1
|
Baker EC, Riley DG, Cardoso RC, Hairgrove TB, Long CR, Randel RD, Welsh TH. Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. BIOLOGY 2024; 13:915. [PMID: 39596870 PMCID: PMC11592456 DOI: 10.3390/biology13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
As the amygdala is associated with fear and anxiety, it is important to determine the potential effects of gestational stressors on behavior and stress responses in offspring. The objective of this study was to investigate the effects of prenatal transportation stress on amygdala gene expression in 25-day-old Brahman calves, focusing on sex-specific differences. Amygdala tissue samples from prenatally stressed (PNS) and control bull and heifer calves were analyzed using RNA sequencing. A thorough outlier detection process, utilizing visual inspection of multidimensional scaling plots, robust principal component analysis, and PCAGrid methods, led to the exclusion of 5 of 32 samples from subsequent analyses. Differential expression analysis revealed no significant treatment differences between the control and PNS groups within either sex. However, sex-specific differences in gene expression were identified in both the control and PNS groups. The control group showed seven differentially expressed genes between sexes, while ten were identified between PNS males and females, with seven located on the X chromosome. Among these was the ubiquitin-specific peptidase 9 X-linked gene, which plays a role in neurodevelopmental pathways. When comparing males to females, regardless of treatment, a total of 58 genes were differentially expressed, with 45 showing increased expression in females. Gene enrichment analysis indicated that many differentially expressed genes are associated with infectious disease-related pathways. Future research should explore amygdala size and functional responses to various postnatal stimuli.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Thomas B. Hairgrove
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Extension, College Station, TX 77843, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
2
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Romanowska J, Nustad HE, Page CM, Denault WRP, Lee Y, Magnus MC, Haftorn KL, Gjerdevik M, Novakovic B, Saffery R, Gjessing HK, Lyle R, Magnus P, Håberg SE, Jugessur A. The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome? Hum Genomics 2023; 17:35. [PMID: 37085889 PMCID: PMC10122315 DOI: 10.1186/s40246-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.
Collapse
Affiliation(s)
- Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- DeepInsight, 0154, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Gjerdevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Vogt PH, Rauschendorf MA, Zimmer J, Drummer C, Behr R. AZFa Y gene, DDX3Y, evolved novel testis transcript variants in primates with proximal 3´UTR polyadenylation for germ cell specific translation. Sci Rep 2022; 12:8954. [PMID: 35624115 PMCID: PMC9142519 DOI: 10.1038/s41598-022-12474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/31/2022] [Indexed: 01/15/2023] Open
Abstract
Translational control is a major level of gene expression regulation in the male germ line. DDX3Y located in the AZFa region of the human Y chromosome encodes a conserved RNA helicase important for translational control at the G1-S phase of the cell cycle. In human, DDX3Y protein is expressed only in premeiotic male germ cells. In primates, DDX3Y evolved a second promoter producing novel testis-specific transcripts. Here, we show primate species-specific use of alternative polyadenylation (APA) sites for these testis-specific DDX3Y transcript variants. They have evolved subsequently in the 3´UTRs of the primates´ DDX3Y transcripts. Whereas a distal APA site (PAS4) is still used for polyadenylation of most DDX3Y testis transcripts in Callithrix jacchus; two proximal APAs (PAS1; PAS2) are used predominantly in Macaca mulatta, in Pan trogloydates and in human. This shift corresponds with a significant increase of DDX3Y protein expression in the macaque testis tissue. In chimpanzee and human, shift to predominant use of the most proximal APA site (PAS1) is associated with translation of these DDX3Y transcripts in only premeiotic male germ cells. We therefore assume evolution of a positive selection process for functional DDX3Y testis transcripts in these primates which increase their stability and translation efficiency to promote its cell cycle balancing function in the human male germ line.
Collapse
Affiliation(s)
- P. H. Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - M-A. Rauschendorf
- Molecular Health GmbH, Kurfürsten-Anlage 21, D-69115 Heidelberg, Germany
| | - J. Zimmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - C. Drummer
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - R. Behr
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Yamazaki W, Badescu D, Tan SL, Ragoussis J, Taketo T. Effects of the Sex Chromosome Complement, XX, XO, or XY, on the Transcriptome and Development of Mouse Oocytes During Follicular Growth. Front Genet 2021; 12:792604. [PMID: 34987552 PMCID: PMC8721172 DOI: 10.3389/fgene.2021.792604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The sex chromosome complement, XX or XY, determines sexual differentiation of the gonadal primordium into a testis or an ovary, which in turn directs differentiation of the germ cells into sperm and oocytes, respectively, in eutherian mammals. When the X monosomy or XY sex reversal occurs, XO and XY females exhibit subfertility and infertility in the mouse on the C57BL/6J genetic background, suggesting that functional germ cell differentiation requires the proper sex chromosome complement. Using these mouse models, we asked how the sex chromosome complement affects gene transcription in the oocytes during follicular growth. An oocyte accumulates cytoplasmic components such as mRNAs and proteins during follicular growth to support subsequent meiotic progression, fertilization, and early embryonic development without de novo transcription. However, how gene transcription is regulated during oocyte growth is not well understood. Our results revealed that XY oocytes became abnormal in chromatin configuration, mitochondria distribution, and de novo transcription compared to XX or XO oocytes near the end of growth phase. Therefore, we compared transcriptomes by RNA-sequencing among the XX, XO, and XY oocytes of 50–60 µm in diameter, which were still morphologically comparable. The results showed that the X chromosome dosage limited the X-linked and autosomal gene transcript levels in XO oocytes whereas many genes were transcribed from the Y chromosome and made the transcriptome in XY oocytes closer to that in XX oocytes. We then compared the transcript levels of 3 X-linked, 3 Y-linked and 2 autosomal genes in the XX, XO, and XY oocytes during the entire growth phase as well as at the end of growth phase using quantitative RT-PCR. The results indicated that the transcript levels of most genes increased with oocyte growth while largely maintaining the X chromosome dosage dependence. Near the end of growth phase, however, transcript levels of some X-linked genes did not increase in XY oocytes as much as XX or XO oocytes, rendering their levels much lower than those in XX oocytes. Thus, XY oocytes established a distinct transcriptome at the end of growth phase, which may be associated with abnormal chromatin configuration and mitochondria distribution.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Seang Lin Tan
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- *Correspondence: Teruko Taketo,
| |
Collapse
|
7
|
Liu W, Li N, Zhang M, Arisha AH, Hua J. The role of Eif2s3y in mouse spermatogenesis. Curr Stem Cell Res Ther 2021; 17:750-755. [PMID: 34727865 DOI: 10.2174/1574888x16666211102091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig El_Sharkia 44519 . Egypt
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| |
Collapse
|
8
|
X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci 2021; 78:7043-7060. [PMID: 34633482 PMCID: PMC8558156 DOI: 10.1007/s00018-021-03945-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17β-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.
Collapse
|
9
|
Rohozinski J, Edwards CL. Does EIF2S3 Retrogene Activation Regulate Cancer/Testis Antigen Expression in Human Cancers? Front Oncol 2020; 10:590408. [PMID: 33330072 PMCID: PMC7734959 DOI: 10.3389/fonc.2020.590408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Cancer/Testis (C/T) antigens are a group of antigens, expressed in almost all types of cancers, which can elicit an immune response in patients whose cancers express these antigens. They are currently of great interest as targets for the development of cancer biomarkers and the creation of immunotherapies that directly target tumors in patients. Currently there are 280 C/T antigens and their variants listed on the C/T antigen data base. All known C/T antigens are encoded for by genes which are normally only expressed in the male testis; specifically during the process of spermatogenesis. They are therefore only expressed in germ cells that are in the process of differentiating into sperm. Expression of C/T antigens in tumors is thus a biological anomaly as, with the exception of germ cell tumors, cancers arise from somatic tissues which are not known to express any of the genes specifically involved in spermatogenesis. How and why C/T antigens are expressed in tumors remains an enigma. In this paper we present a hypothesis which proposes a mechanism for the activation of C/T antigen encoding genes in tumors. We propose that aberrant activation of the human autosomal retrogene, EIF2S3B, which regulates initiation and maintenance of spermatogenesis in males, is responsible for C/T expression. Because both male and females have tumors that express C/T antigens activation of spermatogenesis genes in tumors must involve a non-sex specific pathway. This can be explained by the copy number of EIF2S3 genes uniquely present within the human genome.
