOI: 10.1016/j.jhlto.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Backgound Older lung transplant recipients experience increased rates of adverse clinical outcomes, including infection compared with younger patients, potentially related to impaired cell-mediated immunity, frailty, and sarcopenia. Methods Patients over age 55 years undergoing evaluation for lung transplantation were evaluated for sarcopenia by cross-sectional area and average attenuation of the pectoralis major muscle on chest computed tomography. Frailty was measured using the Fried Frailty Phenotype. Immune phenotyping was performed using multichannel flow cytometry of peripheral blood mononuclear cells (PBMC) in a total of 26 lung transplant candidates. Results The median patient age was 65, primarily with restrictive lung disease (76.9%). Hospital readmission was associated with lower frequency of naïve CD4 (p = 0.004) and CD8 T cells (p = 0.026). Senescent CD4 (KLRG1+/CD28-) and CD8 T cells were also associated with readmission (p = 0.014 and p = 0.013, respectively), and senescent CD4 T cells were predictive of total hospital time (p = 0.003). TEMRA CD4 T cells were significantly associated with frailty (p = 0.015) and sarcopenia (p = 0.011). Senescent CD4 and CD8 T cells were significantly associated with sarcopenia (p = 0.009 and p = 0.006, respectively). Conclusions These findings suggest that impaired cell-mediated immunity may underlie the associations between frailty and sarcopenia and poor clinical outcomes. A multifaceted approach to evaluation of older patients has the potential to improve risk stratification and inform management of immunosuppression.
Collapse
Affiliation(s)
- Joanna M. Schaenman
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, Los Angeles, California
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Benjamin Seligman
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, Los Angeles, California
| | - S. Samuel Weigt
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Michael Shino
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - David Sayah
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - John Belperio
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Hu
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Prosper
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Kathleen Ruchalski
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Abbas Ardehali
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
3
|
Zhan Y, Huang Q, Deng Z, Chen S, Yang R, Zhang J, Zhang Y, Peng M, Wu J, Gu Y, Zeng Z, Xie J. DNA hypomethylation-mediated upregulation of GADD45B facilitates airway inflammation and epithelial cell senescence in COPD. J Adv Res 2025; 68:201-214. [PMID: 38342401 PMCID: PMC11785585 DOI: 10.1016/j.jare.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaheng Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maocuo Peng
- Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Asenjo-Bueno A, Alcalde-Estévez E, Olmos G, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Respiratory dysfunction in old mice could be related to inflammation and lung fibrosis induced by hyperphosphatemia. Eur J Clin Invest 2024; 54:e14302. [PMID: 39155424 DOI: 10.1111/eci.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND With age, lungs undergo typical changes that lead to a deterioration of respiratory function. Our aim was to assess the role of age-associated hyperphosphatemia in these changes. METHODS We used C57BL6 mice to study an ageing model in vivo and human lung fibroblasts were treated with a phosphate donor, beta-glycerophosphate (BGP), to explore mechanisms involved. Respiratory function was registered with a double chamber plethysmograph. Lung structure was analysed by different staining, phosphate and cytokines levels by colorimeric kits, expression of fibrosis, inflammation and ET-1 system by western blot or RT-PCR. RESULTS Old mice showed hyperphosphatemia, along with lung fibrosis, loss of elastin, increased expression of pro-inflammatory cytokines and impaired respiratory function. BGP induced inflammation and fibrosis in fibroblasts through the activation and binding of NFkB to the MCP-1 or FN promoters. BGP increased ECE-1 expression by inducing NFkB binding to the ECE-1 promoter. QNZ, an NFkB inhibitor, blocked these effects. When ECE-1 was inhibited with phosphoramidon, BGP-induced inflammation and fibrosis were significantly reduced, suggesting a role for ET-1 in BGP-mediated effects.ET-1 produced effects similar to those of BGP, which were also dependent on NFkB. To study the pathophysiological relevance of hyperphosphatemia in vivo, a low-P diet was administered to a group of old animals, showing an improvement in fibrosis, inflammation and respiratory function compared to old mice on a standard diet. CONCLUSION These results suggest that age-related hyperphosphatemia induces inflammation, fibrosis, and impaired respiratory function in old mice; these effects appear to be mediated by ET-1 and NFkB activation.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Alcalde-Estévez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Gemma Olmos
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Patricia Martínez-Miguel
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
6
|
Li H, Lin Y, Zheng S, Yu T, Xie Y, Yin Z. Untargeted metabolomics analysis of cerebrospinal fluid in patients with leptomeningeal metastases from non-small cell lung cancer. Biotechnol Genet Eng Rev 2024; 40:815-832. [PMID: 36942709 DOI: 10.1080/02648725.2023.2191069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To explore and analyze the diagnostic value of metabolic markers in cerebrospinal fluid (CSF) in leptomeningeal metastases (LM) of non-small cell lung cancer (NSCLC). METHODS Forty-six CSF samples from patients with NSCLC-LM were collected. Another 48 CSF samples from patients with nonmalignant neurological diseases were selected as control group. Metabolomic analysis of CSF was performed by high-performance liquid chromatography-mass spectrometry. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied for modeling. A multi-criteria evaluation system (variable importance value >1, multiple of change >2 and P < 0.05 for univariate analysis) was used to find differential metabolites between two groups. The subject working characteristic curves and pathway enrichment analysis were used to screen metabolites and pathways associated with NSCLC-LM. RESULTS The PCA model and OPLS-DA model showed good overall data quality. Thirty endogenous differential metabolites were screened, and six potential biomarkers were further identified, including tyrosine (t = 3.37, P = 0.024, AUC = 0.967), phenylalanine (t = 3.98, P < 0.001, AUC = 0.992), pyruvate (t = 4.48, P < 0.001, AUC = 0.976), tryptophan (t = -2.5, P = 0.014, AUC = 0.935), adenosine monophosphate (t = -6.13, P < 0.001, AUC = 0.932) and glucose (t = -4.00, P < 0.001, AUC = 0.993). Thirty differential metabolites screened were subjected to metabolic pathway enrichment analysis and matched to 20 relevant metabolic pathways, of which the four most likely to cause metabolite changes were as follows: glycolysis and sugar metabolism synthesis, pyruvate metabolism, phenylalanine metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis. CONCLUSIONS Untargeted metabolomics can effectively screen for CSF metabolites specific to NSCLC-LM patients, and six potential metabolites and their metabolic pathways might be involved in the pathogenesis of NSCLC-LM.
