1
|
Yan S. Glycans of parasitic nematodes - from glycomes to novel diagnostic tools and vaccines. Carbohydr Res 2025; 550:109407. [PMID: 39879943 DOI: 10.1016/j.carres.2025.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Nematodes, commonly known as roundworms, are among the most prevalent and diverse multicellular organisms on Earth, belonging to the large phylum Nematoda. In addition to free-living species, many nematodes are parasitic, infecting plants, animals, and humans. Nematodes possess a wide array of genes responsible for carbohydrate metabolism and glycosylation. The glycosylation processes in parasitic nematodes often result in unique glycan modifications that are not present in their hosts. These distinct glycans can be highly immunogenic to mammalian hosts and play significant immunoregulatory roles during infection. This mini-review article summarises the glycosylation capabilities and characteristics of parasitic nematodes based on glycomic data. It also highlights recent research advances that explore the biological significance of nematode glycans and their potential for diagnostic and vaccine applications.
Collapse
Affiliation(s)
- Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, A-1210, Wien, Austria.
| |
Collapse
|
2
|
Dutkiewicz Z, Varrot A, Breese KJ, Stubbs KA, Nuschy L, Adduci I, Paschinger K, Wilson IBH. Bioinformatic, Enzymatic, and Structural Characterization of Trichuris suis Hexosaminidase HEX-2. Biochemistry 2024; 63:1941-1954. [PMID: 39058279 PMCID: PMC11308363 DOI: 10.1021/acs.biochem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Hexosaminidases are key enzymes in glycoconjugate metabolism and occur in all kingdoms of life. Here, we have investigated the phylogeny of the GH20 glycosyl hydrolase family in nematodes and identified a β-hexosaminidase subclade present only in the Dorylaimia. We have expressed one of these, HEX-2 from Trichuris suis, a porcine parasite, and shown that it prefers an aryl β-N-acetylgalactosaminide in vitro. HEX-2 has an almost neutral pH optimum and is best inhibited by GalNAc-isofagomine. Toward N-glycan substrates, it displays a preference for the removal of GalNAc residues from LacdiNAc motifs as well as the GlcNAc attached to the α1,3-linked core mannose. Therefore, it has a broader specificity than insect fused lobe (FDL) hexosaminidases but one narrower than distant homologues from plants. Its X-ray crystal structure, the first of any subfamily 1 GH20 hexosaminidase to be determined, is closest to Streptococcus pneumoniae GH20C and the active site is predicted to be compatible with accommodating both GalNAc and GlcNAc. The new structure extends our knowledge about this large enzyme family, particularly as T. suis HEX-2 also possesses the key glutamate residue found in human hexosaminidases of either GH20 subfamily, including HEXD whose biological function remains elusive.
Collapse
Affiliation(s)
- Zuzanna Dutkiewicz
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | | | - Karen J. Breese
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
| | - Keith A. Stubbs
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
- ARC
Training Centre for Next-Gen Technologies in Biomedical Analysis,
School of Molecular Sciences, University
of Western Australia, Crawley, WA 6009, Australia
| | - Lena Nuschy
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Isabella Adduci
- Institut
für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien A-1210, Austria
| | - Katharina Paschinger
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Iain B. H. Wilson
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| |
Collapse
|
3
|
Ubeira FM, González-Warleta M, Martínez-Sernández V, Castro-Hermida JA, Paniagua E, Romarís F, Mezo M. Increased specificity of Fasciola hepatica excretory-secretory antigens combining negative selection on hydroxyapatite and salt precipitation. Sci Rep 2024; 14:3897. [PMID: 38365880 PMCID: PMC10873304 DOI: 10.1038/s41598-024-54290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024] Open
Abstract
A single and rapid method to obtain an antigenic fraction of excretory-secretory antigens (ESAs) from Fasciola hepatica suitable for serodiagnosis of fascioliasis is reported. The procedure consists in the negative selection of F. hepatica ESAs by hydroxyapatite (HA) chromatography (HAC; fraction HAC-NR) followed by antigen precipitation with 50% ammonium sulphate (AS) and subsequent recovery by means of a Millex-GV or equivalent filter (Fi-SOLE fraction). Tested in indirect ELISA, the Fi-SOLE antigens detected natural infections by F. hepatica with 100% sensitivity and 98.9% specificity in sheep, and 97.7% sensitivity and 97.7% specificity in cattle, as determined by ROC analysis. The SDS-PAGE and proteomic nano-UHPLC-Tims-QTOF MS/MS analysis of fractions showed that the relative abundance of L-cathepsins and fragments thereof was 57% in fraction HAC-NR and 93.8% in fraction Fi-SOLE. The second most abundant proteins in fraction HAC-NR were fatty-acid binding proteins (11.9%). In contrast, free heme, and heme:MF6p/FhHDM-1 complexes remained strongly bond to the HA particles during HAC. Interestingly, phosphorylcholine (PC)-bearing antigens, which are a frequent source of cross-reactivity, were detected with an anti-PC mAb (BH8) in ESAs and fraction HAC-NR but were almost absent in fraction Fi-SOLE.
Collapse
Affiliation(s)
- Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
- Servicio de Dermatología Médico-Quirúrgica y Venereología, Complejo Hospitalario Universitario de Pontevedra (CHUP), 36071, Pontevedra, Spain
| | - José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| |
Collapse
|
4
|
Eckmair B, Gao C, Mehta AY, Dutkiewicz Z, Vanbeselaere J, Cummings RD, Paschinger K, Wilson IBH. Recognition of Highly Branched N-Glycans of the Porcine Whipworm by the Immune System. Mol Cell Proteomics 2024; 23:100711. [PMID: 38182041 PMCID: PMC10850124 DOI: 10.1016/j.mcpro.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array, we explored the interactions of glycans with C-type lectins, C-reactive protein, and sera from T. suis-infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems and also exhibit species-specific features distinguishing its glycome from those of other nematodes.