Collapse
Affiliation(s)
- Jan Rohozinski
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Creighton L Edwards
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Ewald AC, Kiernan EA, Roopra AS, Radcliff AB, Timko RR, Baker TL, Watters JJ. Sex- and Region-Specific Differences in the Transcriptomes of Rat Microglia from the Brainstem and Cervical Spinal Cord. J Pharmacol Exp Ther 2020; 375:210-222. [PMID: 32661056 PMCID: PMC7569313 DOI: 10.1124/jpet.120.266171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The neural control system underlying breathing is sexually dimorphic with males being more vulnerable to dysfunction. Microglia also display sex differences, and their role in the architecture of brainstem respiratory rhythm circuitry and modulation of cervical spinal cord respiratory plasticity is becoming better appreciated. To further understand the molecular underpinnings of these sex differences, we performed RNA sequencing of immunomagnetically isolated microglia from brainstem and cervical spinal cord of adult male and female rats. We used various bioinformatics tools (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, STRING, MAGICTRICKS) to functionally categorize identified gene sets, as well as to pinpoint common transcriptional gene drivers that may be responsible for the observed transcriptomic differences. We found few sex differences in the microglial transcriptomes derived from the brainstem, but several hundred genes were differentially expressed by sex in cervical spinal microglia. Comparing brainstem and spinal microglia within and between sexes, we found that the major factor guiding transcriptomic differences was central nervous system (CNS) location rather than sex. We further identified key transcriptional drivers that may be responsible for the transcriptomic differences observed between sexes and CNS regions; enhancer of zeste homolog 2 emerged as the predominant driver of the differentially downregulated genes. We suggest that functional gene alterations identified in metabolism, transcription, and intercellular communication underlie critical microglial heterogeneity and sex differences in CNS regions that contribute to respiratory disorders categorized by dysfunction in neural control. These data will also serve as an important resource data base to advance our understanding of innate immune cell contributions to sex differences and the field of respiratory neural control. SIGNIFICANCE STATEMENT: The contributions of central nervous system (CNS) innate immune cells to sexually dimorphic differences in the neural circuitry controlling breathing are poorly understood. We identify key transcriptomic differences, and their transcriptional drivers, in microglia derived from the brainstem and the C3-C6 cervical spinal cord of healthy adult male and female rats. Gene alterations identified in metabolism, gene transcription, and intercellular communication likely underlie critical microglial heterogeneity and sex differences in these key CNS regions that contribute to the neural control of breathing.
Collapse
Affiliation(s)
- Andrea C Ewald
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Kiernan
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar S Roopra
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Abigail B Radcliff
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca R Timko
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Tracy L Baker
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J Watters
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Douglas C, Turner JMA. Advances and challenges in genetic technologies to produce single-sex litters. PLoS Genet 2020; 16:e1008898. [PMID: 32701961 PMCID: PMC7377362 DOI: 10.1371/journal.pgen.1008898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is currently a requirement for single-sex litters for many applications, including agriculture, pest control, and reducing animal culling in line with the 3Rs principles: Reduction, Replacement, and Refinement. The advent of CRISPR/Cas9 genome editing presents a new opportunity with which to potentially generate all-female or all-male litters. We review some of the historical nongenetic strategies employed to generate single-sex litters and investigate how genetic and genome editing techniques are currently being used to produce all-male or all-female progeny. Lastly, we speculate on future technologies for generating single-sex litters and the possible associated challenges.
Collapse
Affiliation(s)
- Charlotte Douglas
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Hamada N, Hamazaki N, Shimamoto S, Hikabe O, Nagamatsu G, Takada Y, Kato K, Hayashi K. Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice. PLoS Genet 2020; 16:e1008676. [PMID: 32214314 PMCID: PMC7138321 DOI: 10.1371/journal.pgen.1008676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/07/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
A set of sex chromosomes is required for gametogenesis in both males and females, as represented by sex chromosome disorders causing agametic phenotypes. Although studies using model animals have investigated the functional requirement of sex chromosomes, involvement of these chromosomes in gametogenesis remains elusive. Here, we elicit a germ cell-intrinsic effect of sex chromosomes on oogenesis, using a novel culture system in which oocytes were induced from embryonic stem cells (ESCs) harboring XX, XO or XY. In the culture system, oogenesis using XO and XY ESCs was severely disturbed, with XY ESCs being more strongly affected. The culture system revealed multiple defects in the oogenesis of XO and XY ESCs, such as delayed meiotic entry and progression, and mispairing of the homologous chromosomes. Interestingly, Eif2s3y, a Y-linked gene that promotes proliferation of spermatogonia, had an inhibitory effect on oogenesis. This led us to the concept that male and female gametogenesis appear to be in mutual conflict at an early stage. This study provides a deeper understanding of oogenesis under a sex-reversal condition.
Collapse
Affiliation(s)
- Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - So Shimamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Orie Hikabe
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuki Takada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
13
|
Abstract
Background Monosomy of the X chromosome is the most frequent genetic abnormality in human as it is present in approximately 2% of all conceptions, although 99% of these embryos are spontaneously miscarried. In postnatal life, clinical features of Turner syndrome may include typical dysmorphic stigmata, short stature, sexual infantilism, and renal, cardiac, skeletal, endocrine and metabolic abnormalities. Main text Turner syndrome is due to a partial or total loss of the second sexual chromosome, resulting in the development of highly variable clinical features. This phenotype may not merely be due to genomic imbalance from deleted genes but may also result from additive influences on associated genes within a given gene network, with an altered regulation of gene expression triggered by the absence of the second sex chromosome. Current studies in human and mouse models have demonstrated that this chromosomal abnormality leads to epigenetic changes, including differential DNA methylation in specific groups of downstream target genes in pathways associated with several clinical and metabolic features, mostly on autosomal chromosomes. In this article, we begin exploring the potential involvement of both genetic and epigenetic factors in the origin of X chromosome monosomy. We review the dispute between the meiotic and post-zygotic origins of 45,X monosomy, by mainly analyzing the findings from several studies that compare gene expression of the 45,X monosomy to their euploid and/or 47,XXX trisomic cell counterparts on peripheral blood mononuclear cells, amniotic fluid, human fibroblast cells, and induced pluripotent human cell lines. From these studies, a profile of epigenetic changes seems to emerge in response to chromosomal imbalance. An interesting finding of all these studies is that methylation-based and expression-based pathway analyses are complementary, rather than overlapping, and are correlated with the clinical picture displayed by TS subjects. Conclusions The clarification of these possible causal pathways may have future implications in increasing the life expectancy of these patients and may provide informative targets for early pharmaceutical intervention.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito, Ecuador
| | - Roberto Lanes
- Pediatric Endocrine Unit, Hospital de Clínicas Caracas, Caracas, Venezuela
| |
Collapse
|
14
|
EIF2S3Y suppresses the pluripotency state and promotes the proliferation of mouse embryonic stem cells. Oncotarget 2017; 7:11321-31. [PMID: 26863630 PMCID: PMC4905476 DOI: 10.18632/oncotarget.7187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/23/2016] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic translation initiation factor 2, subunit 3, and structural gene Y-linked (EIF2S3Y) is essential for spermatogenesis in mouse models. However, its effect on embryonic stem (ES) cells remains unknown. In our observation, differentiated ES cells showed higher levels of EIF2S3Y. To further elucidate its role in ES cells, we utilized ES-derived EIF2S3Y-overexpressing cells and found that EIF2S3Y down-regulated the pluripotency state of ES cells, which might be explained by decreased histone methylation levels because of reduced levels of ten-eleven translocation 1 (TET1). Moreover, EIF2S3Y-overexpressing cells showed an enhanced proliferation rate, which might be due to increased Cyclin A and Cyclin E levels. This study highlighted novel roles of EIF2S3Y in the pluripotency maintenance and proliferation control of ES cells, which would provide an efficient model to study germ cell generation as well as cancer development using ES cells, thus providing valuable target for clinical applications of ES cells.