Collapse
Affiliation(s)
- Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yongjuan Lin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Zheng
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tingting Yu
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu Xie
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Ohto-Fujita E, Shimizu M, Atomi A, Hiruta H, Hosoda R, Horinouchi S, Miyazaki S, Murakami T, Asano Y, Hasebe Y, Atomi Y. Eggshell membrane and its major component lysozyme and ovotransferrin enhance the secretion of decorin as an endogenous antifibrotic mediator from lung fibroblasts and ameliorate bleomycin-induced pulmonary fibrosis. Biochem Biophys Rep 2024; 39:101806. [PMID: 39234595 PMCID: PMC11372621 DOI: 10.1016/j.bbrep.2024.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a high-risk factor for obstructive and fibrotic lung diseases. Fibrotic lung disease leading to decreased lung function is characterized by interstitial remodeling and tissue scarring (sclerosis), with destruction of alveoli and excess deposition of type I collagen, an extracellular matrix component secreted by fibroblasts. Therefore, regulating transforming growth factor-β (TGF-β) as a profibrotic signal is essential to suppress pulmonary fibrosis. In pulmonary fibrosis, TGF-β signaling is mediated by Smad and YAP/TAZ, and TAZ linked to the pathology of pulmonary function is observed in lung fibroblasts from patients with idiopathic pulmonary fibrosis. Although fibrosis is thought to be irreversible, it is an interventional condition. Decorin (DCN) blocks TGF-β signaling in pulmonary fibrosis, although there are no cellular pharmacological methods to stimulate DCN secretion. We previously showed that chicken eggshell membrane (ESM, a well-known wound-healing material) promotes dcn gene expression in fibroblasts. In this study, we investigated whether ESM stimulates DCN secretion as an endogenous mediator and ameliorates pulmonary fibrosis. Decorin secretion was significantly enhanced in the WI-38 lung fibroblast culture supernatants supplemented with ESM. This effect was increased with major component lysozyme and maximally promoted in experiments with lysozyme and ovotransferrin (the two main proteins in soluble ESM) at a 16:1 concentration ratio, the ratio in the ESM extract. Decorin secretion by ESM modulates TGF-β signaling in lung fibroblasts by reducing TAZ and pSmad2 nuclear localization. Decorin siRNA experiments confirmed that nuclear localization of TAZ is DCN-dependent. In a mouse model of bleomycin-induced pulmonary fibrosis, all fibrotic markers of ESM treatment group such as hydroxyproline (a collagen deposition marker), and both evaluation of fibrosis density by automated thresholding of picrosirius red-stained lung tissue scan images and Ashcroft fibrosis scores, and also the nuclear localization of TAZ were reduced after 2 weeks compared with control group. Furthermore, long-term (22 week) ESM consumption by healthy individuals significantly improved vital capacity and the forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC). This study reveals that ESM, a well-established wound-healing material, may be a potential preventive medicine for pulmonary fibrosis.
Collapse
Affiliation(s)
- Eri Ohto-Fujita
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Miho Shimizu
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Aya Atomi
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Hiroki Hiruta
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Ryota Hosoda
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Shinya Horinouchi
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| | - Shinya Miyazaki
- Cooperative Dep. Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tomoaki Murakami
- Cooperative Dep. Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | | | - Yoriko Atomi
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Tokyo, 184-8588, Japan
| |
Collapse
|
8
|
Ancer-Rodríguez J, Gopar-Cuevas Y, García-Aguilar K, Chávez-Briones MDL, Miranda-Maldonado I, Ancer-Arellano A, Ortega-Martínez M, Jaramillo-Rangel G. Cell Proliferation and Apoptosis-Key Players in the Lung Aging Process. Int J Mol Sci 2024; 25:7867. [PMID: 39063108 PMCID: PMC11276691 DOI: 10.3390/ijms25147867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. During normal tissue homeostasis, cell proliferation and apoptosis create a dynamic balance that constitutes the physiological cell turnover. In basal conditions, the lungs have a low rate of cell turnover compared to other organs. During aging, changes in the rate of cell turnover in the lung are observed. In this work, we review the literature that evaluates the role of molecules involved in cell proliferation and apoptosis in lung aging and in the development of age-related lung diseases. The list of molecules that regulate cell proliferation, apoptosis, or both processes in lung aging includes TNC, FOXM1, DNA-PKcs, MicroRNAs, BCL-W, BCL-XL, TCF21, p16, NOX4, NRF2, MDM4, RPIA, DHEA, and MMP28. However, despite the studies carried out to date, the complete signaling pathways that regulate cell turnover in lung aging are still unknown. More research is needed to understand the changes that lead to the development of age-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (J.A.-R.); (Y.G.-C.); (M.-d.-L.C.-B.); (I.M.-M.); (A.A.-A.); (M.O.-M.)
| |
Collapse
|
9
|
Lei X, Lu T. Single-cell sequencing reveals lung cell fate evolution initiated by smoking to explore gene predictions of correlative diseases. Toxicol Mech Methods 2024; 34:369-384. [PMID: 38064719 DOI: 10.1080/15376516.2023.2293117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Continuous smoking leads to adaptive regulation and physiological changes in lung tissue and cells, and is an inductive factor for many diseases, making smokers face the risk of malignant and nonmalignant diseases. The impact of research in this area is getting more and more in-depth, but the stimulant effect, mechanism of action and response mechanism of the main cells in the lungs caused by smoke components have not yet been fully elucidated, and the early diagnosis and identification of various diseases induced by smoke toxins have not yet formed a systematic relationship method. In this study, single-cell transcriptome data were generated from three lung samples of smokers and nonsmokers through scRNA-seq technology, revealing the influence of smoking on lung tissue and cells and the changes in immune response. The results show that: through UMAP cell clustering, 16 intermediate cell states of 23 cell clusters of the four main cell types in the lung are revealed, the differences of the main cell groups between smokers and nonsmokers are explained, and the human lung cells are clarified. Components and their marker genes, screen for new marker genes that can be used in the evolution of intermediate-state cells, and at the same time, the analysis of lung cell subgroups reveals the changes in the intermediate state of cells under smoke stimulation, forming a subtype intermediate state cell map. Pseudo-time ordering analysis, to determine the pattern of dynamic processes experienced by cells, differential expression analysis of different branch cells, to clarify the expression rules of cells at different positions, to clarify the evolution process of the intermediate state of cells, and to clarify the response of lung tissue and cells to smoke components mechanism. The development of this study provides new diagnosis and treatment ideas for early disease detection, identification, disease prevention and treatment of patients with smoking-related diseases, and lays a theoretical foundation based on cell and molecular regulation.
Collapse
Affiliation(s)
- Xu Lei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taiying Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Jia H, Chang Y, Chen Y, Chen X, Zhang H, Hua X, Xu M, Sheng Y, Zhang N, Cui H, Han L, Zhang J, Fu X, Song J. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun Biol 2024; 7:427. [PMID: 38589700 PMCID: PMC11001898 DOI: 10.1038/s42003-024-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Jian Zhang
- Thoracic Surgery Department, the third affiliated hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Joshi PR. Pulmonary Diseases in Older Patients: Understanding and Addressing the Challenges. Geriatrics (Basel) 2024; 9:34. [PMID: 38525751 PMCID: PMC10961796 DOI: 10.3390/geriatrics9020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
As the global population ages, pulmonary diseases among older people have emerged as a significant and growing public health concern. The increasing incidence of these conditions has led to higher rates of morbidity and mortality among older adults. This perspective study offers a thorough overview of the prevalent pulmonary diseases affecting the elderly demographic. It delves into the challenges encountered during the diagnosis and management of these conditions in older individuals, considering factors such as comorbidities, functional limitations, and medication complexities. Furthermore, innovative strategies and personalized interventions such as precision medicine, advanced therapies, telemedicine solutions, and patient-centered support systems aimed at enhancing the care provided to older individuals grappling with pulmonary disorders are thoroughly explored. By addressing the unique needs and complexities of this vulnerable population, healthcare systems can strive towards improving outcomes and enhancing the quality of life for elderly individuals affected by pulmonary diseases.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
12
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
13
|
Loguercio S, Calverley BC, Wang C, Shak D, Zhao P, Sun S, Budinger GS, Balch WE. Understanding the host-pathogen evolutionary balance through Gaussian process modeling of SARS-CoV-2. PATTERNS (NEW YORK, N.Y.) 2023; 4:100800. [PMID: 37602209 PMCID: PMC10436005 DOI: 10.1016/j.patter.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.
