1
|
Liu Y, Drickamer K, Taylor ME. Preformed mincle dimers stabilized by an interchain disulfide bond in the neck region. Glycobiology 2024; 34:cwae083. [PMID: 39361919 PMCID: PMC11632378 DOI: 10.1093/glycob/cwae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
The sugar-binding receptor mincle stimulates macrophages when it encounters surface glycans on pathogens, such as trehalose dimycolate glycolipid in the outer membrane of mycobacteria. Binding of oligosaccharide ligands to the extracellular C-type carbohydrate-recognition domain (CRD) in mincle initiates intracellular signaling through the common Fc receptor γ (FcRγ) adapter molecule associated with mincle. One potential mechanism for initiation of signaling involves clustering of receptors, so it is important to understand the oligomeric state of mincle. Affinity purification of mincle from transfected mammalian cells has been used to show that mincle exists as a pre-formed, disulfide-linked dimer. Deletion of cysteine residues and chemical crosslinking further demonstrate that the dimers of mincle are stabilized by a disulfide bond between cysteine residues in the neck sequence that links the CRD to the membrane. In contrast, cysteine residues in the transmembrane region of mincle are not required for dimer formation or association with FcRγ. A protocol has been developed for efficient production of a disulfide-linked extracellular domain fragment of mincle in a bacterial expression system by appending synthetic dimerization domains to guide dimer formation in the absence of the membrane anchor.
Collapse
Affiliation(s)
- Yu Liu
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Noriega M, Corey RA, Haanappel E, Demange P, Czaplicki G, Atkinson RA, Chavent M. Coarse-Graining the Recognition of a Glycolipid by the C-Type Lectin Mincle Receptor. J Phys Chem B 2024; 128:9935-9946. [PMID: 39368102 DOI: 10.1021/acs.jpcb.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Macrophage inducible Ca2+-dependent lectin (Mincle) receptor recognizes Mycobacterium tuberculosis glycolipids to trigger an immune response. This host membrane receptor is thus a key player in the modulation of the immune response to infection by M. tuberculosis and has emerged as a promising target for the development of new vaccines against tuberculosis. The recent development of the Martini 3 force field for coarse-grained (CG) molecular modeling allows the study of interactions of soluble proteins with small ligands which was not typically modeled well with the previous Martini 2 model. Here, we present a refined approach detailing a protocol for modeling interactions between a glycolipid and its receptor at a CG level using the Martini 3 force field. Using this approach, we studied Mincle and identified critical parameters governing ligand recognition, such as loop flexibility and the regulation of hydrophobic groove formation by calcium ions. In addition, we assessed ligand affinity using free energy perturbation calculations. Our results offer mechanistic insight into the interactions between Mincle and glycolipids, providing a basis for the rational design of molecules targeting this type of membrane receptors.
Collapse
Affiliation(s)
- Maxime Noriega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - R Andrew Atkinson
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
5
|
Benjamin SV, Jégouzo SAF, Lieng C, Daniels C, Coispeau M, Lau RJ, Kim S, Metaxa Y, Philpott J, Li T, Dai C, Wang X, Newby ML, Pier GB, Crispin M, Clements A, Taylor ME, Drickamer K. A human lectin array for characterizing host-pathogen interactions. J Biol Chem 2024; 300:107869. [PMID: 39384043 PMCID: PMC11566865 DOI: 10.1016/j.jbc.2024.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
A human lectin array has been developed to probe the interactions of innate immune receptors with pathogenic and commensal microorganisms. Following the successful introduction of a lectin array containing all of the cow C-type carbohydrate-recognition domains (CRDs), a human array described here contains the C-type CRDs as well as CRDs from other classes of sugar-binding receptors, including galectins, siglecs, R-type CRDs, ficolins, intelectins, and chitinase-like lectins. The array is constructed with CRDs modified with single-site biotin tags, ensuring that the sugar-binding sites in CRDs are displayed on a streptavidin-coated surface in a defined orientation and are accessible to the surfaces of microbes. A common approach used for expression and display of CRDs from all of the different structural categories of glycan-binding receptors allows comparisons across lectin families. In addition to previously documented protocols for binding of fluorescently labeled bacteria, methods have been developed for detecting unlabeled bacteria bound to the array by counter-staining with DNA-binding dye. Screening has also been undertaken with viral glycoproteins and bacterial and fungal polysaccharides. The array provides an unbiased screen for sugar ligands that interact with receptors and many show binding not anticipated from earlier studies. For example, some of the galectins bind with high affinity to bacterial glycans that lack lactose or N-acetyllactosamine. The results demonstrate the utility of the human lectin array for providing a unique overview of the interactions of multiple classes of glycan-binding proteins in the innate immune system with different types of microorganisms.
