1
|
Zhou M, Hong J, Qiu X, Xiong Z, Liu X, Qin Z, Luo Z, Chen Q, Lin M, Min L, Yang X, Guo X, Xu B, Mao J. Serum-derived extracellular vesicles mediate acquired multidrug resistance of MCF-7 breast cancer cells induced by chemotherapeutic drugs. Biochem Pharmacol 2025; 237:116923. [PMID: 40194604 DOI: 10.1016/j.bcp.2025.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Multidrug resistance (MDR) in tumor cells presents a significant challenge in cancer therapy. This study investigates the role of serum-derived extracellular vesicles (EVs) in mediating MDR during chemotherapeutic exposure. The findings indicate that short- or long-term co-incubation of doxorubicin (Dox)-pretreated serum derived EVs (EVs(S-PT)) caused drug-sensitive MCF-7 breast cancer cells to develop a MDR phenotype. In addition, serum EVs contain a high concentration of unglycosylated P-glycoprotein (P-gp). Chemotherapy treatment of tumor patients or exposure to chemotherapeutic drugs in vitro activates serum glycosyltransferases, inducing glycosylation of EVs P-gp and giving it drug-pumping activity. Furthermore, damage caused by Dox to the vascular endothelial barrier facilitates the crossing of serum EVs into the tumor microenvironment. These EVs are then taken up by tumor cells, providing them with access to a significant quantity of glycosylated P-gp proteins that possess transporter activity and the ability to evade degradation by the ubiquitin proteasome system. The results indicate that EVs(S-PT) transfers glycosylated P-gp across the damaged vascular endothelial barrier into MCF-7 cells and that these glycosylated P-gp remain intracellular for a long period of time, inducing MDR in the cells. Our study highlights a novel mechanism of acquired MDR and provides a potential avenue for therapeutic interventions targeting the serum EVs pathway in cancer therapy.
Collapse
Affiliation(s)
- Mi Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahuan Hong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaofeng Qiu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixian Xiong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuan Qin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhesi Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mianjie Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ling Min
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiaorong Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, China.
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Roka-Moiia Y, Lewis S, Cleveland E, Italiano JE, Slepian MJ. Shear Stress Promotes Remodeling of Platelet Glycosylation via Upregulation of Platelet Glycosidase Activity: One More Thing. Thromb Haemost 2025; 125:317-336. [PMID: 39168140 DOI: 10.1055/a-2398-9532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mechanical circulatory support (MCS) is a mainstay of therapy for advanced and end-stage heart failure. Accompanied by systemic anticoagulation, contemporary MCS has become less thrombogenic, with bleeding complications emerging as a major cause of readmission and 1-year mortality. Shear-mediated platelet dysfunction and thrombocytopenia of undefined etiology are primary drivers of MCS-related bleeding. Recently, it has been demonstrated that deprivation of platelet surface glycosylation is associated with the decline of hemostatic function, microvesiculation, and premature apoptosis. We test the hypothesis that shear stress induces remodeling of platelet surface glycosylation via upregulation of glycosidase activity, thus facilitating platelet count decline and intense microvesiculation.Human gel-filtered platelets were exposed to continuous shear stress in vitro. Platelets and platelet-derived microparticles (PDMPs) were quantified via flow cytometry using size standard fluorescent nanobeads. Platelet surface glycosylation and NEU1 expression were evaluated using lectin- or immune-staining and multicolor flow cytometry; lectin blotting was utilized to verify glycosylation of individual glycoproteins. Platelet neuraminidase, galactosidase, hexosaminidase, and mannosidase activities were quantified using 4-methylumbelliferone-based fluorogenic substrates.We demonstrate that shear stress promotes selective remodeling of platelet glycosylation via downregulation of 2,6-sialylation, terminal galactose, and mannose, while 2,3-sialylation remains largely unchanged. Shear-mediated deglycosylation is partially attenuated by neuraminidase inhibitors, strongly suggesting the involvement of platelet neuraminidase in observed phenomena. Shear stress increases platelet NEU1 surface expression and potentiates generation of numerous NEU1+ PDMPs. Platelets exhibit high basal hexosaminidase and mannosidase activities; basal activities of platelet neuraminidase and galactosidase are rather low and are significantly upregulated by shear stress. Shear stress of increased magnitude and duration promotes an incremental decline of platelet count and immense microvesiculation, both being further exacerbated by neuraminidase and partially attenuated by neuraminidase inhibition.Our data indicate that shear stress accumulation, consistent with supraphysiologic conditions of device-supported circulation, promotes remodeling of platelet glycosylation via selective upregulation of platelet glycosidase activity. Shear-mediated platelet deglycosylation is associated with platelet count drop and increased microvesiculation, thus offering a direct link between deglycosylation and thrombocytopenia observed in device-supported patients. Based on our findings, we propose a panel of molecular markers to be used for reliable detection of shear-mediated platelet deglycosylation in MCS.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| | - Sabrina Lewis
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Estevan Cleveland
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| |
Collapse
|
3
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
6
|
Voss M. Proteolytic cleavage of Golgi glycosyltransferases by SPPL3 and other proteases and its implications for cellular glycosylation. Biochim Biophys Acta Gen Subj 2024; 1868:130668. [PMID: 38992482 DOI: 10.1016/j.bbagen.2024.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.
Collapse
Affiliation(s)
- Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
7
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
8
|
Van den Bossche F, Tevel V, Gilis F, Gaussin JF, Boonen M, Jadot M. Residence of the Nucleotide Sugar Transporter Family Members SLC35F1 and SLC35F6 in the Endosomal/Lysosomal Pathway. Int J Mol Sci 2024; 25:6718. [PMID: 38928424 PMCID: PMC11203873 DOI: 10.3390/ijms25126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.
Collapse
Affiliation(s)
- François Van den Bossche
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Virginie Tevel
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Florentine Gilis
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Michel Jadot
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
| |
Collapse
|
9
|
Schuurmans F, Wagemans KE, Adema GJ, Cornelissen LAM. Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function. Front Immunol 2024; 15:1409238. [PMID: 38881904 PMCID: PMC11176483 DOI: 10.3389/fimmu.2024.1409238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The T cell is an immune cell subset highly effective in eliminating cancer cells. Cancer immunotherapy empowers T cells and occupies a solid position in cancer treatment. The response rate, however, remains relatively low (<30%). The efficacy of immunotherapy is highly dependent on T cell infiltration into the tumor microenvironment (TME) and the ability of these infiltrated T cells to sustain their function within the TME. A better understanding of the inhibitory impact of the TME on T cells is crucial to improve cancer immunotherapy. Tumor cells are well described for their switch into aerobic glycolysis (Warburg effect), resulting in high glucose consumption and a metabolically distinct TME. Conversely, glycosylation, a predominant posttranslational modification of proteins, also relies on glucose molecules. Proper glycosylation of T cell receptors influences the immunological synapse between T cells and tumor cells, thereby affecting T cell effector functions including their cytolytic and cytostatic activities. This review delves into the complex interplay between tumor glucose metabolism and the glycocalyx of T cells, shedding light on how the TME can induce alterations in the T cell glycocalyx, which can subsequently influence the T cell's ability to target and eliminate tumor cells.