Collapse
Affiliation(s)
| | - Ben C. Calverley
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Daniel Shak
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - William E. Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
14
|
Matera MG, Hanania NA, Maniscalco M, Cazzola M. Pharmacotherapies in Older Adults with COPD: Challenges and Opportunities. Drugs Aging 2023:10.1007/s40266-023-01038-0. [PMID: 37316689 DOI: 10.1007/s40266-023-01038-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Older adults have a higher prevalence of chronic obstructive pulmonary disease (COPD), which will likely increase substantially in the coming decades owing to aging populations and increased long-term exposure to risk factors for this disease. COPD in older adults is characterized by low-grade chronic systemic inflammation, known as inflamm-aging. It contributes substantially to age-associated pulmonary changes that are clinically expressed by reduced lung function, poor health status, and limitations in activities of daily living. In addition, inflamm-aging has been associated with the onset of many comorbidities commonly encountered in COPD. Furthermore, physiologic changes that are often seen with aging can influence the optimal treatment of older patients with COPD. Therefore, variables such as pharmacokinetics, pharmacodynamics, polypharmacy, comorbidities, adverse drug responses, drug interactions, method of administration, and social and economic issues that impact nutrition and adherence to therapy must be carefully evaluated when prescribing medication to these patients because each of them alone or together may affect the outcome of treatment. Current COPD medications focus mainly on alleviating COPD-related symptoms, so alternative treatment approaches that target the disease progression are being investigated. Considering the importance of inflamm-aging, new anti-inflammatory molecules are being evaluated, focusing on inhibiting the recruitment and activation of inflammatory cells, blocking mediators of inflammation thought to be important in the recruitment or activation of these inflammatory cells or released by these cells. Potential therapies that may slow the aging processes by acting on cellular senescence, blocking the processes that cause it (senostatics), eliminating senescent cells (senolytics), or targeting the ongoing oxidative stress seen with aging need to be evaluated.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
15
|
Roman J. Fibroblasts-Warriors at the Intersection of Wound Healing and Disrepair. Biomolecules 2023; 13:945. [PMID: 37371525 DOI: 10.3390/biom13060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Wound healing is triggered by inflammation elicited after tissue injury. Mesenchymal cells, specifically fibroblasts, accumulate in the injured tissues, where they engage in tissue repair through the expression and assembly of extracellular matrices that provide a scaffold for cell adhesion, the re-epithelialization of tissues, the production of soluble bioactive mediators that promote cellular recruitment and differentiation, and the regulation of immune responses. If appropriately deployed, these processes promote adaptive repair, resulting in the preservation of the tissue structure and function. Conversely, the dysregulation of these processes leads to maladaptive repair or disrepair, which causes tissue destruction and a loss of organ function. Thus, fibroblasts not only serve as structural cells that maintain tissue integrity, but are key effector cells in the process of wound healing. The review will discuss the general concepts about the origins and heterogeneity of this cell population and highlight the specific fibroblast functions disrupted in human disease. Finally, the review will explore the role of fibroblasts in tissue disrepair, with special attention to the lung, the role of aging, and how alterations in the fibroblast phenotype underpin disorders characterized by pulmonary fibrosis.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
17
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
De Man R, McDonough JE, Adams TS, Manning EP, Myers G, Vos R, Ceulemans L, Dupont L, Vanaudenaerde BM, Wuyts WA, Rosas IO, Hagood JS, Ambalavanan N, Niklason L, Hansen KC, Yan X, Kaminski N. A Multi-omic Analysis of the Human Lung Reveals Distinct Cell Specific Aging and Senescence Molecular Programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.536722. [PMID: 37131739 PMCID: PMC10153177 DOI: 10.1101/2023.04.19.536722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for lung disease. To understand the mechanisms underlying this association, we characterized the changing cellular, genomic, transcriptional, and epigenetic landscape of lung aging using bulk and single-cell RNAseq (scRNAseq) data. Our analysis revealed age-associated gene networks that reflected hallmarks of aging, including mitochondrial dysfunction, inflammation, and cellular senescence. Cell type deconvolution revealed age-associated changes in the cellular composition of the lung: decreased alveolar epithelial cells and increased fibroblasts and endothelial cells. In the alveolar microenvironment, aging is characterized by decreased AT2B cells and reduced surfactant production, a finding that was validated by scRNAseq and IHC. We showed that a previously reported senescence signature, SenMayo, captures cells expressing canonical senescence markers. SenMayo signature also identified cell-type specific senescence-associated co-expression modules that have distinct molecular functions, including ECM regulation, cell signaling, and damage response pathways. Analysis of somatic mutations showed that burden was highest in lymphocytes and endothelial cells and was associated with high expression of senescence signature. Finally, aging and senescence gene expression modules were associated with differentially methylated regions, with inflammatory markers such as IL1B, IL6R, and TNF being significantly regulated with age. Our findings provide new insights into the mechanisms underlying lung aging and may have implications for the development of interventions to prevent or treat age-related lung diseases.
Collapse
Affiliation(s)
- Ruben De Man
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John E McDonough
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Greg Myers
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | - Robin Vos
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Lieven Dupont
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Wim A Wuyts
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James S. Hagood
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | | | - Laura Niklason
- Department of Anesthesiology, Yale School of Medicine; and Humacyte Global Inc
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Szondy Z, Al‐Zaeed N, Tarban N, Fige É, Garabuczi É, Sarang Z. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J Cachexia Sarcopenia Muscle 2022; 13:1961-1973. [PMID: 35666022 PMCID: PMC9397555 DOI: 10.1002/jcsm.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life, and death. Increasing evidence indicates that diminished ability of the muscle to activate satellite cell-dependent regeneration is one of the factors that might contribute to its development. Skeletal muscle regeneration following myogenic cell death results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibres. Satellite cell differentiation is not a satellite cell-autonomous process but depends on signals provided by the surrounding cells. Infiltrating macrophages play a key role in the process partly by clearing the necrotic cell debris, partly by producing cytokines and growth factors that guide myogenesis. At the beginning of the muscle regeneration process, macrophages are pro-inflammatory, and the cytokines produced by them trigger the proliferation and differentiation of satellite cells. Following the uptake of dead cells, however, a transcriptionally regulated phenotypic change (macrophage polarization) is induced in them resulting in their transformation into healing macrophages that guide resolution of inflammation, completion of myoblast differentiation, myoblast fusion and growth, and return to homeostasis. Impaired efferocytosis results in delayed cell death clearance, delayed macrophage polarization, prolonged inflammation, and impaired muscle regeneration. Thus, proper efferocytosis by macrophages is a determining factor during muscle repair. Here we review that both efferocytosis and myogenesis are dependent on the cell surface phosphatidylserine (PS), and surprisingly, these two processes share a number of common PS receptors and signalling pathways. Based on these findings, we propose that stimulating the function of PS receptors for facilitating muscle repair following injury could be a successful approach, as it would enhance efferocytosis and myogenesis simultaneously. Because increasing evidence indicates a pathophysiological role of impaired efferocytosis in the development of chronic inflammatory conditions, as well as in impaired muscle regeneration both contributing to the development of sarcopenia, improving efferocytosis should be considered also in its management. Again applying or combining those treatments that target PS receptors would be expected to be the most effective, because they would also promote myogenesis. A potential PS receptor-triggering candidate molecule is milk fat globule-EGF-factor 8 (MFG-E8), which not only stimulates PS-dependent efferocytosis and myoblast fusion but also promotes extracellular signal-regulated kinase (ERK) and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nour Al‐Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Fige
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
20
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
21
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
22
|
Lee S, Islam MN, Boostanpour K, Aran D, Jin G, Christenson S, Matthay MA, Eckalbar WL, DePianto DJ, Arron JR, Magee L, Bhattacharya S, Matsumoto R, Kubota M, Farber DL, Bhattacharya J, Wolters PJ, Bhattacharya M. Molecular programs of fibrotic change in aging human lung. Nat Commun 2021; 12:6309. [PMID: 34728633 PMCID: PMC8563941 DOI: 10.1038/s41467-021-26603-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lung fibrosis is increasingly detected with aging and has been associated with poor outcomes in acute lung injury or infection. However, the molecular programs driving this pro-fibrotic evolution are unclear. Here we profile distal lung samples from healthy human donors across the lifespan. Gene expression profiling by bulk RNAseq reveals both increasing cellular senescence and pro-fibrotic pathway activation with age. Quantitation of telomere length shows progressive shortening with age, which is associated with DNA damage foci and cellular senescence. Cell type deconvolution analysis of the RNAseq data indicates a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts with age. Consistent with this pro-fibrotic profile, second harmonic imaging of aged lungs demonstrates increased density of interstitial collagen as well as decreased alveolar expansion and surfactant secretion. In this work, we reveal the transcriptional and structural features of fibrosis and associated functional impairment in normal lung aging.