Collapse
Affiliation(s)
- Stefi V Benjamin
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sabine A F Jégouzo
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chloe Lieng
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Connor Daniels
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marine Coispeau
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Rikin J Lau
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Suyeon Kim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yasmine Metaxa
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Philpott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tiannuo Li
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chao Dai
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Xin Wang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, United Kingdom
| | - Gerald B Pier
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, United Kingdom
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
7
|
Reis e Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
8
|
Furukawa A, Shuchi Y, Wang J, Guillen-Poza PA, Ishizuka S, Kagoshima M, Ikeno R, Kumeta H, Yamasaki S, Matsumaru T, Saitoh T, Maenaka K. Structural basis for plastic glycolipid recognition of the C-type lectin Mincle. Structure 2023; 31:1077-1085.e5. [PMID: 37348496 DOI: 10.1016/j.str.2023.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 04/26/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Mincle (macrophage-inducible C-type lectin, CLEC4E) is a C-type lectin immune-stimulatory receptor for cord factor, trehalose dimycolate (TDM), which serves as a potent component of adjuvants. The recognition of glycolipids by Mincle, especially their lipid parts, is poorly understood. Here, we performed nuclear magnetic resonance analysis, revealing that titration of trehalose harboring a linear short acyl chain showed a chemical shift perturbation of hydrophobic residues next to the Ca-binding site. Notably, there were split signals for Tyr201 upon complex formation, indicating two binding modes for the acyl chain. In addition, most Mincle residues close to the Ca-binding site showed no observable signals, suggesting their mobility on an ∼ ms scale even after complex formation. Mutagenesis study supported two putative lipid-binding modes for branched acyl-chain TDM binding. These results provide novel insights into the plastic-binding modes of Mincle toward a wide range of glycol- and glycerol-lipids, important for rational adjuvant development.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yusuke Shuchi
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Jiaqi Wang
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Pablo Adrian Guillen-Poza
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Misuzu Kagoshima
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Risa Ikeno
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Takanori Matsumaru
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo 006-8585, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan; Hokkaido University Institute for Vaccine Research & Development, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother 2023; 162:114588. [PMID: 36989709 DOI: 10.1016/j.biopha.2023.114588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) maintains its infamous status regarding its detrimental effect on global health, causing the highest mortality by a single infectious agent. The presence of resistance and immune compromising disease favours the disease in maintaining its footing in the health care burden despite various anti-TB drugs used to fight it. Main factors contributing to resistance and difficulty in treating disease include prolonged treatment duration (at least 6 months) and severe toxicity, which further leads to patient non-compliance, and thus a ripple effect leading to therapeutic non-efficacy. The efficacy of new regimens demonstrates that targeting host factors concomitantly with the Mycobacterium tuberculosis (M.tb) strain is urgently required. Due to the huge expenses and time required of up to 20 years for new drug research and development, drug repurposing may be the most economical, circumspective, and conveniently faster journey to embark on. Host-directed therapy (HDT) will dampen the burden of the disease by acting as an immunomodulator, allowing it to defend the body against antibiotic-resistant pathogens whilst minimizing the possibility of developing new resistance to susceptible drugs. Repurposed drugs in TB act as host-directed therapies, acclimatizing the host immune cell to the presence of TB, improving its antimicrobial activity and time taken to get rid of the disease, whilst minimizing inflammation and tissue damage. In this review, we, therefore, explore possible immunomodulatory targets, HDT immunomodulatory agents, and their ability to improve clinical outcomes whilst minimizing the risk of drug resistance, through various pathway targeting and treatment duration reduction.
Collapse
|
10
|
Holder A, Kolakowski J, Rosentreter C, Knuepfer E, Jégouzo SAF, Rosenwasser O, Harris H, Baumgaertel L, Gibson A, Werling D. Characterisation of the bovine C-type lectin receptor Mincle and potential evidence for an endogenous ligand. Front Immunol 2023; 14:1189587. [PMID: 37275870 PMCID: PMC10235688 DOI: 10.3389/fimmu.2023.1189587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Innate immune receptors that form complexes with secondary receptors, activating multiple signalling pathways, modulate cellular activation and play essential roles in regulating homeostasis and immunity. We have previously identified a variety of bovine C-type lectin-like receptors that possess similar functionality than their human orthologues. Mincle (CLEC4E), a heavily glycosylated monomer, is involved in the recognition of the mycobacterial component Cord factor (trehalose 6,6'-dimycolate). Here we characterise the bovine homologue of Mincle (boMincle), and demonstrate that the receptor is structurally and functionally similar to the human orthologue (huMincle), although there are some notable differences. In the absence of cross-reacting antibodies, boMincle-specific antibodies were created and used to demonstrate that, like the human receptor, boMincle is predominantly expressed by myeloid cells. BoMincle surface expression increases during the maturation of monocytes to macrophages. However, boMincle mRNA transcripts were also detected in granulocytes, B cells, and T cells. Finally, we show that boMincle binds to isolated bovine CD4+ T cells in a specific manner, indicating the potential to recognise endogenous ligands. This suggests that the receptor might also play a role in homeostasis in cattle.
Collapse
Affiliation(s)
- Angela Holder
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Jeannine Kolakowski
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Chloe Rosentreter
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Ellen Knuepfer
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | | | | | - Heather Harris
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Lotta Baumgaertel
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Amanda Gibson
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| |
Collapse
|
11
|
Cramer J. Medicinal chemistry of the myeloid C-type lectin receptors Mincle, Langerin, and DC-SIGN. RSC Med Chem 2021; 12:1985-2000. [PMID: 35024612 PMCID: PMC8672822 DOI: 10.1039/d1md00238d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In their role as pattern-recognition receptors on cells of the innate immune system, myeloid C-type lectin receptors (CLRs) assume important biological functions related to immunity, homeostasis, and cancer. As such, this family of receptors represents an appealing target for therapeutic interventions for modulating the outcome of many pathological processes, in particular related to infectious diseases. This review summarizes the current state of research into glycomimetic or drug-like small molecule ligands for the CLRs Mincle, Langerin, and DC-SIGN, which have potential therapeutic applications in vaccine research and anti-infective therapy.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
12
|
Rasheed OK, Buhl C, Evans JT, Ryter KT. Design of Trehalose-Based Amide/Sulfonamide C-type Lectin Receptor Signaling Compounds. ChemMedChem 2021; 16:1246-1251. [PMID: 33415819 PMCID: PMC8068603 DOI: 10.1002/cmdc.202000775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Mincle agonists have been shown to induce inflammatory cytokine production, such as tumor necrosis factor-alpha (TNF) and promote the development of a Th1/Th17 immune response that might be crucial to development of effective vaccination against pathogens such as Mycobacterium tuberculosis. As an expansion of our previous work, a library of 6,6'-amide and sulfonamide α,α-d-trehalose compounds with various substituents on the aromatic ring was synthesized efficiently in good to excellent yields. These compounds were evaluated for their ability to activate the human C-type lectin receptor Mincle by the induction of cytokines from human peripheral blood mononuclear cells. A preliminary structure-activity relationship (SAR) of these novel trehalose diamides and sulfonamides revealed that aryl amide-linked trehalose compounds demonstrated improved activity and relatively high potency cytokine production compared to the Mincle ligand trehalose dibehenate adjuvant (TDB) and the natural ligand trehalose dimycolate (TDM) inducing dose-dependent and human-Mincle-specific stimulation in a HEK reporter cell line.