Collapse
Affiliation(s)
- Barbara Eckmair
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zuzanna Dutkiewicz
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Jorick Vanbeselaere
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Katharina Paschinger
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
5
|
De Marco Verissimo C, Cwiklinski K, Nilsson J, Mirgorodskaya E, Jin C, Karlsson NG, Dalton JP. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol Cell Proteomics 2023; 22:100684. [PMID: 37993102 PMCID: PMC10755494 DOI: 10.1016/j.mcpro.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland.
| | - Krystyna Cwiklinski
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - John P Dalton
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
6
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Eckmair B, Gao C, Mehta AY, Dutkiewicz Z, Vanbeselaere J, Cummings RD, Paschinger K, Wilson IBH. Recognition of highly branched N-glycans of the porcine whipworm by the immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.557549. [PMID: 37790353 PMCID: PMC10542551 DOI: 10.1101/2023.09.21.557549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array we explored the interactions of glycans with C-type lectins, C-reactive protein and sera from T. suis infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties, but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems, and also exhibit species-specific features distinguishing its glycome from those of other nematodes.
Collapse
Affiliation(s)
- Barbara Eckmair
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Zuzanna Dutkiewicz
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Jorick Vanbeselaere
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Katharina Paschinger
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Iain B H Wilson
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
8
|
Paschinger K, Wöls F, Yan S, Jin C, Vanbeselaere J, Dutkiewicz Z, Arcalis E, Malzl D, Wilson IBH. N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. J Biol Chem 2023; 299:103053. [PMID: 36813232 PMCID: PMC10060765 DOI: 10.1016/j.jbc.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 β-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.
Collapse
Affiliation(s)
| | - Florian Wöls
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | | | - Elsa Arcalis
- Department für angewandte Genetik und Zellbiologie, Universität für Bodenkultur, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
9
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
10
|
Toustou C, Walet‐Balieu M, Kiefer‐Meyer M, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Laure Walet‐Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Christine Kiefer‐Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenHerestraat 49, Box 802Leuven3000Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| |
Collapse
|
11
|
Petralia LM, van Diepen A, Lokker LA, Nguyen DL, Sartono E, Khatri V, Kalyanasundaram R, Taron CH, Foster JM, Hokke CH. Mass spectrometric and glycan microarray-based characterization of the filarial nematode Brugia malayi glycome reveals anionic and zwitterionic glycan antigens. Mol Cell Proteomics 2022; 21:100201. [PMID: 35065273 PMCID: PMC9046957 DOI: 10.1016/j.mcpro.2022.100201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022] Open
Abstract
Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host–parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF. Antigenic B. malayi N-linked and GSL glycans were structurally defined. IgG/IgM is induced to a subset of B. malayi glycans upon infection of rhesus macaques. Preferential IgG response to B. malayi glycans observed in chronically infected humans. Marked drop of anti-glycan IgG following treatment of individuals with anthelminthic.
Collapse
|
12
|
Buitrago G, Duncombe-Moore J, Harnett MM, Harnett W. Mini Review: Structure and Function of Nematode Phosphorylcholine-Containing Glycoconjugates. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.769000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An unusual aspect of the biology of nematodes is the covalent attachment of phosphorylcholine (PC) to carbohydrate in glycoconjugates. Investigation of the structure of these molecules by ever-increasingly sophisticated analytical procedures has revealed that PC is generally in phosphodiester linkage with C6 of N-acetylglucosamine (GlcNAc) in both N-type glycans and glycosphingolipids. Up to five PC groups have been detected in the former, being located on both antenna and core GlcNAc. The PC donor for transfer to carbohydrate appears to be phosphatidylcholine but the enzyme responsible for transfer remains to be identified. Work primarily involving the PC-containing Acanthocheilonema viteae secreted product ES-62, has shown that the PC attached to nematode N-glycans possesses a range of immunomodulatory properties, subverting for example, pro-inflammatory signalling in various immune system cell-types including lymphocytes, mast cells, dendritic cells and macrophages. This has led to the generation of PC-based ES-62 small molecule analogues (SMAs), which mirror the parent molecule in preventing the initiation or progression of disease in mouse models of a number of human conditions associated with aberrant inflammatory responses. These include rheumatoid arthritis, systemic lupus erythematosus and lung and skin allergy such that the SMAs are considered to have widespread therapeutic potential.
Collapse
|
13
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2020; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
14
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
15
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
16
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
17
|
Martini F, Eckmair B, Štefanić S, Jin C, Garg M, Yan S, Jiménez-Castells C, Hykollari A, Neupert C, Venco L, Varón Silva D, Wilson IBH, Paschinger K. Highly modified and immunoactive N-glycans of the canine heartworm. Nat Commun 2019; 10:75. [PMID: 30622255 PMCID: PMC6325117 DOI: 10.1038/s41467-018-07948-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2018] [Indexed: 01/05/2023] Open
Abstract
The canine heartworm (Dirofilaria immitis) is a mosquito-borne parasitic nematode whose range is extending due to climate change. In a four-dimensional analysis involving HPLC, MALDI-TOF–MS and MS/MS in combination with chemical and enzymatic digestions, we here reveal an N-glycome of unprecedented complexity. We detect N-glycans of up to 7000 Da, which contain long fucosylated HexNAc-based repeats, as well as glucuronylated structures. While some modifications including LacdiNAc, chitobiose, α1,3-fucose and phosphorylcholine are familiar, anionic N-glycans have previously not been reported in nematodes. Glycan array data show that the neutral glycans are preferentially recognised by IgM in dog sera or by mannose binding lectin when antennal fucose and phosphorylcholine residues are removed; this pattern of reactivity is reversed for mammalian C-reactive protein, which can in turn be bound by the complement component C1q. Thereby, the N-glycans of D. immitis contain features which may either mediate immunomodulation of the host or confer the ability to avoid immune surveillance. The glycome of parasites can have immunomodulatory properties or help to avoid immune surveillance, but details are unknown. Here, Martini et al. characterize the N-glycome of the canine heartworm, reveal an unprecedented complexity, particularly in anionic N-glycans, and determine recognition by components of the immune system.