Collapse
|
15
|
Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016; 7:68. [PMID: 27999654 PMCID: PMC5154145 DOI: 10.1186/s13293-016-0115-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Stem Cell Biology and Developmental Genetics, Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, London, NW7 1AA UK
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 610 Charles Young Drive South, Los Angeles, CA 90095-7239 USA
| |
Collapse
|
16
|
Yamauchi Y, Riel JM, Ruthig VA, Ortega EA, Mitchell MJ, Ward MA. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 2016; 351:514-6. [PMID: 26823431 DOI: 10.1126/science.aad1795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian Y chromosome is considered a symbol of maleness, as it encodes a gene driving male sex determination, Sry, as well as a battery of other genes important for male reproduction. We previously demonstrated in the mouse that successful assisted reproduction can be achieved when the Y gene contribution is limited to only two genes, Sry and spermatogonial proliferation factor Eif2s3y. Here, we replaced Sry by transgenic activation of its downstream target Sox9, and Eif2s3y, by transgenic overexpression of its X chromosome-encoded homolog Eif2s3x. The resulting males with no Y chromosome genes produced haploid male gametes and sired offspring after assisted reproduction. Our findings support the existence of functional redundancy between the Y chromosome genes and their homologs encoded on other chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Jonathan M Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Victor A Ruthig
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Eglė A Ortega
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Michael J Mitchell
- Aix-Marseille Université, INSERM, GMGF UMR_S 910, 13385 Marseille, France
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
17
|
Taketo T. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 2016; 17:360-6. [PMID: 25578929 PMCID: PMC4430933 DOI: 10.4103/1008-682x.143306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.
Collapse
Affiliation(s)
- Teruko Taketo
- Department of Surgery, Research Institute of MUHC; Department of Biology; Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV, Johansson HE, Han JH, Imanishi-Kari T. Female Bias in Systemic Lupus Erythematosus is Associated with the Differential Expression of X-Linked Toll-Like Receptor 8. Front Immunol 2015; 6:457. [PMID: 26441962 PMCID: PMC4561825 DOI: 10.3389/fimmu.2015.00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of anti-nuclear antibodies. SLE is one of many autoimmune disorders that have a strong gender bias, with 70–90% of SLE patients being female. Several explanations have been postulated to account for the severity of autoimmune diseases in females, including hormonal, microbiota, and gene dosage differences. X-linked toll-like receptors (TLRs) have recently been implicated in disease progression in females. Our previous studies using the 564Igi mouse model of SLE on a Tlr7 and Tlr9 double knockout background showed that the presence of Tlr8 on both X chromosomes was required for the production of IgG autoantibodies, Ifn-I expression and granulopoiesis in females. Here, we show the results of our investigation into the role of Tlr8 expression in SLE pathogenesis in 564Igi females. Female mice have an increase in serum pathogenic anti-RNA IgG2a and IgG2b autoantibodies. 564Igi mice have also been shown to have an increase in neutrophils in vivo, which are major contributors to Ifn-α expression. Here, we show that neutrophils from C57BL/6 mice express Ifn-α in response to 564 immune complexes and TLR8 activation. Bone marrow-derived macrophages from 564Igi females have a significant increase in Tlr8 expression compared to male-derived cells, and RNA fluorescence in situ hybridization data suggest that Tlr8 may escape X-inactivation in female-derived macrophages. These results propose a model by which females may be more susceptible to SLE pathogenesis due to inefficient inactivation of Tlr8.
Collapse
Affiliation(s)
- Gabrielle McDonald
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Nicholas Cabal
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Augustin Vannier
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Benjamin Umiker
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | | | | | | | - Jin-Hwan Han
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Thereza Imanishi-Kari
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| |
Collapse
|
19
|
Hughes JF, Skaletsky H, Koutseva N, Pyntikova T, Page DC. Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals. Genome Biol 2015; 16:104. [PMID: 26017895 PMCID: PMC4446799 DOI: 10.1186/s13059-015-0667-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although the mammalian X and Y chromosomes evolved from a single pair of autosomes, they are highly differentiated: the Y chromosome is dramatically smaller than the X and has lost most of its genes. The surviving genes are a specialized set with extraordinary evolutionary longevity. Most mammalian lineages have experienced delayed, or relatively recent, loss of at least one conserved Y-linked gene. An extreme example of this phenomenon is in the Japanese spiny rat, where the Y chromosome has disappeared altogether. In this species, many Y-linked genes were rescued by transposition to new genomic locations, but until our work presented here, this has been considered an isolated case. RESULTS We describe eight cases of genes that have relocated to autosomes in mammalian lineages where the corresponding Y-linked gene has been lost. These gene transpositions originated from either the X or Y chromosomes, and are observed in diverse mammalian lineages: occurring at least once in marsupials, apes, and cattle, and at least twice in rodents and marmoset. For two genes--EIF1AX/Y and RPS4X/Y--transposition to autosomes occurred independently in three distinct lineages. CONCLUSIONS Rescue of Y-linked gene loss through transposition to autosomes has previously been reported for a single isolated rodent species. However, our findings indicate that this compensatory mechanism is widespread among mammalian species. Thus, Y-linked gene loss emerges as an additional driver of gene transposition from the sex chromosomes, a phenomenon thought to be driven primarily by meiotic sex chromosome inactivation.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA, 02142, USA. .,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, 02142, USA.