Collapse
Affiliation(s)
- Omer K Rasheed
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
- Inimmune Corp., 1121 E. Broadway, Suite 121, Missoula, MT 59802, USA
| | - Cassandra Buhl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Kendal T Ryter
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
| |
Collapse
|
13
|
Ryter KT, Ettenger G, Rasheed OK, Buhl C, Child R, Miller SM, Holley D, Smith AJ, Evans JT. Aryl Trehalose Derivatives as Vaccine Adjuvants for Mycobacterium tuberculosis. J Med Chem 2019; 63:309-320. [PMID: 31809053 DOI: 10.1021/acs.jmedchem.9b01598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium tuberculosis (Mtb) continues to be a major health threat worldwide, and the development of Mtb vaccines could play a pivotal role in the prevention and control of this devastating epidemic. Th17-mediated immunity has been implicated in disease protection correlates of immune protection against Mtb. Currently, there are no approved adjuvants capable of driving a Th17 response in a vaccine setting. Recent clinical trial results using trehalose dibehenate have demonstrated a formulation-dependant proof of concept adjuvant system CAF01 capable of inducing long-lived protection. We have discovered a new class of Th17-inducing vaccine adjuvants based on the natural product Brartemicin. We synthesized and evaluated the capacity of a library of aryl trehalose derivatives to drive immunostimulatory reresponses and evaluated the structure-activity relationships in terms of the ability to engage the Mincle receptor and induce production of innate cytokines from human and murine cells. We elaborated on the structure-activity relationship of the new scaffold and demonstrated the ability of the lead entity to induce a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells and demonstrated efficacy in generating antibodies in combination with tuberculosis antigen M72 in a mouse model.
Collapse
|
14
|
Keller BG, Rademacher C. Allostery in C-type lectins. Curr Opin Struct Biol 2019; 62:31-38. [PMID: 31838280 DOI: 10.1016/j.sbi.2019.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
C-type lectins are the largest and most diverse family of mammalian carbohydrate-binding proteins. They share a common protein fold, which provides the unifying basis for calcium-mediated carbohydrate recognition. Their involvement in a multitude of biological functions is remarkable. Here, we review the variety of tasks these lectins are involved in alongside with the structural demands on the overall protein architecture. Subtle changes of the protein structure are implemented to cope with such diverse functional requirements. The presence of a high level of structural dynamics over a broad palette of time scales is paired with the presence of secondary binding sites and allosteric coordination of remote sites and renders this lectin fold a highly adaptable scaffold.
Collapse
Affiliation(s)
- Bettina G Keller
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.
| |
Collapse
|
15
|
Lu X, Nagata M, Yamasaki S. Mincle: 20 years of a versatile sensor of insults. Int Immunol 2019; 30:233-239. [PMID: 29726997 DOI: 10.1093/intimm/dxy028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Macrophage-inducible C-type lectin, better known as Mincle, is a member of the C-type lectin receptor family and is encoded by Clec4e. Mincle was an orphan receptor for a long time after having been discovered as a lipopolysaccharide-induced protein, yet later an adjuvant glycolipid in mycobacteria-trehalose dimycolate-was identified as a ligand. Ligands for Mincle were also found existing in bacteria, fungi and even mammals. When confronted with foreign elements, Mincle can recognize characteristic pathogen-associated molecular patterns, mostly glycolipids, from Mycobacterium tuberculosis and other pathogens, and thus induce immune responses against infection. To maintain self-homeostasis, Mincle can recognize lipid-based damage-associated molecular patterns, thereby monitoring the internal environment. The mechanism by which Mincle functions in the immune system is also becoming more clear along with the identification of its ligands. Being expressed widely on antigen-presenting cells, Mincle activation leads to the production of cytokines and chemokines, neutrophil infiltration and other inflammatory responses. Besides, Mincle can induce acquired immunity such as antigen-specific T-cell responses and antibody production as an adjuvant receptor. In this review, we will retrospectively sketch the discovery and study of Mincle, and outline some current work on this receptor.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masahiro Nagata
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
16
|
Van Huy L, Tanaka C, Imai T, Yamasaki S, Miyamoto T. Synthesis of 12- O-Mono- and Diglycosyl-oxystearates, a New Class of Agonists for the C-type Lectin Receptor Mincle. ACS Med Chem Lett 2019; 10:44-49. [PMID: 30655945 DOI: 10.1021/acsmedchemlett.8b00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022] Open
Abstract
Fifteen glycosyl-oxystearates were synthesized by Crich's 4,6-benzylidene and Köening-Knorr strategies. Assessment of structure-activity relationships using macrophage-inducible C-type lectin (Mincle) receptor cells expressing nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) revealed that four dimannopyranosyl-oxystearate analogues were Mincle agonists and that 12-O-(2-O-α-d-mannopyranosyl)-α-d-mannopyranosyl-oxystearate was as an activator of both mouse and human Mincle.
