1
|
Kasbi NA, Jahani S, Ezabadi SG, Kohandel K, Khodaie F, Sahraian AH, Arab Bafrani M, Almasi-Hashiani A, Eskandarieh S, Sahraian MA. Environmental risk factors of late-onset multiple sclerosis: A population-based case-control study. J Clin Neurosci 2025; 135:111146. [PMID: 40015115 DOI: 10.1016/j.jocn.2025.111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Late-onset multiple sclerosis (LOMS) was increasingly reported over the past two decades. Understanding the risk factors associated with LOMS can help improve early diagnosis, prevention strategies, and patients' quality of life. This study aimed to assess various environmental risk factors in the patients with late-onset disease. METHODS This study utilized a population-based case-control study design. Primary data on verified LOMS cases were received from Iran's national MS registry, with additional information gained via telephone interviews. The potential risk factors for LOMS were examined using a questionnaire modified from global case-control studies. Age and sex-matched healthy controls were selected using face-to-face interviews. The collected data were analyzed using matched logistic regression in Stata software version 14, reporting adjusted odds ratios (OR), and 95 % confidence intervals, with a significance level set at p < 0.05. RESULTS This study examined 82 LOMS cases and 207 matched controls. The mean age of cases and controls was 61 years. The findings revealed that moderate and high sunlight exposure during adolescence were related with 0.33 (95 % CI: 0.18-0.58) and 0.15 (95 % CI: 0.04-0.46) times decreased risks of developing LOMS, respectively. Similarly, compared to those with low sunlight exposure, participants with high and moderate sunlight exposure during adulthood had a lower chance of developing MS disease (OR = 0.35, 95 % CI: 0.18-0.69) and (OR = 0.40 95 % CI: 0.18-0.85) receptively. Moreover, age at first menstruation (p = 0.45), age at first delivery (p = 0.49), abortion history (p = 0.79), and oral contraceptive consumption (p = 0.18) did not significantly differ among the groups (all p > 0.05). The odds of developing LOMS were 2.47 (95 % CI: 1.05-5.81) times higher for 10 to 90 min of heavy physical activity per week and 2.39 (95 % CI: 1.08-5.27) times higher for over 90 min. Various emotional stress, including death of a loved one (OR = 2.19, 95 % CI: 1.07-4.48), family disruption (OR = 2.93 95 % CI: 1.62-1.02), homelessness (OR = 9.1 95 % CI: 1.4-57.5), employment dismissal (OR = 4.0, 95 % CI: 1.31-12.1), and unemployment (OR = 3.1, 95 % CI: 1.25-7.62), were significantly associated with an increased risk of developing LOMS. Depression (OR = 5.5, 95 % CI: 2.7-10.9), measles (OR = 2.63, 95 % CI: 1.4-4.8), and a family history of MS (OR = 4.7, 95 % CI: 1.4-15.6) were also associated with higher risk of LOMS development. CONCLUSION Sunlight exposure was shown to have a strong protective impact against LOMS. Furthermore, intensive physical activity, psychological stresses such as family upheavals, medical illnesses such as depression, and a positive family history of MS may all be associated with an increased risk of LOMS. These findings emphasized the importance of preventive measures for older individuals affected by the disease.
Collapse
Affiliation(s)
- Naghmeh Abbasi Kasbi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jahani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ghane Ezabadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Kohandel
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Khodaie
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
4
|
Asmis R, Medrano MT, Chase Huizar C, Griffith WP, Forsthuber TG. Dietary Supplementation with 23-Hydroxy Ursolic Acid Reduces the Severity and Incidence of Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Nutrients 2024; 16:348. [PMID: 38337633 PMCID: PMC10856865 DOI: 10.3390/nu16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
23-Hydroxy ursolic acid (23-OH UA) is a potent atheroprotective and anti-obesogenic phytochemical, with anti-inflammatory and inflammation-resolving properties. In this study, we examined whether dietary 23-OH UA protects mice against the acute onset and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Female C57BL/6 mice were fed either a defined low-calorie maintenance diet (MD) or an MD supplemented with 0.2% wgt/wgt 23-OH UA for 5 weeks prior to actively inducing EAE and during the 30 days post-immunization. We observed no difference in the onset of EAE between the groups of mice, but ataxia and EAE disease severity were suppressed by 52% and 48%, respectively, and disease incidence was reduced by over 49% in mice that received 23-OH UA in their diet. Furthermore, disease-associated weight loss was strikingly ameliorated in 23-OH UA-fed mice. ELISPOT analysis showed no significant differences in frequencies of T cells producing IL-17 or IFN-γ between 23-OH UA-fed mice and control mice, suggesting that 23-OH UA does not appear to regulate peripheral T cell responses. In summary, our findings in EAE mice strongly suggest that dietary 23-OH UA may represent an effective oral adjunct therapy for the prevention and treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Megan T. Medrano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| |
Collapse
|
5
|
Turner TA, Lehman P, Ghimire S, Shahi SK, Mangalam A. Game of microbes: the battle within - gut microbiota and multiple sclerosis. Gut Microbes 2024; 16:2387794. [PMID: 39114974 PMCID: PMC11313001 DOI: 10.1080/19490976.2024.2387794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. While human leukocyte antigen (HLA) genes have emerged as the strongest genetic factor, consensus on environmental risk factors are lacking. Recently, trillions of microbes residing in our gut (microbiome) have emerged as a potential environmental factor linked with the pathobiology of MS as PwMS show gut microbial dysbiosis (altered gut microbiome). Thus, there has been a strong emphasis on understanding the factors (host and environmental) regulating the composition of the gut microbiota and the mechanism(s) through which gut microbes contribute to MS disease, especially through immune system modulation. A better understanding of these interactions will help harness the enormous potential of the gut microbiota as a therapeutic approach to treating MS.
Collapse
Affiliation(s)
- Ti-Ara Turner
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
| | - Peter Lehman
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K. Shahi
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Ma Q, Augusto DG, Montero-Martin G, Caillier SJ, Osoegawa K, Cree BAC, Hauser SL, Didonna A, Hollenbach JA, Norman PJ, Fernandez-Vina M, Oksenberg JR. High-resolution DNA methylation screening of the major histocompatibility complex in multiple sclerosis. Front Neurol 2023; 14:1326738. [PMID: 38145128 PMCID: PMC10739394 DOI: 10.3389/fneur.2023.1326738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Gonzalo Montero-Martin
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- HLA Histocompatibility and Immunogenetics Laboratory, Vitalant, Phoenix, AZ, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marcelo Fernandez-Vina
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Gutman EG, Fernandes RA, Raposo-Vedovi JV, Salvio AL, Duarte LA, Tardim CF, Costa VGC, Pereira VCSR, Bahia PRV, da Silva MM, Fontes-Dantas FL, Alves-Leon SV. Molecular Mimicry between SARS-CoV-2 Proteins and Human Self-Antigens Related with Autoimmune Central Nervous System (CNS) Disorders. Microorganisms 2023; 11:2902. [PMID: 38138047 PMCID: PMC10745528 DOI: 10.3390/microorganisms11122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
SARS-CoV-2 can trigger autoimmune central nervous system (CNS) diseases in genetically susceptible individuals, a mechanism poorly understood. Molecular mimicry (MM) has been identified in other viral diseases as potential triggers of autoimmune CNS events. This study investigated if MM is the process through which SARS-CoV-2 induces the breakdown of immune tolerance. The frequency of autoimmune CNS disorders was evaluated in a prospective cohort with patients admitted to the COVID-19 Intense Care Unity (ICU) in Rio de Janeiro. Then, an in silico analysis was performed to identify the conserved regions that share a high identity between SARS-CoV-2 antigens and human proteins. The sequences with significant identity and antigenic properties were then assessed for their binding capacity to HLA subtypes. Of the 112 patients included, 3 were classified as having an autoimmune disorder. A total of eleven combinations had significant linear and three-dimensional overlap. NMDAR1, MOG, and MPO were the self-antigens with more significant combinations, followed by GAD65. All sequences presented at least one epitope with strong or intermediate binding capacity to the HLA subtypes selected. This study underscores the possibility that CNS autoimmune attacks observed in COVID-19 patients, including those in our population, could be driven by MM in genetically predisposed individuals.
Collapse
Affiliation(s)
- Elisa Gouvea Gutman
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Clinical Medicine Post-Graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Renan Amphilophio Fernandes
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Jéssica Vasques Raposo-Vedovi
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Andreza Lemos Salvio
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Larissa Araujo Duarte
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Clinical Medicine Post-Graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Caio Faria Tardim
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | | | - Valéria Coelho Santa Rita Pereira
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | - Paulo Roberto Valle Bahia
- Department of Radiology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil;
| | - Marcos Martins da Silva
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | - Fabrícia Lima Fontes-Dantas
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro 20950-000, RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| |
Collapse
|
8
|
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
Collapse
|
9
|
Beecham AH, Amezcua L, Chinea A, Manrique CP, Gomez L, Martinez A, Beecham GW, Patsopoulos NA, Chitnis T, Weiner HL, De Jager PL, Burchard EG, Lund BT, Fitzgerald KC, Calabresi PA, Delgado SR, Oksenberg JR, McCauley JL. Ancestral risk modification for multiple sclerosis susceptibility detected across the Major Histocompatibility Complex in a multi-ethnic population. PLoS One 2022; 17:e0279132. [PMID: 36548255 PMCID: PMC9778564 DOI: 10.1371/journal.pone.0279132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) makes the largest genetic contribution to multiple sclerosis (MS) susceptibility, with 32 independent effects across the region explaining 20% of the heritability in European populations. Variation is high across populations with allele frequency differences and population-specific risk alleles identified. We sought to identify MHC-specific MS susceptibility variants and assess the effect of ancestral risk modification within 2652 Latinx and Hispanic individuals as well as 2435 Black and African American individuals. We have identified several novel susceptibility alleles which are rare in European populations including HLA-B*53:01, and we have utilized the differing linkage disequilibrium patterns inherent to these populations to identify an independent role for HLA-DRB1*15:01 and HLA-DQB1*06:02 on MS risk. We found a decrease in Native American ancestry in MS cases vs controls across the MHC, peaking near the previously identified MICB locus with a decrease of ~5.5% in Hispanics and ~0.4% in African Americans. We have identified several susceptibility variants, including within the MICB gene region, which show global ancestry risk modification and indicate ancestral differences which may be due in part to correlated environmental factors. We have also identified several susceptibility variants for which MS risk is modified by local ancestry and indicate true ancestral genetic differences; including HLA-DQB1*06:02 for which MS risk for European allele carriers is almost two times the risk for African allele carriers. These results validate the importance of investigating MS susceptibility at an ancestral level and offer insight into the epidemiology of MS phenotypic diversity.
