1
|
Cordido A, Nuñez-González L, Lamas-González O, Vizoso-González M, Bravo S, Díaz C, Banales JM, García-González MA. Therapeutic opportunities in polycystic kidney and liver disease through extracellular matrix dynamics. Biochem Pharmacol 2025; 236:116858. [PMID: 40081770 DOI: 10.1016/j.bcp.2025.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Autosomal Dominant and Autosomal Recessive Polycystic Kidney Disease (ADPKD and ARPKD) are, respectively, common and rare forms of polycystic disorders, characterized by the formation and progressive growth of cysts from tubules in the kidneys and bile ducts in the liver. Alterations in the extracellular matrix (ECM) and in the activity of matrix metalloproteases (MMPs), both associated with fibrosis, have been shown to be important factors in cystic growth and progression of these diseases. We used tandem mass spectrometry (LC-MS/MS) to identify the most enriched proteins and pathways in an orthologous rapidly progressive mouse model of ADPKD: Pkd1flox/floxTamCre. This information was used to discover and validate novel therapeutic targets in orthologous models of ADPKD (Pkd1flox/floxTamCre) and ARPKD (Pkdh1del3-4/del3-4). ECM related pathways and expression levels of MMPs were among the most dysregulated cellular processes in polycystic kidney and liver. Selective inhibition of MMPs by marimastat (MTT) altered the ECM response and resulted in inhibition of collecting duct-derived cyst growth, delay of global kidney cyst progression and rescue of liver phenotype by normalized MMPs expression and significant reduction in fibrosis. This phenotypic improvement was further enhanced by treatment of MTT and tolvaptan, indicating an additive benefit to targeting the fibrotic and growth pathways in cysts. As conclusion, targeting of MMPs are important in ECM dysregulation and offers a new potential therapeutic strategy for both kidney and bile duct derived fibrocystic disease in ADPKD and ARPKD. Such approaches can have additive benefits with other treatment approaches, such as tolvaptan.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Laura Nuñez-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Olaya Lamas-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Candido Díaz
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; Nephrology Service, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Miguel A García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, N°11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain; RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Thewjitcharoen Y, Nakasatien S, Veerasomboonsin V, Tsoi ST, Lim CK, Himathongkam T. Co-Occurrence of Neurofibromatosis Type 1 and Polycystic Liver Disease: A Case of Hypertension with PKHD1 Variant. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e947141. [PMID: 40186343 PMCID: PMC11977431 DOI: 10.12659/ajcr.947141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/12/2025] [Accepted: 01/27/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a common genetic condition; 0.1-5.7% of patients with NF1 will develop pheochromocytomas in their lifetime. However, other causes of hypertension (HT) in young patients can be present, and polycystic liver disease is not a part of NF1 syndrome. Polycystic liver disease had been described among patients with heterozygotic polycystic kidney and hepatic disease 1 (PKHD1) variant. We report a rare case of a young patient with NF1 who presented with HT and polycystic liver disease. CASE REPORT A 37-year-old Thai woman with history of NF-1 (clinically diagnosed at the age of 20 years from presence of cafe-au-lait spots and neurofibromas) had HT for 2 years without other symptoms. Abdominal computed tomography revealed polycystic liver disease and a simple renal cyst with both adrenal glands normal. Laboratory studies showed normal results. Whole-exome sequencing (WES) confirmed the molecular diagnosis of NF1 with heterozygous pathogenic variants c.5268+1G>A of NF1 and heterozygous pathogenic variants c.7594_7597del of PKHD1 gene. Given the results of genetic testing and no other identified causes of HT, co-occurrence of NF1 and HT-associated heterozygotic PKHD1 variant was diagnosed. CONCLUSIONS Our case highlights the diagnostic challenges of atypical phenotypes among individuals with NF1, which can depend on the background of other genes. With increasing affordability of WES, its utility in uncovering the possibility of being affected by 2 inherited genetic conditions should be considered when findings are incompatible with the primary disease.