Collapse
Affiliation(s)
- Le Van Huy
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Imai
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Bird JH, Khan AA, Nishimura N, Yamasaki S, Timmer MSM, Stocker BL. Synthesis of Branched Trehalose Glycolipids and Their Mincle Agonist Activity. J Org Chem 2018; 83:7593-7605. [DOI: 10.1021/acs.joc.7b03269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessie H. Bird
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Ashna A. Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Naoya Nishimura
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
18
|
Shanthamurthy CD, Jain P, Yehuda S, Monteiro JT, Leviatan Ben-Arye S, Subramani B, Lepenies B, Padler-Karavani V, Kikkeri R. ABO Antigens Active Tri- and Disaccharides Microarray to Evaluate C-type Lectin Receptor Binding Preferences. Sci Rep 2018; 8:6603. [PMID: 29700341 PMCID: PMC5920051 DOI: 10.1038/s41598-018-24333-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding blood group antigen binding preferences for C-type lectin receptors holds promise for modulating immune responses, since several Gram-negative bacteria express blood group antigens as molecular mimicry to evade immune responses. Herein, we report the synthesis of ABO blood group antigen active tri and disaccharides to investigate the binding specificity with various C-type lectin receptors using glycan microarray. The results of binding preferences show that distinct glycosylation on the galactose and fucose motifs are key for C-type lectin receptor binding and that these interactions occur in a Ca2+-dependent fashion.
Collapse
Affiliation(s)
- Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany.
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
19
|
Söldner CA, Horn AHC, Sticht H. Interaction of Glycolipids with the Macrophage Surface Receptor Mincle - a Systematic Molecular Dynamics Study. Sci Rep 2018; 8:5374. [PMID: 29599490 PMCID: PMC5876379 DOI: 10.1038/s41598-018-23624-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/16/2018] [Indexed: 11/23/2022] Open
Abstract
Synthetic analogues of mycobacterial trehalose-dimycolate such as trehalose acyl esters have been proposed as novel adjuvants for vaccination. They induce an immune response by binding to the macrophage C-type lectin receptor Mincle. The binding site of trehalose is known, but there is yet only very limited structural information about the binding mode of the acyl esters. Here, we performed a systematic molecular dynamics study of trehalose mono-and diesters with different chain lengths. All acyl chains investigated exhibited a high flexibility and interacted almost exclusively with a hydrophobic groove on Mincle. Despite the limited length of this hydrophobic groove, the distal parts of the longer monoesters can still form additional interactions with this surface region due to their conformational flexibility. In diesters, a certain length of the second acyl chain is required to contact the hydrophobic groove. However, a stable concomitant accommodation of both acyl chains in the groove is hampered by the conformational rigidity of Mincle. Instead, multiple dynamic interaction modes are observed, in which the second acyl chain contributes to binding. This detailed structural information is considered helpful for the future design of more affine ligands that may foster the development of novel adjuvants.
Collapse
Affiliation(s)
- Christian A Söldner
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
20
|
Gade M, Alex C, Leviatan Ben-Arye S, Monteiro JT, Yehuda S, Lepenies B, Padler-Karavani V, Kikkeri R. Microarray Analysis of Oligosaccharide-Mediated Multivalent Carbohydrate-Protein Interactions and Their Heterogeneity. Chembiochem 2018; 19:10.1002/cbic.201800037. [PMID: 29575424 PMCID: PMC6949124 DOI: 10.1002/cbic.201800037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Carbohydrate-protein interactions (CPIs) are involved in a wide range of biological phenomena. Hence, the characterization and presentation of carbohydrate epitopes that closely mimic the natural environment is one of the long-term goals of glycosciences. Inspired by the multivalency, heterogeneity and nature of carbohydrate ligand-mediated interactions, we constructed a combinatorial library of mannose and galactose homo- and hetero-glycodendrons to study CPIs. Microarray analysis of these glycodendrons with a wide range of biologically important plant and animal lectins revealed that oligosaccharide structures and heterogeneity interact with each other to alter binding preferences.
Collapse
Affiliation(s)
- Madhuri Gade
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Catherine Alex
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - João T. Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| |
Collapse
|
21
|
Zheng RB, Jégouzo SAF, Joe M, Bai Y, Tran HA, Shen K, Saupe J, Xia L, Ahmed MF, Liu YH, Patil PS, Tripathi A, Hung SC, Taylor ME, Lowary TL, Drickamer K. Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans. ACS Chem Biol 2017; 12:2990-3002. [PMID: 29048873 PMCID: PMC5735379 DOI: 10.1021/acschembio.7b00797] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
An
array of homogeneous glycans representing all the major carbohydrate
structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been
probed with a panel of glycan-binding receptors expressed on cells
of the mammalian innate immune system. The results provide an overview
of interactions between mycobacterial glycans and receptors that mediate
uptake and survival in macrophages, dendritic cells, and sinusoidal
endothelial cells. A subset of the wide variety of glycan structures
present on mycobacterial surfaces interact with cells of the innate
immune system through the receptors tested. Endocytic receptors, including
the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact
predominantly with mannose-containing caps found on the mycobacterial
polysaccharide lipoarabinomannan. Some of these receptors also interact
with phosphatidyl-myo-inositol mannosides and mannose-containing
phenolic glycolipids. Many glycans are ligands for overlapping sets
of receptors, suggesting multiple, redundant routes by which mycobacteria
can enter cells. Receptors with signaling capability interact with
two distinct sets of mycobacterial glycans: targets for dectin-2 overlap
with ligands for the mannose-binding endocytic receptors, while mincle
binds exclusively to trehalose-containing structures such as trehalose
dimycolate. None of the receptors surveyed bind furanose residues,
which often form part of the epitopes recognized by antibodies to
mycobacteria. Thus, the innate and adaptive immune systems can target
different sets of mycobacterial glycans. This array, the first of
its kind, represents an important new tool for probing, at a molecular
level, biological roles of a broad range of mycobacterial glycans,
a task that has not previously been possible.