Collapse
Affiliation(s)
- Seoyeon Lee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Mohammad Naimul Islam
- Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Kaveh Boostanpour
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Dvir Aran
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Guangchun Jin
- Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Stephanie Christenson
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Walter L Eckalbar
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Daryle J DePianto
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Joseph R Arron
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Liam Magee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA
| | - Sunita Bhattacharya
- Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Rei Matsumoto
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Masaru Kubota
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Donna L Farber
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Jahar Bhattacharya
- Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| | - Paul J Wolters
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA.
| | - Mallar Bhattacharya
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, University of California, San Francisco, CA, USA.
| |
Collapse
|
23
|
Abstract
The concept of frailty has gained considerable interest in clinical solid-organ transplantation over the past decade. Frailty as a phenotypic construct to describe a patient's risk from biologic stresses has an impact on posttransplant survival. There is keen interest in characterizing frailty in lung transplantation, both to determine which patients are suitable candidates for listing and also to prepare for their care in the aftermath of lung transplantation. Here, we review the current status of research on frailty in lung transplant candidates and recipients. This review will highlight areas of uncertainty for frailty in clinical lung transplantation that are likely to impact the state-of-the-art in the field for the next decade.
Collapse
Affiliation(s)
- Ankita Agarwal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - David C. Neujahr
- Emory Lung Transplant Program, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
24
|
Shin HJ, Kim S, Park H, Shin M, Kang I, Kang M. Nucleotide-binding domain and leucine-rich-repeat-containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung-like changes. Aging Cell 2021; 20:e13410. [PMID: 34087956 PMCID: PMC8282248 DOI: 10.1111/acel.13410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction has long been implicated to have a causative role in organismal aging. A mitochondrial molecule, nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 (NLRX1), represents the only NLR family member that targets this cellular location, implying that NLRX1 probably establishes a fundamental link between mitochondrial functions and cellular physiology. However, the significance of NLRX1 function in cellular senescence, a key conceptual constituent in aging biology, is yet to be defined. Here, we demonstrate that molecular hallmarks involved in aging biology including NAD+ decline, and activation of mTOR, p53, and p16INK4A are significantly enhanced in NLRX1 deficiency in vitro. Mechanistic studies of replicative cellular senescence in the presence or absence of NLRX1 in vitro reveal that NLRX1‐deficient fibroblasts fail to maintain optimal NAD+/NADH ratio, which instigates the decline of SIRT1 and the activation of mTOR, p16INK4A, and p53, leading to the increase in senescence‐associated beta‐galactosidase (SA‐β‐gal)‐positive cells. Importantly, the enhanced cellular senescence response in NLRX1 deficiency is significantly attenuated by pharmacological inhibition of mTOR signaling in vitro. Finally, our in vivo murine studies reveal that NLRX1 decreases with age in murine lungs and NLRX1 deficiency in vivo accelerates pulmonary functional and structural changes that recapitulate the findings observed in human aging lungs. In conclusion, the current study provides evidence for NLRX1 as a crucial regulator of cellular senescence and in vivo lung aging.
Collapse
Affiliation(s)
- Hyeon Jun Shin
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Sang‐Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Hong‐Jai Park
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Min‐Sun Shin
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Min‐Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| |
Collapse
|
25
|
Calyeca J, Balderas-Martínez YI, Selman M, Pardo A. Transcriptomic profile of the mice aging lung is associated with inflammation and apoptosis as important pathways. Aging (Albany NY) 2021; 13:12378-12394. [PMID: 33982668 PMCID: PMC8148450 DOI: 10.18632/aging.203039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Aging is a universal biological process characterized by a progressive deterioration in functional capacity and an increased risk of morbidity and mortality over time. In the lungs, there are considerable changes in lung structure and function with advancing age; however, research on the transcriptomic profile implicated in this process is scanty. In this study, we addressed the lung transcriptome changes during aging, through a global gene expression analysis of normal lungs of mice aged 4- and 18-months old. Functional pathway enrichment analysis by Ingenuity Pathway Analysis (IPA) revealed that the most enriched signaling pathways in aged mice lungs are involved in the regulation of cell apoptosis, senescence, development, oxidative stress, and inflammation. We also found 25 miRNAs significantly different in the lungs of old mice compared with their younger littermates, eight of them upregulated and 17 downregulated. Using the miRNet database we identified TNFα, mTOR, TGFβ, WNT, FoxO, Apoptosis, Cell cycle, and p53 signaling pathways as the potential targets of several of the dysregulated miRNAs supporting that old lungs have increased susceptibility for apoptosis, inflammation, and fibrosis. These findings reveal differential expression profiles of genes and miRNAs affecting cell survival and the inflammatory response during lung aging.
Collapse
Affiliation(s)
- Jazmin Calyeca
- Division of Pulmonary Allergy and Critical Care Medicine, Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210, USA
| | - Yalbi I Balderas-Martínez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
26
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
McQuattie-Pimentel AC, Ren Z, Joshi N, Watanabe S, Stoeger T, Chi M, Lu Z, Sichizya L, Aillon RP, Chen CI, Soberanes S, Chen Z, Reyfman PA, Walter JM, Anekalla KR, Davis JM, Helmin KA, Runyan CE, Abdala-Valencia H, Nam K, Meliton AY, Winter DR, Morimoto RI, Mutlu GM, Bharat A, Perlman H, Gottardi CJ, Ridge KM, Chandel NS, Sznajder JI, Balch WE, Singer BD, Misharin AV, Budinger GS. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J Clin Invest 2021; 131:140299. [PMID: 33586677 PMCID: PMC7919859 DOI: 10.1172/jci140299] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.