Collapse
Affiliation(s)
| | - Soontaree Nakasatien
- Diabetes, Thyroid, and Endocrine Center, Vimut-Theptarin Hospital, Bangkok, Thailand
| | | | - Sandra T.F. Tsoi
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, PR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Cadmon K.P. Lim
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, PR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Thep Himathongkam
- Diabetes, Thyroid, and Endocrine Center, Vimut-Theptarin Hospital, Bangkok, Thailand
| |
Collapse
|
3
|
Jiao M, Sun Y, Dai Z, Hou X, Yin X, Chen Q, Liu R, Li Y, Zhu C. Multi-omics analysis of host-microbiome interactions in a mouse model of congenital hepatic fibrosis. BMC Microbiol 2025; 25:176. [PMID: 40165060 PMCID: PMC11956230 DOI: 10.1186/s12866-025-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Congenital hepatic fibrosis (CHF) caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene is a rare genetic disorder with poorly understood pathogenesis. We hypothesized that integrating gut microbiome and metabolomic analyses could uncover distinct host-microbiome interactions in CHF mice compared to wild-type controls. METHODS Pkhd1del3-4/del3-4 mice were generated using CRISPR/Cas9 technology. Fecal samples were collected from 11 Pkhd1del3-4/del3-4 mice and 10 littermate wild-type controls. We conducted a combined study using 16 S rDNA sequencing for microbiome analysis and untargeted metabolomics. The gut microbiome and metabolome data were integrated using Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO), which helped identify key microbial and metabolic features associated with CHF. RESULTS CHF mouse model was successfully established. Our analysis revealed that the genera Mucispirillum, Eisenbergiella, and Oscillibacter were core microbiota in CHF, exhibiting significantly higher abundance in Pkhd1del3-4/del3-4 mice and strong positive correlations among them. Network analysis demonstrated robust associations between the gut microbiome and metabolome. Multi-omics dimension reduction analysis demonstrated that both the microbiome and metabolome could effectively distinguish CHF mice from controls, with area under the curve of 0.883 and 0.982, respectively. A significant positive correlation was observed between the gut microbiome and metabolome, highlighting the intricate relationship between these two components. CONCLUSION This study identifies distinct metabolic and microbiome profiles in Pkhd1del3-4/del3-4 mice. Multi-omics analysis effectively differentiates CHF mice from controls and identified potential biomarkers. These findings indicate that gut microbiota and metabolites are integral to the pathogenesis of CHF, offering novel insights into the disease mechanism.
Collapse
Affiliation(s)
- Mengfan Jiao
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zixing Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoxue Hou
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Xizhi Yin
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingling Chen
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui Liu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 570216, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 570216, China.
| |
Collapse
|
4
|
Henein M, Russo F, Sentell ZT, Goupil R, Kitzler TM. Phenotypic Discordance among Siblings with Autosomal Recessive Polycystic Kidney Disease: Case Report and Review of the Literature. Nephron Clin Pract 2024; 148:823-831. [PMID: 39467534 PMCID: PMC11651334 DOI: 10.1159/000540741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/02/2024] [Indexed: 10/30/2024] Open
Abstract
Missense variants in the PKHD1 gene are associated with the full spectrum of autosomal recessive polycystic kidney disease severity and exhibit variable expressivity. The study of clinical expressivity is limited by the extensive allelic heterogeneity within the PKHD1 gene, which encodes a 4074-amino-acid protein. We report the case of adult siblings with biallelic missense PKHD1 variants, c.4870C>T (p.Arg1624Trp) and c.8206T>G (p.Trp2736Gly), who presented with discordant phenotypes. Patient A developed progressive chronic kidney disease and Caroli syndrome in childhood requiring combined liver and kidney transplantation, while patient B remains minimally affected in the fourth decade of life with normal kidney function and signs of medullary sponge kidney on imaging. We review previously reported cases of phenotypic discordance among siblings and suggest that genotypes composed of at least one hypomorphic missense variant are more likely to lead to phenotypic discordance.