Collapse
Affiliation(s)
- Ruixiang Blake Zheng
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Maju Joe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu Bai
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Huu-Anh Tran
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ke Shen
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jörn Saupe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Li Xia
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Md. Faiaz Ahmed
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu-Hsuan Liu
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Ashish Tripathi
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Shang-Cheng Hung
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Maureen E. Taylor
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Todd L. Lowary
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Kurt Drickamer
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Sparber F, LeibundGut-Landmann S. Host Responses to Malassezia spp. in the Mammalian Skin. Front Immunol 2017; 8:1614. [PMID: 29213272 PMCID: PMC5702624 DOI: 10.3389/fimmu.2017.01614] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
23
|
Ostrop J, Lang R. Contact, Collaboration, and Conflict: Signal Integration of Syk-Coupled C-Type Lectin Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:1403-1414. [PMID: 28167651 DOI: 10.4049/jimmunol.1601665] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Several spleen tyrosine kinase-coupled C-type lectin receptors (CLRs) have emerged as important pattern recognition receptors for infectious danger. Because encounter with microbial pathogens leads to the simultaneous ligation of several CLRs and TLRs, the signals emanating from different pattern recognition receptors have to be integrated to achieve appropriate biological responses. In this review, we briefly summarize current knowledge about ligand recognition and core signaling by Syk-coupled CLRs. We then address mechanisms of synergistic and antagonistic crosstalk between different CLRs and with TLRs. Emerging evidence suggests that signal integration occurs through 1) direct interaction between receptors, 2) regulation of expression levels and localization, and 3) collaborative or conflicting signaling interference. Accordingly, we aim to provide a conceptual framework for the complex and sometimes unexpected outcome of CLR ligation in bacterial and fungal infection.
Collapse
Affiliation(s)
- Jenny Ostrop
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; .,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and
| | - Roland Lang
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
24
|
Patin EC, Orr SJ, Schaible UE. Macrophage Inducible C-Type Lectin As a Multifunctional Player in Immunity. Front Immunol 2017; 8:861. [PMID: 28791019 PMCID: PMC5525440 DOI: 10.3389/fimmu.2017.00861] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023] Open
Abstract
The macrophage-inducible C-type lectin (Mincle) is an innate immune receptor on myeloid cells sensing diverse entities including pathogens and damaged cells. Mincle was first described as a receptor for the mycobacterial cell wall glycolipid, trehalose-6,6′-dimycolate, or cord factor, and the mammalian necrotic cell-derived alarmin histone deacetylase complex unit Sin3-associated protein 130. Upon engagement by its ligands, Mincle induces secretion of innate cytokines and other immune mediators modulating inflammation and immunity. Since its discovery more than 25 years ago, the understanding of Mincle’s immune function has made significant advances in recent years. In addition to mediating immune responses to infectious agents, Mincle has been linked to promote tumor progression, autoimmunity, and sterile inflammation; however, further studies are required to completely unravel the complex role of Mincle in these distinct host responses. In this review, we discuss recent findings on Mincle’s biology with an emphasis on its diverse functions in immunity.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Priority Area Infections, Department Cellular Microbiology, Forschungszentrum Borstel, and German Center for Infection Research, TTU-TB, Borstel, Germany.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Selinda Jane Orr
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ulrich E Schaible
- Priority Area Infections, Department Cellular Microbiology, Forschungszentrum Borstel, and German Center for Infection Research, TTU-TB, Borstel, Germany
| |
Collapse
|
25
|
Feinberg H, Jégouzo SAF, Rex MJ, Drickamer K, Weis WI, Taylor ME. Mechanism of pathogen recognition by human dectin-2. J Biol Chem 2017; 292:13402-13414. [PMID: 28652405 PMCID: PMC5555199 DOI: 10.1074/jbc.m117.799080] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/23/2017] [Indexed: 11/17/2022] Open
Abstract
Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1–2 or α1–4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1–2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man9GlcNAc2 oligosaccharide exhibited interaction with Manα1–2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1–2Man structures, whereas dectin-2 can bind Manα1–2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1–2Man disaccharide unit.
Collapse
Affiliation(s)
- Hadar Feinberg
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Sabine A F Jégouzo
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maximus J Rex
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - William I Weis
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Maureen E Taylor
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
26
|
Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci U S A 2017; 114:E3285-E3294. [PMID: 28373578 DOI: 10.1073/pnas.1618133114] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensing and reacting to tissue damage is a fundamental function of immune systems. Macrophage inducible C-type lectin (Mincle) is an activating C-type lectin receptor that senses damaged cells. Notably, Mincle also recognizes glycolipid ligands on pathogens. To elucidate endogenous glycolipids ligands derived from damaged cells, we fractionated supernatants from damaged cells and identified a lipophilic component that activates reporter cells expressing Mincle. Mass spectrometry and NMR spectroscopy identified the component structure as β-glucosylceramide (GlcCer), which is a ubiquitous intracellular metabolite. Synthetic β-GlcCer activated myeloid cells and induced production of inflammatory cytokines; this production was abrogated in Mincle-deficient cells. Sterile inflammation induced by excessive cell death in the thymus was exacerbated by hematopoietic-specific deletion of degrading enzyme of β-GlcCer (β-glucosylceramidase, GBA1). However, this enhanced inflammation was ameliorated in a Mincle-deficient background. GBA1-deficient dendritic cells (DCs) in which β-GlcCer accumulates triggered antigen-specific T-cell responses more efficiently than WT DCs, whereas these responses were compromised in DCs from GBA1 × Mincle double-deficient mice. These results suggest that β-GlcCer is an endogenous ligand for Mincle and possesses immunostimulatory activity.
Collapse
|
27
|
Abstract
The advances in subunit vaccines development have intensified the search for potent adjuvants, particularly adjuvants inducing cell-mediated immune responses. Identification of the C-type lectin Mincle as one of the receptors underlying the remarkable immunogenicity of the mycobacterial cell wall, via recognition of trehalose-6,6'-dimycolate (TDM), has opened avenues for the rational design of such molecules. Using a combination of chemical synthesis, biological evaluation, molecular dynamics simulations, and protein mutagenesis, we gained insight into the molecular bases of glycolipid recognition by Mincle. Unexpectedly, the fine structure of the fatty acids was found to play a key role in the binding of a glycolipid to the carbohydrate recognition domain of the lectin. Glucose and mannose esterified at O-6 by a synthetic α-ramified 32-carbon fatty acid showed agonist activity similar to that of TDM, despite their much simpler structure. Moreover, they were seen to stimulate proinflammatory cytokine production in primary human and murine cells in a Mincle-dependent fashion. Finally, they were found to induce strong Th1 and Th17 immune responses in vivo in immunization experiments in mice and conferred protection in a murine model of Mycobacterium tuberculosis infection. Here we describe the rational development of new molecules with powerful adjuvant properties.