Collapse
Affiliation(s)
| | - Ziyou Ren
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nikita Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Satoshi Watanabe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Monica Chi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ziyan Lu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lango Sichizya
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raul Piseaux Aillon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ching-I Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Saul Soberanes
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhangying Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul A. Reyfman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - James M. Walter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kishore R. Anekalla
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer M. Davis
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathryn A. Helmin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Constance E. Runyan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kiwon Nam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angelo Y. Meliton
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Deborah R. Winter
- Department of Medicine, Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - Richard I. Morimoto
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, USA
| | - Gökhan M. Mutlu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Northwestern University, Chicago, Illinois, USA
| | - Harris Perlman
- Department of Medicine, Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M. Ridge
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Navdeep S. Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob I. Sznajder
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - William E. Balch
- The Scripps Research Institute Department of Chemical Physiology, La Jolla, California, USA
| | - Benjamin D. Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, USA
| | - Alexander V. Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
28
|
Mauad T, Duarte-Neto AN, da Silva LFF, de Oliveira EP, de Brito JM, do Nascimento ECT, de Almeida Monteiro RA, Ferreira JC, de Carvalho CRR, do Nascimento Saldiva PH, Dolhnikoff M. Tracking the time course of pathological patterns of lung injury in severe COVID-19. Respir Res 2021; 22:32. [PMID: 33514373 PMCID: PMC7844838 DOI: 10.1186/s12931-021-01628-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Pulmonary involvement in COVID-19 is characterized pathologically by diffuse alveolar damage (DAD) and thrombosis, leading to the clinical picture of Acute Respiratory Distress Syndrome. The direct action of SARS-CoV-2 in lung cells and the dysregulated immuno-coagulative pathways activated in ARDS influence pulmonary involvement in severe COVID, that might be modulated by disease duration and individual factors. In this study we assessed the proportions of different lung pathology patterns in severe COVID-19 patients along the disease evolution and individual characteristics. METHODS We analysed lung tissue from 41 COVID-19 patients that died in the period March-June 2020 and were submitted to a minimally invasive autopsy. Eight pulmonary regions were sampled. Pulmonary pathologists analysed the H&E stained slides, performing semiquantitative scores on the following parameters: exudative, intermediate or advanced DAD, bronchopneumonia, alveolar haemorrhage, infarct (%), arteriolar (number) or capillary thrombosis (yes/no). Histopathological data were correlated with demographic-clinical variables and periods of symptoms-hospital stay. RESULTS Patient´s age varied from 22 to 88 years (18f/23 m), with hospital admission varying from 0 to 40 days. All patients had different proportions of DAD in their biopsies. Ninety percent of the patients presented pulmonary microthrombosis. The proportion of exudative DAD was higher in the period 0-8 days of hospital admission till death, whereas advanced DAD was higher after 17 days of hospital admission. In the group of patients that died within eight days of hospital admission, elderly patients had less proportion of the exudative pattern and increased proportions of the intermediate patterns. Obese patients had lower proportion of advanced DAD pattern in their biopsies, and lower than patients with overweight. Clustering analysis showed that patterns of vascular lesions (microthrombosis, infarction) clustered together, but not the other patterns. The vascular pattern was not influenced by demographic or clinical parameters, including time of disease progression. CONCLUSION Patients with severe COVID-19 present different proportions of DAD patterns over time, with advanced DAD being more prevalent after 17 days, which seems to be influenced by age and weight. Vascular involvement is present in a large proportion of patients, occurs early in disease progression, and does not change over time.
Collapse
Affiliation(s)
- Thais Mauad
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil.
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil.,Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Ellen Pierre de Oliveira
- Departamento de Cardiopneumologia, Instituto Do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jose Mara de Brito
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| | - Ellen Caroline Toledo do Nascimento
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| | - Renata Aparecida de Almeida Monteiro
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| | - Juliana Carvalho Ferreira
- Departamento de Cardiopneumologia, Instituto Do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Paulo Hilário do Nascimento Saldiva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil
| |
Collapse
|
29
|
Fonseca M, Summer R, Roman J. Acute Exacerbation of Interstitial Lung Disease as a Sequela of COVID-19 Pneumonia. Am J Med Sci 2021; 361:126-129. [PMID: 32912600 PMCID: PMC7418755 DOI: 10.1016/j.amjms.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Mario Fonseca
- Department of Medicine, Sidney Kimmel College of Medicine, Philadelphia, Pennsylvania
| | - Ross Summer
- Department of Medicine, Sidney Kimmel College of Medicine, Philadelphia, Pennsylvania,Division of Pulmonary, Allergy and Critical Care Medicine, Sidney Kimmel College of Medicine and The Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Jesse Roman
- Department of Medicine, Sidney Kimmel College of Medicine, Philadelphia, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, Sidney Kimmel College of Medicine and The Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
30
|
Machahua C, Buendia-Roldan I, Ocaña-Guzman R, Molina-Molina M, Pardo A, Chavez-Galan L, Selman M. CD4+T cells in ageing-associated interstitial lung abnormalities show evidence of pro-inflammatory phenotypic and functional profile. Thorax 2020; 76:152-160. [PMID: 33298584 PMCID: PMC7815886 DOI: 10.1136/thoraxjnl-2020-215520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Background Interstitial lung abnormalities (ILA) occur in around 10% of subjects over 60 years, and are associated with a higher rate of all-cause mortality. The pathogenic mechanisms are unclear, and the putative contribution of alterations in the immune response has not been explored. Normal ageing is associated with immune deficiencies, including Naïve T-cell decrease and greater expression of the proliferative-limiting, co-inhibitory receptor killer-cell lectin-like receptor G1 (KLRG1). Objective To evaluate the frequency and activation state of different T-cell subpopulations in ILA subjects. Methods Peripheral blood mononuclear cells were obtained from 15 individuals with ILA, 21 age-matched controls and 28 healthy young subjects. T-cells phenotype was characterised by flow cytometry, and proliferation and activation by stimulation with anti-CD3/anti-CD28 or phorbol myristate acetate/ionomycin; KLRG1 isoforms were evaluated by western blot and cytokines were quantified by ELISA and Multiplex. Results A significant increase of Naïve CD4+T cells together with a decrease of central and effector memory CD4+T cells was observed in ILA compared with age-matched controls. CD4+T cells from ILA subjects exhibited greater basal proliferation, which raised after anti-CD3/anti-CD28 stimulation. Additionally, a significant increase in the levels of interleukin-6 and interferon gamma was observed in isolated CD4+T cells and plasma of ILA subjects. They also displayed fewer KLRG1+/CD4+T cells with an increase of circulating E-cadherin, the ligand of KLRG1+. No changes were observed with CD8+T cell subsets. Conclusion CD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.
Collapse
Affiliation(s)
- Carlos Machahua
- Servei de Pneumologia, Grup de Recerca Pneumològic, Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Hospital de Llobregat, Barcelona, Spain
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ranferi Ocaña-Guzman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - María Molina-Molina
- Servei de Pneumologia, Grup de Recerca Pneumològic, Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Hospital de Llobregat, Barcelona, Spain
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
31
|
Goliwas KF, Deshane JS. Extracellular Vesicles: Bidirectional Accelerators of Cellular Senescence in Fibrosis? Am J Respir Cell Mol Biol 2020; 63:547-548. [PMID: 32780980 PMCID: PMC7605167 DOI: 10.1165/rcmb.2020-0313ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kayla F Goliwas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Brown R, McKelvey MC, Ryan S, Creane S, Linden D, Kidney JC, McAuley DF, Taggart CC, Weldon S. The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Front Med (Lausanne) 2020; 7:589553. [PMID: 33195353 PMCID: PMC7649269 DOI: 10.3389/fmed.2020.589553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with increased morbidity and mortality in the elderly population (≥65 years of age). Additionally, age is widely reported as a risk factor for the development of ARDS. However, the underlying pathophysiological mechanisms behind the increased risk of developing, and increased severity of, ARDS in the elderly population are not fully understood. This is compounded by the significant heterogeneity observed in patients with ARDS. With an aging population worldwide, a better understanding of these mechanisms could facilitate the development of therapies to improve outcomes in this population. In this review, the current clinical evidence of age as a risk factor and prognostic indicator in ARDS and the potential underlying mechanisms that may contribute to these factors are outlined. In addition, research on age-dependent treatment options and biomarkers, as well as future prospects for targeting these underlying mechanisms, are discussed.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael C McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Shannice Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
33
|
Penumatsa KC, Falcão-Pires I, Leite S, Leite-Moreira A, Bhedi CD, Nasirova S, Ma J, Sutliff RL, Fanburg BL. Increased Transglutaminase 2 Expression and Activity in Rodent Models of Obesity/Metabolic Syndrome and Aging. Front Physiol 2020; 11:560019. [PMID: 33041859 PMCID: PMC7522548 DOI: 10.3389/fphys.2020.560019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Diastolic dysfunction of the heart and decreased compliance of the vasculature and lungs (i.e., increased organ tissue stiffness) are known features of obesity and the metabolic syndrome. Similarly, cardiac diastolic dysfunction is associated with aging. Elevation of the enzyme transglutaminase 2 (TG2) leads to protein cross-linking and enhanced collagen synthesis and participates as a candidate pathway for development of tissue stiffness. With these observations in mind we hypothesized that TG2 may be elevated in tissues of a rat model of obesity/metabolic syndrome (the ZSF 1 rat) and a mouse model of aging, i.e., the senescent SAMP8 mouse. In the experiments reported here, TG2 expression and activity were found for the first time to be spontaneously elevated in organs from both the ZSF1 rat and the SAMP8 mouse. These observations are consistent with a hypothesis that a TG2-related pathway may participate in the known tissue stiffness associated with cardiac diastolic dysfunction in these two rodent models. The potential TG2 pathway needs better correlation with physiologic dysfunction and may eventually provide novel therapeutic insights to improve tissue compliance.