Collapse
Affiliation(s)
- Marc Henein
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada,
| | - Felicia Russo
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
| | - Zachary T Sentell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Rémi Goupil
- Department of Nephrology, Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Thomas M Kitzler
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
5
|
Mizuno H, Besse W, Sekine A, Long KT, Kurihara S, Oba Y, Yamanouchi M, Hasegawa E, Suwabe T, Sawa N, Ubara Y, Somlo S, Hoshino J. Genetic Analysis of Severe Polycystic Liver Disease in Japan. KIDNEY360 2024; 5:1106-1115. [PMID: 38689396 PMCID: PMC11371350 DOI: 10.34067/kid.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Key Points Among patients with severe polycystic liver disease (PLD) (height-adjusted total liver volume of <1800 ml/m), PKD2 variants were found in 34%. Three patients with PKD1 or PKD2 variants are reported with severe PLD but normal-sized kidneys (hTKV of < 250 ml/m). Background Polycystic liver disease (PLD) is present in most patients with autosomal dominant polycystic kidney disease (ADPKD). PLD can alternatively be found with few, if any, kidney cysts as a diagnosis of isolated PLD (autosomal dominant PLD [ADPLD]). Several genes are identified as causative for this spectrum of phenotypes; however, the relative incidence of genetic etiologies among patients with severe PLD is unknown. Methods Patients with ADPKD or ADPLD having severe PLD defined as height-adjusted total liver volume (hTLV) >1800 ml/m were recruited. Subsequent clinical care was followed. Genetic analysis was performed using whole exome sequencing. Results We enrolled and sequenced 49 patients (38 women, 11 men). Pathogenic or suspected pathogenic variants in polycystic disease genes were found in 44 of 49 patients (90%). The disease gene was PKD1 in 20 of 44 patients (45%), PKD2 in 15 of 44 patients (34%), PRKCSH in 5 of 44 patients (11%), GANAB in 2 of 44 patients (5%), SEC63 in 1 of 44 patients (2%), and ALG8 in 1 of 44 patients (2%). The median hTLV was no different between genetically defined ADPKD and ADPLD groups (4431 [range, 1817–9148] versus 3437 [range, 1860–8211]) ml, P = 0.77), whereas height-adjusted kidney volume was larger as expected in ADPKD than in ADPLD (607 [range, 190–2842] versus 179 [range, 138–234] ml/m, P < 0.01). Of the clinically defined ADPKD patients, 20 of 38 patients (53%) were PKD1 , 15 of 38 (39%) were PKD2 , and 3 (8%) remained genetically unsolved. Among patients with a pathogenic PKD1 or PKD2 variant, we found three patients with a liver-dominant ADPKD (severe PLD with height-adjusted total kidney volume <250 ml/m). Conclusions ADPLD-related genes represent 20% of patients with severe PLD in our cohort. Of those enrolled with ADPKD, we observed a higher frequency of PKD2 carriers than in any previously reported ADPKD cohorts. Although there was no significant difference in the hTLV between patients with PKD1 and PKD2 in this cohort, our data suggest that enrollment on the basis of severe PLD may enrich for patients with PKD2 .
Collapse
Affiliation(s)
- Hiroki Mizuno
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Whitney Besse
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Akinari Sekine
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Kelly T. Long
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Yuki Oba
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | | | | | - Tatsuya Suwabe
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Naoki Sawa
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Yoshifumi Ubara
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Stefan Somlo
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Junichi Hoshino
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
8
|
Walker RV, Yao Q, Xu H, Maranto A, Swaney KF, Ramachandran S, Li R, Cassina L, Polster BM, Outeda P, Boletta A, Watnick T, Qian F. Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis. Nat Commun 2023; 14:6513. [PMID: 37845212 PMCID: PMC10579373 DOI: 10.1038/s41467-023-42196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.
Collapse
Affiliation(s)
- Rebecca V Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Ishimoto Y, Menezes LF, Zhou F, Yoshida T, Komori T, Qiu J, Young MF, Lu H, Potapova S, Outeda P, Watnick T, Germino GG. A novel ARPKD mouse model with near-complete deletion of the Polycystic Kidney and Hepatic Disease 1 (Pkhd1) genomic locus presents with multiple phenotypes but not renal cysts. Kidney Int 2023; 104:611-616. [PMID: 37419448 PMCID: PMC10529617 DOI: 10.1016/j.kint.2023.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.