Collapse
Affiliation(s)
- Ashley H. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Lilyana Amezcua
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Angel Chinea
- San Juan MS Center, Guaynabo, Puerto Rico, United States of America
| | - Clara P. Manrique
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Andrea Martinez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Gary W. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Nikolaos A. Patsopoulos
- Ann Romney Center for Neurological Diseases, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Tanuja Chitnis
- Ann Romney Center for Neurological Diseases, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Howard L. Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Philip L. De Jager
- Center For Translational & Computational Neuroimmunology and the Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Esteban G. Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Brett T. Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Kathryn C. Fitzgerald
- Department of Neurology and The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peter A. Calabresi
- Department of Neurology and The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Silvia R. Delgado
- Multiple Sclerosis Division, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
10
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Huang M, Xu H. Genetic susceptibility to autoimmunity-Current status and challenges. Adv Immunol 2022; 156:25-54. [PMID: 36410874 DOI: 10.1016/bs.ai.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoimmune diseases (ADs) often arise from a combination of genetic and environmental triggers that disrupt the immune system's capability to properly tolerate body self-antigens. Familial studies provided the earliest insights into the risk loci of such diseases, while genome-wide association studies (GWAS) significantly broadened the horizons. A drug targeting a prominent pathological pathway can be applied to multiple indications sharing overlapping mechanisms. Advances in genomic technologies used in genetic studies provide critical insights into future research on gene-environment interactions in autoimmunity. This Review summarizes the history and recent advances in the understanding of genetic susceptibility to ADs and related immune disorders, including coronavirus disease 2019 (COVID-19), and their indications for the development of diagnostic or prognostic markers for translational applications.
Collapse
Affiliation(s)
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Navel Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Akel O, Zhao LP, Geraghty DE, Lind A. High-resolution HLA class II sequencing of Swedish multiple sclerosis patients. Int J Immunogenet 2022; 49:333-339. [PMID: 35959717 PMCID: PMC9545082 DOI: 10.1111/iji.12594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic neurological disease believed to be caused by autoimmune pathogenesis. The aetiology is likely explained by a complex interplay between inherited and environmental factors. Genetic investigations into MS have been conducted for over 50 years, yielding >100 associations to date. Globally, the strongest linkage is with the human leukocyte antigen (HLA) HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype. Here, high-resolution sequencing of HLA was used to determine the alleles of DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 as well as their extended haplotypes and genotypes in 100 Swedish MS patients. Results were compared to 636 population controls. The heterogeneity in HLA associations with MS was demonstrated; among 100 patients, 69 extended HLA-DR-DQ genotypes were found. Three extended HLA-DR-DQ genotypes were found to be correlated to MS; HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype together with (A) HLA-DRB4*01:01:01//DRB4*01:01:01:01-DRB1*07:01:01-DQA1*02:01//02:01:01-DQB1*02:02:01, (B) HLA-DRBX*null-DRB1*08:01:01-DQA1*04:01:01-DQB1*04:02:01, and (C) HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01. At the allelic level, HLA-DRB3*01:01:02 was considered protective against MS. However, when combined with HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01, this extended haplotype was considered a predisposing risk factor. This highlights the limitations as included with investigations of single alleles relative to those of extended haplotypes/genotypes. In conclusion, with 69 genotypes presented among 100 patients, high-resolution sequencing was conducted to underscore the wide polymorphisms present among MS patients. Additional studies in larger cohorts will be of importance to define MS among the patient group not associated with HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01.
Collapse
Affiliation(s)
- Omar Akel
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| | - Lue Ping Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|
13
|
Babashpour S, Ataei M, Rastgtar Jazii F, Alaie S, Sanati MH. The HLA rs9267649 and CYP24A1 rs2248359 Variants are Associated with Multiple Sclerosis: A Study on Iranian Population. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3012. [PMID: 36381285 PMCID: PMC9618012 DOI: 10.30498/ijb.2022.276921.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies have shown that MS results from synergism between genetic and environmental factors. As a genetic factor, the rs9267649 variant through the regulatory effect on the HLA-DRB1 expression is involved in the MS development. In addition, vitamin D deficiency through involvement of rs2248359 variant of CYP24A1 has shown to play important role in the risk of MS. OBJECTIVES The aim of this study was to investigate both the HLA rs9267649 and CYP24A1 rs2248359 variants with risk of multiple sclerosis (MS) in Iranian population. MATERIALS AND METHODS The rs9267649 and rs2248359 variants were genotyped in 82 Iranian Relapsing-Remitting Multiple Sclerosis (RRMS) patients and 100 matched healthy controls, using the PCR-RFLP method. The genotype and allele frequencies were calculated and statistically analyzed. RESULTS A significant difference was found in the allele distribution for the both rs9267649 and rs2248359 variants, such that the A allele of rs9267649 and the C allele of rs2248359 were found to be more frequent in MS patients than in the healthy controls (p-value: 0.009, OR: 2.264, 95% CI: 1.211-4.231 and p-value: 0.028 OR: 1.594, 95% CI: 1.052-2.415), respectively. CONCLUSIONS The present research results provide further evidence on the association of the two variants rs9267649 of the HLA and rs2248359 of the CYP24A1 gene with MS etiology and an increased risk of MS in Iranian RRMS patients. However, further large-scale investigations in various ethnicities and in the functional genomics level are demanded to confirm our findings.
Collapse
Affiliation(s)
- Sevil Babashpour
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mitra Ataei
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Shekoofeh Alaie
- Neurologist, Member of Scientific Committee of Iranian MS Society, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Wang T, Shen C, Li H, Chen L, Liu S, Qi J. High resolution HLA-DRB1 analysis and shared molecular amino acid signature of DRβ1 molecules in Occult hepatitis B infection. BMC Immunol 2022; 23:22. [PMID: 35468727 PMCID: PMC9040378 DOI: 10.1186/s12865-022-00496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
AIM To investigate the association of human leukocyte antigen (HLA)-DRB1 alleles and the variations of polymorphic amino acid changes in DRβ1 chain in Shaanxi Han population with Occult hepatitis B infection (OBI). METHODS High-resolution HLA-DRB1 genotyping was performed in 107 OBI carriers and 280 normal controls. Sequence information was used to assign which amino acids were encoded at all polymorphic positions. Three-dimensional modeling was performed to explore the effect of the key residues on the HLA-DRB1 molecule. RESULTS Strong susceptible association for allele DRB1*07:01 was observed in OBI carriers. The amino acid variation at HLA-DRβ1 molecule revealed susceptible associations for residues Gln4β, Val57β(P9), Ser60β(P9) and Val78β(P4), the amino acids Arg4β, Asp57β(P9), Tyr60β(P9) and Tyr78β(P4) showed protective associations. CONCLUSION Alleles DRB1*07:01 showed strong susceptible associations in OBI carriers. The amino acid variations in DRβ molecules revealed significant molecular markers for susceptibility and protection from OBI in Shaanxi Han population.
Collapse
Affiliation(s)
- Tianju Wang
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Chunmei Shen
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China.,Key Laboratory of Environment and Gene Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hengxin Li
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Liping Chen
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Sheng Liu
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Jun Qi
- HLA Typing Laboratory, Blood Center of the Shaanxi Province, Institute of Xi'an Blood Bank, 407# Zhuque Ave, Xi'an, Shaanxi Province, 710061, People's Republic of China.
| |
Collapse
|
15
|
Barkhane Z, Elmadi J, Satish Kumar L, Pugalenthi LS, Ahmad M, Reddy S. Multiple Sclerosis and Autoimmunity: A Veiled Relationship. Cureus 2022; 14:e24294. [PMID: 35607574 PMCID: PMC9123335 DOI: 10.7759/cureus.24294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory illness that affects the central nervous system (CNS) when the body's immune system attacks its tissue. It is characterized by demyelination and varying degrees of axonal loss. This article has compiled various studies elaborating MS and other autoimmune diseases (ADs) co-occurrence. Several conditions that fall into this category, including type 1 diabetes (T1D), rheumatoid arthritis (RA), Guillain-Barre syndrome (GBS), myasthenia gravis (MG), and many others, are found in MS patients and their relatives, suggesting one or more common etiologic mechanisms, including genetic, environmental, and immunological factors, supporting the concept of a possible influence of poly-autoimmunity on MS and the rest of ADs, as well as providing a significant feature for early detection of the disease and also a potential treatment option by clinical neurologists.
Collapse
|
16
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
The Upper Motor Neuron-Improved Knowledge from ALS and Related Clinical Disorders. Brain Sci 2021; 11:brainsci11080958. [PMID: 34439577 PMCID: PMC8392624 DOI: 10.3390/brainsci11080958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Upper motor neuron (UMN) is a term traditionally used for the corticospinal or pyramidal tract neuron synapsing with the lower motor neuron (LMN) in the anterior horns of the spinal cord. The upper motor neuron controls resting muscle tone and helps initiate voluntary movement of the musculoskeletal system by pathways which are not completely understood. Dysfunction of the upper motor neuron causes the classical clinical signs of spasticity, weakness, brisk tendon reflexes and extensor plantar response, which are associated with clinically well-recognised, inherited and acquired disorders of the nervous system. Understanding the pathophysiology of motor system dysfunction in neurological disease has helped promote a greater understanding of the motor system and its complex cortical connections. This review will focus on the pathophysiology underlying progressive dysfunction of the UMN in amyotrophic lateral sclerosis and three other related adult-onset, progressive neurological disorders with prominent UMN signs, namely, primary lateral sclerosis, hereditary spastic paraplegia and primary progressive multiple sclerosis, to help promote better understanding of the human motor system and, by extension, related cortical systems.