Collapse
Affiliation(s)
| | - Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| | - Saša Štefanić
- Institute of Parasitology, Universität Zürich, Winterthurerstraße 266a, 8057, Zürich, Switzerland
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30, Göteborg, Sweden
| | - Monika Garg
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Biomolekulare Systeme, 14424, Potsdam, Germany
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.,Institut für Parasitologie, Veterinärmedizinische Universität, 1210, Wien, Austria
| | | | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| | | | - Luigi Venco
- Clinica Veterinaria Lago Maggiore, Arona, 28040, Italy
| | - Daniel Varón Silva
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Biomolekulare Systeme, 14424, Potsdam, Germany
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| |
Collapse
|
18
|
Ahmed R, Cadman ET, Snapper CM, Lawrence RA. Decreased nematode clearance and anti-phosphorylcholine-specific IgM responses in mannose-binding lectin-deficient mice. Immunol Cell Biol 2019; 97:305-316. [DOI: 10.1111/imcb.12219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Rubina Ahmed
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| | - Emma T Cadman
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| | - Clifford M Snapper
- Department of Pathology; Uniformed Services University of the Health Sciences; 4301 Jones Bridge Road Bethesda MD 20814 USA
| | - Rachel A Lawrence
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| |
Collapse
|
19
|
Jankowska E, Parsons LM, Song X, Smith DF, Cummings RD, Cipollo JF. A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology 2018; 28:223-232. [PMID: 29325093 DOI: 10.1093/glycob/cwy002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Here we present a Caenorhabditis elegans N-glycan shotgun array. This nematode serves as a model organism for many areas of biology including but not limited to tissue development, host-pathogen interactions, innate immunity, and genetics. Caenorhabditis elegans N-glycans contain structural motifs that are also found in other nematodes as well as trematodes and lepidopteran species. Glycan binding toxins that interact with C. elegans glycoconjugates also do so with some agriculturally relevant species, such as Haemonchus contortus, Ascaris suum, Oesophagostomum dentatum and Trichoplusia ni. This situation implies that protein-carbohydrate interactions seen with C. elegans glycans may also occur in other species with related glycan structures. Therefore, this array may be useful to study these relationships in other nematodes as well as trematode and insect species. The array contains 134 distinct glycomers spanning a wide range of C. elegans N-glycans including the subclasses high mannose, pauci mannose, high fucose, mammalian-like complex and phosphorylcholine substituted forms. The glycans presented on the array have been characterized by two-dimensional separation, ion trap mass spectrometry, and lectin affinity. High fucose glycans were well represented and contain many novel core structures found in C. elegans as well as other species. This array should serve as an investigative platform for carbohydrate binding proteins that interact with N-glycans of C. elegans and over a range of organisms that contain glycan motifs conserved with this nematode.
Collapse
Affiliation(s)
- Ewa Jankowska
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Lisa M Parsons
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Xuezheng Song
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Dave F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
20
|
High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR. Mol Immunol 2017; 87:33-46. [PMID: 28402840 DOI: 10.1016/j.molimm.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2, 4 and MyD88 molecule and, thus, decreases the T lymphocytes response. Here, we studied the glycoconjugates in PI and the role of C-type lectin receptors (CLRs), DC-SIGN and MR, in the modulation of DCs activity. Our data showed the presence of glycoconjugates with high mannose- and complex-type N-linked oligosaccharide chains and phosphorylcholine residues on PI. In addition, these N-linked glycoconjugates inhibited the DCs maturation induced by LPS. The binding and internalization of PI-Alexa were decreased on DCs previously incubated with mannan, anti-DC-SIGN and/or anti-MR antibodies. In agreement with this, the incubation of DCs with mannan, anti-DC-SIGN and/or anti-MR antibodies abolished the down-modulatory effect of PI on these cells. It was also observed that the blockage of CLRs, DC-SIGN and MR on DCs reverted the inhibitory effect of PI in in vitro T cells proliferation. Therefore, our data show the involvement of DC-SIGN and MR in the recognition and consequent modulatory effect of N-glycosylated components of PI on DCs.
Collapse
|
21
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Jiménez-Castells C, Vanbeselaere J, Kohlhuber S, Ruttkowski B, Joachim A, Paschinger K. Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim Biophys Acta Gen Subj 2016; 1861:418-430. [PMID: 27751954 DOI: 10.1016/j.bbagen.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The porcine nodule worm Oesophagostomum dentatum is a strongylid class V nematode rather closely related to the model organism Caenorhabditis elegans. However, in contrast to the non-parasitic C. elegans, the parasitic O. dentatum is an obligate sexual organism, which makes both a gender and developmental glycomic comparison possible. METHODS Different enzymatic and chemical methods were used to release N-glycans from male and female O. dentatum as well as from L3 and L4 larvae. Glycans were analysed by MALDI-TOF MS after either 2D-HPLC (normal then reversed phase) or fused core RP-HPLC. RESULTS Whereas the L3 N-glycome was simpler and more dominated by phosphorylcholine-modified structures, the male and female worms express a wide range of core fucosylated N-glycans with up to three fucose residues. Seemingly, simple methylated paucimannosidic structures can be considered 'male', while methylation of fucosylated glycans was more pronounced in females. On the other hand, while many of the fucosylated paucimannosidic glycans are identical with examples from other nematode species, but simpler than the tetrafucosylated glycans of C. elegans, there is a wide range of phosphorylcholine-modified glycans with extended HexNAc2-4PC2-4 motifs not observed in our previous studies on other nematodes. CONCLUSION The interspecies tendency of class V nematodes to share most, but not all, N-glycans applies also to O. dentatum; furthermore, we establish, for the first time in a parasitic nematode, that glycomes vary upon development and sexual differentiation. GENERAL SIGNIFICANCE Unusual methylated, core fucosylated and phosphorylcholine-containing N-glycans vary between stages and genders in a parasitic nematode.