Collapse
|
28
|
Ishikawa E, Mori D, Yamasaki S. Recognition of Mycobacterial Lipids by Immune Receptors. Trends Immunol 2017; 38:66-76. [DOI: 10.1016/j.it.2016.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023]
|
29
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Appelhans D, Voit B, Pulaski L, Klajnert-Maculewicz B. Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line. Pharm Res 2016; 34:136-147. [PMID: 27766462 PMCID: PMC5174147 DOI: 10.1007/s11095-016-2049-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Purpose Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232, Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
30
|
Feinberg H, Rambaruth NDS, Jégouzo SAF, Jacobsen KM, Djurhuus R, Poulsen TB, Weis WI, Taylor ME, Drickamer K. Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle. J Biol Chem 2016; 291:21222-21233. [PMID: 27542410 PMCID: PMC5076529 DOI: 10.1074/jbc.m116.749515] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 11/29/2022] Open
Abstract
The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages.
Collapse
Affiliation(s)
- Hadar Feinberg
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Neela D S Rambaruth
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and
| | - Sabine A F Jégouzo
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and
| | - Kristian M Jacobsen
- Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Rasmus Djurhuus
- Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas B Poulsen
- Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - William I Weis
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Maureen E Taylor
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and
| | - Kurt Drickamer
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and
| |
Collapse
|
31
|
Richardson MB, Torigoe S, Yamasaki S, Williams SJ. Mycobacterium tuberculosis β-gentiobiosyl diacylglycerides signal through the pattern recognition receptor Mincle: total synthesis and structure activity relationships. Chem Commun (Camb) 2016; 51:15027-30. [PMID: 26310657 DOI: 10.1039/c5cc04773k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis H37Ra produces a range of immunogenic β-gentiobiosyl diacylglycerides. We report the total synthesis of several candidate structures and show that these compounds signal weakly through mouse, but not human, Mincle. Structure-activity relationships reveal a striking dependence upon acyl chain length for gentiobiosyl diacylglyceride signalling through Mincle. Significantly, a truncated β-glucosyl diglyceride was shown to provide potent signalling through both human and mouse Mincle and could activate murine bone marrow derived dendritic cells.
Collapse
Affiliation(s)
- Mark B Richardson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
32
|
Abstract
Pathogen recognition by C-type lectin receptors (CLRs) expressed by dendritic cells is important not only for antigen presentation, but also for the induction of appropriate adaptive immune responses via T helper (TH) cell differentiation. CLRs act either by themselves or in cooperation with other receptors, such as other CLRs, Toll-like receptors and interferon receptors, to induce signalling pathways that trigger specialized cytokine programmes for polarization of TH cell differentiation. In this Review, we discuss how triggering of the prototypical CLRs leads to distinct pathogen-tailored TH cell responses and how we can harness our expanding knowledge for vaccine design and the treatment of inflammatory and malignant diseases.
Collapse
|
33
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
34
|
Design, synthesis, and characterization of BRC4 mutants based on the crystal structure of BRC4-RAD51(191–220). J Mol Model 2015; 21:299. [DOI: 10.1007/s00894-015-2831-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 01/26/2023]
|
35
|
Roperto S, Russo V, Esposito I, Ceccarelli DM, Paciello O, Avallone L, Capparelli R, Roperto F. Mincle, an Innate Immune Receptor, Is Expressed in Urothelial Cancer Cells of Papillomavirus-Associated Urothelial Tumors of Cattle. PLoS One 2015; 10:e0141624. [PMID: 26513724 PMCID: PMC4626233 DOI: 10.1371/journal.pone.0141624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mincle, macrophage-inducible C-type lectin, is a member of C-type lectin receptors. It plays an important role in anti-mycobacterial and anti-fungal immunity. Furthermore it senses dead cells through its primary ligand SAP130. MATERIALS AND FINDINGS We examined ten urothelial tumors of the urinary bladder of cattle. Eight of them expressed E5 cDNA of bovine papillomaviruses type 2 (BPV-2) and type 13 (BPV-13) that belong to Deltapapillomavirus genus. Two of them were not examined for detection of E5 cDNA. Mincle expression appeared to occur in urothelial neoplastic cells only. No mincle expression was detected in urothelial cells from healthy cattle. Mincle expression was characterized by a membranous pattern in papillary urothelial cancers; isolated and/or clustered urothelial cells showing a strong cytoplasmic immunoreactivity were primarily seen in invasive urothelial cancers. CONCLUSION This is the first study about the expression of mincle in veterinary oncology and the first report which describes the expression of functional mincle receptor in neoplastic cells in medical literature. As it has been shown that urothelial cancer cells have the ability to function as antigen-presenting cells (APCs), it is conceivable that mincle expression is involved in the presentation of cancer cell antigens to cells of the immune system. Furthermore, since expression of mincle contributes to the control of Mycobacterium bovis BCG infection, this study has exciting clinical implications in comparative medicine keeping in mind that Bacillus Calmette-Guérin (BCG) immunotherapy is currently the most effective treatment of non-muscle invasive bladder cancer in man. Mincle expression in urothelial tumor cells warrants further study to better understand the role, if any, of this receptor in bladder cancer. Future studies will provide insights in the role of mincle receptor of urothelial cancer cells in antitumor immunotherapy.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Malattie Infettive, Università di Napoli Federico II, Napoli, Italia
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Patologia Generale, Università di Napoli Federico II, Napoli, Italia
| | - Iolanda Esposito
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Patologia Generale, Università di Napoli Federico II, Napoli, Italia
| | - Dora Maria Ceccarelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Patologia Generale, Università di Napoli Federico II, Napoli, Italia
| | - Orlando Paciello
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Patologia Generale, Università di Napoli Federico II, Napoli, Italia