Collapse
Affiliation(s)
| | | | | | - Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Hunter C, Derksen T, Makhsous S, Doll M, Perez SR, Scott NE, Willis LM. Site-specific immobilization of the endosialidase reveals QSOX2 is a novel polysialylated protein. Glycobiology 2024; 34:cwae026. [PMID: 38489772 PMCID: PMC11031136 DOI: 10.1093/glycob/cwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024] Open
Abstract
Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Tahlia Derksen
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Sogand Makhsous
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Matt Doll
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Samantha Rodriguez Perez
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
11
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
12
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Goth CK, Mehta AY, McQuillan AM, Baker KJ, Hanes MS, Park SS, Stavenhagen K, Hjortø GM, Heimburg-Molinaro J, Chaikof EL, Rosenkilde MM, Cummings RD. Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell Chem Biol 2023; 30:893-905.e7. [PMID: 37463583 PMCID: PMC10530560 DOI: 10.1016/j.chembiol.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/14/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
Protein glycosylation influences cellular recognition and regulates protein interactions, but how glycosylation functions alongside other common posttranslational modifications (PTMs), like tyrosine sulfation (sTyr), is unclear. We produced a library of 53 chemoenzymatically synthesized glycosulfopeptides representing N-terminal domains of human and murine P-selectin glycoprotein ligand-1 (PSGL-1), varying in sTyr and O-glycosylation (structure and site). Using these, we identified key roles of PSGL-1 O-glycosylation and sTyr in controlling interactions with specific chemokines. Results demonstrate that sTyr positively affects CCL19 and CCL21 binding to PSGL-1 N terminus, whereas O-glycan branching and sialylation reduced binding. For murine PSGL-1, interference between PTMs is greater, attributed to proximity between the two PTMs. Using fluorescence polarization, we found sTyr is a positive determinant for some chemokines. We showed that synthetic sulfopeptides are potent in decreasing chemotaxis of human dendritic cells toward CCL19 and CCL21. Our results provide new research avenues into the interplay of PTMs regulating leukocyte/chemokine interactions.
Collapse
Affiliation(s)
- Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Kelly J Baker
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Simon S Park
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Gertrud M Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Liu Y, Chen H, Li H, Wang F, Jia J, Yan T. Circulating platelets supply ST6Gal-1 in patients with IgA nephropathy. Postgrad Med 2023; 135:161-168. [PMID: 36533382 DOI: 10.1080/00325481.2022.2159206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Our previous study showed ST6 β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) levels in plasma were associated with a slower progression of IgA nephropathy (IgAN). Platelets are the crucial regulator of cell surface glycosylation events in circulation by supplying glycosyltransferases. METHODS A total of 180 patients with IgAN were included in this study. ST6Gal-1 levels were analyzed before and after activation of platelets by flow cytometry. RESULTS We found that IgAN patients in the higher platelet counts group exhibited higher levels of ST6Gal-1 compared with the lower platelet counts group. There was a positive correlation between platelet counts and ST6Gal-1 levels in plasma. Patients with higher platelet counts had higher levels of IgA, serum C3, serum C4 and proteinuria, higher percentages of platelet crits, S1 and T1/2, lower levels of platelet distribution width and the mean platelet volume, as well as a lower percentage of platelet large cell ratio compared with those patients with lower platelet counts. No differences were found in terms of the eGFR decline and composite kidney endpoints between two groups. Furthermore, we investigated whether platelets were activated and released ST6Gal-1 in patients with IgAN. The expression of CD62P in platelets in patients with IgAN was higher than those of healthy controls. There were no obvious changes in ST6Gal-1 levels between the rest and the activated platelets within 1 to 2-hour, however, the difference in ST6Gal-1 levels became more pronounced after 4-hour of incubation. CONCLUSIONS In conclusion, human circulating platelets contain ST6Gal-1, which may be released by the activation of platelets in IgAN.
Collapse
Affiliation(s)
- Youxia Liu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hongshan Chen
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hongfen Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Fanghao Wang
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
15
|
Moncla LHM, Mathieu S, Sylla MS, Bossé Y, Thériault S, Arsenault BJ, Mathieu P. Mendelian randomization of circulating proteome identifies actionable targets in heart failure. BMC Genomics 2022; 23:588. [PMID: 35964012 PMCID: PMC9375407 DOI: 10.1186/s12864-022-08811-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Heart failure (HF) is a prevalent cause of mortality and morbidity. The molecular drivers of HF are still largely unknown. Results We aimed to identify circulating proteins causally associated with HF by leveraging genome-wide genetic association data for HF including 47,309 cases and 930,014 controls. We performed two-sample Mendelian randomization (MR) with multiple cis instruments as well as network and enrichment analysis using data from blood protein quantitative trait loci (pQTL) (2,965 blood proteins) measured in 3,301 individuals. Nineteen blood proteins were causally associated with HF, were not subject to reverse causality and were enriched in ligand-receptor and glycosylation molecules. Network pathway analysis of the blood proteins showed enrichment in NF-kappa B, TGF beta, lipid in atherosclerosis and fluid shear stress. Cross-phenotype analysis of HF identified genetic overlap with cardiovascular drugs, myocardial infarction, parental longevity and low-density cholesterol. Multi-trait MR identified causal associations between HF-associated blood proteins and cardiovascular outcomes. Multivariable MR showed that association of BAG3, MIF and APOA5 with HF were mediated by the blood pressure and coronary artery disease. According to the directional effect and biological action, 7 blood proteins are targets of existing drugs or are tractable for the development of novel therapeutics. Among the pathways, sialyl Lewis x and the activin type II receptor are potential druggable candidates. Conclusions Integrative MR analyses of the blood proteins identified causally-associated proteins with HF and revealed pleiotropy of the blood proteome with cardiovascular risk factors. Some of the proteins or pathway related mechanisms could be targeted as novel treatment approach in HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08811-2.
Collapse
Affiliation(s)
- Louis-Hippolyte Minvielle Moncla
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Samuel Mathieu
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Mame Sokhna Sylla
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Benoit J Arsenault
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada.,Department of Medicine, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada. .,Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
16
|
Rusiniak ME, Punch PR, Hait NC, Maiti A, Burns RT, Chapla D, Moremen KW, Zhao P, Wells L, Hoffmeister K, Lau JTY. Extracellular ST6GAL1 regulates monocyte-macrophage development and survival. Glycobiology 2022; 32:701-711. [PMID: 35661210 PMCID: PMC9280526 DOI: 10.1093/glycob/cwac032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Interaction of immune cells with the systemic environment is necessary for the coordinated development and execution of immune responses. Monocyte-macrophage lineage cells reside at the junction of innate and adaptive immunity. Previously we reported that the sialyltransferase ST6GAL1 in the extracellular milieu modulates B cell development and IgG production, granulocyte production, and attenuates acute airway inflammation to bacterial challenge in mouse models. Here, we report that extracellular ST6GAL1 also elicits profound responses in monocyte-macrophage lineage cells. We show that recombinant ST6GAL1 adheres to subsets of thioglycolate-elicited inflammatory cells in the mouse peritoneum and to cultured human monocyte THP-1 cells. Exposure of the inflammatory cells to recombinant ST6GAL1 elicited wholesale changes in the gene expression profile of primary mouse myeloid cells; most notable was the striking up-regulation of monocyte-macrophage and monocyte-derived dendritic cell development pathway signature genes and transcription factors PU.1, NFκB and their target genes, driving increased monocyte-macrophage population and survival ex vivo. In the cultured human monocyte cells, the essential cell surface receptor of the monocyte-macrophage lineage, the M-CSF receptor (M-CSF-R, Csfr1) was a target of extracellular ST6GAL1 catalytic activity. Extracellular ST6GAL1 activated the M-CSF-R and initiated intracellular signaling events, namely, the nuclear translocation of NFκB subunit p65, and phosphorylation of ERK 1/2 and AKT. The findings implicate extracellular ST6GAL1 in monocyte development by a mechanism initiated at the cell surface and support an emerging paradigm of an extracellular glycan-modifying enzyme as a central regulator coordinating immune hematopoietic cell development and function.