| | | | | | - David C Page
- Whitehead Institute, Cambridge, MA, 02142, USA. .,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
20
|
Matsubara Y, Kato T, Kashimada K, Tanaka H, Zhi Z, Ichinose S, Mizutani S, Morio T, Chiba T, Ito Y, Saga Y, Takada S, Asahara H. TALEN-Mediated Gene Disruption on Y Chromosome Reveals Critical Role of EIF2S3Y in Mouse Spermatogenesis. Stem Cells Dev 2015; 24:1164-70. [PMID: 25579647 DOI: 10.1089/scd.2014.0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Y chromosome plays a critical role in spermatogenesis. Formerly, it had been difficult to generate knockout mice with specific Y chromosome mutations using conventional gene-targeting strategies. Recently, a transcription activator-like effector nuclease (TALEN) was successfully used for editing a mouse Y chromosome-linked gene. Here, we report the generation of a mouse model with a mutation in EIF2S3Y, a Y chromosome-linked gene, and analysis of its phenotype. The mouse carrying a targeted mutation of EIF2S3Y was infertile and had hypoplastic testes. Histological and electron microscopic analyses showed that differentiation of spermatogonia was arrested at the stage of spermatogonial stem cells (undifferentiated spermatogonia) and that the progression of spermatogenesis was interrupted, resulting in azoospermia. Using TALEN, we verified that EIF2S3Y performs a key function in differentiation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Yohei Matsubara
- 1 Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The incidence of sexually dimorphic gene expression varies greatly between tissues in the rat. PLoS One 2014; 9:e115792. [PMID: 25548914 PMCID: PMC4280129 DOI: 10.1371/journal.pone.0115792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/01/2014] [Indexed: 11/20/2022] Open
Abstract
The sexually dimorphic expression of genes across 26 somatic rat tissues was using Affymetrix RAE-230 genechips. We considered probesets to be sexually dimorphically expressed (SDE) if they were measurably expressed above background in at least one sex, there was at least a two-fold difference in expression (dimorphism) between the sexes, and the differences were statistically significant after correcting for false discovery. 14.5% of expressed probesets were SDE in at least one tissue, with higher expression nearly twice as prevalent in males compared to females. Most were SDE in a single tissue. Surprisingly, nearly half of the probesets that were (SDE) in multiple tissues were oppositely sex biased in different tissues, and most SDE probesets were also expressed without sex bias in other tissues. Two genes were widely SDE: Xist (female-only) and Eif2s3y (male-only). The frequency of SDE probesets varied widely between tissues, and was highest in the duodenum (6.2%), whilst less than 0.05% in over half of the surveyed tissues. The occurrence of SDE probesets was not strongly correlated between tissues. Within individual tissues, however, relational networks of SDE genes were identified. In the liver, networks relating to differential metabolism between the sexes were seen. The estrogen receptor was implicated in differential gene expression in the duodenum. To conclude, sexually dimorphic gene expression is common, but highly tissue-dependent. Sexually dimorphic gene expression may provide insights into mechanisms underlying phenotypic sex differences. Online data are provided as a resource for further analyses (GEO reference GSE63362).
Collapse
|
22
|
Soh YQS, Alföldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, Fulton RS, Kremitzki C, Koutseva N, Mueller JL, Rozen S, Hughes JF, Owens E, Womack JE, Murphy WJ, Cao Q, de Jong P, Warren WC, Wilson RK, Skaletsky H, Page DC. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014; 159:800-13. [PMID: 25417157 DOI: 10.1016/j.cell.2014.09.052] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.
Collapse
Affiliation(s)
- Y Q Shirleen Soh
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica Alföldi
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Laura G Brown
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Patrick J Minx
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Natalia Koutseva
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jacob L Mueller
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Steve Rozen
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - Qing Cao
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Pieter de Jong
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Helen Skaletsky
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature 2014; 508:488-93. [DOI: 10.1038/nature13151] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
|
24
|
Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science 2014; 343:69-72. [PMID: 24263135 PMCID: PMC3880637 DOI: 10.1126/science.1242544] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822
| | - Jonathan M. Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822
| | - Monika A. Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822
| |
Collapse
|
25
|
Abstract
As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
Collapse
Affiliation(s)
- Paul J Bonthuis
- PO Box 800733, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| | | |
Collapse
|
26
|
Bund D, Buhmann R, Gökmen F, Zorn J, Kolb HJ, Schmetzer HM. Minor histocompatibility antigen UTY as target for graft-versus-leukemia and graft-versus-haematopoiesis in the canine model. Scand J Immunol 2013; 77:39-53. [PMID: 23126655 DOI: 10.1111/sji.12011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022]
Abstract
Male patients with female-stem-cell donors have better prognosis compared to female-to-male combinations due to Y-encoded minor histocompatibility antigens recognized by female-alloimmune-effector lymphocytes in the context of a graft-versus-leukemia (GvL) effect. We provide data in a dog-model that the minor histocompatibility antigen UTY might be a promising target to further improve GvL-immune reactions after allogeneic-stem-cell transplantations. Female-canine-UTY-specific T cells (CTLs) were stimulated in vitro using autologous-DCs loaded with three HLA-A2-restricted-UTY-derived peptides (3-fold-expansion), and specific T cell responses were determined in 3/6 female dogs. CTLs specifically recognized/lysed autologous-female-peptide-loaded DCs, but not naïve-autologous-female DCs and monocytes. They mainly recognized bone-marrow (BM) and to a lower extent DCs, monocytes, PBMCs and B-cells from DLA-identical-male littermates and peptide-loaded T2-cells in an MHC-I-restricted manner. A UTY-/male-specific reactivity was also obtained in vivo after stimulation of a female dog with DLA-identical-male PBMCs. In summary, we demonstrated natural UTY processing and presentation in dogs. We showed that female-dog CTLs were specifically stimulated by HLA-A2-restricted-UTY peptides, thereby enabling recognition of DLA-identical-male cells, mainly BM cells. These observations suggest UTY as a promising candidate-antigen to improve GvL-reactions in the course of immunotherapy.
Collapse
Affiliation(s)
- D Bund
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Chen X, McClusky R, Itoh Y, Reue K, Arnold AP. X and Y chromosome complement influence adiposity and metabolism in mice. Endocrinology 2013; 154:1092-104. [PMID: 23397033 PMCID: PMC3578992 DOI: 10.1210/en.2012-2098] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) "four core genotypes" mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X-Y gene pairs with similar coding sequences as candidates for causing these effects.
Collapse
|
28
|
UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet 2012; 8:e1002964. [PMID: 23028370 PMCID: PMC3459986 DOI: 10.1371/journal.pgen.1002964] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous XUtx− Y+ mutant male embryos should phenocopy homozygous XUtx− XUtx− females. However, XUtx− Y+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X+ YUty− mutant males are viable. In contrast, compound hemizygous XUtx− YUty− males phenocopy homozygous XUtx− XUtx− females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability. Trimethylation at Lysine 27 of histone H3 (H3K27me3) establishes a repressive chromatin state in silencing an array of crucial developmental genes. Polycomb repressive complex 2 (PRC2) catalyzes this precise posttranslational modification and is required in several critical aspects of development including Hox gene repression, gastrulation, X-chromosome inactivation, mono-allelic gene expression and imprinting, stem cell maintenance, and oncogenesis. Removal of H3K27 trimethylation has been proposed to be a mechanistic switch to activate large sets of genes in differentiating cells. Mouse Utx is an X-linked H3K27 demethylase that is essential for embryonic development. We now demonstrate that Uty, the Y-chromosome homolog of Utx, has overlapping redundancy with Utx in embryonic development. Mouse UTY has a polymorphism in the JmjC demethylase domain that renders the protein incapable of H3K27 demethylation. Therefore, the overlapping function of UTX and UTY in embryonic development is due to H3K27 demethylase independent mechanism. Moreover, the presence of UTY allows UTX-deficient mouse embryos to survive until birth. Thus, UTX H3K27 demethylation is not essential for embryonic viability. These intriguing results raise new questions on how H3K27me3 repression is removed in the early embryo.
Collapse
|
29
|
The presence of the Y-chromosome, not the absence of the second X-chromosome, alters the mRNA levels stored in the fully grown XY mouse oocyte. PLoS One 2012; 7:e40481. [PMID: 22792347 PMCID: PMC3391287 DOI: 10.1371/journal.pone.0040481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/08/2012] [Indexed: 12/23/2022] Open
Abstract
The oocytes of B6.YTIR sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.YTIR (XY) females and those of their XX littermates by cDNA microarray. 173 genes were found to be higher and 485 genes were lower in XY oocytes than in XX oocytes by at least 2-fold. We compared the transcript levels of selected genes by RT-PCR in XY and XX oocytes, as well as in XO oocytes missing paternal X-chromosomes. All genes tested showed comparable transcript levels between XX and XO oocytes, indicating that mRNA accumulation is well adjusted in XO oocytes. By contrast, in addition to Y-encoded genes, many genes showed significantly different transcript levels in XY oocytes. We speculate that the presence of the Y-chromosome, rather than the absence of the second X-chromosome, caused dramatic changes in the gene expression profile in the XY fully-grown oocyte.