Collapse
|
18
|
Osoegawa K, Creary LE, Montero-Martín G, Mallempati KC, Gangavarapu S, Caillier SJ, Santaniello A, Isobe N, Hollenbach JA, Hauser SL, Oksenberg JR, Fernández-Viňa MA. High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility. Front Immunol 2021; 12:644838. [PMID: 34211458 PMCID: PMC8240666 DOI: 10.3389/fimmu.2021.644838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Lisa E. Creary
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gonzalo Montero-Martín
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kalyan C. Mallempati
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Sridevi Gangavarapu
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Marcelo A. Fernández-Viňa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
19
|
Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 2021; 18:619-632. [PMID: 33094664 PMCID: PMC8078528 DOI: 10.1080/15476286.2020.1838783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune system is responsible for generating immunological response and immunological memory. Regulation of adaptive immunity including B cell and T cell biology was mainly understood from the protein and microRNA perspective. However, long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs (ncRNAs) that influence key factors in lymphocyte biology such as NOTCH, PAX5, MYC and EZH2. LncRNAs were described to modulate lymphocyte activation by regulating pathways such as NFAT, NFκB, MYC, interferon and TCR/BCR signalling (NRON, NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-AS1, TH2-LCR). Here we review lncRNA involvement in adaptive immunity and the implications for autoimmune diseases (multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis) and T/B cell leukaemias and lymphomas (CLL, MCL, DLBCL, T-ALL). It is becoming clear that lncRNAs are important in adaptive immune response and provide new insights into its orchestration.
Collapse
Affiliation(s)
- Pedro Faria Zeni
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Vinoy N, Sheeja N, Kumar S, Biswas L. Class II HLA (DRB1, & DQB1) alleles and IL7R (rs6897932) variants and the risk for Multiple Sclerosis in Kerala, India. Mult Scler Relat Disord 2021; 50:102848. [PMID: 33657520 DOI: 10.1016/j.msard.2021.102848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Different human leukocyte antigen (HLA) variants are known to modulate the risk of multiple sclerosis. The main objective of this study was to identify HLA-DRB1 and HLA-DQB1 alleles and Non -HLA gene IL7R (rs6897932) variants associated with MS. METHODS Patients attending the MS clinic, diagnosed with Multiple Sclerosis as per Mc Donald diagnostic criteria were the subjects in the study. The association of the highly polymorphic HLA-DRB1 and HLA-DQB1 loci was determined by high resolution tissue typing and the genotyping of the IL7R (rs6897932) variants was performed by Sanger sequencing in MS patients (n = 81) and healthy individuals (n = 82). RESULTS HLA-DRB1*15:01/15:02 alleles (OR = 3.65; p< 0.0001) and HLA-DQB1*06:02 (OR=4.19, p<0.0001) were found to be positively associated while HLA-DRB1*14:04:01 (OR = 0.21; p = 0.0009) was found to be negatively associated with MS. The most significant predisposing HLA haplotype was found to be DRB1*15:01-DQB1*06:02 (OR=5.69, p<0.0001). Univariate analysis of IL7R SNP (rs6897932) showed no significant association with MS in our population whereas analysis of HLA-DRB1 alleles and IL7R (rs6897932) genotypes showed significant association between the HLA-DRB1*15:01/15:02 and the IL7R (rs6897932) CC genotype (OR = 3.58, p = 0.0002). CONCLUSION HLA-DRB1*15:01, 15:02 and DQB1*06:02 are the predisposing alleles while HLA-DRB1*14:04 is the protective allele for MS in our population.
Collapse
Affiliation(s)
- Navia Vinoy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Neethu Sheeja
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Suresh Kumar
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| | - Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India.
| |
Collapse
|
21
|
Dashti M, Ateyah K, Alroughani R, Al-Temaimi R. Replication analysis of variants associated with multiple sclerosis risk. Sci Rep 2020; 10:7327. [PMID: 32355262 PMCID: PMC7193640 DOI: 10.1038/s41598-020-64432-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex chronic neurodegenerative disorder resulting from an autoimmune reaction against myelin. So far, many genetic variants have been reported to associate with MS risk however their association is inconsistent across different populations. Here we investigated the association of the most consistently reported genetic MS risk variants in the Kuwaiti MS population in a case-control study designs. Of the 94 reported MS risk variants four variants showed MS risk association in Arabs exome analysis (EVI5 rs11808092 p = 0.0002; TNFRSF1A rs1800693 p = 0.00003; MTHFR rs1801131 p = 0.038; and CD58 rs1414273 p = 0.00007). Replication analysis in Kuwaiti MS cases and healthy controls confirmed EVI5 rs11808092A (OR: 1.6, 95%CI: 1.19–2.16, p = 0.002) and MTHFR rs1801131G (OR: 1.79, 95%CI: 1.3–2.36, p = 0.001) as MS risk genetic factors, while TNFRSF1A rs1800693C had a marginal MS risk association (OR: 1.36, 95%CI: 1.04–1.78, p = 0.025) in the Kuwaiti population. CD58 rs1414273 did not sustain risk association (p = 0.37). In conclusion, EVI5 rs11808092A, TNFRSF1A rs1800693C and MTHFR rs1801131G are MS risk factors in the Kuwaiti population. Further investigations into their roles in MS pathogenesis and progression are merited.
Collapse
Affiliation(s)
- Mohammad Dashti
- Genetics and Bioinformatics department, Dasman Diabetes Institute, Sharq, Kuwait City, Kuwait
| | - Khadijah Ateyah
- Undergraduate medical program, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| |
Collapse
|
22
|
Hedström AK, Adams C, Shao X, Schaefer C, Olsson T, Barcellos LF, Alfredsson L. Breastfeeding is associated with reduced risk of multiple sclerosis in males, predominantly among HLA-DRB1*15:01 carriers. Mult Scler J Exp Transl Clin 2020; 6:2055217320928101. [PMID: 32728476 PMCID: PMC7364805 DOI: 10.1177/2055217320928101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breastfeeding as an infant appears protective against later development of some autoimmune diseases, but research into its influence on multiple sclerosis (MS) risk has yielded inconclusive results. OBJECTIVE We investigated the possible impact of breastfeeding on MS risk. METHODS We used two population-based case-control studies comprising 3670 cases and 6737 matched controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between MS and exposure to prolonged breastfeeding (4 months or longer) versus reduced breastfeeding (less than 4 months). A meta-analysis of case-control studies that assessed the impact of breastfeeding on MS risk among women and men was conducted. RESULTS Prolonged breastfeeding was associated with reduced MS risk among men (OR 0.7, 95% CI 0.5-0.9) but not among women (OR 0.9, 95% CI 0.8-1.1). Among men, a synergistic effect was observed between HLA-DRB1*15:01 carrier status and reduced breastfeeding. CONCLUSIONS Findings from the current study add to accumulating evidence that breastfeeding may be a modifiable protective factor for reducing the risk of MS in offspring. When possible, mothers should be supported to breastfeed their infants; however, the mechanism of a sex-specific biologic effect of breastfeeding on MS risk is unclear.
Collapse
Affiliation(s)
- A K Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - C Adams
- Genetic Epidemiology and Genomics Lab, School of Public Health, University of California, USA
| | - X Shao
- Genetic Epidemiology and Genomics Lab, Division of Epidemiology, School of Public Health, University of California, USA
| | - C Schaefer
- Kaiser Permanente Division of Research, USA
| | - T Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - L F Barcellos
- Genetic Epidemiology and Genomics Lab, Division of Epidemiology, School of Public Health, University of California, USA
- Kaiser Permanente Division of Research, USA
| | - L Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
23
|
Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 2020; 3:100039. [PMID: 32743522 PMCID: PMC7388381 DOI: 10.1016/j.jtauto.2020.100039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged to be an autoimmune disease affecting the neuronal myelin structure of the CNS. Autoantigens recognized as the target of this autoimmune process are: myelin basal protein, anti-proteolipid protein, antimyelin-associated glycoprotein and antimyelin-based oligodendrocytic basic protein. Ample evidence supports the idea of a dysregulation of immunological tolerance towards self-antigens of neuronal myelin structure triggered by one or more viral or bacterial microbial agents in predisposed HLA gene subjects. Genetic predisposition to MS has been highlighted by numerous studies associating the disease to specific HLA haplotypes. Moreover, a wide range of evidence supports the fact that MS may be consequence of one or more viral or bacterial infections such as measles virus, EBV, HHV6, HZV, Chlamydia pneumoniae, Helicobacter Pylori, and other microbial agents. Microbiota elements also seems to have a role on the determinism of the disease as a pathogenic or protective factor. The autoimmune pathogenetic process could arise when a molecular mimicry between a foreign microbial antigen and an auto-antigen occurs in an HLA gene subject competent for that particular antigen. The antigen-presenting cells in this case would induce the activation of a specific Th clone causing a cross-reaction between a foreign antigen and an autoantigen resulting in an autoimmune response. A multifactorial ethiopathogenetic model based on immunomediation is a reliable hypothesis for multiple sclerosis. Evidence found in the scientific literature makes it possible to reconstruct this etiopathogenetic hypothesis for MS. HLA gene predisposition, correlation with infections, molecular mimicry and other immunological data are reported.