| | - Fang Zhou
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Teruhiko Yoshida
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Svetlana Potapova
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Patricia Outeda
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Yang C, Harafuji N, Caldovic L, Yu W, Boddu R, Bhattacharya S, Barseghyan H, Gordish-Dressman H, Foreman O, Bebok Z, Eicher EM, Guay-Woodford LM. Pkhd1 cyli/cyli mice have altered renal Pkhd1 mRNA processing and hormonally sensitive liver disease. J Mol Med (Berl) 2023; 101:1141-1151. [PMID: 37584738 PMCID: PMC10482757 DOI: 10.1007/s00109-023-02351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Weiying Yu
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ravindra Boddu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Heather Gordish-Dressman
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Oded Foreman
- Genentech USA, Inc, South San Francisco, CA, 94080, USA
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zsuzsa Bebok
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eva M Eicher
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
11
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
12
|
Zhang YJ, Yang C, Wang W, Harafuji N, Stasiak P, Bell PD, Caldovic L, Sztul E, Guay‐Woodford LM, Bebok Z. Cystin is required for maintaining fibrocystin (FPC) levels and safeguarding proteome integrity in mouse renal epithelial cells: A mechanistic connection between the kidney defects in cpk mice and human ARPKD. FASEB J 2023; 37:e23008. [PMID: 37318790 PMCID: PMC10929748 DOI: 10.1096/fj.202300100r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.
Collapse
Affiliation(s)
- Yiming J. Zhang
- Department of Cell Developmental and Integrative Biology (CDIB)University of Alabama at Birmingham, School of MedicineBirminghamAlabamaUSA
| | - Chaozhe Yang
- Center for Translational ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Wei Wang
- Cystic Fibrosis Research CenterUniversity of Alabama at Birmingham, School of MedicineBirminghamAlabamaUSA
| | - Naoe Harafuji
- Center for Translational ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Piotr Stasiak
- Department of Cell Developmental and Integrative Biology (CDIB)University of Alabama at Birmingham, School of MedicineBirminghamAlabamaUSA
| | - P. Darwin Bell
- Department of Medicine, Division of NephrologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ljubica Caldovic
- Center for Translational ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Elizabeth Sztul
- Department of Cell Developmental and Integrative Biology (CDIB)University of Alabama at Birmingham, School of MedicineBirminghamAlabamaUSA
| | - Lisa M. Guay‐Woodford
- Center for Translational ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- Center for Genetic Medicine ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Zsuzsanna Bebok
- Department of Cell Developmental and Integrative Biology (CDIB)University of Alabama at Birmingham, School of MedicineBirminghamAlabamaUSA
| |
Collapse
|
13
|
Yanda MK, Zeidan A, Cebotaru L. Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model. Am J Physiol Gastrointest Liver Physiol 2023; 324:G404-G414. [PMID: 36880660 PMCID: PMC10085553 DOI: 10.1152/ajpgi.00255.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Adi Zeidan
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Gulati A, Dahl NK, Hartung EA, Clark SL, Moudgil A, Goodwin J, Somlo S. Hypomorphic PKD1 Alleles Impact Disease Variability in Autosomal Dominant Polycystic Kidney Disease. KIDNEY360 2023; 4:387-392. [PMID: 36706243 PMCID: PMC10103195 DOI: 10.34067/kid.0000000000000064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) manifesting earlier than expected on the basis of family history can identify clinically tolerant PKD1 alleles with reduced expression. Hypomorphic PKD1 alleles can cause mild kidney disease or liver cysts in the absence of clinically manifest kidney involvement. The presented data highlight pleiotropic ADPKD clinical presentations and varying severity of kidney disease from PKD1 allele combinations.
Collapse
Affiliation(s)
- Ashima Gulati
- Division of Nephrology, Children's National Hospital, Washington, District of Columbia
- Children's National Research Institute, Washington, District of Columbia
| | - Neera K. Dahl
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie L. Clark
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Asha Moudgil
- Division of Nephrology, Children's National Hospital, Washington, District of Columbia
| | - Julie Goodwin
- Division of Nephrology, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Section of Nephrology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Adams DE, Heuer LS, Rojas M, Zhang W, Ridgway WM. Mutated Pkhd1 alone is sufficient to cause autoimmune biliary disease on the nonobese diabetic (NOD) genetic background. Immunogenetics 2023; 75:27-37. [PMID: 36097289 PMCID: PMC9468241 DOI: 10.1007/s00251-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/27/2022] [Indexed: 01/21/2023]
Abstract
We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response.