Collapse
Affiliation(s)
- Michael E Rusiniak
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Patrick R Punch
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14215, United States
| | - Nitai C Hait
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Robert T Burns
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Karin Hoffmeister
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
17
|
Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv 2022; 6:3945-3955. [PMID: 35507766 PMCID: PMC9278294 DOI: 10.1182/bloodadvances.2022007001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
ST3GAL1 and ST3GAL2 have both overlapping and unique substrate specificities in O-glycan sialylation during megakaryopoiesis. O-glycan sialylation is dispensable for MK production but indispensable for MK proplatelet formation.
Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the galactose residue of type III disaccharides (Galβ1,3GalNAc) in vitro, sialylation of O-linked glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated Galβ1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from double-knockout iPSCs and remained moderately increased in cells lacking either one of these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane glycoprotein (GP) GPIbα, were identified as major GP substrates for ST3GAL1 and ST3GAL2. In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally, although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their absence resulted in dramatically impaired MK proplatelet formation. Taken together, these data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked glycan sialylation in hemato- and megakaryocytopoiesis.
Collapse
|
18
|
van der Wal DE, Rey Gomez LM, Hueneburg T, Linnane C, Marks DC. Changes in glycans on platelet microparticles released during storage of apheresis platelets are associated with phosphatidylserine externalization and phagocytosis. Transfusion 2022; 62:1289-1301. [PMID: 35467785 DOI: 10.1111/trf.16891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets shed platelet microparticles (PMP) when activated or stored. As the removal of sialic acid (desialylation) promotes platelet uptake and clearance from the circulation, similar mechanisms for PMP uptake were hypothesized. The aim of the study was to investigate the role of surface glycans in the in vitro uptake of PMP from stored platelet components. STUDY DESIGN AND METHODS Apheresis platelet components were stored in 40% plasma/60% SSP+ and sampled on day 1, 5, and 7 post-collection. PMP were characterized by staining with annexin-V (AnV) for phosphatidylserine (PS)-exposure, CD41 antibody, and fluorescently labeled glycan-binding lectins using flow cytometry. The procoagulant function of PMP following desialylation by neuraminidase treatment was assessed by AnV binding and a procoagulant phospholipid assay. PMP were isolated and stained with Deep Red, and phagocytosis by HepG2 cells was measured. Isolated PMP were deglycosylated with neuraminidase and galactosidase to assess the involvement of glycans in mediating phagocytosis. RESULTS While the overall platelet surface glycan profile was unchanged during storage, PS+ platelets were sialylated, indicating different glycoproteins were changed. In contrast, sialic acid was removed from PS+ and CD41+ PMP, which specifically lost α-2,3-linked sialic acid during platelet storage. PMP were phagocytized by HepG2 cells, and PMP from platelets stored for 7 days were phagocytized to a lesser extent than on day 1. Desialylation by neuraminidase induced PS-exposure on PMP, decreased PPL clotting time, and increased PMP phagocytosis. CONCLUSION PMP glycans change during platelet storage. Desialylation influences the procoagulant function of PMP and phagocytosis by HepG2 cells.
Collapse
Affiliation(s)
- Dianne E van der Wal
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Laura M Rey Gomez
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Thomas Hueneburg
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Claire Linnane
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
19
|
Vicente MM, Alves I, Gaifem J, Rodrigues CS, Fernandes Â, Dias AM, Štambuk J, Petrović T, Oliveira P, Ferreira-da-Silva F, Soares A, Seixas N, Teixeira T, Malheiro L, Abreu MM, Lauc G, Sarmento E Castro R, Pinho SS. Altered IgG glycosylation at COVID-19 diagnosis predicts disease severity. Eur J Immunol 2022; 52:946-957. [PMID: 35307819 PMCID: PMC9087392 DOI: 10.1002/eji.202149491] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 01/08/2023]
Abstract
The nature of the immune responses associated with COVID‐19 pathogenesis and disease severity, as well as the breadth of vaccine coverage and duration of immunity, is still unclear. Given the unpredictability for developing a severe/complicated disease, there is an urgent need in the field for predictive biomarkers of COVID‐19. We have analyzed IgG Fc N‐glycan traits of 82 SARS‐CoV‐2+ unvaccinated patients, at diagnosis, by nano‐LC‐ESI‐MS. We determined the impact of IgG Fc glyco‐variations in the induction of NK cells activation, further evaluating the association between IgG Fc N‐glycans and disease severity/prognosis. We found that SARS‐CoV‐2+ individuals display, at diagnosis, variations in the glycans composition of circulating IgGs. Importantly, levels of galactose and sialic acid structures on IgGs are able to predict the development of a poor COVID‐19 disease. Mechanistically, we demonstrated that a deficiency on galactose structures on IgG Fc in COVID‐19 patients appears to induce NK cells activation associated with increased release of IFN‐γ and TNF‐α, which indicates the presence of pro‐inflammatory immunoglobulins and higher immune activation, associated with a poor disease course. This study brings to light a novel blood biomarker based on IgG Fc glycome composition with capacity to stratify patients at diagnosis.
Collapse
Affiliation(s)
- Manuel M Vicente
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal
| | - Cláudia S Rodrigues
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal
| | - Ângela Fernandes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal
| | - Ana M Dias
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Pedro Oliveira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Adriana Soares
- Internal Medicine Department, Hospital Beatriz Ângelo, Loures, Portugal
| | - Nair Seixas
- Department of Infectious Diseases, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal
| | - Tiago Teixeira
- Department of Infectious Diseases, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal
| | - Luis Malheiro
- Department of Clinical Pathology, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal
| | - Miguel M Abreu
- Department of Infectious Diseases, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rui Sarmento E Castro
- Department of Infectious Diseases, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht SS, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022; 79:185. [PMID: 35279766 PMCID: PMC8918473 DOI: 10.1007/s00018-022-04163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
Abstract
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
Collapse
Affiliation(s)
- Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Fenja H Bahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sarah-Sophie Schacht
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Daniel Meisinger
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Marion Mengel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Anna Hofmann
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Lukas Heintz
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
21
|
Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat Commun 2022; 13:946. [PMID: 35177642 PMCID: PMC8854716 DOI: 10.1038/s41467-022-28639-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-plasma protein signature and a model of seven routine clinical tests that validate in an independent cohort as early risk predictors of COVID-19 severity and patient survival. The risk predictors and candidate drugs described in our study can be used and developed for personalized management of SARS-CoV-2 infected patients. Prognostic markers for patients with COVID-19 are of critical importance in determining the course of SARS-CoV-2 infection and patient handling. Here the authors determine and apply a prognostic proteomic panel for risk and drug prediction in the management of SARS-CoV-2 infected patients.