Collapse
|
30
|
Lopes AM, Arnold-Croop SE, Amorim A, Carrel L. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 2011; 22:572-82. [PMID: 21769671 DOI: 10.1007/s00335-011-9350-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022]
Abstract
X Chromosome inactivation (XCI) silences one copy of most X-linked genes in female mammals. Notably, human and mouse differ strikingly in the number and organization of the genes that escape XCI. While on the human X Chromosome (Chr) escape genes are organized in domains, the few known genes that escape inactivation in the mouse appear to be isolated. Here we characterize the gene Cxorf26 and adjacent noncoding transcripts that map to XqD. We assess allelic expression in a nonrandomly X-inactivated cell line and directly demonstrate that 2610029G23Rik (Cxorf26) and its head-to-head neighbor (5530601H04Rik) escape X inactivation, creating a small escape domain. Both genes are robustly expressed from the inactive X Chr at approximately 50 and 30% of the expression levels of the active X, respectively. Additionally, consistent with XCI escape, the first exon of Cxorf26 is embedded within an unmethylated CpG island. To extend these results, we assayed ncRNAs adjacent to three other escape genes, Eif2s3x, Kdm5c, and Ddx3x. By allelic expression, three ncRNAs (D330035k16Rik, D930009k15Rik, and Gm16481) also escape X inactivation in the mouse, consistent with previous studies that reported female-biased expression. Altogether, these results establish that mouse escapees, like their human counterparts, can be clustered. Moreover, the fact that these ncRNAs are not found on the human X raises intriguing questions about potential regulatory roles of rapidly evolving ncRNAs in controlling escape gene expression.
Collapse
Affiliation(s)
- Alexandra M Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto, R. Dr. Roberto Frias, S/N, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|
31
|
Reinius B, Shi C, Hengshuo L, Sandhu KS, Radomska KJ, Rosen GD, Lu L, Kullander K, Williams RW, Jazin E. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 2010; 11:614. [PMID: 21047393 PMCID: PMC3091755 DOI: 10.1186/1471-2164-11-614] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/03/2010] [Indexed: 02/01/2023] Open
Abstract
Background Sexual dimorphism in brain gene expression has been recognized in several animal species. However, the relevant regulatory mechanisms remain poorly understood. To investigate whether sex-biased gene expression in mammalian brain is globally regulated or locally regulated in diverse brain structures, and to study the genomic organisation of brain-expressed sex-biased genes, we performed a large scale gene expression analysis of distinct brain regions in adult male and female mice. Results This study revealed spatial specificity in sex-biased transcription in the mouse brain, and identified 173 sex-biased genes in the striatum; 19 in the neocortex; 12 in the hippocampus and 31 in the eye. Genes located on sex chromosomes were consistently over-represented in all brain regions. Analysis on a subset of genes with sex-bias in more than one tissue revealed Y-encoded male-biased transcripts and X-encoded female-biased transcripts known to escape X-inactivation. In addition, we identified novel coding and non-coding X-linked genes with female-biased expression in multiple tissues. Interestingly, the chromosomal positions of all of the female-biased non-coding genes are in close proximity to protein-coding genes that escape X-inactivation. This defines X-chromosome domains each of which contains a coding and a non-coding female-biased gene. Lack of repressive chromatin marks in non-coding transcribed loci supports the possibility that they escape X-inactivation. Moreover, RNA-DNA combined FISH experiments confirmed the biallelic expression of one such novel domain. Conclusion This study demonstrated that the amount of genes with sex-biased expression varies between individual brain regions in mouse. The sex-biased genes identified are localized on many chromosomes. At the same time, sexually dimorphic gene expression that is common to several parts of the brain is mostly restricted to the sex chromosomes. Moreover, the study uncovered multiple female-biased non-coding genes that are non-randomly co-localized on the X-chromosome with protein-coding genes that escape X-inactivation. This raises the possibility that expression of long non-coding RNAs may play a role in modulating gene expression in domains that escape X-inactivation in mouse.
Collapse
Affiliation(s)
- Björn Reinius
- Department of Evolution and Development, EBC, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang F, Babak T, Shendure J, Disteche CM. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 2010; 20:614-22. [PMID: 20363980 DOI: 10.1101/gr.103200.109] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
X inactivation equalizes the dosage of gene expression between the sexes, but some genes escape silencing and are thus expressed from both alleles in females. To survey X inactivation and escape in mouse, we performed RNA sequencing in Mus musculus x Mus spretus cells with complete skewing of X inactivation, relying on expression of single nucleotide polymorphisms to discriminate allelic origin. Thirteen of 393 (3.3%) mouse genes had significant expression from the inactive X, including eight novel escape genes. We estimate that mice have significantly fewer escape genes compared with humans. Furthermore, escape genes did not cluster in mouse, unlike the large escape domains in human, suggesting that expression is controlled at the level of individual genes. Our findings are consistent with the striking differences in phenotypes between female mice and women with a single X chromosome--a near normal phenotype in mice versus Turner syndrome and multiple abnormalities in humans. We found that escape genes are marked by the absence of trimethylation at lysine 27 of histone H3, a chromatin modification associated with genes subject to X inactivation. Furthermore, this epigenetic mark is developmentally regulated for some mouse genes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
33
|
Goto Y, Kimura H. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 2010; 37:7416-28. [PMID: 19843608 PMCID: PMC2794193 DOI: 10.1093/nar/gkp860] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals, the dosage compensation of sex chromosomes between males and females is achieved by transcriptional inactivation of one of the two X chromosomes in females. However, a number of genes escape X-inactivation in humans. It remains poorly understood how the transcriptional activity of these ‘escape genes’ is maintained despite the chromosome-wide heterochromatin formation. To address this question, we analyzed a putative chromatin boundary between the inactivated RBM10 and an escape gene, UBA1/UBE1. Chromatin immunoprecipitation revealed that trimethylated histone H3 lysine 9 and H4 lysine 20 were enriched in the last exon through the proximal downstream region of RBM10, but were remarkably diminished at ∼2 kb upstream of the UBA1 transcription start site. Whereas RNA polymerase II was not loaded onto the intergenic region, CTCF (CCCTC binding factor) was enriched around the boundary, where some CpG sites were hypomethylated specifically on inactive X. These findings suggest that local DNA hypomethylation and CTCF binding are involved in the formation of a chromatin boundary, which protects the UBA1 escape gene against the chromosome-wide transcriptional silencing.
Collapse
Affiliation(s)
- Yuji Goto
- Nuclear Function and Dynamics Unit, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
34
|
Lopes AM, Burgoyne PS, Ojarikre A, Bauer J, Sargent CA, Amorim A, Affara NA. Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome. BMC Genomics 2010; 11:82. [PMID: 20122165 PMCID: PMC2837040 DOI: 10.1186/1471-2164-11-82] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/01/2010] [Indexed: 11/12/2022] Open
Abstract
Background X monosomic mice (39,XO) have a remarkably mild phenotype when compared to women with Turner syndrome (45,XO). The generally accepted hypothesis to explain this discrepancy is that the number of genes on the mouse X chromosome which escape X inactivation, and thus are expressed at higher levels in females, is very small. However this hypothesis has never been tested and only a small number of genes have been assayed for their X-inactivation status in the mouse. We performed a global expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice using the Illumina Mouse WG-6 v1_1 Expression BeadChip and an extensive validation by quantitative real time PCR, in order to identify which genes are expressed from both X chromosomes. Results We identified several genes on the X chromosome which are overexpressed in XX females, including those previously reported as escaping X inactivation, as well as new candidates. However, the results obtained by microarray and qPCR were not fully concordant, illustrating the difficulty in ascertaining modest fold changes, such as those expected for genes escaping X inactivation. Remarkably, considerable variation was observed between tissues, suggesting that inactivation patterns may be tissue-dependent. Our analysis also exposed several autosomal genes involved in mitochondrial metabolism and in protein translation which are differentially expressed between XX and XO mice, revealing secondary transcriptional changes to the alteration in X chromosome dosage. Conclusions Our results support the prediction that the mouse inactive X chromosome is largely silent, while providing a list of the genes potentially escaping X inactivation in rodents. Although the lower expression of X-linked genes in XO mice may not be relevant in the particular tissues/systems which are affected in human X chromosome monosomy, genes deregulated in XO mice are good candidates for further study in an involvement in Turner Syndrome phenotype.