Collapse
Affiliation(s)
- David E Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Internal Medicine, Cincinnati VA Medical Center, Cincinnati, OH, 45267, USA
| | - Luke S Heuer
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Manuel Rojas
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota, Colombia
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Van Buren JD, Neuman JT, Sidlow R. Predominant Liver Cystic Disease in a New Heterozygotic PKHD1 Variant: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938507. [PMID: 36691356 PMCID: PMC9883601 DOI: 10.12659/ajcr.938507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The polycystic kidney and hepatic disease 1 (PKHD1) gene codes for fibrocystin-polyductin, a protein that takes part in cell-signaling for cell differentiation, especially in kidney tubules and bile ducts. A homozygous or compound heterozygous defect in this gene can cause autosomal recessive polycystic kidney disease (ARPKD). Polycystic liver disease (PCLD) can also be caused by single heterozygous variants in the PKHD1 gene. ARPKD presents with renal insufficiency and cystic dilatation of bile ducts, although disease is not expected with a single heterozygous mutation. PCLD presents with multiple cysts in the liver and dilated bile ducts as well, but with less of an impact on the kidneys than with ARPKD. Our purpose in publishing this report is to introduce an as-yet unknown variant to the body of genetic defects associated with ARPKD and PCLD, as well as to argue for the likely pathogenicity of the variant according to the prevailing criteria used for classifying gene variants. CASE REPORT We present a patient with a de novo PKHD1 variant currently classified as a variant of unknown significance manifesting with bilaterally enlarged cystic kidneys and echogenic cystic structures in the hepatic portal system, indicative of cystic disease. CONCLUSIONS Given this patient's liver and kidney presentation that does not fully align with either ARPKD or PCLD, the authors believe that the single heterozygous variant in this patient's PKHD1 gene is worthy of reporting. This new single heterozygous variant in PKHD1 gene causing cystic kidney and cystic hepatic disease in the patient should be considered 'likely pathogenic' according to the criteria set by the American College of Medical Genetics.
Collapse
Affiliation(s)
- Jacob D. Van Buren
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel,Corresponding Author: Jacob D. Van Buren, e-mail:
| | - Jeremy T. Neuman
- Radiology Associates of Main Street, New York-Presbyterian Queens, Flushing, NY, USA
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children’s Hospital, Madera, CA, USA
| |
Collapse
|
17
|
Liebau MC. Is There a Functional Role of Mitochondrial Dysfunction in the Pathogenesis of ARPKD? Front Med (Lausanne) 2021; 8:739534. [PMID: 34676227 PMCID: PMC8523777 DOI: 10.3389/fmed.2021.739534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics, Center for Molecular Medicine, and Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Yang C, Harafuji N, O'Connor AK, Kesterson RA, Watts JA, Majmundar AJ, Braun DA, Lek M, Laricchia KM, Fathy HM, Mane S, Shril S, Hildebrandt F, Guay-Woodford LM. Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep 2021; 11:18274. [PMID: 34521872 PMCID: PMC8440558 DOI: 10.1038/s41598-021-97046-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Amber K O'Connor
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jacob A Watts
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanan M Fathy
- Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
20
|
Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1517-1529. [PMID: 34329764 PMCID: PMC8529398 DOI: 10.1016/j.jcmgh.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, liver fibrosis, and hepatosplenomegaly. The goal here was to uncover therapeutic strategies for ARPKD. METHODS We used wild-type and an FPC-mutant cholangiocyte cell line in 3-dimenional cysts and in confluent monolayers to evaluate protein expression using western blotting and protein trafficking using confocal microscopy. RESULTS We found that the protein level of the cystic fibrosis transmembrane conductance regulator (CFTR) was downregulated. The levels of heat shock proteins (HSPs) were altered in the FPC-mutant cholangiocytes, with HSP27 being downregulated and HSP90 and HSP70 upregulated. FPC-mutant cholangiocytes formed cysts, but normal cells did not. Cyst growth could be reduced by increasing HSP27 protein levels, by HSP90 and HSP70 inhibitor treatments, by silencing HSP90 through messenger RNA inhibition, or by the novel approach of treating the cysts with the CFTR corrector VX-809. In wild-type cholangiocytes, CFTR is present in both apical and basolateral membranes. FPC malfunction resulted in altered colocalization of CFTR with both apical and basolateral membranes. Whereas, treatment with VX-809, increasing HSP27 or inhibiting HSP70 or HSP90 restored CFTR localization toward normal values. CONCLUSIONS FPC malfunction induces the formation of cysts, which are fueled by alterations in HSPs and in CFTR protein levels and miss-localization. We suggest that CFTR correctors, already in clinical use to treat cystic fibrosis, could also be used as a treatment for ARPKD.