Collapse
|
22
|
Cao Y, Song Z, Guo Z, Zhao X, Gong Y, Zhao K, Qu C, Huang Y, Li Y, Gao Y, Zhang J, Guo X. Cytokines in the Immune Microenvironment Change the Glycosylation of IgG by Regulating Intracellular Glycosyltransferases. Front Immunol 2022; 12:724379. [PMID: 35140700 PMCID: PMC8818798 DOI: 10.3389/fimmu.2021.724379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
BackgroundChanges in IgG glycosylation, as a novel pathological feature, are observed in various autoimmune diseases (AIDs). The glycosylation patterns of IgG play a critical role in regulating the biological function and stability of IgG involved in the pathophysiology of many AIDs. However, the intracellular regulatory mechanisms underlying the effects of disturbances in various cytokines on IgG glycosylation are poorly understood. Thus, we investigated the regulatory effects of elevated cytokines in AIDs on intracellular IgG glycosylation within B cells.MethodsFirst, we established a controlled primary culture system in vitro to differentiate human CD19+ B cells into antibody-secreting cells (ASCs). Then, the IgG concentrations in the supernatants were measured by enzyme-linked immunoassay (ELISA) under IFN-γ, TNF-α, IL-21, IL-17A, BAFF, or APRIL stimulation. Next, the glycosylation levels of IgG under different stimuli were compared via a lectin microarray. The fine carbohydrate structures of IgG were confirmed by matrix-assisted laser desorption/ionization-quadrupole ion trap-time of flight-mass spectrometry (MALDI-TOF-MS). Finally, the expression of glycosyltransferases and glycosidases in B cells under stimulation with several cytokines was detected by real-time PCR and western blotting.ResultsWe found that cytokines significantly promoted IgG production in vitro and led to considerably different IgG glycan patterns. Specifically, the results of lectin microarray showed the galactose level of IgG was increased by IFN-γ stimulation (p<0.05), and the sialylation of IgG was increased by IL-21 and IL-17A (p<0.05). The MALDI-TOF-MS data showed that the frequency of agalactosylation was decreased by IFN-γ with the increased frequency of mono-galactosylation and decreased frequency of digalactosylation, accompanied by upregulation of β-1,4-galactosyltransferase 1. Both frequencies of mono-sialylated and disialylated N-glycans were increased by IL-21 and IL-17A with decreased frequency of asialylation, and the expression of β-galactoside α-2,6-sialyltransferase 1 was upregulated by IL-21 and IL-17A.ConclusionAbnormally elevated cytokines in the microenvironment regulates IgG glycan patterns by regulating intracellular glycosyltransferases in human B cells.
Collapse
Affiliation(s)
- Yedi Cao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Zhijing Song
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Guo
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Keli Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yan Li
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Correspondence: Ying Gao,
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Hait NC, Maiti A, Wu R, Andersen VL, Hsu CC, Wu Y, Chapla DG, Takabe K, Rusiniak ME, Bshara W, Zhang J, Moremen KW, Lau JTY. Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness. Cancer Gene Ther 2022; 29:1662-1675. [PMID: 35676533 PMCID: PMC9663294 DOI: 10.1038/s41417-022-00485-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023]
Abstract
The sialyltransferase ST6GAL1 that adds α2-6 linked sialic acids to N-glycans of cell surface and secreted glycoproteins is prominently associated with many human cancers. Tumor-native ST6GAL1 promotes tumor cell behaviors such as invasion and resistance to cell stress and chemo- and radio-treatments. Canonically, ST6GAL1 resides in the intracellular secretory apparatus and glycosylates nascent glycoproteins in biosynthetic transit. However, ST6GAL1 is also released into the extracellular milieu and extracellularly remodels cell surface and secreted glycans. The impact of this non-canonical extrinsic mechanism of ST6GAL1 on tumor cell pathobiology is not known. We hypothesize that ST6GAL1 action is the combined effect of natively expressed sialyltransferase acting cell-autonomously within the ER-Golgi complex and sialyltransferase from extracellular origins acting extrinsically to remodel cell-surface glycans. We found that shRNA knockdown of intrinsic ST6GAL1 expression resulted in decreased ST6GAL1 cargo in the exosome-like vesicles as well as decreased breast tumor cell growth and invasive behavior in 3D in vitro cultures. Extracellular ST6GAL1, present in cancer exosomes or the freely soluble recombinant sialyltransferase, compensates for insufficient intrinsic ST6GAL1 by boosting cancer cell proliferation and increasing invasiveness. Moreover, we present evidence supporting the existence novel but yet uncharacterized cofactors in the exosome-like particles that potently amplify extrinsic ST6GAL1 action, highlighting a previously unknown mechanism linking this enzyme and cancer pathobiology. Our data indicate that extracellular ST6GAL1 from remote sources can compensate for cellular ST6GAL1-mediated aggressive tumor cell proliferation and invasive behavior and has great clinical potential for extracellular ST6GAL1 as these molecules are in the extracellular space should be easily accessible targets.
Collapse
Affiliation(s)
- Nitai C. Hait
- grid.240614.50000 0001 2181 8635Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA ,grid.240614.50000 0001 2181 8635Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Aparna Maiti
- grid.240614.50000 0001 2181 8635Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA ,grid.240614.50000 0001 2181 8635Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Rongrong Wu
- grid.240614.50000 0001 2181 8635Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Valerie L. Andersen
- grid.240614.50000 0001 2181 8635Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Chang-Chieh Hsu
- grid.273335.30000 0004 1936 9887Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Yun Wu
- grid.273335.30000 0004 1936 9887Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Digantkumar G. Chapla
- grid.213876.90000 0004 1936 738XComplex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA ,grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Kazuaki Takabe
- grid.240614.50000 0001 2181 8635Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Michael E. Rusiniak
- grid.240614.50000 0001 2181 8635Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| | - Wiam Bshara
- grid.240614.50000 0001 2181 8635Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263 USA
| | - Jianmin Zhang
- grid.240614.50000 0001 2181 8635Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203 USA
| | - Kelley W. Moremen
- grid.213876.90000 0004 1936 738XComplex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA ,grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Joseph T. Y. Lau
- grid.240614.50000 0001 2181 8635Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| |
Collapse
|
24
|
Mueller WF, Zhu L, Tan B, Dwight S, Beahm B, Wilsey M, Wechsler T, Mak J, Cowan T, Pritchett J, Taylor E, Crawford BE. GlcNAc-Asn (GNA) is a biomarker for NGLY1 deficiency. J Biochem 2021; 171:177-186. [PMID: 34697629 PMCID: PMC8863169 DOI: 10.1093/jb/mvab111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Substrate-derived biomarkers are necessary in slowly progressing monogenetic diseases caused by single-enzyme deficiencies to identify affected patients and serve as surrogate markers for therapy response. N-glycanase 1 (NGLY1) deficiency is an ultra-rare autosomal recessive disorder characterized by developmental delay, peripheral neuropathy, elevated liver transaminases, hyperkinetic movement disorder and (hypo)-alacrima. We demonstrate that N-acetylglucosamine-asparagine (GlcNAc-Asn; GNA), is the analyte most closely associated with NGLY1 deficiency, showing consistent separation in levels between patients and controls. GNA accumulation is directly linked to the absence of functional NGLY1, presenting strong potential for its use as a biomarker. In agreement, a quantitative liquid chromatography with tandem mass spectrometry assay, developed to assess GNA from 3 to 3000 ng/ml, showed that it is conserved as a marker for loss of NGLY1 function in NGLY1-deficient cell lines, rodents (urine, cerebrospinal fluid, plasma and tissues) and patients (plasma and urine). Elevated GNA levels differentiate patients from controls, are stable over time and correlate with changes in NGLY1 activity. GNA as a biomarker has the potential to identify and validate patients with NGLY1 deficiency, act as a direct pharmacodynamic marker and serve as a potential surrogate endpoint in clinical trials.
Collapse
Affiliation(s)
| | - Lei Zhu
- Grace Science, LLC - Menlo Park, CA, USA 94025
| | - Brandon Tan
- Grace Science, LLC - Menlo Park, CA, USA 94025
| | | | | | - Matt Wilsey
- Grace Science, LLC - Menlo Park, CA, USA 94025
| | | | - Justin Mak
- Stanford University - Stanford, CA, USA 94305
| | - Tina Cowan
- Stanford University - Stanford, CA, USA 94305
| | - Jake Pritchett
- Integrated Analytical Solutions, Inc. - Berkeley, CA, USA 94710
| | - Eric Taylor
- Integrated Analytical Solutions, Inc. - Berkeley, CA, USA 94710
| | | |
Collapse
|
25
|
Amez Martín M, Wuhrer M, Falck D. Serum and Plasma Immunoglobulin G Fc N-Glycosylation Is Stable during Storage. J Proteome Res 2021; 20:2935-2941. [PMID: 33909442 PMCID: PMC8155565 DOI: 10.1021/acs.jproteome.1c00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Immunoglobulin G
(IgG) glycosylation is studied in biological samples
to develop clinical markers for precision medicine, for example, in
autoimmune diseases and oncology. Inappropriate storage of proteins,
lipids, or metabolites can lead to degradation or modification of
biomolecular features, which can have a strong negative impact on
accuracy and precision of clinical omics studies. Regarding the preservation
of IgG glycosylation, the range of appropriate storage conditions
and time frame is understudied. Therefore, we investigated the effect
of storage on IgG Fc N-glycosylation in the commonly analyzed biofluids,
serum and plasma. Short-term storage and accelerated storage stability
were tested by incubating samples from three healthy donors under
stress conditions of up to 50 °C for 2 weeks using −80
°C for 2 weeks as the reference condition. All tested IgG glycosylation
features—sialylation, galactosylation, bisection, and fucosylation—remained
unchanged up to room temperature as well as during multiple freeze–thaw
cycles and exposure to light. Only when subjected to 37 °C or
50 °C for 2 weeks, galactosylation and sialylation subtly changed.