Collapse
Affiliation(s)
- Krishna C. Penumatsa
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Ines Falcão-Pires
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Sara Leite
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Adelino Leite-Moreira
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Chinmayee D. Bhedi
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Sabina Nasirova
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Jing Ma
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Roy L. Sutliff
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Barry L. Fanburg
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
34
|
Wyman AE, Nguyen TTT, Karki P, Tulapurkar ME, Zhang CO, Kim J, Feng TG, Dabo AJ, Todd NW, Luzina IG, Geraghty P, Foronjy RF, Hasday JD, Birukova AA, Atamas SP, Birukov KG. SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Sci Rep 2020; 10:12497. [PMID: 32719338 PMCID: PMC7385158 DOI: 10.1038/s41598-020-69236-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI), a common condition in critically ill patients, has limited treatments and high mortality. Aging is a risk factor for ALI. Sirtuins (SIRTs), central regulators of the aging process, decrease during normal aging and in aging-related diseases. We recently showed decreased SIRT7 expression in lung tissues and fibroblasts from patients with pulmonary fibrosis compared to controls. To gain insight into aging-related mechanisms in ALI, we investigated the effects of SIRT7 depletion on lipopolysaccharide (LPS)-induced inflammatory responses and endothelial barrier permeability in human primary pulmonary endothelial cells. Silencing SIRT7 in pulmonary artery or microvascular endothelial cells attenuated LPS-induced increases in ICAM1, VCAM1, IL8, and IL6 and induced endomesenchymal transition (EndoMT) with decreases in VE-Cadherin and PECAM1 and increases in collagen, alpha-smooth muscle actin, TGFβ receptor 1, and the transcription factor Snail. Loss of endothelial adhesion molecules was accompanied by increased F-actin stress fibers and increased endothelial barrier permeability. Together, these results show that an aging phenotype induced by SIRT7 deficiency promotes EndoMT with impaired inflammatory responses and dysfunction of the lung vascular barrier.
Collapse
Affiliation(s)
- Anne E Wyman
- Geriatric Research Education and Clinical Center (GRECC), VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA. .,Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Trang T T Nguyen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohan E Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junghyun Kim
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Theresa G Feng
- Department of Anesthesiology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Irina G Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Patrick Geraghty
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jeffrey D Hasday
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Liu MA, Stark PC, Prisk GK, West JB. Oxygen deficit is a sensitive measure of mild gas exchange impairment at inspired O 2 between 12.5% and 21. Am J Physiol Lung Cell Mol Physiol 2020; 319:L91-L94. [PMID: 32401675 DOI: 10.1152/ajplung.00003.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oxygen deficit (OD) is the difference between the end-tidal alveolar Po2 and the calculated Po2 of arterial blood based on measured oxygen saturation that acts as a proxy for the alveolar-arterial Po2 difference. Previous work has shown that the alveolar gas meter (AGM100) can measure pulmonary gas exchange, via the OD, in patients with a history of lung disease and in normal subjects breathing 12.5% O2. The present study measured how the OD varied at different values of inspired O2. Healthy subjects were split by age (young 22-31; n = 23; older 42-90; n = 13). Across all inspired O2 levels (12.5, 15, 17.5, and 21%), the OD was higher in the older cohort 10.6 ± 1.0 mmHg compared with the young -0.4 ± 0.6 mmHg (P < 0.0001, using repeated measures ANOVA), the difference being significant at all O2 levels (all P < 0.0001). The OD difference between age groups and its variance was greater at higher O2 values (age × O2 interaction; P = 0.002). The decrease in OD with lower values of inspired O2 in both cohorts is consistent with the increased accuracy of the calculated arterial Po2 based on the O2-Hb dissociation curve and with the expected decrease in the alveolar-arterial Po2 difference due to a lower arterial saturation. The persisting higher OD seen in older subjects, irrespective of the inspired O2, shows that the measurement of OD remains sensitive to mild gas exchange impairment, even when breathing 21% O2.
Collapse
Affiliation(s)
- Matthew A Liu
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Phoebe C Stark
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - John B West
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Abstract
Frailty is a clinical state of vulnerability to stressors resulting from cumulative alterations in multiple physiological and molecular systems. Frailty assessment in patients with chronic disease is useful for identifying those who are at increased risk for poor clinical and patient reported outcomes. Due to biobehavioral changes purported to cause both frailty and certain chronic lung diseases, patients with lung disease appear susceptible to frailty and prone to developing it decades earlier than community dwelling healthy populations. Herein, we review the literature and potential pathobiological mechanisms underpinning associations between frailty in lung disease and age, sex, comorbidity and symptom burden, severity of lung disease, inflammatory biomarkers, various clinical parameters, body composition measures, and physical activity levels. We also propose a multipronged program of future research focused on improving the accuracy and precision of frailty measurement in lung disease, identifying blood-based biomarkers and measures of body composition for frailty, determining whether subphenotypes of frailty with distinct pathobiology exist, and developing personalized interventions that target the specific underlying mechanisms causing frailty.
Collapse
|
37
|
Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol 2020; 101:104-110. [PMID: 31879264 PMCID: PMC7913053 DOI: 10.1016/j.semcdb.2019.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease characterized by progressive scarring of the lung tissue, leading to respiratory failure. There is no cure for IPF, and current anti-fibrotic treatments modestly arrest its further progression. IPF prevalence and incidence increase with age, which is a recognized risk factor. Intense clinical and basic research over the last fifteen years has shown that hallmarks of accelerated aging are present in the lungs of patients with IPF. Different cell types in IPF lungs exhibit premature hallmarks of aging, including telomere attrition and cellular senescence. In this Review, we discuss recent insights into the mechanisms behind these age-related alterations and their contribution to the development of lung fibrosis. We focus on the genetic and molecular basis of telomere attrition in alveolar type II epithelial cells, which promote cellular senescence and lung fibrosis. Mechanistically, senescent cells secrete pro-fibrotic factors that activate scar-forming myofibroblasts. Ultimately, senescent alveolar epithelial cells lose their regenerative capacity, impeding fibrosis resolution. In addition, mitochondrial dysfunction is strongly associated with the appearance of senescent epithelial cells and senescent myofibroblasts in IPF, which persist in the fibrotic tissue by adapting their metabolic pathways and becoming resistant to apoptosis. We discuss emerging novel therapeutic strategies to treat IPF by targeting cellular senescence with the so-called senotherapeutics.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Bueno
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Kang MJ. Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases. Tuberc Respir Dis (Seoul) 2020; 83:107-115. [PMID: 32185913 PMCID: PMC7105435 DOI: 10.4046/trd.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.