Collapse
|
21
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Hu H, Zhang J, Qiu W, Liang C, Li C, Wei T, Feng Z, Guo Q, Yang K, Liu Z. Comprehensive strategy improves the genetic diagnosis of different polycystic kidney diseases. J Cell Mol Med 2021; 25:6318-6332. [PMID: 34032358 PMCID: PMC8256360 DOI: 10.1111/jcmm.16608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is known to occur in three main forms, namely autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD) and syndromic PKD (SPKD), based on the clinical manifestations and genetic causes, which are diagnosable from the embryo stage to the later stages of life. Selection of the genetic test for the individuals with diagnostic imaging reports of cystic kidneys without a family history of the disease continues to be a challenge in clinical practice. With the objective of maintaining a limit on the time and medical cost of the procedure, a practical strategy for genotyping and targeted validation to resolve cystogene variations was developed in our clinical laboratory, which combined the techniques of whole-exome sequencing (WES), Long-range PCR (LR-PCR), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to work in a stepwise approach. In this context, twenty-six families with renal polycystic disorders were enrolled in the present study. Thirty-two variants involving four ciliary genes (PKD1, PKHD1, TMEM67 and TMEM107) were identified and verified in 23 families (88.5%, 23/26), which expanded the variant spectrum by 16 novel variants. Pathogenic variations in five foetuses of six families diagnosed with PKD were identified using prenatal ultrasound imaging. Constitutional biallelic and digenic variations constituted the pathogenic patterns in these foetuses. The preliminary clinical data highlighted that the WES + LR PCR-based workflow followed in the present study is efficient in detecting divergent variations in PKD. The biallelic and digenic mutations were revealed as the main pathogenic patterns in the foetuses with PKD.
Collapse
Affiliation(s)
- Hua‐Ying Hu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Jing Zhang
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Wei Qiu
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Chao Liang
- Department of Pediatric OrthopedicsShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Cun‐Xi Li
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Tian‐Ying Wei
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Zhan‐Ke Feng
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Qing Guo
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Kai Yang
- Prenatal Diagnosis CenterBeijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijingChina
| | - Zu‐Guo Liu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
| |
Collapse
|
23
|
Zhang L, Xu B, Niu Y, Wang Y, Tang H. Familial distal renal tubular acidosis. J Int Med Res 2021; 49:3000605211000533. [PMID: 33726529 PMCID: PMC7975576 DOI: 10.1177/03000605211000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the case of a family in which two sisters have distal renal tubular
acidosis (dRTA). Familial dRTA is a rare disorder, with both autosomal dominant
and recessive transmission. This is a report of familial dRTA from China.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Bei Xu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Ya Niu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Yajuan Wang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Hui Tang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| |
Collapse
|
24
|
Liebau MC. Early clinical management of autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:3561-3570. [PMID: 33594464 PMCID: PMC8497312 DOI: 10.1007/s00467-021-04970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but highly relevant disorder in pediatric nephrology. This genetic disease is mainly caused by variants in the PKHD1 gene and is characterized by fibrocystic hepatorenal phenotypes with major clinical variability. ARPKD frequently presents perinatally, and the management of perinatal and early disease symptoms may be challenging. This review discusses aspects of early manifestations in ARPKD and its clincial management with a special focus on kidney disease.