Therefore, clinical IgG glycosylation analysis does not rely as heavily
on mild serum and plasma storage conditions and timely analysis as
many other omics analyses.
Collapse
Affiliation(s)
- Manuela Amez Martín
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - David Falck
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
26
|
Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Arch 2021; 473:1041-1059. [PMID: 33830329 PMCID: PMC8245383 DOI: 10.1007/s00424-021-02554-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 01/21/2023]
Abstract
Proper protein glycosylation is critical to normal cardiomyocyte physiology. Aberrant glycosylation can alter protein localization, structure, drug interactions, and cellular function. The in vitro differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CM) has become increasingly important to the study of protein function and to the fields of cardiac disease modeling, drug testing, drug discovery, and regenerative medicine. Here, we offer our perspective on the importance of protein glycosylation in hPSC-CM. Protein glycosylation is dynamic in hPSC-CM, but the timing and extent of glycosylation are still poorly defined. We provide new data highlighting how observed changes in hPSC-CM glycosylation may be caused by underlying differences in the protein or transcript abundance of enzymes involved in building and trimming the glycan structures or glycoprotein gene products. We also provide evidence that alternative splicing results in altered sites of glycosylation within the protein sequence. Our findings suggest the need to precisely define protein glycosylation events that may have a critical impact on the function and maturation state of hPSC-CM. Finally, we provide an overview of analytical strategies available for studying protein glycosylation and identify opportunities for the development of new bioinformatic approaches to integrate diverse protein glycosylation data types. We predict that these tools will promote the accurate assessment of protein glycosylation in future studies of hPSC-CM that will ultimately be of significant experimental and clinical benefit.
Collapse
|
27
|
Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Am J Cancer Res 2021; 11:5430-5446. [PMID: 33859756 PMCID: PMC8039950 DOI: 10.7150/thno.53961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Human immunoglobulin G (IgG), especially autoantibodies, has major implications for the diagnosis and management of a wide range of autoimmune diseases. However, some healthy individuals also have autoantibodies, while a portion of patients with autoimmune diseases test negative for serologic autoantibodies. Recent advances in glycomics have shown that IgG Fc N-glycosylations are more reliable diagnostic and monitoring biomarkers than total IgG autoantibodies in a wide variety of autoimmune diseases. Furthermore, these N-glycosylations of IgG Fc, particularly sialylation, have been reported to exert significant anti-inflammatory effects by upregulating inhibitory FcγRIIb on effector macrophages and reducing the affinity of IgG for either complement protein or activating Fc gamma receptors. Therefore, sialylated IgG is a potential therapeutic strategy for attenuating pathogenic autoimmunity. IgG sialylation-based therapies for autoimmune diseases generated through genetic, metabolic or chemoenzymatic modifications have made some advances in both preclinical studies and clinical trials.
Collapse
|
28
|
Ma X, Li Y, Kondo Y, Shi H, Han J, Jiang Y, Bai X, Archer-Hartmann SA, Azadi P, Ruan C, Fu J, Xia L. Slc35a1 deficiency causes thrombocytopenia due to impaired megakaryocytopoiesis and excessive platelet clearance in the liver. Haematologica 2021; 106:759-769. [PMID: 32303557 PMCID: PMC7927894 DOI: 10.3324/haematol.2019.225987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/27/2022] Open
Abstract
Sialic acid is a common terminal residue of glycans on proteins and
acidic sphingolipids such as gangliosides and has important biological
functions. The sialylation process is controlled by more than 20 different
sialyltransferases, many of which exhibit overlapping functions.
Thus, it is difficult to determine the overall biological function of sialylation
by targeted deletion of individual sialyltransferases. To address this
issue, we established a mouse line with the Slc35a1 gene flanked by loxP
sites. Slc35a1 encodes the cytidine-5’-monophosphate (CMP)-sialic acid
transporter that transports CMP-sialic acid from the cytoplasm into the
Golgi apparatus for sialylation. Here we report our study regarding the role
of sialylation on megakaryocytes and platelets using a mouse line with significantly
reduced sialylation in megakaryocytes and platelets (Plt Slc35a1–
/–). The major phenotype of Plt Slc35a1–/– mice was thrombocytopenia. The
number of bone marrow megakaryocytes in Plt Slc35a1–/– mice was
reduced, and megakaryocyte maturation was also impaired. In addition, an
increased number of desialylated platelets was cleared by Küpffer cells in
the liver of Plt Slc35a1–/– mice. This study provides new insights into the
role of sialylation in platelet homeostasis and the mechanisms of thrombocytopenia
in diseases associated with platelet desialylation, such as
immune thrombocytopenia and a rare congenital disorder of glycosylation
(CDG), SLC35A1-CDG, which is caused by SLC35A1 mutations.
Collapse
Affiliation(s)
- Xiaolin Ma
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yun Li
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Huiping Shi
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jingjing Han
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yizhi Jiang
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jianxin Fu
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:25-43. [PMID: 34118464 PMCID: PMC8498922 DOI: 10.1016/j.gpb.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Molecular-assisted precision oncology gained tremendous ground with high-throughput next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-based cancer medicine set the foundations for improved patient stratification, while unveiling a wide array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully used tumor-specific peptides in vaccines with minimal off-target effects. However, the low mutational burden presented by many lesions challenges the generalization of these solutions, requiring the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding the concept toward exploring proteoforms originated from post-translational modifications (PTMs) will be decisive to improve molecular subtyping and provide potentially targetable functional nodes with increased cancer specificity. Walking through the path of systems biology, we highlight that alterations in protein glycosylation at the cell surface not only have functional impact on cancer progression and dissemination but also originate unique molecular fingerprints for targeted therapeutics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected research field, generating novel paradigms for precision oncology and immunotherapy.
Collapse
Affiliation(s)
- José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal.
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal
| |
Collapse
|
30
|
Glycosylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Čaval T, Heck AJR, Reiding KR. Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Mol Cell Proteomics 2020; 20:100010. [PMID: 33561609 PMCID: PMC8724623 DOI: 10.1074/mcp.r120.002093] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry-based glycoproteomics has gone through some incredible developments over the last few years. Technological advances in glycopeptide enrichment, fragmentation methods, and data analysis workflows have enabled the transition of glycoproteomics from a niche application, mainly focused on the characterization of isolated glycoproteins, to a mature technology capable of profiling thousands of intact glycopeptides at once. In addition to numerous biological discoveries catalyzed by the technology, we are also observing an increase in studies focusing on global protein glycosylation and the relationship between multiple glycosylation sites on the same protein. It has become apparent that just describing protein glycosylation in terms of micro- and macro-heterogeneity, respectively, the variation and occupancy of glycans at a given site, is not sufficient to describe the observed interactions between sites. In this perspective we propose a new term, meta-heterogeneity, to describe a higher level of glycan regulation: the variation in glycosylation across multiple sites of a given protein. We provide literature examples of extensive meta-heterogeneity on relevant proteins such as antibodies, erythropoietin, myeloperoxidase, and a number of serum and plasma proteins. Furthermore, we postulate on the possible biological reasons and causes behind the intriguing meta-heterogeneity observed in glycoproteins.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Boll I, Jensen P, Schwämmle V, Larsen MR. Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Mol Cell Proteomics 2020; 19:1418-1435. [PMID: 32518069 PMCID: PMC8143646 DOI: 10.1074/mcp.ra119.001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.