| | - Luigi Avallone
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore Fisiologia, Università di Napoli Federico II, Napoli, Italia
| | - Rosanna Capparelli
- Dipartimento di Agraria, Università di Napoli Federico II, Napoli, Italia
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italia
| |
Collapse
|
36
|
Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. J Biol Chem 2015; 290:25322-32. [PMID: 26296894 DOI: 10.1074/jbc.m115.645234] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Indexed: 11/06/2022] Open
Abstract
C-type lectin receptors (CLRs) are an emerging family of pattern recognition receptors that recognizes pathogens or damaged tissue to trigger innate immune responses. However, endogenous ligands for CLRs are not fully understood. In this study, we sought to identify an endogenous ligand(s) for human macrophage-inducible C-type lectin (hMincle). A particular fraction of lipid extracts from liver selectively activated reporter cells expressing hMincle. MS analysis determined the chemical structure of the active component as cholesterol. Purified cholesterol in plate-coated and crystalized forms activates reporter cells expressing hMincle but not murine Mincle (mMincle). Cholesterol crystals are known to activate immune cells and induce inflammatory responses through lysosomal damage. However, direct innate immune receptors for cholesterol crystals have not been identified. Murine macrophages transfected with hMincle responded to cholesterol crystals by producing pro-inflammatory cytokines. Human dendritic cells expressed a set of inflammatory genes in response to cholesterol crystals, and this was inhibited by anti-human Mincle. Importantly, other related CLRs did not bind cholesterol crystals, whereas other steroids were not recognized by hMincle. These results suggest that cholesterol crystals are an endogenous ligand for hMincle and that they activate innate immune responses.
Collapse
Affiliation(s)
- Ryoko Kiyotake
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582, the Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Masatsugu Oh-Hora
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582
| | - Eri Ishikawa
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582
| | - Tomofumi Miyamoto
- the Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, and
| | - Tatsuro Ishibashi
- the Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Yamasaki
- From the Division of Molecular Immunology, Research Center for Infectious Diseases, Medical institute of Bioregulation, Kyushu University, Fukuoka 812-8582, the Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
37
|
Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, Lang R. Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202982 DOI: 10.4049/jimmunol.1500102] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk-Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF-driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA-mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK-CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.
Collapse
Affiliation(s)
- Jenny Ostrop
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin Jozefowski
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Katharina Hofmann
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Erwin Strasser
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Roland Lang
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
38
|
Drickamer K, Taylor ME. Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 2015; 34:26-34. [PMID: 26163333 PMCID: PMC4681411 DOI: 10.1016/j.sbi.2015.06.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/19/2015] [Indexed: 12/05/2022]
Abstract
Sugar-binding C-type carbohydrate-recognition domains fall in five structural groups. Structures for many of these domains, covering all of the groups, have been obtained. Not all human C-type lectins have clear orthologues in other mammals such as mice. Different mechanisms by which C-type lectins initiate signalling remain to be defined. Hetero-oligomeric receptors add to the complexity of overlapping specificities.
The majority of the C-type lectin-like domains in the human genome likely to bind sugars have been investigated structurally, although novel mechanisms of sugar binding are still being discovered. In the immune system, adhesion and endocytic receptors that bind endogenous mammalian glycans are often conserved, while pathogen-binding C-type lectins on cells of the innate immune system are more divergent. Lack of orthology between some human and mouse receptors, as well as overlapping specificities of many receptors and formation of receptor hetero-oligomers, can make it difficult to define the roles of individual receptors. There is good evidence that C-type lectins initiate signalling pathways in several different ways, but this function remains the least well understood from a mechanistic perspective.
Collapse
Affiliation(s)
- Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom.
| |
Collapse
|
39
|
Jégouzo SAF, Feinberg H, Dungarwalla T, Drickamer K, Weis WI, Taylor ME. A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2. J Biol Chem 2015; 290:16759-71. [PMID: 25995448 PMCID: PMC4505424 DOI: 10.1074/jbc.m115.660613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Indexed: 11/06/2022] Open
Abstract
Blood dendritic cell antigen 2 (BDCA-2; also designated CLEC4C or CD303) is uniquely expressed on plasmacytoid dendritic cells. Stimulation of BDCA-2 with antibodies leads to an anti-inflammatory response in these cells, but the natural ligands for the receptor are not known. The C-type carbohydrate recognition domain in the extracellular portion of BDCA-2 contains a signature motif typical of C-type animal lectins that bind mannose, glucose, or GlcNAc, yet it has been reported that BDCA-2 binds selectively to galactose-terminated, biantennary N-linked glycans. A combination of glycan array analysis and binding competition studies with monosaccharides and natural and synthetic oligosaccharides have been used to define the binding epitope for BDCA-2 as the trisaccharide Galβ1-3/4GlcNAcβ1-2Man. X-ray crystallography and mutagenesis studies show that mannose is ligated to the conserved Ca(2+) in the primary binding site that is characteristic of C-type carbohydrate recognition domains, and the GlcNAc and galactose residues make additional interactions in a wide, shallow groove adjacent to the primary binding site. As predicted from these studies, BDCA-2 binds to IgG, which bears galactose-terminated glycans that are not commonly found attached to other serum glycoproteins. Thus, BDCA-2 has the potential to serve as a previously unrecognized immunoglobulin Fc receptor.