Collapse
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
25
|
Dafinger C, Mandel AM, Braun A, Göbel H, Burgmaier K, Massella L, Mastrangelo A, Dötsch J, Benzing T, Weimbs T, Schermer B, Liebau MC. The carboxy-terminus of the human ARPKD protein fibrocystin can control STAT3 signalling by regulating SRC-activation. J Cell Mol Med 2020; 24:14633-14638. [PMID: 33112055 PMCID: PMC7754027 DOI: 10.1111/jcmm.16014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/04/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is mainly caused by variants in the PKHD1 gene, encoding fibrocystin (FC), a large transmembrane protein of incompletely understood cellular function. Here, we show that a C‐terminal fragment of human FC can suppress a signalling module of the kinase SRC and signal transducer and activator of transcription 3 (STAT3). Consistently, we identified truncating genetic variants specifically affecting the cytoplasmic tail in ARPKD patients, found SRC and the cytoplasmic tail of fibrocystin in a joint dynamic protein complex and observed increased activation of both SRC and STAT3 in cyst‐lining renal epithelial cells of ARPKD patients.
Collapse
Affiliation(s)
- Claudia Dafinger
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alina Braun
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, Faculty of Medicine, University Hospital Cologne and University of Cologne, Cologne, Germany
| | - Kathrin Burgmaier
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Laura Massella
- Nephrology and Dialysis Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jörg Dötsch
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Cordido A, Cernadas E, Fernández-Delgado M, García-González MA. CystAnalyser: A new software tool for the automatic detection and quantification of cysts in Polycystic Kidney and Liver Disease, and other cystic disorders. PLoS Comput Biol 2020; 16:e1008337. [PMID: 33090995 PMCID: PMC7608985 DOI: 10.1371/journal.pcbi.1008337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
The Polycystic Kidney Disease (PKD) is characterized by progressive renal cyst development and other extrarenal manifestation including Polycystic Liver Disease (PLD). Phenotypical characterization of animal models mimicking human diseases are commonly used, in order to, study new molecular mechanisms and identify new therapeutic approaches. The main biomarker of disease progression is total volume of kidney and liver in both human and mouse, which correlates with organ function. For this reason, the estimation of the number and area of the tissue occupied by cysts, is critical for the understanding of physiological mechanisms underlying the disease. In this regard, cystic index is a robust parameter commonly used to quantify the severity of the disease. To date, the vast majority of biomedical researchers use ImageJ as a software tool to estimate the cystic index by quantifying the cystic areas of histological images after thresholding. This tool has imitations of being inaccurate, largely due to incorrectly identifying non-cystic regions. We have developed a new software, named CystAnalyser (register by Universidade de Santiago de Compostela–USC, and Fundación Investigación Sanitaria de Santiago—FIDIS), that combines automatic image processing with a graphical user friendly interface that allows investigators to oversee and easily correct the image processing before quantification. CystAnalyser was able to generate a cystic profile including cystic index, number of cysts and cyst size. In order to test the CystAnalyser software, 795 cystic kidney, and liver histological images were analyzed. Using CystAnalyser there were no differences calculating cystic index automatically versus user input, except in specific circumstances where it was necessary for the user to distinguish between mildly cystic from non-cystic regions. The sensitivity and specificity of the number of cysts detected by the automatic quantification depends on the type of organ and cystic severity, with values 76.84–78.59% and 76.96–89.66% for the kidney and 87.29–93.80% and 63.42–86.07% for the liver. CystAnalyser, in addition, provides a new tool for estimating the number of cysts and a more specific measure of the cystic index than ImageJ. This study proposes CystAnalyser is a new robust and freely downloadable software tool for analyzing the severity of disease by quantifying histological images of cystic organs for routine biomedical research. CystAnalyser can be downloaded from https://citius.usc.es/transferencia/software/cystanalyser (for Windows and Linux) for research purposes. This work suggests CystAnalyser is the most reliable software tool currently available for the assessment of cystic pathologies including Polycystic Kidney Disease (PKD) and Polycystic Liver Disease (PLD). CystAnalyser combines automatic cyst recognition with a friendly graphical user interface, allowing user input prior to histological image quantification. CystAnalyser responds to the need to obtain reliable measurements of the universal biomarker for PKD and PLD disease progression, the Cystic index (area of cysts within the total area of tissue). This software tool is also able to calculate the number and size of cysts from the histological images. In summary, our results show that CystAnalyser overcomes the precision issues detected using the most commonly used software to date (ImageJ) for Cystic index quantification, offering users a reliable tool to easily characterize the phenotype and the pathophysiology of PKD and PLD in pre-clinical studies using animal models.