Collapse
Affiliation(s)
- Inga Boll
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
33
|
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Trans-sialidase Associated with Atherosclerosis: Defining the Identity of a Key Enzyme Involved in the Pathology. Curr Drug Targets 2020; 20:938-941. [PMID: 30848200 DOI: 10.2174/1389450120666190308111619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is associated with the increased trans-sialidase activity, which can be detected in the blood plasma of atherosclerosis patients. The likely involvement in the disease pathogenesis made this activity an interesting research subject and the enzyme that may perform such activity was isolated and characterized in terms of substrate specificity and enzymatic properties. It was found that the enzyme has distinct optimum pH values, and its activity was enhanced by the presence of Ca2+ ions. Most importantly, the enzyme was able to cause atherogenic modification of lowdensity lipoprotein (LDL) particles in vitro. However, the identity of the discovered enzyme remained to be defined. Currently, sialyltransferases, mainly ST6Gal I, are regarded as major contributors to sialic acid metabolism in human blood. In this mini-review, we discuss the possibility that atherosclerosis- associated trans-sialidase does, in fact, belong to the sialyltransferases family.
Collapse
Affiliation(s)
- Victor Y Glanz
- Department of Genetics, Cytology and Bioengineering, Faculty of Biology and Medicine, Voronezh State University, Voronezh, Russian Federation
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russian Federation.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
34
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
35
|
Loss of core fucosylation in both ST6GAL1 and its substrate enhances glycoprotein sialylation in mice. Biochem J 2020; 477:1179-1201. [DOI: 10.1042/bcj20190789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/16/2023]
Abstract
Fucosyltransferase 8 (FUT8) and β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1. However, the mechanism for the interaction between these two enzymes is unknown. In this study, we show that serum levels of α2,6-sialylated N-glycans are increased in Fut8−/− mice, whereas the mRNA and protein levels of ST6GAL1 are unchanged in mouse live tissues. The level of α2,6-sialylation on IgG was also enhanced in Fut8−/− mice along with ST6GAL1 catalytic activity increase in both serum and liver. Moreover, it was observed that ST6GAL1 prefers non-fucosylated substrates. Interestingly, increased core fucosylation accompanied by a reduction in α2,6-sialylation, was detected in rheumatoid arthritis patient serum. These findings provide new insight into the interactions between FUT8 and ST6GAL1.
Collapse
|
36
|
Schaffert A, Hanić M, Novokmet M, Zaytseva O, Krištić J, Lux A, Nitschke L, Peipp M, Pezer M, Hennig R, Rapp E, Lauc G, Nimmerjahn F. Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo. Front Immunol 2020; 10:3024. [PMID: 31998308 PMCID: PMC6970187 DOI: 10.3389/fimmu.2019.03024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Select residues in the biantennary sugar moiety attached to the fragment crystallizable of immunoglobulin G (IgG) antibodies can modulate IgG effector functions. Thus, afucosylated IgG glycovariants have enhanced cytotoxic activity, whereas IgG glycovariants rich in terminal sialic acid residues can trigger anti-inflammatory effects. More recent evidence suggests that terminal α2,6 linked sialic acids can be attached to antibodies post IgG secretion. These findings raise concerns for the use of therapeutic antibodies as they may change their glycosylation status in the patient and hence affect their activity. To investigate to what extent B cell extrinsic sialylation processes modify therapeutic IgG preparations in vivo, we analyzed changes in human intravenous IgG (IVIg) sialylation upon injection in mice deficient in B cells or in mice lacking the sialyltransferase 1, which catalyzes the addition of α2,6 linked sialic acid residues. By performing a time course of IgG glycan analysis with HILIC-UPLC-FLR (plus MS) and xCGE-LIF our study suggests that therapeutic IgG glycosylation is stable upon injection in vivo. Only a very small fraction of IgG molecules acquired sialic acid structures predominantly in the Fab- but not the Fc-portion upon injection in vivo, suggesting that therapeutic antibody glycosylation will remain stable upon injection in vivo.
Collapse
Affiliation(s)
- Anja Schaffert
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Hanić
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Anja Lux
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lars Nitschke
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Peipp
- Department of Medicine II, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - René Hennig
- glyXera GmbH, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
37
|
Ortiz-Soto ME, Reising S, Schlosser A, Seibel J. Structural and functional role of disulphide bonds and substrate binding residues of the human beta-galactoside alpha-2,3-sialyltransferase 1 (hST3Gal1). Sci Rep 2019; 9:17993. [PMID: 31784620 PMCID: PMC6884586 DOI: 10.1038/s41598-019-54384-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Overexpression of hST3Gal1 leads to hypersialylation of cell-surface glycoconjugates, a cancer-associated condition that promotes cell growth, migration and invasion. Upregulation of this enzyme in ovarian cancer is linked to cancer progression and metastasis, contributing also to chemotherapy resistance. Strategies for preventing metastasis include the inhibition of hST3Gal1, which demands structure-based studies on its strict regioselectivity and substrate/donor preference. Herein we describe the contribution of various residues constituting donor CMP-Neu5Ac and acceptor Galβ1-3GalNAc-R binding sites to catalysis. Removal of hydrogen bonds and/or stacking interactions among substrates and residues Y191, Y230, N147, S148 and N170 affected the enzyme’s activity to a different extent, revealing the fine control needed for an optimal catalytic performance. To gain further understanding of the correlation among structure, activity and stability, the in vitro role of hST3Gal1 disulphide bonds was analysed. As expected, disruption of the Glycosyltransferase family 29 (GT29) invariant bond C142-C281, as well as the ST3Gal1 subfamily conserved disulphide C61-C139 inactivates the enzyme. While disulphide C59-C64 is not essential for function, its absence reduces the activity (kcat) for donor and acceptor substrates to about 67 and 72%, respectively, and diminishes the enzyme’s melting temperature (Tm) by 7 °C.