Collapse
Affiliation(s)
- Salvatore Cavallo
- Expert Doctor in Non-Conventional Medicine, Professor and Member of the Board of the MMS, MMS (Medicina di Modulazione Dei Sistemi) Roma, Salvatore Cavallo Via G.B. Pergolesi, 28, 75100, Matera, Italy
| |
Collapse
|
24
|
Mamedov A, Vorobyeva N, Filimonova I, Zakharova M, Kiselev I, Bashinskaya V, Baulina N, Boyko A, Favorov A, Kulakova O, Ziganshin R, Smirnov I, Poroshina A, Shilovskiy I, Khaitov M, Sykulev Y, Favorova O, Vlassov V, Gabibov A, Belogurov A. Protective Allele for Multiple Sclerosis HLA-DRB1*01:01 Provides Kinetic Discrimination of Myelin and Exogenous Antigenic Peptides. Front Immunol 2020; 10:3088. [PMID: 32010139 PMCID: PMC6978714 DOI: 10.3389/fimmu.2019.03088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Risk of the development of multiple sclerosis (MS) is known to be increased in individuals bearing distinct class II human leukocyte antigen (HLA) variants, whereas some of them may have a protective effect. Here we analyzed distribution of a highly polymorphous HLA-DRB1 locus in more than one thousand relapsing-remitting MS patients and healthy individuals of Russian ethnicity. Carriage of HLA-DRB1*15 and HLA-DRB1*03 alleles was associated with MS risk, whereas carriage of HLA-DRB1*01 and HLA-DRB1*11 was found to be protective. Analysis of genotypes revealed the compensatory effect of risk and resistance alleles in trans. We have identified previously unknown MBP153-161 peptide located at the C-terminus of MBP protein and MBP90-98 peptide that bound to recombinant HLA-DRB1*01:01 protein with affinity comparable to that of classical antigenic peptide 306-318 from the hemagglutinin (HA) of the influenza virus demonstrating the ability of HLA-DRB1*01:01 to present newly identified MBP153-161 and MBP90-98 peptides. Measurements of kinetic parameters of MBP and HA peptides binding to HLA-DRB1*01:01 catalyzed by HLA-DM revealed a significantly lower rate of CLIP exchange for MBP153-161 and MBP90-98 peptides as opposed to HA peptide. Analysis of the binding of chimeric MBP-HA peptides demonstrated that the observed difference between MBP153-161, MBP90-98, and HA peptide epitopes is caused by the lack of anchor residues in the C-terminal part of the MBP peptides resulting in a moderate occupation of P6/7 and P9 pockets of HLA-DRB1*01:01 by MBP153-161 and MBP90-98 peptides in contrast to HA308-316 peptide. This leads to the P1 and P4 docking failure and rapid peptide dissociation and release of empty HLA-DM-HLA-DR complex. We would like to propose that protective properties of the HLA-DRB1*01 allele could be directly linked to the ability of HLA-DRB1*01:01 to kinetically discriminate between antigenic exogenous peptides and endogenous MBP derived peptides.
Collapse
Affiliation(s)
- Azad Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ioanna Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Natalia Baulina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Neuroimmunological Department of the Federal Center of Cerebrovascular Diseases and Stroke, Moscow, Russia
| | - Alexander Favorov
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD, United States.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia
| | - Alina Poroshina
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Yuri Sykulev
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Olga Favorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
25
|
Raphael I, Gomez-Rivera F, Raphael RA, Robinson RR, Nalawade S, Forsthuber TG. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight 2019; 4:132527. [PMID: 31852844 DOI: 10.1172/jci.insight.132527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease where the underlying mechanisms driving disease progression have remained unresolved. HLA-DR2b (DRB1*15:01) is the most common genetic risk factor for MS. Additionally, TNF and its receptors TNFR1 and TNFR2 play key roles in MS and its preclinical animal model, experimental autoimmune encephalomyelitis (EAE). TNFR2 is believed to ameliorate CNS pathology by promoting remyelination and Treg function. Here, we show that transgenic mice expressing the human MHC class II (MHC-II) allele HLA-DR2b and lacking mouse MHC-II and TNFR2 molecules, herein called DR2bΔR2, developed progressive EAE, while disease was not progressive in DR2b littermates. Mechanistically, expression of the HLA-DR2b favored Th17 cell development, whereas T cell-independent TNFR2 expression was critical for restraining of an astrogliosis-induced proinflammatory milieu and Th17 cell responses, while promoting remyelination. Our data suggest the TNFR2 signaling pathway as a potentially novel mechanism for curtailing astrogliosis and promoting remyelination, thus providing new insights into mechanisms limiting progressive MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA.,Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
26
|
Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. The Contribution of Major Histocompatibility Complex Class II Genes to an Association with Autoimmune Diseases. Acta Naturae 2019; 11:4-12. [PMID: 31993230 PMCID: PMC6977962 DOI: 10.32607/20758251-2019-11-4-4-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic studies of patients with autoimmune diseases have shown that one of the most important roles in the developing of these diseases is played by a cluster of genes of the major histocompatibility complex (MHC), as compared with other genome areas. Information on the specific contribution of MHC alleles, mostly MHC class II ones, to the genetic predisposition to autoimmune diseases is crucial for understanding their pathogenesis. This review dwells on the most relevant aspects of this problem: namely, the correlation between carriage of certain MHC II alleles and an increased (positively associated allele) or reduced (negatively associated allele) probability of developing the most common autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, autoimmune thyroiditis, etc. The most universal haplotypes, DR3-DQ2 and DR4-DQ8, are positively associated with many of these diseases, while the universal allele HLA-DRB1*0701 is protective.
Collapse
Affiliation(s)
- M. Yu. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - T. A. Belyanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. V. Sokolov
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
27
|
van Rensburg SJ, Peeters AV, van Toorn R, Schoeman J, Moremi KE, van Heerden CJ, Kotze MJ. Identification of an iron-responsive subtype in two children diagnosed with relapsing-remitting multiple sclerosis using whole exome sequencing. Mol Genet Metab Rep 2019; 19:100465. [PMID: 30963028 PMCID: PMC6434495 DOI: 10.1016/j.ymgmr.2019.100465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a disorder related to demyelination of axons. Iron is an essential cofactor in myelin synthesis. Previously, we described two children (males of mixed ancestry) with relapsing-remitting multiple sclerosis (RRMS) where long-term remission was achieved by regular iron supplementation. A genetic defect in iron metabolism was postulated, suggesting that more advanced genetic studies could shed new light on disease pathophysiology related to iron. METHODS Whole exome sequencing (WES) was performed to identify causal pathways. Blood tests were performed over a 10 year period to monitor the long-term effect of a supplementation regimen. Clinical wellbeing was assessed quarterly by a pediatric neurologist and regular feedback was obtained from the schoolteachers. RESULTS WES revealed gene variants involved in iron absorption and transport, in the transmembrane protease, serine 6 (TMPRSS6) and transferrin (TF) genes; multiple genetic variants in CUBN, which encodes cubilin (a receptor involved in the absorption of vitamin B12 as well as the reabsorption of transferrin-bound iron and vitamin D in the kidneys); SLC25A37 (involved in iron transport into mitochondria) and CD163 (a scavenger receptor involved in hemorrhage resolution). Variants were also found in COQ3, involved with synthesis of Coenzyme Q10 in mitochondria. Neither of the children had the HLA-DRB1*1501 allele associated with increased genetic risk for MS, suggesting that the genetic contribution of iron-related genetic variants may be instrumental in childhood MS. In both children the RRMS has remained stable without activity over the last 10 years since initiation of nutritional supplementation and maintenance of normal iron levels, confirming the role of iron deficiency in disease pathogenesis in these patients. CONCLUSION Our findings highlight the potential value of WES to identify heritable risk factors that could affect the reabsorption of transferrin-bound iron in the kidneys causing sustained iron loss, together with inhibition of vitamin B12 absorption and vitamin D reabsorption (CUBN) and iron transport into mitochondria (SLC25A37) as the sole site of heme synthesis. This supports a model for RRMS in children with an apparent iron-deficient biochemical subtype of MS, with oligodendrocyte cell death and impaired myelination possibly caused by deficits of energy- and antioxidant capacity in mitochondria.
Collapse
Key Words
- CNS, central nervous system
- CoQ, Coenzyme Q
- DFO, desferroxamine mesylate
- DIS, dissemination in space
- DIT, dissemination in time
- DMT, disease modifying therapy
- EDSS, Expanded Disability Status Scale
- ETC, electron transport chain
- GWAS, genome-wide association study
- Genetic variants
- HDL, high density lipoprotein
- HERV-W, human endogenous retrovirus W
- HLA, human leukocyte antigen
- HREC, human research ethics committee
- IPMSSG, International Pediatric Multiple Sclerosis Study Group
- IRE, iron-response element
- Iron deficiency
- MGA1, juvenile hereditary megaloblastic anemia 1
- MRI, magnetic resonance imaging
- MS, Multiple sclerosis
- MSRV, MS-associated retrovirus
- MST1R, macrophage stimulating-1 receptor
- Mitochondria
- Oxidative stress
- PSGT, pathology supported genetic testing
- Pediatric onset multiple sclerosis
- ROS, reactive oxygen species
- RRMS, relapsing-remitting MS
- SAMe, S-adenosyl methionine
- SDHB, iron-protein subunit of Complex II
- TF, transferrin
- TMPRSS6, transmembrane protease, serine 6
- WES, whole exome sequencing
- Whole exome sequencing
Collapse
Affiliation(s)
- Susan J. van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Armand V. Peeters
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Paediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johan Schoeman
- Paediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelebogile E. Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carel J. van Heerden
- Central Analytical Facility (CAF), DNA Sequencing Unit, Stellenbosch University, Stellenbosch, South Africa
| | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| |
Collapse
|
28
|
Pereira VCSR, Fontes-Dantas FL, Paradela ER, Malfetano FR, Scherpenhuijzen SDSB, Mansur LF, Luiz RR, Oliveira APD, Farinhas JGD, Maiolino Â, Alves-Leon SV. Polymorphisms in the CIITA -168A/G (rs3087456) and CIITA +1614G/C (rs4774) may influence severity in multiple sclerosis patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:166-173. [PMID: 30970129 DOI: 10.1590/0004-282x20190026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/29/2018] [Indexed: 02/03/2023]
Abstract
It is currently unknown how genetic factors may influence the clinical course of multiple sclerosis (MS). OBJECTIVE We examined the impact of CIITA polymorphisms -168A/G (rs3087456) and +1614G/C (rs4774) on the risk of disability progression, severity and on responses to first-line immunomodulator treatments. METHODS Genomic DNA was extracted from blood samples. We used ABI3730xl and GeneMapper v.4.0 software to identify genotype variations. All patients were followed up and clinically reassessed at three-month intervals. Disability progression was measured by the Expanded Disability Status Scale and disease severity by the Multiple Sclerosis Spasticity Scale (MSSS). RESULTS We included 37 men and 80 women. We found no evidence regarding the influence of the single nucleotide polymorphisms studied in the Expanded Disability Status Scale or therapeutic response of the evaluated drugs. We performed a logistic regression analysis with the MSSS and found that a less severe MS course was associated with wild type CIITA -168AA and CIITA +1614GG, as the chance of the patient progressing to MSSS2 and MSSS3 decreased in 61% and 75% with CIITA -168AA and 66% and 75% with CIITA +1614GG, respectively (p < 0.0001). Although less significant, the CIITA +1614 GC also pointed to a less severe MS course and the chance of the patient progressing to MSSS3 decreased 79% (p = 0.015). We also observed that the CIITA -168GG genotype was more frequent in MSSS2 and MSSS3 and had 40% lower odds ratio to becoming more severe MS. CONCLUSION These data suggest that CIITA -168AA, CIITA +1614GG and CIITA +1614 GC polymorphisms may be associated with a better MS clinical course. This knowledge may be useful for a better understanding of MS and its therapeutic management.