Collapse
Affiliation(s)
- Sabine A F Jégouzo
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Hadar Feinberg
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Tabassum Dungarwalla
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - William I Weis
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Maureen E Taylor
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
40
|
Rambaruth NDS, Jégouzo SAF, Marlor H, Taylor ME, Drickamer K. Mouse mincle: characterization as a model for human mincle and evolutionary implications. Molecules 2015; 20:6670-82. [PMID: 25884549 PMCID: PMC4533885 DOI: 10.3390/molecules20046670] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 12/03/2022] Open
Abstract
Mincle, the macrophage-inducible C-type lectin also known as CLEC-4E, binds to the mycobacterial glycolipid trehalose dimycolate and initiates a signaling cascade by serving as a receptor for Mycobacterium tuberculosis and other pathogenic mycobacterial species. Studies of the biological functions of human mincle often rely on mouse models, based on the assumption that the biological properties of the mouse receptor mimic those of the human protein. Experimental support for this assumption has been obtained by expression of the carbohydrate-recognition domain of mouse mincle and characterization of its interaction with small molecule analogs of trehalose dimycolate. The results confirm that the ligand-binding properties of mouse mincle closely parallel those of the human receptor. These findings are consistent with the conservation of key amino acid residues that have been shown to form the ligand-binding site in human and cow mincle. Sequence alignment reveals that these residues are conserved in a wide range of mammalian species, suggesting that mincle has a conserved function in binding ligands that may include endogenous mammalian glycans or pathogen glycans in addition to trehalose dimycolate.
Collapse
Affiliation(s)
| | | | - Hayley Marlor
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
41
|
Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N Biotechnol 2015; 32:559-68. [PMID: 25796474 DOI: 10.1016/j.nbt.2015.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 01/06/2023]
Abstract
Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.
Collapse
|
42
|
Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N, Witzenrath M, Lepenies B, Opitz B. The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS One 2015; 10:e0117022. [PMID: 25658823 PMCID: PMC4319728 DOI: 10.1371/journal.pone.0117022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
The innate immune system employs C-type lectin receptors (CLRs) to recognize carbohydrate structures on pathogens and self-antigens. The Macrophage-inducible C-type lectin (Mincle) is a FcRγ-coupled CLR that was shown to bind to mycobacterial cord factor as well as certain fungal species. However, since CLR functions during bacterial infections have not yet been investigated thoroughly, we aimed to examine their function in Streptococcus pneumonia infection. Binding studies using a library of recombinantly expressed CLR-Fc fusion proteins indicated a specific, Ca2+-dependent, and serotype-specific binding of Mincle to S. pneumonia. Subsequent experiments with different Mincle-expressing cells as well as Mincle-deficient mice, however, revealed a limited role of this receptor in bacterial phagocytosis, neutrophil-mediated killing, cytokine production, and antibacterial immune response during pneumonia. Collectively, our results indicate that Mincle is able to recognize S. pneumonia but is not required for the anti-pneumococcal innate immune response.
Collapse
Affiliation(s)
- Anne Rabes
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Zimmermann
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Katrin Reppe
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Lang
- Institute for Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Erlangen, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
- * E-mail: (BO); (BL)
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (BO); (BL)
| |
Collapse
|
43
|
Kodar K, Eising S, Khan AA, Steiger S, Harper JL, Timmer MSM, Stocker BL. The Uptake of Trehalose Glycolipids by Macrophages Is Independent of Mincle. Chembiochem 2015; 16:683-93. [DOI: 10.1002/cbic.201402506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 01/04/2023]
|
44
|
Jacobsen KM, Keiding UB, Clement LL, Schaffert ES, Rambaruth NDS, Johannsen M, Drickamer K, Poulsen TB. The natural product brartemicin is a high affinity ligand for the carbohydrate-recognition domain of the macrophage receptor mincle. MEDCHEMCOMM 2015; 6:647-652. [PMID: 25893085 PMCID: PMC4393326 DOI: 10.1039/c4md00512k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 01/05/2023]
Abstract
We demonstrate that the natural product brartemicin, a newly discovered inhibitor of cancer cell invasion, is a high-affinity ligand of the carbohydrate-recognition domain (CRD) of the C-type lectin mincle.
We demonstrate that the natural product brartemicin, a newly discovered inhibitor of cancer cell invasion, is a high-affinity ligand of the carbohydrate-recognition domain (CRD) of the C-type lectin mincle. Recent studies have revealed that mincle is a key macrophage receptor for the mycobacterial virulence factor trehalose dimycolate (TDM), which is a glycolipid component of the mycobacterial cell wall. Major uncertainties, however, remain concerning the mechanism of TDM-binding and subsequent signal transduction as well as interplay of potential co-receptors. Due to the lipid nature of TDM, functional studies are difficult and soluble mincle-ligands are therefore of significant interest. Brartemicin, together with designed analogs also presented in this paper, may thus serve as useful molecular probes for future studies of mincle. Through computational studies, we further provide an insight into the probable mode of binding of brartemicin.
Collapse
Affiliation(s)
- Kristian M Jacobsen
- Chemical Biology Laboratory , Department of Chemistry , Aarhus University , DK-8000 , Aarhus C , Denmark .
| | - Ulrik B Keiding
- Chemical Biology Laboratory , Department of Chemistry , Aarhus University , DK-8000 , Aarhus C , Denmark . ; Department of Forensic Medicine , Bioanalytical Unit , Aarhus University , Brendstrupgaardsvej 100 , 8200 Aarhus N , Denmark
| | - Lise L Clement
- Chemical Biology Laboratory , Department of Chemistry , Aarhus University , DK-8000 , Aarhus C , Denmark .
| | - Eva S Schaffert
- Chemical Biology Laboratory , Department of Chemistry , Aarhus University , DK-8000 , Aarhus C , Denmark .
| | | | - Mogens Johannsen
- Department of Forensic Medicine , Bioanalytical Unit , Aarhus University , Brendstrupgaardsvej 100 , 8200 Aarhus N , Denmark
| | - Kurt Drickamer
- Department of Life Sciences , Imperial College , London SW7 2AZ , UK .
| | - Thomas B Poulsen
- Chemical Biology Laboratory , Department of Chemistry , Aarhus University , DK-8000 , Aarhus C , Denmark .
| |
Collapse
|