Collapse
Affiliation(s)
- Maria Elena Ortiz-Soto
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sabine Reising
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Josef-Schneider Str. 2, Haus D15, 97080, Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
38
|
Irons EE, Lee-Sundlov MM, Zhu Y, Neelamegham S, Hoffmeister KM, Lau JT. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. eLife 2019; 8:47328. [PMID: 31408003 PMCID: PMC6713473 DOI: 10.7554/elife.47328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022] Open
Abstract
The immune response relies on the integration of cell-intrinsic processes with cell-extrinsic cues. During infection, B cells vacate the marrow during emergency granulopoiesis but return upon restoration of homeostasis. Here we report a novel glycosylation-mediated crosstalk between marrow B cells and hematopoietic progenitors. Human B cells secrete active ST6GAL1 sialyltransferase that remodels progenitor cell surface glycans to suppress granulopoiesis. In mouse models, ST6GAL1 from B cells alters the sialylation profile of bone marrow populations, and mature IgD+ B cells were enriched in sialylated bone marrow niches. In clinical multiple myeloma, ST6GAL1 abundance in the multiple myeloma cells negatively correlated with neutrophil abundance. These observations highlight not only the ability of medullary B cells to influence blood cell production, but also the disruption to normal granulopoiesis by excessive ST6GAL1 in malignancy.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | | | - Yuqi Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | | | - Joseph Ty Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| |
Collapse
|
39
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
40
|
Toonstra C, Hu Y, Zhang H. Deciphering the Roles of N-Glycans on Collagen-Platelet Interactions. J Proteome Res 2019; 18:2467-2477. [PMID: 31055923 DOI: 10.1021/acs.jproteome.9b00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is a potent agonist for platelet activation, presenting itself as a key contributor to coagulation via interactions with platelet glycoproteins. The fine details dictating platelet-collagen interactions are poorly understood. In particular, glycosylation could be a key determinant in the platelet-collagen interaction. Here, we report an affinity purification coupled to a mass spectrometry-based approach to elucidate the function of N-glycans in dictating platelet-collagen interactions. By integrative proteomic and glycoproteomic analysis of collagen-platelet interactive proteins with N-glycan manipulation, we demonstrate that the interaction of platelet adhesive receptors with collagen is highly N-glycan regulated, with glycans on many receptors playing positive roles in collagen binding, with glycans on other platelet glycoproteins exhibiting inhibitory roles on the binding to collagen. Our results significantly enhance our understanding of the details of glycans influencing the platelet-collagen interaction.
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Yingwei Hu
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Hui Zhang
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| |
Collapse
|
41
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
42
|
Pluthero FG, Kahr WHA. The Birth and Death of Platelets in Health and Disease. Physiology (Bethesda) 2019; 33:225-234. [PMID: 29638183 DOI: 10.1152/physiol.00005.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blood platelets are involved in a wide range of physiological responses and pathological processes. Recent studies have considerably advanced our understanding of the mechanisms of platelet production and clearance, revealing new connections between the birth and death of these tiny, abundant cells. Key insights have also been gained into how physiological challenges such as inflammation, infection, and chemotherapy can affect megakaryocytes, the cells that produce platelets.
Collapse
Affiliation(s)
- Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Biochemistry, University of Toronto , Toronto, Ontario , Canada.,Department of Paediatrics, Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children , Toronto, Ontario , Canada
| |
Collapse
|
43
|
Differences in IgG Fc Glycosylation Are Associated with Outcome of Pediatric Meningococcal Sepsis. mBio 2018; 9:mBio.00546-18. [PMID: 29921663 PMCID: PMC6016251 DOI: 10.1128/mbio.00546-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pediatric meningococcal sepsis often results in morbidity and/or death, especially in young children. Our understanding of the reasons why young children are more susceptible to both the meningococcal infection itself and a more fulminant course of the disease is limited. Immunoglobulin G (IgG) is involved in the adaptive immune response against meningococcal infections, and its effector functions are highly influenced by the glycan structure attached to the fragment crystallizable (Fc) region. It was hypothesized that IgG Fc glycosylation might be related to the susceptibility and severity of meningococcal sepsis. Because of this, the differences in IgG Fc glycosylation between 60 pediatric meningococcal sepsis patients admitted to the pediatric intensive care unit and 46 age-matched healthy controls were investigated, employing liquid chromatography with mass spectrometric detection of tryptic IgG glycopeptides. In addition, Fc glycosylation profiles were compared between patients with a severe outcome (death or the need for amputation) and a nonsevere outcome. Meningococcal sepsis patients under the age of 4 years showed lower IgG1 fucosylation and higher IgG1 bisection than age-matched healthy controls. This might be a direct effect of the disease; however, it can also be a reflection of previous immunologic challenges and/or a higher susceptibility of these children to develop meningococcal sepsis. Within the young patient group, levels of IgG1 hybrid-type glycans and IgG2/3 sialylation per galactose were associated with illness severity and severe outcome. Future studies in larger groups should explore whether IgG Fc glycosylation could be a reliable predictor for meningococcal sepsis outcome. Meningococcal sepsis causes significant mortality and morbidity worldwide, especially in young children. Identification of risk factors for a more fulminant infection would help to decide on appropriate treatment strategies for the individual patients. Immunoglobulin G (IgG) plays an essential role in humoral immune responses and is involved in the adaptive immune response against meningococcal infections. Of great influence on the receptor affinity of IgG is the N-glycan on its fragment crystallizable (Fc) portion. In the present study, we analyzed IgG glycosylation during the fast development of meningococcal sepsis in children, and we were able to identify glycosylation features that are different between meningococcal sepsis patients and healthy controls. These features might be indicative of a higher susceptibility to meningococcal sepsis. In addition, we found glycosylation features in the patients that were associated with illness severity and severe disease outcome, having the potential to serve as a disease outcome predictor.
Collapse
|
44
|
Hall PL, Lam C, Alexander JJ, Asif G, Berry GT, Ferreira C, Freeze HH, Gahl WA, Nickander KK, Sharer JD, Watson CM, Wolfe L, Raymond KM. Urine oligosaccharide screening by MALDI-TOF for the identification of NGLY1 deficiency. Mol Genet Metab 2018; 124:82-86. [PMID: 29550355 PMCID: PMC10508399 DOI: 10.1016/j.ymgme.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/07/2023]
Abstract
N-glycanase deficiency (NGLY1 deficiency, NGLY1-CDDG), the first autosomal recessive congenital disorder of N-linked deglycosylation (CDDG), is caused by pathogenic variants in NGLY1. The majority of affected individuals have been identified using exome or genome sequencing. To date, no reliable, clinically available biomarkers have been identified. Urine oligosaccharide analysis was included as part of a routine evaluation for possible biomarkers in patients with confirmed NGLY1-CDDG. During the qualitative review of oligosaccharide profiles by an experienced laboratory director an abnormal analyte with a proposed structure of Neu5Ac1Hex1GlcNAc1-Asn was identified in NGLY1-CDDG patient urine samples. The same species has been observed in profiles from individuals affected with aspartylglucosaminuria, although the complete spectra are not identical. Additional studies using tandem mass spectrometry confirmed the analyte's structure. In addition to the known NGLY1-CDDG patients identified by this analysis, a single case was identified in a population referred for clinical testing who subsequently had a diagnosis of NGLY1-CDDG confirmed by molecular testing. Urine oligosaccharide screening by MALDI-TOF MS can identify individuals with NGLY1-CDDG. In addition, this potential biomarker might also be used to monitor the effectiveness of therapeutic options as they become available.
Collapse
Affiliation(s)
| | - Christina Lam
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - John J Alexander
- EGL Genetic Diagnostics, LLC, Tucker, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ghazia Asif
- EGL Genetic Diagnostics, LLC, Tucker, GA, USA
| | - Gerard T Berry
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Ferreira
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA; Division of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Hudson H Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - William A Gahl
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States
| | - Kim K Nickander
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jon D Sharer
- Department of Genetics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States
| | - Kimiyo M Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
45
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
46
|
Frattini P, Villa C, De Santis F, Meregalli M, Belicchi M, Erratico S, Bella P, Raimondi MT, Lu Q, Torrente Y. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I. Hum Mol Genet 2018; 26:3682-3698. [PMID: 28666318 PMCID: PMC5886111 DOI: 10.1093/hmg/ddx252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
α-Dystroglycanopathies are a group of muscular dystrophies characterized by α-DG hypoglycosylation and reduced extracellular ligand-binding affinity. Among other genes involved in the α-DG glycosylation process, fukutin related protein (FKRP) gene mutations generate a wide range of pathologies from mild limb girdle muscular dystrophy 2I (LGMD2I), severe congenital muscular dystrophy 1C (MDC1C), to Walker-Warburg Syndrome and Muscle-Eye-Brain disease. FKRP gene encodes for a glycosyltransferase that in vivo transfers a ribitol phosphate group from a CDP –ribitol present in muscles to α-DG, while in vitro it can be secreted as monomer of 60kDa. Consistently, new evidences reported glycosyltransferases in the blood, freely circulating or wrapped within vesicles. Although the physiological function of blood stream glycosyltransferases remains unclear, they are likely released from blood borne or distant cells. Thus, we hypothesized that freely or wrapped FKRP might circulate as an extracellular glycosyltransferase, able to exert a “glycan remodelling” process, even at distal compartments. Interestingly, we firstly demonstrated a successful transduction of MDC1C blood-derived CD133+ cells and FKRP L276IKI mouse derived satellite cells by a lentiviral vector expressing the wild-type of human FKRP gene. Moreover, we showed that LV-FKRP cells were driven to release exosomes carrying FKRP. Similarly, we observed the presence of FKRP positive exosomes in the plasma of FKRP L276IKI mice intramuscularly injected with engineered satellite cells. The distribution of FKRP protein boosted by exosomes determined its restoration within muscle tissues, an overall recovery of α-DG glycosylation and improved muscle strength, suggesting a systemic supply of FKRP protein acting as glycosyltransferase.