Collapse
Affiliation(s)
| | - Fabrícia Lima Fontes-Dantas
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Eduardo Ribeiro Paradela
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | | | | | - Letícia Fêzer Mansur
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Ronir Raggio Luiz
- Universidade Federal do Rio de Janeiro, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - André Peres De Oliveira
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - João Gabriel Dib Farinhas
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Ângelo Maiolino
- Universidade Federal do Rio de Janeiro, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Universidade Federal do Rio de Janeiro, Departamento de Neurologia, Rio de Janeiro RJ, Brasil.,Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| |
Collapse
|
29
|
Mack SJ, Udell J, Cohen F, Osoegawa K, Hawbecker SK, Noonan DA, Ladner MB, Goodridge D, Trachtenberg EA, Oksenberg JR, Erlich HA. High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. Genes Immun 2019; 20:308-326. [PMID: 29307888 PMCID: PMC6035897 DOI: 10.1038/s41435-017-0006-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 11/24/2022]
Abstract
We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47-28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35-0.78; p = 7.55E-04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49-0.82; p = 3.37-04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.
Collapse
Affiliation(s)
- Steven J Mack
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | - Julia Udell
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Franziska Cohen
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Kazutoyo Osoegawa
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Sharon K Hawbecker
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - David A Noonan
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Martha B Ladner
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Henry A Erlich
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
30
|
Anti-Myelin Oligodendrocyte Glycoprotein and Human Leukocyte Antigens as Markers in Pediatric and Adolescent Multiple Sclerosis: on Diagnosis, Clinical Phenotypes, and Therapeutic Responses. Mult Scler Int 2018; 2018:8487471. [PMID: 30595920 PMCID: PMC6282147 DOI: 10.1155/2018/8487471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
Early-onset (pediatric and adolescent) multiple sclerosis (MS) is a well-established demyelinating disease that accounts for approximately 3-5% of all MS cases. Thus, identifying potential biomarkers that can reflect the pathogenic mechanisms, disease course and prognosis, and therapeutic response in such patients is of paramount importance. Myelin oligodendrocyte glycoprotein (MOG) has been regarded as a putative autoantigen and autoantibody target in patients with demyelinating diseases for almost three decades. However, recent studies have suggested that antibodies against MOG represent a distinct clinical entity of dominantly humoral profile, with a range of clinical phenotypes closely related to the age of onset, specific patterns of disease course, and responses to treatment. Furthermore, the major histocompatibility complex (MHC)—which has been regarded as the “gold standard” for attributing genetic burden in adult MS since the early 1970s—has also emerged as the primary genetic locus in early-onset MS, particularly with regard to the human leukocyte antigen (HLA) alleles DRB1⁎1501 and DRB1⁎0401. Recent studies have investigated the potential interactions among HLA, MOG, and environmental factors, demonstrating that early-onset MS is characterized by genetic, immunogenetic, immunological, and familial trait correlations. In this paper, we review recent evidence regarding HLA-genotyping and MOG antibodies—the two most important candidate biomarkers for early-onset MS—as well as their potential application in the diagnosis and treatment of MS.
Collapse
|
31
|
Lee JC. Beyond disease susceptibility-Leveraging genome-wide association studies for new insights into complex disease biology. HLA 2018; 90:329-334. [PMID: 29106067 DOI: 10.1111/tan.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
Abstract
Genetic studies in complex diseases have been highly successful, but have also been largely one-dimensional: predominantly focusing on the genetic contribution to disease susceptibility. While this is undoubtedly important-indeed it is a pre-requisite for understanding the mechanisms underlying disease development-there are many other important aspects of disease biology that have received comparatively little attention. In this review, I will discuss how existing genetic data can be leveraged to provide new insights into other aspects of disease biology, why such insights could change the way we think about complex disease, and how this could provide opportunities for better therapies and/or facilitate personalised medicine. To do this, I will use the example of Crohn's disease-a chronic form of inflammatory bowel disease that has been one of the main success stories in complex disease genetics. Indeed, thanks to genetic studies, we now have a much more detailed understanding of the processes involved in Crohn's disease development, but still know relatively little about what determines the subsequent disease course (prognosis) and why this differs so considerably between individuals. I will discuss how we came to realise that genetic variation plays an important role in determining disease prognosis and how this has changed the way we think about Crohn's disease genetics. This will illustrate how phenotypic data can be used to leverage new insights from genetic data and will provide a broadly applicable framework that could yield new insights into the biology of multiple diseases.
Collapse
Affiliation(s)
- J C Lee
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
32
|
Mowry EM, Hedström AK, Gianfrancesco MA, Shao X, Schaefer CA, Shen L, Bellesis KH, Briggs FBS, Olsson T, Alfredsson L, Barcellos LF. Incorporating machine learning approaches to assess putative environmental risk factors for multiple sclerosis. Mult Scler Relat Disord 2018; 24:135-141. [PMID: 30005356 DOI: 10.1016/j.msard.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/07/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) incidence has increased recently, particularly in women, suggesting a possible role of one or more environmental exposures in MS risk. The study objective was to determine if animal, dietary, recreational, or occupational exposures are associated with MS risk. METHODS Least absolute shrinkage and selection operator (LASSO) regression was used to identify a subset of exposures with potential relevance to disease in a large population-based (Kaiser Permanente Northern California [KPNC]) case-control study. Variables with non-zero coefficients were analyzed in matched conditional logistic regression analyses, adjusted for established environmental risk factors and socioeconomic status (if relevant in univariate screening),± genetic risk factors, in the KPNC cohort and, for purposes of replication, separately in the Swedish Epidemiological Investigation of MS cohort. These variables were also assessed in models stratified by HLA-DRB1*15:01 status since interactions between risk factors and that haplotype have been described. RESULTS There was a suggestive association of pesticide exposure with having MS among men, but only in those who were positive for HLA-DRB1*15:01 (OR pooled = 3.11, 95% CI 0.87, 11.16, p = 0.08). CONCLUSIONS While this finding requires confirmation, it is interesting given the association between pesticide exposure and other neurological diseases. The study also demonstrates the application of LASSO to identify environmental exposures with reduced multiple statistical testing penalty. Machine learning approaches may be useful for future investigations of concomitant MS risk or prognostic factors.
Collapse
Affiliation(s)
- Ellen M Mowry
- Johns Hopkins University, 600N. Wolfe Street, Pathology 627, Baltimore 21287, MD, USA.
| | - Anna K Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Ling Shen
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | | | | | - Tomas Olsson
- Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
33
|
DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun 2018; 9:2397. [PMID: 29921915 PMCID: PMC6008330 DOI: 10.1038/s41467-018-04732-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10-8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
Collapse
|
34
|
Tao C, Simpson S, Taylor BV, Blizzard L, Lucas RM, Ponsonby AL, Broadley S, van der Mei I. Onset Symptoms, Tobacco Smoking, and Progressive-Onset Phenotype Are Associated With a Delayed Onset of Multiple Sclerosis, and Marijuana Use With an Earlier Onset. Front Neurol 2018; 9:418. [PMID: 29937751 PMCID: PMC6003245 DOI: 10.3389/fneur.2018.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Age at symptom onset (ASO) is a prognostic factor that could affect the accrual of disability in multiple sclerosis (MS) patients. Some factors are known to influence the risk of multiple sclerosis (MS), but their influence on the ASO is less well-investigated. Objective: Examine the associations between known or emerging MS risk factors and ASO. Methods: This was a multicenter study, incident cases (n = 279) with first clinical diagnosis of demyelinating event aged 18–59 years recruited at four Australian centres (latitudes 27°-43°S), from 1 November 2003 to 31 December 2006. Environmental/behavioral variables and initial symptoms were recorded at baseline interview. Linear regression was used to assess the association between risk factors and ASO. Results: Five factors were significantly associated with ASO: a history of tobacco smoking was associated with 3.05-years later ASO (p = 0.002); a history of marijuana use was associated with 6.03-years earlier ASO (p < 0.001); progressive-onset cases had 5.61-years later ASO (p = 0.001); an initial presentation of bowel & bladder and cerebral dysfunctional were associated with 3.39 (p = 0.017) and 4.37-years (p = 0.006) later ASO, respectively. Other factors, including sex, offspring number, latitude of study site, history of infectious mononucleosis, HLA-DR15 & HLA-A2 genotype, 25(OH)D levels, and ultraviolet radiation exposure were not associated with ASO. Including all five significant variables into one model explained 12% of the total variance in ASO. Conclusion: We found a novel association between a history of tobacco smoking and later onset, whereas marijuana use was associated with earlier onset. Behavioral factors seem important drivers of MS onset timing although much of the variance remains unexplained.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Institute for Health & Ageing, Australian Catholic University, Melbourne, VIC, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Canberra, ACT, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | | | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
35
|
Creary LE, Mallempati KC, Gangavarapu S, Caillier SJ, Oksenberg JR, Fernández-Viňa MA. Deconstruction of HLA-DRB1*04:01:01 and HLA-DRB1*15:01:01 class II haplotypes using next-generation sequencing in European-Americans with multiple sclerosis. Mult Scler 2018; 25:772-782. [PMID: 29683085 DOI: 10.1177/1352458518770019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The association between HLA-DRB1*15:01 with multiple sclerosis (MS) susceptibility is well established, but the contribution of the tightly associated HLA-DRB5*01:01 allele has not yet been completely ascertained. Similarly, the effects of HLA-DRB1*04:01 alleles and haplotypes, defined at the full-gene resolution level with MS risk remains to be elucidated. OBJECTIVES To characterize the molecular architecture of class II HLA-DR15 and HLA-DR4 haplotypes associated with MS. METHODS Next-generation sequencing was used to determine HLA-DQB1, HLA-DQA1, and HLA-DRB1/4/5 alleles in 1403 unrelated European-American patients and 1425 healthy unrelated controls. Effect sizes of HLA alleles and haplotypes on MS risk were measured by odds ratio (OR) with 95% confidence intervals. RESULTS HLA-DRB1*15:01:01:01SG (OR = 3.20, p < 2.2E-16), HLA-DRB5*01:01:01 (OR = 2.96, p < 2.2E-16), and HLA-DRB5*01:01:01v1_STR1 (OR = 8.18, p = 4.3E-05) alleles all occurred at significantly higher frequencies in MS patients compared to controls. The most significant predis-posing haplotypes were HLA-DQB1*06:02:01~ HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01 and HLA-DQB1*06:02:01~HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01v1_STR1 (OR = 3.19, p < 2.2E-16; OR = 9.30, p = 9.7E-05, respectively). Analyses of the HLA-DRB1*04 cohort in the absence of HLA-DRB1*15:01 haplotypes revealed that the HLA-DQB1*03:01:01:01~HLA-DQA1*03:03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was protective (OR = 0.64, p = 0.028), whereas the HLA-DQB1*03:02:01~HLA-DQA1*03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was associated with MS susceptibility (OR = 1.66, p = 4.9E-03). CONCLUSION HLA-DR15 haplotypes, including genomic variants of HLA-DRB5, and HLA-DR4 haplotypes affect MS risk.