Collapse
Affiliation(s)
- Alexandra M Lopes
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
35
|
Yamauchi Y, Riel JM, Wong SJ, Ojarikre OA, Burgoyne PS, Ward MA. Live offspring from mice lacking the Y chromosome long arm gene complement. Biol Reprod 2009; 81:353-61. [PMID: 19420387 PMCID: PMC2849819 DOI: 10.1095/biolreprod.109.076307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/09/2009] [Accepted: 04/22/2009] [Indexed: 11/01/2022] Open
Abstract
The mouse Y chromosome long arm (Yq) comprises approximately 70 Mb of repetitive, male-specific DNA together with a short (0.7-Mb) pseudoautosomal region (PAR). The repetitive non-PAR region (NPYq) encodes genes whose deficiency leads to subfertility and infertility, resulting from impaired spermiogenesis. In XSxr(a)Y*(X) mice, the only Y-specific material is provided by the Y chromosome short arm-derived sex reversal factor Sxr(a), which is attached to the X chromosome PAR; these males (NPYq- males) produce sperm with severely malformed heads and are infertile. In the present study, we investigated sperm function in these mice in the context of intracytoplasmic sperm injection (ICSI). Of 261 oocytes injected, 103 reached the 2-cell stage, and 46 developed to liveborn offspring. Using Xist RT-PCR genotyping as well as gamete and somatic cell karyotyping, all six predicted genotypes were identified among ICSI-derived progeny. The sex chromosome constitution of NPYq- males does not allow production of offspring with the same genotype, but one of the expected offspring genotypes is XY*(X)Sxr(a) (NPYq-(2)), which has the same Y gene complement as NPYq-. Analysis of NPYq-(2) males revealed they had normal-sized testes with ongoing spermatogenesis. Like NPYq- males, these males were infertile, and their sperm had malformed heads that nevertheless fertilized eggs via ICSI. In vitro fertilization (IVF), however, was unsuccessful. Overall, we demonstrated that a lack of NPYq-encoded genes does not interfere with the ability of sperm to fertilize oocytes via ICSI but does prevent fertilization via IVF. Thus, NPYq-encoded gene functions are not required after the sperm have entered the oocyte. The present work also led to development of a new mouse model lacking NPYq gene complement that will facilitate future studies of Y-encoded gene function.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Jonathan M. Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Samantha J. Wong
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Obah A. Ojarikre
- Division of Developmental Genetics, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Paul S. Burgoyne
- Division of Developmental Genetics, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Monika A. Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
36
|
Heaney JD, Michelson MV, Youngren KK, Lam MYJ, Nadeau JH. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 2009; 18:1395-404. [PMID: 19168544 PMCID: PMC2664146 DOI: 10.1093/hmg/ddp045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 01/28/2023] Open
Abstract
The agouti-yellow (A(y)) deletion is the only genetic modifier known to suppress testicular germ cell tumor (TGCT) susceptibility in mice or humans. The A(y) mutation deletes Raly and Eif2s2, and induces the ectopic expression of agouti, all of which are potential TGCT-modifying mutations. Here we report that the reduced TGCT incidence of heterozygous A(y) males and the recessive embryonic lethality of A(y) are caused by the deletion of Eif2s2, the beta subunit of translation initiation factor eIF2. We found that the incidence of affected males was reduced 2-fold in mice that were partially deficient for Eif2s2 and that embryonic lethality occurred near the time of implantation in mice that were fully deficient for Eif2s2. In contrast, neither reduced expression of Raly in gene-trap mice nor ectopic expression of agouti in transgenic or viable-yellow (A(vy)) mutants affected TGCT incidence or embryonic viability. In addition, we provide evidence that partial deficiency of Eif2s2 attenuated germ cell proliferation and differentiation, both of which are important to TGCT formation. These results show that germ cell development and TGCT pathogenesis are sensitive to the availability of the eIF2 translation initiation complex and to changes in the rate of translation.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA.
| | | | | | | | | |
Collapse
|
37
|
Ehmann H, Salzig C, Lang P, Friauf E, Nothwang HG. Minimal sex differences in gene expression in the rat superior olivary complex. Hear Res 2008; 245:65-72. [PMID: 18793710 DOI: 10.1016/j.heares.2008.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 01/12/2023]
Abstract
A critical issue in large-scale gene expression analysis is the impact of sexually dimorphic genes, which may confound the results when sampling across sexes. Here, we assessed, for the first time, sex differences at the transcriptome level in the auditory brainstem. To this end, microarray experiments covering the whole rat genome were performed in the superior olivary complex (SOC) of 16-day-old Sprague-Dawley rats. Sexually dimorphic genes were identified using two criteria: a 2-fold change and a P-value < 0.05. Only 12 out of 41,374 probes (0.03%) showed sexually dimorphic expression. For comparison, pituitaries from 60-day-old female and male rats were analyzed, as this gland is known to display many sex-specific features. Indeed, almost 40 times more probes, i.e. 460 (1.1%), displayed sexual dimorphism. Quantitative RT-PCR confirmed 47 out of 48 microarray results from both tissues. Taking microarray and qRT-PCR data together, the expression of six genes (Prl, Eif2s3y, Gnrhr, Pomc, Ddx3y, Akr1c6) was higher in the male SOC, whereas two genes were upregulated in the female SOC (LOC302172, Xist). Four of these genes are sex-chromosome linked (Eif2s3y, Ddx3y, LOC302172, Xist). In summary, our data indicate only minor and negligible sex-specific differences in gene expression within the SOC at P16.
Collapse
Affiliation(s)
- Heike Ehmann
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
38
|
Appleford NEJ, Wilson K, Houston F, Bruce LJ, Morrison A, Bishop M, Chalmers K, Miele G, Massey E, Prowse C, Manson J, Will RG, Clinton M, MacGregor I, Anstee DJ. alpha-Hemoglobin stabilizing protein is not a suitable marker for a screening test for variant Creutzfeldt-Jakob disease. Transfusion 2008; 48:1616-26. [PMID: 18503615 DOI: 10.1111/j.1537-2995.2008.01759.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND A test is needed to identify blood donors who are in the preclinical phase of variant Creutzfeldt-Jakob disease (CJD). alpha-Hemoglobin stabilizing protein (AHSP; syn. ERAF, EDRF) transcript levels are reduced in the blood of mice incubating transmissible spongiform encephalopathy. STUDY DESIGN AND METHODS Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were used to measure AHSP transcript and protein levels in normal blood donors, patients with CJD, and patients with other neuronal and hematologic diseases. Temporal AHSP expression was measured in sheep incubating bovine spongiform encephalopathy (BSE). RESULTS Quantitation of AHSP in peripheral blood from normal blood donors revealed that protein levels, but not transcript levels, are influenced by sex with higher levels found in males, suggesting posttranslational regulation involving the product of an X-linked gene. When AHSP mRNA and protein levels were quantitated in peripheral blood from patients with variant and sporadic CJD, no consistent differences from normal were found. Serial quantitation of AHSP in individual BSE-infected sheep did not reveal any disease-related changes. CONCLUSION We conclude that quantitation of AHSP is not likely to be useful for detection of preclinical prion disease in man.