Collapse
Affiliation(s)
- Paola Frattini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Francesca De Santis
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.,Novystem S.r.l., Milan, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.,Novystem S.r.l., Milan, Italy
| | | | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Qilong Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Department of Neurology, Carolinas Medical Center, Charlotte, North Carolina, NC, USA
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.,Novystem S.r.l., Milan, Italy.,Ystem S.r.l., Milan, Italy
| |
Collapse
|
47
|
Di W, Fujita A, Hamaguchi K, Delannoy P, Sato C, Kitajima K. Diverse subcellular localizations of the insect CMP-sialic acid synthetases. Glycobiology 2018; 27:329-341. [PMID: 27986833 DOI: 10.1093/glycob/cww128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/07/2016] [Indexed: 11/12/2022] Open
Abstract
The occurrence and biological importance of sialic acid (Sia) and its metabolic enzymes in insects have been studied using Drosophila melanogaster. The most prominent feature of D. melanogaster CMP-Sia synthetase (DmCSS) is its Golgi-localization, contrasted with nuclear localization of vertebrate CSSs. However, it remains unclear if the Golgi-localization is common to other insect CSSs and why it happens. To answer these questions, Aedes aegypti (mosquito) CSS (AaCSS) and Tribolium castaneum (beetle) CSS (TcCSS) were cloned and characterized for their activity and subcellular localization. Our new findings show: (1) AaCSS and TcCSS share a common overall structure with DmCSS in terms of evolutionarily conserved motifs and the absence of the C-terminal domain typical to vertebrate CSSs; (2) when expressed in mammalian and insect cells, AaCSS and TcCSS showed in vivo and in vitro CSS activities, similar to DmCSS. In contrast, when expressed in bacteria, they lacked CSS activity because the N-terminal hydrophobic region appeared to induce protein aggregation; (3) when expressed in Drosophila S2 cells, AaCSS and TcCSS were predominantly localized in the ER, but not in the Golgi. Surprisingly, DmCSS was mainly secreted into the culture medium, although partially detected in Golgi. Consistent with these results, the N-terminal hydrophobic regions of AaCSS and TcCSS functioned as a signal peptide to render them soluble in the ER, while the N-terminus of DmCSS functioned as a membrane-spanning region of type II transmembrane proteins whose cytosolic KLK sequence functioned as an ER export signal. Accordingly, the differential subcellular localization of insect CSSs are distinctively more diverse than previously recognized.
Collapse
Affiliation(s)
- Wu Di
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Program for Leading Graduate Schools, Integrative Graduate Education and Research Program in Green Natural Sciences, Nagoya University, Nagoya, Japan
| | - Akiko Fujita
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kayo Hamaguchi
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576-UGS-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Chihiro Sato
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Program for Leading Graduate Schools, Integrative Graduate Education and Research Program in Green Natural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Program for Leading Graduate Schools, Integrative Graduate Education and Research Program in Green Natural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
48
|
The storage lesions: From past to future. Transfus Clin Biol 2017; 24:277-284. [DOI: 10.1016/j.tracli.2017.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022]
|
49
|
Dougher CWL, Buffone A, Nemeth MJ, Nasirikenari M, Irons EE, Bogner PN, Lau JTY. The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. J Leukoc Biol 2017; 102:507-516. [PMID: 28550122 PMCID: PMC5505748 DOI: 10.1189/jlb.3a1216-538rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
Responding to systemic demands in producing and replenishing end-effector blood cells is predicated on the appropriate delivery and interpretation of extrinsic signals to the HSPCs. The data presented herein implicate the systemic, extracellular form of the glycosyltransferase ST6Gal-1 in the regulation of late-stage neutrophil development. ST6Gal-1 is typically a membrane-bound enzyme sequestered within the intracellular secretory apparatus, but an extracellular form is released into the blood from the liver. Both human and murine HSPCs, upon exposure to extracellular ST6Gal-1 ex vivo, exhibited decreased proliferation, diminished expression of the neutrophilic primary granule protein MPO, and decreased appearance of CD11b+ cells. HSPC suppression was preceded by decreased STAT-3 phosphorylation and diminished C/EBPα expression, without increased apoptosis, indicating attenuated G-CSF receptor signaling. A murine model to raise systemic ST6Gal-1 level was developed to examine the role of the circulatory enzyme in vivo. Our results show that systemic ST6Gal-1 modified the cell surface of the GMP subset of HSPCs and decreased marrow neutrophil reserves. Acute airway neutrophilic inflammation by LPS challenge was used to drive demand for new neutrophil production. Reduced neutrophil infiltration into the airway was observed in mice with elevated circulatory ST6Gal-1 levels. The blunted transition of GMPs into GPs in vitro is consistent with ST6Gal-1-attenuated granulopoiesis. The data confirm that circulatory ST6Gal-1 is a negative systemic regulator of granulopoiesis and moreover suggest a clinical potential to limit the number of inflammatory cells by manipulating blood ST6Gal-1 levels.
Collapse
Affiliation(s)
| | - Alexander Buffone
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| |
Collapse
|
50
|
Manhardt CT, Punch PR, Dougher CWL, Lau JTY. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 2017; 292:13514-13520. [PMID: 28717006 DOI: 10.1074/jbc.c117.795138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have documented that extracellular sialyltransferases can remodel both cell-surface and secreted glycans by a process other than the canonical cell-autonomous glycosylation that occurs within the intracellular secretory apparatus. Despite association of the abundance of these extracellular sialyltransferases, particularly ST6Gal-1, with disease states such as cancer and a variety of inflammatory conditions, the prevalence of this extrinsic glycosylation pathway in vivo remains unknown. Here we observed no significant extrinsic sialylation in resting mice, suggesting that extrinsic sialylation is not a constitutive process. However, extrinsic sialylation in the periphery could be triggered by inflammatory challenges, such as exposure to ionizing radiation or to bacterial lipopolysaccharides. Sialic acids from circulating platelets were used in vivo to remodel target cell surfaces. Platelet activation was minimally sufficient to elicit extrinsic sialylation, as demonstrated with the FeCl3 model of mesenteric artery thrombosis. Although extracellular ST6Gal-1 supports extrinsic sialylation, other sialyltransferases are present in systemic circulation. We also observed in vivo extrinsic sialylation in animals deficient in ST6Gal-1, demonstrating that extrinsic sialylation is not mediated exclusively by ST6Gal-1. Together, these observations form an emerging picture of glycans biosynthesized by the canonical cell-autonomous glycosylation pathway, but subjected to remodeling by extracellular glycan-modifying enzymes.
Collapse
Affiliation(s)
| | | | | | - Joseph T Y Lau
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|