Collapse
Affiliation(s)
- Min Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Viswan A, Singh C, Kayastha AM, Azim A, Sinha N. An NMR based panorama of the heterogeneous biology of acute respiratory distress syndrome (ARDS) from the standpoint of metabolic biomarkers. NMR IN BIOMEDICINE 2020; 33:e4192. [PMID: 31733128 DOI: 10.1002/nbm.4192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS), manifested by intricate etiology and pathophysiology, demands careful clinical surveillance due to its high mortality and imminent life support measures. NMR based metabolomics provides an approach for ARDS which culminates from a wide spectrum of illness thereby confounding early manifestation and prognosis predictors. 1 H NMR with its manifold applications in critical disease settings can unravel the biomarker of ARDS thus holding potent implications by providing surrogate endpoints of clinical utility. NMR metabolomics which is the current apogee platform of omics trilogy is contributing towards the possible panacea of ARDS by subsequent validation of biomarker credential on larger datasets. In the present review, the physiological derangements that jeopardize the whole metabolic functioning in ARDS are exploited and the biomarkers involved in progression are addressed and substantiated. The following sections of the review also outline the clinical spectrum of ARDS from the standpoint of NMR based metabolomics which is an emerging element of systems biology. ARDS is the main premise of intensivists textbook, which has been thoroughly reviewed along with its incidence, progressive stages of severity, new proposed diagnostic definition, and the preventive measures and the current pitfalls of clinical management. The advent of new therapies, the need for biomarkers, the methodology and the contemporary promising approaches needed to improve survival and address heterogeneity have also been evaluated. The review has been stepwise illustrated with potent biometrics employed to selectively pool out differential metabolites as diagnostic markers and outcome predictors. The following sections have been drafted with an objective to better understand ARDS mechanisms with predictive and precise biomarkers detected so far on the basis of underlying physiological parameters having close proximity to diseased phenotype. The aim of this review is to stimulate interest in conducting more studies to help resolve the complex heterogeneity of ARDS with biomarkers of clinical utility and relevance.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Afzal Azim
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
40
|
Noland D, Drisko JA, Wagner L. Respiratory. INTEGRATIVE AND FUNCTIONAL MEDICAL NUTRITION THERAPY 2020. [PMCID: PMC7120155 DOI: 10.1007/978-3-030-30730-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lung disease rivals the position for the top cause of death worldwide. Causes and pathology of the myriad lung diseases are varied, yet nutrition can either affect the outcome or support treatment in the majority of cases. This chapter explores the modifiable risk factors, from lifestyle changes to dietary intake to specific nutrients, anti-nutrients, and toxins helpful for the nutritionist or dietitian working with lung disease patients. General lung health is discussed, and three major disease states are explored in detail, including alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Although all lung diseases have diverse causes, many integrative and functional medical nutrition therapies are available and are not being utilized in practice today. This chapter begins the path toward better nutrition education for the integrative and functional medicine professional.
Collapse
Affiliation(s)
| | - Jeanne A. Drisko
- Professor Emeritus, School of Medicine, University of Kansas Health System, Kansas City, KS USA
| | - Leigh Wagner
- Department of Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS USA
| |
Collapse
|
41
|
Lee SY, Mac Aogáin M, Fam KD, Chia KL, Binte Mohamed Ali NA, Yap MMC, Yap EPH, Chotirmall SH, Lim CL. Airway microbiome composition correlates with lung function and arterial stiffness in an age-dependent manner. PLoS One 2019; 14:e0225636. [PMID: 31770392 PMCID: PMC6879132 DOI: 10.1371/journal.pone.0225636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate age-associated changes in airway microbiome composition and their relationships with lung function and arterial stiffness among genetically matched young and elderly pairs. Methods Twenty-four genetically linked family pairs comprised of younger (≤40 years) and older (≥60 years) healthy participants were recruited (Total n = 48). Lung function and arterial stiffness (carotid-femoral pulse wave velocity (PWV) and augmentation index (AIx)) were assessed. Sputum samples were collected for targeted 16S rRNA gene amplicon sequencing and correlations between microbiome composition, lung function and arterial stiffness were investigated. Results Elderly participants exhibited reductions in lung function (FEV1 (p<0.001), FVC (p<0.001) and percentage FEV1/FVC (p = 0.003)) and a 1.3–3.9-fold increase in arterial stiffness (p<0.001) relative to genetically related younger adults. Elderly adults had a higher relative abundance of Firmicutes (p = 0.035) and lower relative abundance of Proteobacteria (p = 0.014), including specific genera Haemophilus (p = 0.024) and Lautropia (p = 0.020) which were enriched in the younger adults. Alpha diversity was comparable between young and elderly pairs (p>0.05) but was inversely associated with lung function (FEV1%Predicted and FVC %Predicted) in the young (p = 0.006 and p = 0.003) though not the elderly (p = 0.481 and p = 0.696). Conversely, alpha diversity was negatively associated with PWV in the elderly (p = 0.01) but not the young (p = 0.569). Specifically, phylum Firmicutes including the genus Gemella were correlated with lung function (FVC %Predicted) in the young group (p = 0.047 and p = 0.040), while Fusobacteria and Leptotrichia were associated with arterial stiffness (PWV) in the elderly (both p = 0.004). Conclusion Ageing is associated with increased Firmicutes and decreased Proteobacteria representation in the airway microbiome among a healthy Asian cohort. The diversity and composition of the airway microbiome is independently associated with lung function and arterial stiffness in the young and elderly groups respectively. This suggests differential microbial associations with these phenotypes at specific stages of life with potential prognostic implications.