Collapse
Affiliation(s)
- Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kalyan C Mallempati
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Sridevi Gangavarapu
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Stacy J Caillier
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
36
|
Čierny D, Lehotský J, Kantorová E, Sivák Š, Javor J, Kurča E, Dobrota D, Michalik J. The HLA-DRB1 and HLA-DQB1 alleles are associated with multiple sclerosis disability progression in Slovak population. Neurol Res 2018; 40:607-614. [PMID: 29619906 DOI: 10.1080/01616412.2018.1456711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of our present study was to analyse the association of HLA-DRB1 and -DQB1 alleles and genotypes with Multiple Sclerosis (MS) disability progression in a cohort of Central European Slovak population. METHODS The allele and genotype variants were analyzed in 282 non-related MS patients. Rate of disease disability progression was evaluated using EDSS score in the 5th, 7th, 10th, and 15th year of disease duration, time to reach EDSS score 3 and 5, and MSSS score. Genotyping was performed by polymerase chain reaction with sequence-specific primers. RESULTS We found that carriers of homozygous genotype for alleles DRB1*15 and DQB1*03 reached EDSS score 3 significantly earlier than non-carriers of these alleles (p = 0.0172; p = 0.00183, respectively). Genotype DQB1*03/03 carriage was also associated with significantly reduced time to reach EDSS score 5 (p = 0.00316). Lower EDSS score in the 5th year of disease duration was found in carriers of DRB1*07 allele (p cor = 0.028). When MSSS score was used, genotype DRB1*15/15 was found to be less frequent in slow progressing MS patients, when compared to MS patients with mid-rate and rapid disease disability progression (p cor = 0.0305). DISCUSSION We showed for the first time that HLA-DRB1 and -DQB1 genotypes are genetic markers associated with disability progression in Slovak MS patients. Genotypes DRB1*15/15 and DQB1*03/*03 were identified as short-term clinical negative prognostic factors, while allele DRB1*07 carriage appeared to be a positive prognostic marker of better MS outcome.
Collapse
Affiliation(s)
- Daniel Čierny
- a Jessenius Faculty of Medicine, Department of Clinical Biochemistry , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Ján Lehotský
- b Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry and BioMed , Comenius University in Bratislava , Martin , Slovak Republic
| | - Ema Kantorová
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Štefan Sivák
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Juraj Javor
- d Faculty of Medicine, Institute of Immunology , Comenius University in Bratislava , Bratislava , Slovak Republic
| | - Egon Kurča
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Dušan Dobrota
- a Jessenius Faculty of Medicine, Department of Clinical Biochemistry , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic.,b Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry and BioMed , Comenius University in Bratislava , Martin , Slovak Republic
| | - Jozef Michalik
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| |
Collapse
|
37
|
Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018; 153:399-414. [PMID: 29159928 PMCID: PMC5838423 DOI: 10.1111/imm.12869] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Genes encoding antigen-presenting molecules within the human major histocompatibility complex (MHC) account for the highest component of genetic risk for many neurological diseases, such as multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. Myriad genetic, immunological and environmental factors may contribute to an individual's susceptibility to neurological disease. Here, we review and discuss the decades long research on the influence of genetic variation at the MHC locus and the role of immunogenetic killer cell immunoglobulin-like receptor (KIR) loci in neurological diseases, including multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. The findings of immunogenetic association studies are consistent with a polygenic model of inheritance in the heterogeneous and multifactorial nature of complex traits in various neurological diseases. Future investigation is highly recommended to evaluate both coding and non-coding variation in immunogenetic loci using high-throughput high-resolution next-generation sequencing technologies in diverse ethnic groups to fully appreciate their role in neurological diseases.
Collapse
Affiliation(s)
- Maneesh K. Misra
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Vincent Damotte
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jill A. Hollenbach
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
38
|
Scott-Hewitt NJ, Folts CJ, Hogestyn JM, Piester G, Mayer-Pröschel M, Noble MD. Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Hum Mol Genet 2018; 26:2825-2837. [PMID: 28575206 DOI: 10.1093/hmg/ddx153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies are identifying multiple genetic risk factors for several diseases, but the functional role of these changes remains mostly unknown. Variants in the galactocerebrosidase (GALC) gene, for example, were identified as a risk factor for Multiple Sclerosis (MS); however, the potential biological relevance of GALC variants to MS remains elusive. We found that heterozygote GALC mutant mice have reduced myelin debris clearance and diminished remyelination after a demyelinating insult. We found no histological or behavioral differences between adult wild-type and GALC +/- animals under normal conditions. Following exposure to the demyelinating agent cuprizone, however, GALC +/- animals had significantly reduced remyelination during recovery. In addition, the microglial phagocytic response and elevation of Trem2, both necessary for clearing damaged myelin, were markedly reduced in GALC +/- animals. These altered responses could be corrected in vitro by treatment with NKH-477, a compound discovered as protective in our previous studies on Krabbe disease, which is caused by mutations in both GALC alleles. Our data are the first to show remyelination defects in individuals with a single mutant GALC allele, suggesting such carriers may have increased vulnerability to myelin damage following injury or disease due to inefficient myelin debris clearance. We thus provide a potential functional link between GALC variants and increased MS susceptibility, particularly due to the failure of remyelination associated with progressive MS. Finally, this work demonstrates that genetic variants identified through genome-wide association studies may contribute significantly to complex diseases, not by driving initial symptoms, but by altering repair mechanisms.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Gavin Piester
- Department of Biochemistry, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Scott-Hewitt NJ, Folts CJ, Noble MD. Heterozygous carriers of galactocerebrosidase mutations that cause Krabbe disease have impaired microglial function and defective repair of myelin damage. Neural Regen Res 2018; 13:393-401. [PMID: 29623914 PMCID: PMC5900492 DOI: 10.4103/1673-5374.228712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review addresses two puzzling findings related to mutations in galactocerebrosidase (GALC) that cause Krabbe disease (KD), a severe lysosomal storage disorder characterized by extensive myelin damage in children with mutations in both GALC alleles. First, heterozygous carriers of KD-causing mutations, which include the biological parents of children with KD, exhibit increased risk for developing other diseases. Second, variants in the GALC locus increase the risk of developing multiple sclerosis (MS), another disease characterized by extensive myelin damage. What explains these correlations? In studies on cuprizone-induced myelin damage in heterozygous (GALC+/–) mice carrying one copy of a mutation that causes KD-like disease, the extent of damage was similar in GALC+/– and wild-type (WT) mice. In contrast, GALC+/- mice had striking defects in repair of cuprizone-induced damage. We further found unexpected microglial defects in myelin debris clearance and in the ability to up-regulate the Trem2 microglial protein critical for debris uptake. These defects were rescued by exposure to a lysosomal re-acidifying drug discovered in our studies on KD, and which provides multiple clinically relevant benefits in the twitcher (GALC+/–) mouse model of KD. Thus, heterozygous GALC mutations cause effects on biological function that may help to understand the increased disease risk in heterozygous carriers of such mutations and to understand why GALC variations increase the risk of MS. Our findings indicate that while some genetic risk factors may contribute to complex diseases by increasing the risk of tissue damage, others may do so by compromising tissue repair.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
40
|
Lorefice L, Fenu G, Sardu C, Frau J, Coghe G, Costa G, Schirru L, Secci MA, Sechi V, Barracciu MA, Marrosu MG, Cocco E. Multiple sclerosis and HLA genotypes: A possible influence on brain atrophy. Mult Scler 2017; 25:23-30. [PMID: 29111883 DOI: 10.1177/1352458517739989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The strongest genetic determinant for multiple sclerosis (MS) is located at the human leukocyte antigen (HLA) class II DRB1 and DQB1 loci. OBJECTIVES To investigate the possible role of predisposing HLA genotypes in determining brain atrophy. METHODS HLA genotypes were categorized as high risk (two predisposing haplotypes) or medium/low risk (one or no predisposing haplotypes). Patients underwent a brain magnetic resonance imaging (MRI) study and volumes of white matter (WM), gray matter (GM), and whole brain (WB) were estimated with SIENAX. Longitudinal atrophy was also assessed with SIENA. RESULTS The study included 240 MS patients. In 51/240 (21%) subjects, a high-risk HLA genotype was observed, while medium- and low-risk HLA genotypes were 109/240 (45%) and 80/240 (34%), respectively. Multiple regression analysis found that the high-risk HLA genotype was associated with significant reduction in WB ( p = 0.02) and GM ( p = 0.03) volumes compared with the medium-/low-risk HLA genotypes, independently from MS clinical features. The longitudinal study included 60 patients and showed a brain volume loss of -0.79% in high-risk HLA genotype group versus -0.56% in low-risk HLA genotype. CONCLUSION Our results suggest an influence of HLA genotype on WB and GM atrophy. Further investigations are necessary to confirm these findings.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Sardu
- Unit of Epidemiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Gianna Costa
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Schirru
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta Secci