Collapse
Affiliation(s)
| | | | - Sonja Kohlhuber
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Bärbel Ruttkowski
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Anja Joachim
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | | |
Collapse
|
23
|
Yan S, Wilson IBH, Paschinger K. Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus. Electrophoresis 2016; 36:1314-29. [PMID: 25639343 DOI: 10.1002/elps.201400528] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/09/2022]
Abstract
Pristionchus pacificus is a free-living nematode increasingly used as an organism for comparison to the more familiar model Caenorhabditis elegans. In this study, we examined the N-glycans of this organism isolated after serial release with peptide:N-glycosidases F and A; after fluorescent labelling with 2-aminopyridine, chromatographic fractionation by three types of RP-HPLC (with either classical C18, fused core C18 or alkylamide-bonded phases) followed by mass spectrometric analyses revealed key features of its N-glycome. In addition to paucimannosidic and oligomannosidic glycans typical of invertebrates, N-glycans with two core fucose residues were detected. Furthermore, a range of glycans carrying up to three phosphorylcholine residues was observed whereas, unlike C. elegans, no tetrafucosylated N-glycans were detected. Structures with three fucose residues, unusual methylation of core α1,3-fucose or with galactosylated fucose motifs were found in low amounts; these features may correlate with a different ensemble or expression of glycosyltransferase genes as compared to C. elegans. From an analytical perspective, both the alkylamide RP-amide and fused core C18 columns, as compared to a classical C18 material, offer advantages in terms of resolution and of elution properties, as some minor pyridylamino-labelled glycans (e.g. those carrying phosphorylcholine) appear in earlier fractions and so potential losses of such structures due to insufficient gradient length can be avoided.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|
24
|
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj J 2016; 33:273-83. [PMID: 26899268 PMCID: PMC4891362 DOI: 10.1007/s10719-016-9650-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/04/2022]
Abstract
Glycomic analyses over the years have revealed that non-vertebrate eukaryotes express oligosaccharides with inorganic and zwitterionic modifications which are either occurring in different contexts as compared to, or are absent from, mammals. Examples of anionic N-glycans (carrying sulphate or phosphate) are known from amoebae, fungi, molluscs and insects, while zwitterionic modifications by phosphorylcholine, phosphoethanolamine and aminoethylphosphonate occur on N-, O- and lipid-linked glycans from trichomonads, annelids, fungi, molluscs, insects, cestodes and nematodes. For detection of zwitterionic and anionic glycans, mass spectrometry has been a key method, but their ionic character affects the preparation and purification; therefore, as part of a glycomic strategy, the possibility of their presence must be considered in advance. On the other hand, their ionisation and fragmentation in positive and negative ion mode mass spectrometry as well as specific chemical or enzymatic treatments can prove diagnostic to their analysis. In our laboratory, we combine solid-phase extraction, reversed and normal phase HPLC, MALDI-TOF MS, exoglycosidase digests and hydrofluoric acid treatment to reveal N-glycans modified with anionic and zwitterionic moieties in a wide range of organisms. It is to be anticipated that, as more species are glycomically analysed, zwitterionic and anionic modifications of N-glycans will prove rather widespread. This knowledge is - in the longer term - then the basis for understanding the function of this cornucopia of glycan modifications.
Collapse
|
25
|
Wilson IBH, Paschinger K. Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Anal Bioanal Chem 2015; 408:461-71. [PMID: 26650734 DOI: 10.1007/s00216-015-9154-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 01/15/2023]
Abstract
Trichuris suis, a nematode parasite of pigs, has attracted attention as its eggs have been administered to human patients as a potential therapy for inflammatory diseases. The immunomodulatory factors remain molecularly uncharacterised, but in vitro studies suggest that glycans on the parasite's excretory/secretory proteins may play a role. Using an off-line LC-MS approach in combination with chemical and enzymatic treatments, we have examined the N-linked oligosaccharides of T. suis. In addition to the paucimannosidic and oligomannosidic N-glycans typical of many invertebrates, a number of glycans carry N,N'-diacetyllactosamine (LacdiNAc) modified by fucose and/or phosphorylcholine. Such antennal epitopes are similar to ones previously associated with immunomodulation by helminths; here we propose phosphorylcholine modifications predominantly of terminal N-acetylgalactosamine but also of subterminal α1,3-fucosylated N-acetylglucosamine. Exact knowledge of the glycome of T. suis will facilitate more targeted studies on glycan receptors in the host as well as the engineering of cell lines to produce correctly glycosylated recombinant forms of candidate proteins for future studies on immunomodulation.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| | - Katharina Paschinger
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| |
Collapse
|
26
|
Timm T, Lenz C, Merkel D, Sadiffo C, Grabitzki J, Klein J, Lochnit G. Detection and site localization of phosphorylcholine-modified peptides by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:460-471. [PMID: 25487775 DOI: 10.1007/s13361-014-1036-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline (m/z 104.1) and phosphorylcholine (m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor. BIOMED RESEARCH INTERNATIONAL 2014; 2014:898646. [PMID: 25054155 PMCID: PMC4098621 DOI: 10.1155/2014/898646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/31/2022]
Abstract
Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis.
Collapse
|
28
|
Yan 闫石 S, Serna S, Reichardt NC, Paschinger K, Wilson IBH. Array-assisted characterization of a fucosyltransferase required for the biosynthesis of complex core modifications of nematode N-glycans. J Biol Chem 2013; 288:21015-21028. [PMID: 23754284 DOI: 10.1074/jbc.m113.479147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.