Collapse
MESH Headings
- Anemia, Iron-Deficiency/blood
- Anemia, Iron-Deficiency/diagnosis
- Animals
- Biomarkers/blood
- Blood Donors
- Blood Proteins/genetics
- Cattle
- Creutzfeldt-Jakob Syndrome/blood
- Creutzfeldt-Jakob Syndrome/diagnosis
- Encephalopathy, Bovine Spongiform/blood
- Encephalopathy, Bovine Spongiform/diagnosis
- Enzyme-Linked Immunosorbent Assay
- Female
- Hemochromatosis/blood
- Hemochromatosis/diagnosis
- Humans
- Leukemia, Myelomonocytic, Chronic/blood
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Male
- Mass Screening/methods
- Molecular Chaperones/blood
- Molecular Chaperones/genetics
- Neural Tube Defects/blood
- Neural Tube Defects/diagnosis
- Polymorphism, Single Nucleotide
- Porphyrias/blood
- Porphyrias/diagnosis
- Prions/blood
- Prions/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/blood
- Reverse Transcriptase Polymerase Chain Reaction
- Sheep
Collapse
Affiliation(s)
- Nigel E J Appleford
- Bristol Institute for Transfusion Sciences, National Blood Service, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zinn AR, Kushner H, Ross JL. EFHC2 SNP rs7055196 is not associated with fear recognition in 45,X Turner syndrome. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:507-9. [PMID: 17948898 DOI: 10.1002/ajmg.b.30625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neurocognitive phenotype of Turner syndrome (TS) includes deficits in social cognitive skills such as recognition of the facial affect expressing fear. A TS social cognition locus was previously mapped to a 5 megabase interval of Xp11.3-p11.4 by Good et al. 2003. A recent study by these same workers found evidence for association of a SNP in the EFHC2 gene, rs7055196, within this interval with fear recognition in 45,X TS. As EFHC2 was not a biological candidate gene for this phenotype a priori, we sought to replicate their finding in an independent cohort of 45,X TS subjects, using the same instrument to measure facial affect fear recognition. In contrast to the previous results, we find no evidence of an association between rs7055196 genotype and fear recognition. Other variations in EFHC2 and other candidate genes should be tested for association with social cognition in 45,X TS.
Collapse
Affiliation(s)
- Andrew R Zinn
- Department of Internal Medicine and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
40
|
Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 2007; 4:e9. [PMID: 18208332 PMCID: PMC2213701 DOI: 10.1371/journal.pgen.0040009] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 12/04/2007] [Indexed: 11/19/2022] Open
Abstract
X chromosome inactivation in female mammals results in dosage compensation of X-linked gene products between the sexes. In humans there is evidence that a substantial proportion of genes escape from silencing. We have carried out a large-scale analysis of gene expression in lymphoblastoid cell lines from four human populations to determine the extent to which escape from X chromosome inactivation disrupts dosage compensation. We conclude that dosage compensation is virtually complete. Overall expression from the X chromosome is only slightly higher in females and can largely be accounted for by elevated female expression of approximately 5% of X-linked genes. We suggest that the potential contribution of escape from X chromosome inactivation to phenotypic differences between the sexes is more limited than previously believed.
Collapse
|
41
|
Xu J, Disteche CM. Sex differences in brain expression of X- and Y-linked genes. Brain Res 2006; 1126:50-5. [PMID: 16962077 DOI: 10.1016/j.brainres.2006.08.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/07/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The X chromosome plays an important role in brain development and function, as evidenced by its disproportionately high content of genes whose mutations cause mental retardation. These X-linked brain genes may play a role in sexual differentiation if they are expressed at a higher level in XX females than in XY males, due to incomplete X inactivation in females. The expression of several X escapee genes is indeed higher in brain tissues from females when compared to males. In mouse, some of the sex differences are only found in adult brains but not in other tissues. Determining the brain expression pattern of these X escapee genes is important for a better understanding of their role in the neurological phenotypes of XO Turner syndrome.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
42
|
Changolkar LN, Pehrson JR. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 2006; 26:4410-20. [PMID: 16738309 PMCID: PMC1489112 DOI: 10.1128/mcb.02258-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a novel thiol affinity chromatography approach to purify macroH2A1-containing chromatin fragments, we examined the distribution of macroH2A1 histone variants in mouse liver chromatin. We found that macroH2A1 was depleted on the transcribed regions of active genes. This depletion was observed on all of the 20 active genes that we probed, with only one site showing a small amount of enrichment. In contrast, macroH2A1 was concentrated on the inactive X chromosome, consistent with our previous immunofluorescence studies. This preferential localization was seen on genes that are active in liver, genes that are inactive in liver, and intergenic regions but was absent from four regions that escape X inactivation. These results support the hypothesis that macroH2As function as transcriptional repressors. Also consistent with this hypothesis is our finding that the heterochromatin protein HP1beta copurifies with the macroH2A1-containing chromatin fragments. This study presents the first detailed examination of the distribution of macroH2A1 variants on specific sequences. Our results indicate that macroH2As have complex distribution patterns that are influenced by both local factors and long-range mechanisms.
Collapse
Affiliation(s)
- Lakshmi N Changolkar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
Murphy WJ, Pearks Wilkerson AJ, Raudsepp T, Agarwala R, Schäffer AA, Stanyon R, Chowdhary BP. Novel gene acquisition on carnivore Y chromosomes. PLoS Genet 2006; 2:e43. [PMID: 16596168 PMCID: PMC1420679 DOI: 10.1371/journal.pgen.0020043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 02/08/2006] [Indexed: 11/19/2022] Open
Abstract
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority. Y chromosomes are typically gene poor and enriched with repetitive elements, making them difficult to sequence by standard methods. Hence, the Y chromosome gene repertoire in mammalian species other than human has not been explored until very recently. Here the authors used a directed approach to isolate Y chromosome genes of the domestic cat, an evolutionary divergent species from human and mouse. They found that the feline Y chromosome harbors its own unique set of genes that are expressed specifically in the testes, presumably where they play an important role in spermatogenesis. Paralleling the discoveries seen from the full human Y chromosome sequence, the feline Y chromosome has acquired and remodeled some genes from autosomes, while other genes have a shared ancestry with the X chromosome. However, none of the four new genes are found on the Y chromosomes of human or mouse, although two are shared with the canine Y chromosome. This work highlights the Y chromosome as a source of potential gene novelty in different species and suggests that more directed efforts at characterizing this hitherto understudied chromosome will further enrich our understanding of the types of genes found there and the roles they may play in mammalian spermatogenesis.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
44
|
Xu J, Watkins R, Arnold AP. Sexually dimorphic expression of the X-linked gene Eif2s3x mRNA but not protein in mouse brain. Gene Expr Patterns 2005; 6:146-55. [PMID: 16325480 DOI: 10.1016/j.modgep.2005.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Higher expression of X-linked genes in females might contribute to brain sexual differentiation. Although X-inactivation is thought to balance gene dosage between the two sexes, some X-linked genes escape X inactivation and therefore are expressed from both X chromosomes in females. Eif2s3x encodes subunit three of eukaryotic translation initiation factor 2, which regulates the rate of protein translation, and escapes X-inactivation in both humans and mice. By Northern blot analysis, we found Eif2s3x to be expressed higher in females than in males in developing and adult brains as well as adult liver. Gonadally intact XX mice had a higher level of Eif2s3x mRNA expression than XY mice regardless of whether they had testes or ovaries, suggesting that sexually dimorphic gene expression arises as a consequence of sex chromosome complement. In situ hybridization indicated that Eif2s3x mRNA was expressed preferentially in specific brain regions including the habenula, anterodorsal thalamic nucleus, hippocampus, hypothalamus, and cerebellum. Females had significantly higher levels of Eif2s3x mRNA expression than males in cortex, hippocampus and paraventricular nucleus but not in the habenula. The effect of a sex difference in Eif2s3x transcription, however, could potentially be offset by the additional expression in male brains of its Y-linked homologue Eif2s3y which was found in similar brain regions. The sex difference in Eif2s3x transcript appears not to be preserved at the protein level, since no difference in the levels of Eif2s3 protein was found between (1) males and females (2) XX and XY mice, or (3) XO and XX females.