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Sechi
- Radiology Unit, Binaghi Hospital, ATS Sardegna, Cagliari, Italy
| | | | - Maria Giovanna Marrosu
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Cagliari, Italy/Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
41
|
Graves JS, Barcellos LF, Simpson S, Belman A, Lin R, Taylor BV, Ponsonby AL, Dwyer T, Krupp L, Waubant E, van der Mei IAF. The multiple sclerosis risk allele within the AHI1 gene is associated with relapses in children and adults. Mult Scler Relat Disord 2017; 19:161-165. [PMID: 29409597 DOI: 10.1016/j.msard.2017.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/12/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND While common variant non-HLA (human leukocyte antigen) alleles have been associated with MS risk, their role in disease course is less clear. We sought to determine whether established multiple sclerosis (MS) genetic susceptibility factors are associated with relapse rate in children and an independent cohort of adults with MS. METHODS Genotyping was performed for 182 children with MS or clinically isolated syndrome with high risk for MS from two Pediatric MS Centers. They were prospectively followed for relapses. Fifty-two non-HLA MS susceptibility single nucleotide polymorphisms (SNPs) were evaluated for association with relapse rate. Cox regression models were adjusted for sex, genetic ancestry, disease-modifying therapy (DMT), 25-OH vitamin D level and HLA-DRB1*15:01/03 status. Investigation of pediatric subject SNP results was performed using a second cohort of 141 adult MS subjects of Northern European ancestry from the Southern Tasmanian Multiple Sclerosis Longitudinal Study. RESULTS For pediatric subjects, 408 relapses were captured over 622 patient-years of follow-up. Four non-HLA risk SNPs (rs11154801, rs650258, rs12212193, rs2303759) were associated with relapses (p < 0.01) in the pediatric subjects. After adjustment for genetic ancestry, sex, age, vitamin D level, DMT use and HLA-DRB1*15 status, having two copies of the MS risk allele within AHI1 (rs11154801) was associated with increased relapses among children (HR = 1.75,95%CI = 1.18-2.48, p = 0.006) and this result was also observed among adults (HR = 1.81,95%CI = 1.05-3.03, p = 0.026). CONCLUSIONS Our results suggest that the MS genetic risk variant within the gene AHI1 may contribute to disease course in addition to disease susceptibility.
Collapse
Affiliation(s)
- Jennifer S Graves
- UCSF Pediatric MS Center, San Francisco, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Lisa F Barcellos
- Genetic Epidemiology and Genomics Lab, School of Public Health, and California Institute of Quantitative Biosciences, UC Berkeley, Berkeley, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Anita Belman
- National Pediatric MS Center, Stonybrook, NY, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Rui Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Guangxi Center for Disease Prevention and Control, Nanning, China; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Terence Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Lauren Krupp
- National Pediatric MS Center, Stonybrook, NY, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Emmanuelle Waubant
- UCSF Pediatric MS Center, San Francisco, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Ingrid A F van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
42
|
Gianfrancesco MA, Stridh P, Shao X, Rhead B, Graves JS, Chitnis T, Waldman A, Lotze T, Schreiner T, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema JM, Hart J, Caillier S, Ness J, Harris Y, Rubin J, Candee M, Krupp L, Gorman M, Benson L, Rodriguez M, Mar S, Kahn I, Rose J, Roalstad S, Casper TC, Shen L, Quach H, Quach D, Hillert J, Hedstrom A, Olsson T, Kockum I, Alfredsson L, Schaefer C, Barcellos LF, Waubant E. Genetic risk factors for pediatric-onset multiple sclerosis. Mult Scler 2017; 24:1825-1834. [PMID: 28980494 DOI: 10.1177/1352458517733551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Strong evidence supports the role of both genetic and environmental factors in pediatric-onset multiple sclerosis (POMS) etiology. OBJECTIVE We comprehensively investigated the association between established major histocompatibility complex (MHC) and non-MHC adult multiple sclerosis (MS)-associated variants and susceptibility to POMS. METHODS Cases with onset <18 years (n = 569) and controls (n = 16,251) were included from the United States and Sweden. Adjusted logistic regression and meta-analyses were performed for individual risk variants and a weighted genetic risk score (wGRS) for non-MHC variants. Results were compared to adult MS cases (n = 7588). RESULTS HLA-DRB1*15:01 was strongly associated with POMS (odds ratio (OR)meta = 2.95, p < 2.0 × 10-16). Furthermore, 28 of 104 non-MHC variants studied (23%) were associated (p < 0.05); POMS cases carried, on average, a higher burden of these 28 variants compared to adults (ORavg = 1.24 vs 1.13, respectively), though the difference was not significant. The wGRS was strongly associated with POMS (ORmeta = 2.77, 95% confidence interval: 2.33, 3.32, p < 2.0 × 10-16) and higher, on average, when compared to adult cases. Additional class III risk variants in the MHC region associated with POMS were revealed after accounting for HLA-DRB1*15:01 and HLA-A*02. CONCLUSION Pediatric and adult MS share many genetic variants suggesting similar biological processes are present. MHC variants beyond HLA-DRB1*15:01 and HLA-A*02 are also associated with POMS.
Collapse
Affiliation(s)
- Milena A Gianfrancesco
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Pernilla Stridh
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiaorong Shao
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brooke Rhead
- Computational Biology Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer S Graves
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Amy Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy Lotze
- Blue Bird Circle Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX, USA
| | - Teri Schreiner
- Children's Hospital Colorado, University of Colorado, Denver, CO, USA
| | - Anita Belman
- The Lourie Center for Pediatric MS, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - Benjamin Greenberg
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Bianca Weinstock-Guttman
- Pediatric Multiple Sclerosis Center, Jacobs Neurological Institute, SUNY Buffalo, Buffalo, NY, USA
| | - Gregory Aaen
- Pediatric MS Center, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Jan M Tillema
- Pediatric MS Center, Mayo Clinic, Rochester, MN, USA
| | - Janace Hart
- Department of Neurology and Regional Pediatric MS Center, University of California, San Francisco, San Francisco, CA, USA
| | - Stacy Caillier
- Department of Neurology and Regional Pediatric MS Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jayne Ness
- Center for Pediatric Onset Demyelinating Disease, University of Alabama and Children's Hospital of Alabama, Birmingham, AL, USA
| | - Yolanda Harris
- Center for Pediatric Onset Demyelinating Disease, University of Alabama and Children's Hospital of Alabama, Birmingham, AL, USA
| | - Jennifer Rubin
- Division of Neurology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan Candee
- University of Utah and Primary Children's Hospital, Salt Lake City, UT, USA
| | - Lauren Krupp
- The Lourie Center for Pediatric MS, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | | | | | | | - Soe Mar
- Pediatric-onset Demyelinating Diseases and Autoimmune Encephalitis Center, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilana Kahn
- Children's National Medical Center, Washington, DC, USA
| | - John Rose
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shelly Roalstad
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - T Charles Casper
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ling Shen
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Hong Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Diana Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jan Hillert
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Anna Hedstrom
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden/Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, Oakland, CA, USA/Research Program on Genes, Environment and Health, Kaiser Permanente, Oakland, CA
| | - Lisa F Barcellos
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA/Computational Biology Graduate Group, University of California, Berkeley, Berkeley, CA, USA; Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
43
|
Cappa R, Theroux L, Brenton JN. Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach. Pediatr Neurol 2017; 75:17-28. [PMID: 28843454 DOI: 10.1016/j.pediatrneurol.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. MAIN FINDINGS Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. CONCLUSIONS This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis.
Collapse
Affiliation(s)
- Ryan Cappa
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia
| | - Liana Theroux
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia
| | - J Nicholas Brenton
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
44
|
Morsaljahan Z, Rafiei A, Valadan R, Abedini M, Pakseresht M, Khajavi R. Association between interleukin-32 polymorphism and multiple sclerosis. J Neurol Sci 2017; 379:144-150. [PMID: 28716229 DOI: 10.1016/j.jns.2017.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Zaher Morsaljahan
- Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Abedini
- Department of Neurology, Buali Sina Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Pakseresht
- Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Khajavi
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Popova EV, Kiselev IS, Boyko AN, Sivertseva SA, Malkova NA, Korobko DS, Spirin NN, Kasatkin DS, Karaeva AV, Turova EL, Spirina NN, Volkova LI, Baulina NM, Bashinskaya VV, Kulakova OG, Favorova OO. [Polymorphic variants of the immune response genes as risk factors for primary progressive multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:14-21. [PMID: 28617357 DOI: 10.17116/jnevro20171172214-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM To analyze the involvement of immune response genes in the pathogenesis of primary progressive multiple sclerosis (PPMS). MATERIAL AND METHODS This multicenter study included 111 patients with PPMS from the Russian ethnic group. The association of PPMS with genes of immune system was analyzed by the study of polymorphic variants of genes of cytokines and genes of antigen-presenting cells. RESULTS AND CONCLUSION The genotypes of IL-4 (rs2243250)*C/C and CLEC16A (rs6498169)*G/G were associated with PPMS in Russians. The association between the HLA-DRB1*15 and PPMS found out in other populations was confirmed in Russians.