Collapse
Affiliation(s)
- Shi Yan 闫石
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Sonia Serna
- the Biofunctional Nanomaterials Unit, CICbiomaGUNE, 20009 San Sebastian, Spain
| | | | - Katharina Paschinger
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Iain B H Wilson
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and.
| |
Collapse
|
29
|
Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IBH. Complicated N-linked glycans in simple organisms. Biol Chem 2013; 393:661-73. [PMID: 22944671 DOI: 10.1515/hsz-2012-0150] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/07/2012] [Indexed: 11/15/2022]
Abstract
Although countless genomes have now been sequenced, the glycomes of the vast majority of eukaryotes still present a series of unmapped frontiers. However, strides are being made in a few groups of invertebrate and unicellular organisms as regards their N-glycans and N-glycosylation pathways. Thereby, the traditional classification of glycan structures inevitably approaches its boundaries. Indeed, the glycomes of these organisms are rich in surprises, including a multitude of modifications of the core regions of N-glycans and unusual antennae. From the actually rather limited glycomic information we have, it is nevertheless obvious that the biotechnological, developmental and immunological relevance of these modifications, especially in insect cell lines, model organisms and parasites means that deciphering unusual glycomes is of more than just academic interest.
Collapse
Affiliation(s)
- Birgit Schiller
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | |
Collapse
|
30
|
Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect Immun 2012; 81:392-401. [PMID: 23230294 DOI: 10.1128/iai.01168-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.
Collapse
|
31
|
Yan S, Bleuler-Martinez S, Plaza DF, Künzler M, Aebi M, Joachim A, Razzazi-Fazeli E, Jantsch V, Geyer R, Wilson IBH, Paschinger K. Galactosylated fucose epitopes in nematodes: increased expression in a Caenorhabditis mutant associated with altered lectin sensitivity and occurrence in parasitic species. J Biol Chem 2012; 287:28276-90. [PMID: 22733825 DOI: 10.1074/jbc.m112.353128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by β1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and β1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Harnett W, Rzepecka J, Houston KM. How do nematodes transfer phosphorylcholine to carbohydrates? Trends Parasitol 2010; 26:114-8. [DOI: 10.1016/j.pt.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
|
33
|
Grabitzki J, Lochnit G. Immunomodulation by phosphocholine--biosynthesis, structures and immunological implications of parasitic PC-epitopes. Mol Immunol 2009; 47:149-63. [PMID: 19864025 DOI: 10.1016/j.molimm.2009.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
Phosphocholine (PC) as a small haptenic molecule present on antigens of parasites can provoke various effects on immune cells leading to immunomodulation of the host's immune system. This immunomodulation not only allows long-term persistence but also prevents severe pathology due to down-regulation of cellular immune responses. Additionally, PC plays an important role for development and fertility of the parasites. To fully understand the mechanisms of immunomodulation the detailed knowledge of the biosynthesis of the PC-epitopes, their molecular structure and biological function has to be elucidated. The implication of parasite-specific transferases in the biosynthesis of the PC-epitopes and the sensitivity of parasites towards disruption of the choline metabolism offers new perspectives for the development of anti-parasitic drugs and therapies. Furthermore, the immunomodulation provoked by PC-epitopes preventing inflammatory reactions may be useful in the treatment of inflammatory diseases. This review summarizes the current knowledge on the biosynthesis of PC-epitopes, their structures and immunological implications.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Germany
| | | |
Collapse
|
34
|
van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 2009; 20:2-12. [PMID: 19748975 DOI: 10.1093/glycob/cwp140] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology & Immunology, VU University Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Park Y, Zhang Z, Laremore TN, Li B, Sim JS, Im AR, Ahn MY, Kim YS, Linhardt RJ. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica). Glycoconj J 2008; 25:863-77. [PMID: 18670878 PMCID: PMC2630192 DOI: 10.1007/s10719-008-9149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/08/2008] [Accepted: 05/19/2008] [Indexed: 01/09/2023]
Abstract
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.
Collapse
Affiliation(s)
- Youmie Park
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Zhenqing Zhang
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Tatiana N. Laremore
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Boyangzi Li
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Joon-Soo Sim
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - A-Rang Im
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Mi Young Ahn
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Yeong Shik Kim
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| | - Robert J. Linhardt
- Y. Park, Z. Zhang, T. N. Laremore, B. Li, R. J. Linhardt, Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, e-mail:
- J.-S. Sim, A.-R. Im, Y. S. Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea, e-mail:
- J.-S. Sim, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, Republic of Korea
- M. Y. Ahn, Department of Agricultural Biology, National Institute of Agricultural Science and Technology, 61 Seodun-Dong, Suwon 441-100, Republic of Korea
| |
Collapse
|
36
|
Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis. Mol Biochem Parasitol 2008; 157:88-91. [DOI: 10.1016/j.molbiopara.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
|
37
|
Paschinger K, Gutternigg M, Rendić D, Wilson IBH. The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 2007; 343:2041-9. [PMID: 18226806 DOI: 10.1016/j.carres.2007.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 01/21/2023]
Abstract
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.