Collapse
Affiliation(s)
- Shuen Yee Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kai Deng Fam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kar Ling Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Margaret M. C. Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Eric P. H. Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
42
|
Dela Cruz CS, Wunderink RG, Christiani DC, Cormier SA, Crothers K, Doerschuk CM, Evans SE, Goldstein DR, Khatri P, Kobzik L, Kolls JK, Levy BD, Metersky ML, Niederman MS, Nusrat R, Orihuela CJ, Peyrani P, Prince AS, Ramírez JA, Ridge KM, Sethi S, Suratt BT, Sznajder JI, Tsalik EL, Walkey AJ, Yende S, Aggarwal NR, Caler EV, Mizgerd JP. Future Research Directions in Pneumonia. NHLBI Working Group Report. Am J Respir Crit Care Med 2019; 198:256-263. [PMID: 29546996 DOI: 10.1164/rccm.201801-0139ws] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group's specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- 1 Pulmonary, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Richard G Wunderink
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David C Christiani
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, and.,4 Pulmonary and Critical Care Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Stephania A Cormier
- 5 Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Kristina Crothers
- 6 Department of Medicine, University of Washington, Seattle, Washington
| | - Claire M Doerschuk
- 7 Marsico Lung Institute and.,8 Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Scott E Evans
- 9 Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Goldstein
- 10 Department of Internal Medicine.,11 Department of Microbiology and Immunology, and.,12 Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Purvesh Khatri
- 13 Center for Biomedical Information Research, Stanford University, Stanford, California
| | - Lester Kobzik
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, and
| | - Jay K Kolls
- 14 Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana
| | - Bruce D Levy
- 15 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mark L Metersky
- 16 Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Michael S Niederman
- 17 Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Roomi Nusrat
- 18 Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carlos J Orihuela
- 19 Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paula Peyrani
- 20 Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Alice S Prince
- 21 Department of Pediatrics, Columbia University, New York, New York
| | - Julio A Ramírez
- 20 Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Karen M Ridge
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjay Sethi
- 22 Pulmonary, Critical Care and Sleep Medicine, Jacobs School of Medicine, University at Buffalo, State University of New York, Buffalo, New York
| | - Benjamin T Suratt
- 23 Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Jacob I Sznajder
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ephraim L Tsalik
- 24 Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, North Carolina.,25 Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Allan J Walkey
- 26 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Sachin Yende
- 27 Department of Critical Care Medicine, Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,28 Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - Neil R Aggarwal
- 29 Division of Lung Diseases, NHLBI, NIH, Bethesda, Maryland
| | | | - Joseph P Mizgerd
- 26 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
43
|
Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129:2619-2628. [PMID: 31107246 DOI: 10.1172/jci124615] [Citation(s) in RCA: 583] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are tissue-resident or infiltrated immune cells critical for innate immunity, normal tissue development, homeostasis, and repair of damaged tissue. Macrophage function is a sum of their ontogeny, the local environment in which they reside, and the type of injuries or pathogen to which they are exposed. In this Review, we discuss the role of macrophages in the restoration of tissue function after injury, highlighting important questions about how they respond to and modify the local microenvironment to restore homeostasis.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Michael Alexander
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
44
|
Aedo G, Miranda M, Chávez MN, Allende ML, Egaña JT. A Reliable Preclinical Model to Study the Impact of Cigarette Smoke in Development and Disease. ACTA ACUST UNITED AC 2019; 80:e78. [PMID: 31058471 DOI: 10.1002/cptx.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The World Health Organization has estimated that, worldwide, cigarette smoking has caused more than 100 million deaths in the last century, a number that is expected to increase in the future. Understanding cigarette smoke toxicity is key for research and development of proper public health policies. The current challenge is to establish a reliable preclinical model to evaluate the effects of cigarette smoke. In this work, we describe a simple method that allows for quantifying the toxic effects of cigarette smoke using zebrafish. Here, viability of larvae and adult fish, as well as the effects of cigarette smoke extracts on vascular development and tissue regeneration, can be easily assayed. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Geraldine Aedo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Advanced Center for Chronic Disease, Center for Molecular Studies of the Cell, Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Myra N Chávez
- FONDAP Advanced Center for Chronic Disease, Center for Molecular Studies of the Cell, Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José T Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Morty RE, Prakash YS. Senescence in the lung: is this getting old? Am J Physiol Lung Cell Mol Physiol 2019; 316:L822-L825. [PMID: 30892079 DOI: 10.1152/ajplung.00081.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, Justus-Liebig-Universität Gießen, Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
46
|
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM, Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019; 10:963. [PMID: 30814501 PMCID: PMC6393476 DOI: 10.1038/s41467-019-08831-9] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung. Aging impacts lung functionality and makes it more susceptible to chronic diseases. Combining proteomics and single cell transcriptomics, the authors chart molecular and cellular changes in the aging mouse lung, discover aging hallmarks, and predict the cellular sources of regulated proteins.
Collapse
Affiliation(s)
- Ilias Angelidis
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Lukas M Simon
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Isis E Fernandez
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Flavia R Greiffo
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - George Tsitsiridis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Meshal Ansari
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.,Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Elisabeth Graf
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Tim-Matthias Strom
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Monica Nagendran
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Tushar Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Oliver Eickelberg
- Department of Medicine, Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, 80045, CO, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany. .,Department of Mathematics, Technische Universität München, Munich, 85748, Germany.
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.
| |
Collapse
|
47
|
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM, Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019; 10:963. [PMID: 30814501 DOI: 10.1101/351353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/01/2019] [Indexed: 05/28/2023] Open
Abstract
Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung.
Collapse
Affiliation(s)
- Ilias Angelidis
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Lukas M Simon
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Isis E Fernandez
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Flavia R Greiffo
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - George Tsitsiridis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Meshal Ansari
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Elisabeth Graf
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Tim-Matthias Strom
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Monica Nagendran
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Tushar Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Oliver Eickelberg
- Department of Medicine, Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, 80045, CO, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany.
- Department of Mathematics, Technische Universität München, Munich, 85748, Germany.
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.
| |
Collapse
|
48
|
Gulati S, Thannickal VJ. The Aging Lung and Idiopathic Pulmonary Fibrosis. Am J Med Sci 2019; 357:384-389. [PMID: 31010465 DOI: 10.1016/j.amjms.2019.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of many clinical syndromes that are associated with aging, and is increasing in both incidence and prevalence with the rapid rise in aging populations world-wide. There is accumulating data on how the biology of aging may influence the susceptibility to lung fibrosis in the elderly. In this review, we explore some of the known "hallmarks of aging," including telomere attrition, genomic instability, epigenetic alterations, loss of proteostasis, cellular senescence and mitochondrial dysfunction in the pathobiology of IPF. Additionally, we discuss age-associated alterations in extracellular matrix that may contribute to the development and/or progression of IPF.
Collapse
Affiliation(s)
- Swati Gulati
- Division of Pulmonary, Allergy, and Critical Care Medicine and.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine and; Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Bowdish DM. The Aging Lung. Chest 2019; 155:391-400. [DOI: 10.1016/j.chest.2018.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
|
50
|
Aghasafari P, Heise RL, Reynolds A, Pidaparti RM. Aging Effects on Alveolar Sacs Under Mechanical Ventilation. J Gerontol A Biol Sci Med Sci 2019; 74:139-146. [PMID: 29746613 PMCID: PMC6333941 DOI: 10.1093/gerona/gly097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/26/2018] [Indexed: 11/14/2022] Open
Abstract
Alveolar sacs are primarily responsible for gas exchange in the human respiratory system and lose their functionality with aging. Three-dimensional (3D) models of young and old human alveolar sacs were constructed and fluid-solid interaction was employed to investigate the contribution of age-related changes to decline in alveolar sacs function under mechanical ventilation (MV). Simulation results illustrated that compliance and pressure reduced in the alveolar sacs of the elderly adults, and they have to work harder to breathe. Morphological changes were found to be mainly responsible for the decline in alveolar sacs function. Influence of individual differences on the alveolar sacs function was negligible and 95% confidence intervals for compliance and work of breathing (WOB) using measures from different individuals also support this finding. Moreover, higher mortality risk was recorded for elderly adults who undergo MV. Specifically, ventilator devices setting has been identified as a potential parameter for compromising respiratory function in the elderly adults. Volume-controlled ventilation applied less pressure, whereas, pressure-controlled ventilation resulted in higher compliance in the alveolar sacs and decreased WOB. Sensitivity of alveolar sacs to ventilator setting under the volume-controlled mode illustrated that increasing breathing frequency and decreasing the ratio of inhalation to exhalation times and TV caused an increase in alveolar sacs expansion and compliance in older patients. Results from this study can help clinicians to develop individualized and effective ventilator protocols and to improve respiratory function in the elderly adults.
Collapse
Affiliation(s)
- Parya Aghasafari
- Department of Mechanical Engineering, University of Georgia, Athens
| | - Rebeca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond
- VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University, Richmond
| | - Angela Reynolds
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond
| | | |
Collapse
|