Collapse
Affiliation(s)
- E V Popova
- Interregional Department of Multiple Sclerosis at Moscow Clinical Hospital #24, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - I S Kiselev
- Cardiology research and clinical complex, Moscow, Russia; Tumen Regional Center of Multiple Sclerosis, Tumen, Russia
| | - A N Boyko
- Interregional Department of Multiple Sclerosis at Moscow Clinical Hospital #24, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - S A Sivertseva
- Novosibirsk Regional Center of Multiple Sclerosis and other Autoimmune Diseases 'GNOKB', Novosibirsk, Russia
| | - N A Malkova
- State Medical University, Novosibirsk, Russia
| | - D S Korobko
- State Medical University, Novosibirsk, Russia
| | - N N Spirin
- Yaroslavl State Medical University, Yaroslavl, Russia; Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - D S Kasatkin
- Yaroslavl State Medical University, Yaroslavl, Russia; Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - A V Karaeva
- Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - E L Turova
- Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - N N Spirina
- Yaroslavl State Medical University, Yaroslavl, Russia; Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - L I Volkova
- Sverdlovsk Regional Clinical Hospital #1, Yekaterinburg, Russia
| | - N M Baulina
- Cardiology research and clinical complex, Moscow, Russia; Tumen Regional Center of Multiple Sclerosis, Tumen, Russia
| | - V V Bashinskaya
- Cardiology research and clinical complex, Moscow, Russia; Tumen Regional Center of Multiple Sclerosis, Tumen, Russia
| | - O G Kulakova
- Cardiology research and clinical complex, Moscow, Russia; Tumen Regional Center of Multiple Sclerosis, Tumen, Russia
| | - O O Favorova
- Cardiology research and clinical complex, Moscow, Russia; Tumen Regional Center of Multiple Sclerosis, Tumen, Russia
| |
Collapse
|
46
|
Stimmer L, Fovet CM, Serguera C. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Vet Pathol 2017; 55:27-41. [DOI: 10.1177/0300985817712794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.
Collapse
Affiliation(s)
- Lev Stimmer
- U1169/US27 Platform for experimental pathology, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Claire-Maëlle Fovet
- U1169/US27 Platform for general surgery, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Ché Serguera
- US27, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| |
Collapse
|
47
|
Abdelhak A, Weber MS, Tumani H. Primary Progressive Multiple Sclerosis: Putting Together the Puzzle. Front Neurol 2017; 8:234. [PMID: 28620346 PMCID: PMC5449443 DOI: 10.3389/fneur.2017.00234] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/12/2017] [Indexed: 12/23/2022] Open
Abstract
The focus of multiple sclerosis research has recently turned to the relatively rare and clearly more challenging condition of primary progressive multiple sclerosis (PPMS). Many risk factors such as genetic susceptibility, age, and Epstein–Barr virus (EBV) infection may interdepend on various levels, causing a complex pathophysiological cascade. Variable pathological mechanisms drive disease progression, including inflammation-associated axonal loss, continuous activation of central nervous system resident cells, such as astrocytes and microglia as well as mitochondrial dysfunction and iron accumulation. Histological studies revealed diffuse infiltration of the gray and white matter as well as of the meninges with inflammatory cells such as B-, T-, natural killer, and plasma cells. While numerous anti-inflammatory agents effective in relapsing remitting multiple sclerosis basically failed in treatment of PPMS, the B-cell-depleting monoclonal antibody ocrelizumab recently broke the dogma that PPMS cannot be treated by an anti-inflammatory approach by demonstrating efficacy in a phase 3 PPMS trial. Other treatments aiming at enhancing remyelination (MD1003) as well as EBV-directed treatment strategies may be promising agents on the horizon. In this article, we aim to summarize new advances in the understanding of risk factors, pathophysiology, and treatment of PPMS. Moreover, we introduce a novel concept to understand the nature of the disease and possible treatment strategies in the near future.
Collapse
Affiliation(s)
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany.,Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany
| |
Collapse
|
48
|
Isobe N, Keshavan A, Gourraud PA, Zhu AH, Datta E, Schlaeger R, Caillier SJ, Santaniello A, Lizée A, Himmelstein DS, Baranzini SE, Hollenbach J, Cree BAC, Hauser SL, Oksenberg JR, Henry RG. Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurol 2017; 73:795-802. [PMID: 27244296 DOI: 10.1001/jamaneurol.2016.0980] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE Although multiple HLA alleles associated with multiple sclerosis (MS) risk have been identified, genotype-phenotype studies in the HLA region remain scarce and inconclusive. OBJECTIVES To investigate whether MS risk-associated HLA alleles also affect disease phenotypes. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional, case-control study comprising 652 patients with MS who had comprehensive phenotypic information and 455 individuals of European origin serving as controls was conducted at a single academic research site. Patients evaluated at the Multiple Sclerosis Center at University of California, San Francisco between July 2004 and September 2005 were invited to participate. Spinal cord imaging in the data set was acquired between July 2013 and March 2014; analysis was performed between December 2014 and December 2015. MAIN OUTCOMES AND MEASURES Cumulative HLA genetic burden (HLAGB) calculated using the most updated MS-associated HLA alleles vs clinical and magnetic resonance imaging outcomes, including age at onset, disease severity, conversion time from clinically isolated syndrome to clinically definite MS, fractions of cortical and subcortical gray matter and cerebral white matter, brain lesion volume, spinal cord gray and white matter areas, upper cervical cord area, and the ratio of gray matter to the upper cervical cord area. Multivariate modeling was applied separately for each sex data set. RESULTS Of the 652 patients with MS, 586 had no missing genetic data and were included in the HLAGB analysis. In these 586 patients (404 women [68.9%]; mean [SD] age at disease onset, 33.6 [9.4] years), HLAGB was higher than in controls (median [IQR], 0.7 [0-1.4] and 0 [-0.3 to 0.5], respectively; P = 1.8 × 10-27). A total of 619 (95.8%) had relapsing-onset MS and 27 (4.2%) had progressive-onset MS. No significant difference was observed between relapsing-onset MS and primary progressive MS. A higher HLAGB was associated with younger age at onset and the atrophy of subcortical gray matter fraction in women with relapsing-onset MS (standard β = -1.20 × 10-1; P = 1.7 × 10-2 and standard β = -1.67 × 10-1; P = 2.3 × 10-4, respectively), which were driven mainly by the HLA-DRB1*15:01 haplotype. In addition, we observed the distinct role of the HLA-A*24:02-B*07:02-DRB1*15:01 haplotype among the other common DRB1*15:01 haplotypes and a nominally protective effect of HLA-B*44:02 to the subcortical gray atrophy (standard β = -1.28 × 10-1; P = 5.1 × 10-3 and standard β = 9.52 × 10-2; P = 3.6 × 10-2, respectively). CONCLUSIONS AND RELEVANCE We confirm and extend previous observations linking HLA MS susceptibility alleles with disease progression and specific clinical and magnetic resonance imaging phenotypic traits.
Collapse
Affiliation(s)
- Noriko Isobe
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Anisha Keshavan
- Department of Neurology, School of Medicine, University of California, San Francisco
| | | | - Alyssa H Zhu
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Esha Datta
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Regina Schlaeger
- Department of Neurology, School of Medicine, University of California, San Francisco2Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stacy J Caillier
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Adam Santaniello
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Antoine Lizée
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Daniel S Himmelstein
- Department of Neurology, School of Medicine, University of California, San Francisco3Biological and Medical Informatics, University of California, San Francisco
| | - Sergio E Baranzini
- Department of Neurology, School of Medicine, University of California, San Francisco3Biological and Medical Informatics, University of California, San Francisco
| | - Jill Hollenbach
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Bruce A C Cree
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Stephen L Hauser
- Department of Neurology, School of Medicine, University of California, San Francisco4Institute of Human Genetics, University of California, San Francisco
| | - Jorge R Oksenberg
- Department of Neurology, School of Medicine, University of California, San Francisco4Institute of Human Genetics, University of California, San Francisco
| | - Roland G Henry
- Department of Neurology, School of Medicine, University of California, San Francisco5Bioengineering Graduate Group, University of California, San Francisco and Berkeley6Department of Radiology and Biomedical Imaging, University of California, San Francisc
| |
Collapse
|
49
|
PLXNA3 Variant rs5945430 is Associated with Severe Clinical Course in Male Multiple Sclerosis Patients. Neuromolecular Med 2017; 19:286-292. [PMID: 28536997 DOI: 10.1007/s12017-017-8443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) exhibits sex bias in disease clinical course as male MS patients develop severe, progressive clinical course with accumulating disability. So far, no factors have been found associating with this sex bias in MS severity. We set out to determine the genetic factor contributing to MS male-specific progressive disease. This is an MS cross-sectional study involving 213 Kuwaiti MS patients recruited at Dasman Diabetes Institute. Exome sequencing was performed on 18 females and 8 male MS patients' genomic DNA. rs5945430 genotyping was performed using Taqman genotyping assay. Estradiol levels were determined by enzyme-linked immunosorbent assay. Exome analysis revealed a missense variant (rs5945430) in Plexin A3 (PLXNA3) gene (Xq28) associated with male-specific MS severity. Genotyping of 187 MS patients for rs5945430 confirmed the association of rs5945430G with increased disease severity in MS males (p = 0.013; OR 3.8; 95% CI 1.24-11.7) and disability (p = 0.024). Estradiol levels shown to effect PLXNA3 expression were lower in MS males compared to MS females, and they were lower than control rs5945430G males (p = 0.057), whereas MS females had similar estradiol levels to healthy females reducing the level of expressed PLXNA3 GG in MS females. PLXNA3 rs5945430G is associated with increased disease severity in MS male patients. Estradiol is a possible protective factor against the expression of rs5945430G in MS females.
Collapse
|
50
|
Grossman I, Knappertz V, Laifenfeld D, Ross C, Zeskind B, Kolitz S, Ladkani D, Hayardeny L, Loupe P, Laufer R, Hayden M. Pharmacogenomics strategies to optimize treatments for multiple sclerosis: Insights from clinical research. Prog Neurobiol 2017; 152:114-130. [DOI: 10.1016/j.pneurobio.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
|