Collapse
Affiliation(s)
- Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | |
Collapse
|
38
|
Gutternigg M, Kretschmer-Lubich D, Paschinger K, Rendić D, Hader J, Geier P, Ranftl R, Jantsch V, Lochnit G, Wilson IBH. Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. J Biol Chem 2007; 282:27825-40. [PMID: 17636254 PMCID: PMC2850174 DOI: 10.1074/jbc.m704235200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many invertebrates and plants, the N-glycosylation profile is dominated by truncated paucimannosidic N-glycans, i.e. glycans consisting of a simple trimannosylchitobiosyl core often modified by core fucose residues. Even though they lack antennal N-acetylglucosamine residues, the biosynthesis of these glycans requires the sequential action of GlcNAc transferase I, Golgi mannosidase II, and, finally, beta-N-acetylglucosaminidases. In Drosophila, the recently characterized enzyme encoded by the fused lobes (fdl) gene specifically removes the non-reducing N-acetylglucosamine residue from the alpha1,3-antenna of N-glycans. In the present study, we examined the products of five beta-N-acetylhexosaminidase genes from Caenorhabditis elegans (hex-1 to hex-5, corresponding to reading frames T14F9.3, C14C11.3, Y39A1C.4, Y51F10.5, and Y70D2A.2) in addition to three from Arabidopsis thaliana (AtHEX1, AtHEX2, and AtHEX3, corresponding to reading frames At1g65590, At3g55260, and At1g05590). Based on homology, the Caenorhabditis HEX-1 and all three Arabidopsis enzymes are members of the same sub-family as the aforementioned Drosophila fused lobes enzyme but either act as chitotriosidases or non-specifically remove N-acetylglucosamine from both N-glycan antennae. The other four Caenorhabditis enzymes are members of a distinct sub-family; nevertheless, two of these enzymes displayed the same alpha1,3-antennal specificity as the fused lobes enzyme. Furthermore, a deletion of part of the Caenorhabditis hex-2 gene drastically reduces the native N-glycan-specific hexosaminidase activity in mutant worm extracts and results in a shift in the N-glycan profile, which is a demonstration of its in vivo enzymatic relevance. Based on these data, it is hypothesized that the genetic origin of paucimannosidic glycans in nematodes, plants, and insects involves highly divergent members of the same hexosaminidase gene family.
Collapse
Affiliation(s)
- Martin Gutternigg
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | | | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Josef Hader
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Petra Geier
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Ramona Ranftl
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Verena Jantsch
- Abteilung für Chromosomenbiologie, Vienna Biocenter II, A-1030 Wien, Austria
| | - Günter Lochnit
- Institut für Biochemie, Justus-Liebig-Universität, D-35292 Gießen, Germany
| | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
- To whom correspondence should be addressed: ; Tel: +43-1-36006-6541; Fax: +43-1-36006-6076
| |
Collapse
|
39
|
Kooyman FNJ, de Vries E, Ploeger HW, van Putten JPM. Antibodies elicited by the bovine lungworm, Dictyocaulus viviparus, cross-react with platelet-activating factor. Infect Immun 2007; 75:4456-62. [PMID: 17606606 PMCID: PMC1951160 DOI: 10.1128/iai.00633-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parasite N-glycans may play an important role in helminth infections. As antibodies from Dictyocaulus viviparus-infected calves strongly react with N-glycans, we investigated the characteristics of the major immunodominant glycoprotein (GP300) of this parasite. Probing of worm extracts with various lectins demonstrated unique binding of GP300 to wheat germ agglutinin. Analysis of lectin-purified GP300 revealed that the glycan was substituted with phosphorylcholine and reacted with the phosphorylcholine-specific antibody TEPC-15. Competitive enzyme-linked immunosorbent assay with GP300-coated plates and GP300-specific immunoglobulin G (IgG) in conjunction with free phosphorylcholine or TEPC-15 demonstrated that antibodies from infected calves recognized phosphorylcholine on GP300. Additional assays showed that these antibodies cross-reacted with the phosphorylcholine moiety present on platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a proinflammatory mediator of the host. Heavily infected calves contained high levels of serum GP300-specific IgG1 but low levels of IgA and IgG2 and showed a reduced influx of eosinophils in the lungs, all consistent with a neutralization of PAF activity. In conclusion, we demonstrated that D. viviparus infection elicits GP300-specific antibodies that cross-react with PAF and may neutralize PAF function, thus limiting the development of a protective response as well as parasite-induced host pathology.
Collapse
Affiliation(s)
- Frans N J Kooyman
- Department of Infectious Diseases & Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Sasaki N, Yoshida H, Fuwa TJ, Kinoshita-Toyoda A, Toyoda H, Hirabayashi Y, Ishida H, Ueda R, Nishihara S. Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochem Biophys Res Commun 2007; 354:522-7. [PMID: 17239818 DOI: 10.1016/j.bbrc.2007.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pöltl G, Kerner D, Paschinger K, Wilson IBH. N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J 2006; 274:714-26. [PMID: 17181538 PMCID: PMC2850173 DOI: 10.1111/j.1742-4658.2006.05615.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focused on its glycosphingolipids, which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and western blotting, we have now analyzed the peptide N-glycosidase A-released N-glycans of adults of this species. The presence of hybrid bi- and triantennary N-glycans, some modified by core alpha1,6-fucose and peripheral phosphorylcholine, was demonstrated by LC/electrospray ionization (ESI)-Q-TOF-MS/MS, as was the presence of paucimannosidic N-glycans, some of which carry core alpha1,3-fucose, and oligomannosidic oligosaccharides. Western blotting verified the presence of protein-bound phosphorylcholine and core alpha1,3-fucose, whereas glycosyltransferase assays showed the presence of core alpha1,6-fucosyltransferase and Lewis-type alpha1,3-fucosyltransferase activities. Although, the unusual tri- and tetrafucosylated glycans found in the model nematode Caenorhabditis elegans were not found, the vast majority of the N-glycans found in A. suum represent a subset of those found in C. elegans; thus, our data demonstrate that the latter is an interesting glycobiological model for parasitic nematodes.