Collapse
Affiliation(s)
- Jun Xu
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 90095-1606, USA
| | | | | |
Collapse
|
45
|
Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H. Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 2005; 3:e357. [PMID: 16201836 PMCID: PMC1251493 DOI: 10.1371/journal.pbio.0030357] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/19/2005] [Indexed: 11/28/2022] Open
Abstract
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past ∼63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome−derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function. In humans, retroposition--integration into the genome of DNA reverse transcribed from mRNA--has contributed to the formation of recent functional genes selected to enhance male germline function.
Collapse
Affiliation(s)
- Ana Claudia Marques
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Dupanloup
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Alexandre Reymond
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- 2Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Henrik Kaessmann
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Abstract
Post-transcriptional mechanisms play an important role in the biology of germ cells, where they control key developmental decisions in cell division, differentiation and death. Because these post-transcriptional controls are cell-type-specific, and often utilize germ-cell-specific RNA-binding proteins, they provide useful diagnostic markers for male infertility and testicular cancer. Investigation of the genetics of male infertility in men and model organisms suggests that disruption of post-transcriptional control mechanisms can cause specific germ cell pathologies, and these studies point to future possible therapeutic routes for restoring spermatogenesis.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | |
Collapse
|
47
|
Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD, Disteche CM. Boundaries between Chromosomal Domains of X Inactivation and Escape Bind CTCF and Lack CpG Methylation during Early Development. Dev Cell 2005; 8:31-42. [PMID: 15669143 DOI: 10.1016/j.devcel.2004.10.018] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.
Collapse
|
48
|
Craig IW, Mill J, Craig GM, Loat C, Schalkwyk LC. Application of microarrays to the analysis of the inactivation status of human X-linked genes expressed in lymphocytes. Eur J Hum Genet 2004; 12:639-46. [PMID: 15114374 DOI: 10.1038/sj.ejhg.5201212] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dosage compensation in mammalian females is achieved by the random inactivation of one X chromosome early in development; however, inactivation is not complete. In addition to a majority of pseudoautosomal loci, there are genes that are expressed from both the active and the inactive X chromosomes, and which are interspersed among other genes subject to regular dosage compensation. The patterns of X-linked gene expression in different tissues are of great significance for interpreting their impact on sex differences in development. We have examined the suitability and sensitivity of a microarray approach for determining the inactivation status of X-linked genes. Biotinylated cRNA from six female and six male lymphocyte samples were hybridised to Affymetrix HG-U133A microarrays. A total of 36 X-linked targets detected significantly higher levels of female transcripts, suggesting that these corresponded to sequences from loci that escaped, at least partly, from inactivation. These included genes for which previous experimental evidence, or circumstantial evidence, existed for their escape, and some novel candidates. Six of the targets were represented by more than one probe set, which gave independent support for the conclusions reached.
Collapse
Affiliation(s)
- Ian W Craig
- SGDP Centre, Institute of Psychiatry, Box PO 82, Denmark Hill, London SE5, UK.
| | | | | | | | | |
Collapse
|
49
|
Krauss V, Pecyna M, Kurz K, Sass H. Phylogenetic Mapping of Intron Positions: A Case Study of Translation Initiation Factor eIF2γ. Mol Biol Evol 2004; 22:74-84. [PMID: 15356279 DOI: 10.1093/molbev/msh255] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein that delivers the methionyl initiator tRNA to the small ribosomal subunit and releases it upon GTP hydrolysis after the recognition of the initiation codon. eIF2 is composed of three subunits, alpha, beta, and gamma. Subunit gamma shows the strongest conservation, and it confers both tRNA and GTP/GDP binding. Using intron positioning and protein sequence alignment, here we show that eIF2gamma is a suitable phylogenetic marker for eukaryotes. We determined or completed the sequences of 13 arthropod eIF2gamma genes. Analyzing the phylogenetic distribution of 52 different intron positions in 55 distantly related eIF2gamma genes, we identified ancient ones and shared derived introns in our data set. Obviously, intron positioning in eIF2gamma is evolutionarily conserved. However, there were episodes of complete and partial intron losses followed by intron gains. We identified 17 clusters of intron positions based on their distribution. The evolution of these clusters appears to be connected with preferred exon length and can be used to estimate the relative timing of intron gain because nearby precursor introns had to be erased from the gene before the new introns could be inserted. Moreover, we identified a putative case of intron sliding that constitutes a synapomorphic character state supporting monophyly of Coleoptera, Lepidoptera, and Diptera excluding Hymenoptera. We also performed tree reconstructions using the eIF2gamma protein sequences and intron positioning as phylogenetic information. Our results support the monophyly of Viridoplantae, Ascomycota, Homobasidiomyceta, and Apicomplexa.
Collapse
Affiliation(s)
- Veiko Krauss
- Department of Genetics, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
50
|
Isles AR, Davies W, Burrmann D, Burgoyne PS, Wilkinson LS. Effects on fear reactivity in XO mice are due to haploinsufficiency of a non-PAR X gene: implications for emotional function in Turner's syndrome. Hum Mol Genet 2004; 13:1849-55. [PMID: 15238507 DOI: 10.1093/hmg/ddh203] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent work has indicated altered emotional functioning in Turner's syndrome (TS) subjects (45,XO). We examined the role of X-chromosome deficiency on fear reactivity in X-monosomic mice (39,XO), and found that they exhibited anxiogenic behaviour relative to normal females (40,XX). A molecular candidate for this effect is Steroid sulfatase (Sts) as this is located in the pseudoautosomal region (PAR) of the X-chromosome and consequently is normally biallelically expressed. In addition, the steroid sulfatase enzyme (STS) is putatively linked to fear reactivity by an effect on GABAA receptors via the action of neurosteroids. Real-time PCR demonstrated that levels of Sts mRNA were reduced by half in the brains of 39,XO mice compared with 40,XX, and that expression levels of a number of GABAA subunits previously shown to be important components of fear processing (Gabra3, Gabra1 and Gabrg2) were also altered. However, 40,XY*X mice, in which the Y*X is a small chromosome comprising of a complete PAR and a small non-PAR segment of the X-chromosome, exhibited the same pattern of fear reactivity behaviour as 39,XO animals, but equivalent expression levels of Sts, Gabra1, Gabra3 and Gabrg2 to 40,XX females. This showed that although Sts may cause alterations in GABAA subunit expression, these changes do not result in increased fear reactivity. This suggests an alternative X-chromosome gene, that escapes inactivation, is responsible for the differences in fear reactivity between 39,XO and 40,XX mice. These findings inform the TS data, and point to novel genetic mechanisms that may be of general significance to the neurobiology of fear.
Collapse
Affiliation(s)
- Anthony R Isles
- Neurobiology and Developmental Genetics Programmes, The Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|