Collapse
|
42
|
Barrows BD, Haslam SM, Bischof LJ, Morris HR, Dell A, Aroian RV. Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 2006; 282:3302-11. [PMID: 17135259 DOI: 10.1074/jbc.m606621200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the Caenorhabditis elegans bre-1 gene was isolated in a screen for Bacillus thuringiensis toxin-resistant (bre) mutants to the Cry5B crystal toxin made by B. thuringiensis. bre-1 mutant animals are different from the four other cloned bre mutants in that their level of resistance is noticeably lower. bre-1 animals also display a significantly reduced brood size at 25 degrees C. Here we cloned the bre-1 gene and characterized the bre-1 mutant phenotype. bre-1 encodes a protein with significant homology to a GDP-mannose 4,6-dehydratase, which catalyzes the first step in the biosynthesis of GDP-fucose from GDP-mannose. Injection of GDP-fucose but not fucose into C. elegans intestinal cells rescues bre-1 mutant phenotypes. Thus, C. elegans lacks a functional fucose salvage pathway. Furthermore, we demonstrate that bre-1 mutant animals are defective in production of fucosylated glycolipids and that bre-1 mutant animals make quantitatively reduced levels of glycolipid receptors for Cry5B. We finally show that bre-1 mutant animals, although viable, show a lack of fucosylated N- and O-glycans, based on mass spectrometric evidence. Thus, C. elegans can survive with little fucose and can develop resistance to crystal toxin by loss of a monosaccharide biosynthetic pathway.
Collapse
Affiliation(s)
- Brad D Barrows
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | | | | | | | |
Collapse
|
43
|
Morelle W, Canis K, Chirat F, Faid V, Michalski JC. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 2006; 6:3993-4015. [PMID: 16786490 DOI: 10.1002/pmic.200600129] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of all protein PTMs, glycosylation is by far the most common, and is a target for proteomic research. Glycosylation plays key roles in controlling various cellular processes and the modifications of the glycan structures in diseases highlight the clinical importance of this PTM. Glycosylation analysis remains a difficult task. MS, in combination with modern separation methodologies, is one of the most powerful and versatile techniques for the structural analysis of glycoconjugates. This review describes methodologies based on MS for detailed characterization of glycoconjugates in complex biological samples at the sensitivity required for proteomic work.
Collapse
Affiliation(s)
- Willy Morelle
- Unité Mixte de Recherche CNRS/USTL 8576, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
44
|
Kawar ZS, Haslam SM, Morris HR, Dell A, Cummings RD. Novel Poly-GalNAcβ1–4GlcNAc (LacdiNAc) and Fucosylated Poly-LacdiNAc N-Glycans from Mammalian Cells Expressing β1,4-N-Acetylgalactosaminyltransferase and α1,3-Fucosyltransferase. J Biol Chem 2005; 280:12810-9. [PMID: 15653684 DOI: 10.1074/jbc.m414273200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.
Collapse
Affiliation(s)
- Ziad S Kawar
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
45
|
Grabitzki J, Sauerland V, Geyer R, Lochnit G. Identification of phosphorylcholine substituted peptides by their characteristic mass spectrometric fragmentation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:335-44. [PMID: 16107748 DOI: 10.1255/ejms.728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphorylcholine (PC) substituted biomolecules are wide-spread, highly relevant antigens of parasites, since this small hapten has been found to be a potent immunomodulatory component which allows the establishment of long lasting infections of the host. Structural data, especially of protein bound PC-substituents, are still rare due to the observation that mass spectrometric analyses are mostly hampered by this zwitterionic substituent resulting in low sensitivities and unusual but characteristic fragmentation patterns. Here we investigated the fragmentation behaviour of synthetic PC-substituted peptides by matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization ion trap mass spectrometry. We could show that the predominant neutral loss of a trimethylamine unit (Hoffmann elimination) leads to cyclic phosphate derivatives which prevent further fragmentation of the peptide backbone by stabilizing the positive charge at this particular side chain. Knowledge of this PC-specific fragmentation might help to identify PC-substituted biomolecules and facilitate their structural analysis.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
46
|
Escalante M, Romarís F, Rodríguez M, Rodríguez E, Leiro J, Gárate MT, Ubeira FM. Evaluation of Trichinella spiralis larva group 1 antigens for serodiagnosis of human trichinellosis. J Clin Microbiol 2004; 42:4060-6. [PMID: 15364990 PMCID: PMC516288 DOI: 10.1128/jcm.42.9.4060-4066.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify Trichinella antigens suitable for high-specificity and high-sensitivity serodiagnosis of human trichinellosis, we evaluated assays using four antigens: (i) crude first-stage larval extract (CLE), (ii) O-deglycosylated CLE, (iii) tyvelose-bearing antigens (Trichinella spiralis larva group 1 [TSL-1] antigens) purified by US4 affinity chromatography and coupled directly to enzyme-linked immunosorbent assay (ELISA) plates (pTSL-1 antigens), and (iv) TSL-1 antigens immobilized on ELISA plates with the monoclonal antibody (MAb) US4 (cTSL-1 antigens). Assays using these antigens were compared by analysis of sera from healthy individuals (n = 224) (group 1), individuals with noninfectious intestinal pathologies (n = 114) (group 2), individuals with other parasitic infections (n = 107) (group 3), and individuals with confirmed trichinellosis (n = 42) (group 4). Our results indicate that capture ELISA using cTSL-1 antigens is the most effective method for serodiagnosis of human trichinellosis; this was the only method showing 100% specificity and 100% sensitivity at the patent stage of the infection, and it was also the most sensitive for sera obtained prior to patency in indirect immunofluorescence (IIF). Indirect ELISA with pTSL-1 antigens was also 100% specific but was slightly less sensitive, particularly with sera obtained before IIF patency. Inhibition ELISA with MAb US4 indicated (i) that in Trichinella-infected patients the immune response to TSL-1 antigens is directed mostly against tyvelose-containing epitopes (mean of 84.2% of total anti-TSL-1 immunoglobulin G1 [IgG1] antibody response [range, 51.3 to 97.6%]) and (ii) that in most individuals a large proportion of anti-CLE IgG1 antibodies (mean, 49.5%; range, 7.3 to 92.6%) are directed against tyvelose epitopes.
Collapse
Affiliation(s)
- Marcela Escalante
- Laboratorio de Parasitología, Facultad de Farmacia, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Houston KM, Harnett W. Structure and synthesis of nematode phosphorylcholine-containing glycoconjugates. Parasitology 2004; 129:655-61. [PMID: 15648688 DOI: 10.1017/s0031182004006171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infection with filarial nematodes produces a chronic, long-lasting illness with adult worms able to survive within human hosts for up to 15 years. A contributor to the longevity of these parasites is the presence of phosphorylcholine (PC) on components of the worms' molecular secretions (ES). PC on ES modulates host immune responses towards an anti-inflammatory phenotype thereby generating an environment favourable for parasite survival. PC is attached to nematode ES via a covalent association with carbohydrate, which, although well-documented in bacteria and fungi, is absent from humans, making it an ideal target for the development of novel drugs. In order to produce such drugs it is first necessary to understand the structure and synthesis of nematode PC-glycans. ES-62 is the major PC-ES-product ofAcanthocheilonema viteaeand is a homologue of PC-ES found in human filarial nematodes. We have studied the structure and biosynthesis of PC-glycans of ES-62 by a combination of pulse-chase experiments, experiments involving the use of inhibitors of each of intracellular trafficking, oligosaccharide processing and phospholipid biosynthesis and various forms of mass spectrometry. Our indications indicate that PC is transferred in the lumen of the medial Golgi to an N-type glycan consisting of a trimannosyl core with or without core fucosylation bearing between 1 and 4 N-acetyl glucosamine residues. The structure of the PC-N-glycans found in ES-62 appears to be conserved amongst filarial nematodes in that it has additionally been identified inOnchocerca volvulusandO. gibsoni. Also, similar structures have been found in non-filarial parasitic nematodes and in the free-living nematodeCaenorhabditis elegans. Finally, PC has also been recently found attached to the carbohydrate moieties of nematode glycosphingolipids and the structure of these will also be considered.
Collapse
Affiliation(s)
- K M Houston
- The University of Strathclyde, Department of Immunology, Strathclyde Institute for Biomedical Sciences, Glasgow G4 0NR
| | | |
Collapse
|
48
|
Beiting DP, Bliss SK, Schlafer DH, Roberts VL, Appleton JA. Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect Immun 2004; 72:3129-37. [PMID: 15155614 PMCID: PMC415664 DOI: 10.1128/iai.72.6.3129-3137.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to characterize cellular responses to muscle-stage Trichinella spiralis. From its intracellular habitat in muscle, T. spiralis secretes potent glycoprotein antigens that elicit a strong systemic host immune response. Despite the magnitude and prolonged nature of this response, nurse cells are rarely destroyed by infiltrating cells. We tested the hypothesis that the anti-inflammatory cytokine interleukin-10 (IL-10) moderates cellular responses to muscle-stage parasites. Trichinella larvae colonize the diaphragm in large numbers, prompting us to evaluate regional responses in body cavities in addition to local responses in muscle. Mice deficient in IL-10 demonstrated an exaggerated inflammatory response around nurse cells and in the pleural cavity. The effect of IL-10 was most evident 20 days following muscle infection. The increased intensity of the response in IL-10-deficient mice did not affect parasite establishment or survival. Between 20 and 50 days postinfection, the inflammatory response was diminished in both wild-type and IL-10-deficient mice. Muscle infection also elicited an antibody response, characterized initially by mixed isotypes directed at somatic larval antigens and changing to an immunoglobulin G1-dominated response directed at tyvelose-bearing excreted or secreted antigens. We conclude that IL-10 limits local and regional inflammation during the early stages of muscle infection but that chronic inflammation is controlled by an IL-10-independent mechanism that is coincident with a Th2 response.
Collapse
Affiliation(s)
- Daniel P Beiting
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The ability of helminth parasites to drive polarized Th2 responses has been known for some time. Interestingly, many recent studies have shown that helminth-expressed glycan activation of host immune cells accounts for much of the anti-inflammatory and Th2-biasing observed. This microreview attempts to cover the biology of expression of immunomodulatory glycans in various helminth parasites, the immune cells they interact with including the production of cytokines, chemokines and antibodies. We also discuss the potential cell surface receptors which are capable of binding certain glycans and the known mech-anisms which ultimately lead to production of anti-inflammatory mediators as well as polarizing CD4+ T-cell responses to Th2-type in the host. Lastly, we discuss a novel mechanism for activation of antigen-presenting cells by a specific helminth glycan that leads to maturation of Type 2 dendritic cells.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Tawill S, Le Goff L, Ali F, Blaxter M, Allen JE. Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 2004; 72:398-407. [PMID: 14688121 PMCID: PMC343992 DOI: 10.1128/iai.72.1.398-407.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with parasitic nematodes is characterized by the induction of a profound type 2 immune response. We have studied the role of glycans in the induction of the skewed type 2 response by antigens of the parasitic nematode Brugia malayi as well as the free-living nematode Caenorhabditis elegans. Lymph node cells from BALB/c mice immunized with soluble extracts of the two nematodes showed distinct antigen-specific proliferation and cytokine production; however, both nematodes induced antigen-specific interleukin 4 (IL-4) production, demonstrating that the induction of a biased type 2 response is not unique to parasitic nematodes. Sodium periodate-treated soluble extracts of both nematodes consistently induced significantly less IL-4 production than the respective mock-treated extracts, indicating that glycans play a critical role in the induction of the Th2 immune response by these nematodes. The glycan-dependent induction of the Th2-potentiating cytokine IL-4 occurs by 72 h postinoculation. Our data suggest that glycan determinants common to nematodes act as ligands, displaying distinct molecular patterns that trigger the immune system to launch a biased Th2 immune response upon exposure to these organisms or their products. Further, the similarity of our findings to those for Schistosoma mansoni egg antigen is striking considering the enormous phylogenetic distance between nematodes and trematodes. These data thus have important implications for how the mammalian host responds to widely divergent metazoan invaders and suggest that the powerful C. elegans model system can be used to address these questions.
Collapse
Affiliation(s)
- Salah Tawill
- Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|