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,RedInRen RETIC, ISCIII, Spain
| | - Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS) Universidade de Santiago de Compostela, Rúa Xenaro de la Fuente Domínguez, Santiago de Compostela, Spain
| | - Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS) Universidade de Santiago de Compostela, Rúa Xenaro de la Fuente Domínguez, Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,RedInRen RETIC, ISCIII, Spain.,Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
27
|
Besse W, Roosendaal C, Tuccillo L, Roy SG, Gallagher AR, Somlo S. Adult Inactivation of the Recessive Polycystic Kidney Disease Gene Causes Polycystic Liver Disease. ACTA ACUST UNITED AC 2020; 1:1068-1076. [PMID: 33554127 DOI: 10.34067/kid.0002522020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background A major difference between autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) lies in the pattern of inheritance, and the resultant timing and focality of cyst formation. In both diseases, cysts form in the kidney and liver as a consequence of the cellular recessive genotype of the respective disease gene, but this occurs by germline inheritance in ARPKD and somatic second hit mutations to the one normal allele in ADPKD. The fibrocystic liver phenotype in ARPKD is attributed to abnormal ductal plate formation because of the absence of PKHD1 expression during embryogenesis and organ development. The finding of polycystic liver disease in a subset of adult PKHD1 heterozygous carriers raises the question of whether somatic second hit mutations in PKHD1 in adults may also result in bile duct-derived cyst formation. Methods We used an adult-inducible Pkhd1 mouse model to examine whether Pkhd1 has a functional role in maintaining bile duct homeostasis after normal liver development. Results Inactivation of Pkhd1 beginning at 4 weeks of age resulted in a polycystic liver phenotype with minimal fibrosis at 17 weeks. Increased biliary epithelium, which lines these liver cysts, was most pronounced in female mice. We assessed genetic interaction of this phenotype with either reduced or increased copies of Pkd1, and found no significant effects on the Pkhd1 phenotype in the liver or kidney from altered Pkd1 expression. Conclusions Somatic adult inactivation of Pkhd1 results in a polycystic liver phenotype. Pkhd1 is a required gene in adulthood for biliary structural homeostasis independent of Pkd1. This suggests that PKHD1 heterozygous carrier patients can develop liver cysts after somatic mutations in their normal copy of PKHD1.
Collapse
Affiliation(s)
- Whitney Besse
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Charlotte Roosendaal
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Luigi Tuccillo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Sounak Ghosh Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
29
|
Raj S, Singh RG, Das P. Mutational screening of PKD1 and PKD2 in Indian ADPKD patients identified 95 genetic variants. Mutat Res 2020; 821:111718. [PMID: 32823016 DOI: 10.1016/j.mrfmmm.2020.111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mutation screening of autosomal dominant polycystic kidney disease (ADPKD) cases imply the major involvement of PKD1 mutations in 85% of patients while rest of the cases harbor mutation in PKD2, DNAJB11 and GANAB. This essentially indicates that individual's genotype holds the key for disease susceptibility and its severity. METHODS For finding genetic variability underlying the disease pathophysiology, 84 Indian ADPKD cases, 31 family members (12 susceptible) and 122 age matched control were screened for PKD1 and PKD2 using Sanger sequencing, PCR-RFLP and ARMS-PCR. RESULTS Genetic screening of Indian ADPKD cases revealed total 67 variants in PKD1 and 28 variants in PKD2. Among the identified variants in PKD1 and PKD2 genes, 35.79% were novel variants and 64.2% recurrent. Further, subcategorization of PKD1 variants showed 14 truncation/frameshift, 21 nonsynonymous, 25 synonymous and 7 intronic variants. Moreover, we observed 40 families with PKD1 pathogenic variants, 7 families with PKD2 pathogenic variants, 9 families with PKD1 & PKD2 pathogenic variants, and 26 families with PKD1/PKD2/PKD1-PKD2 non-pathogenic genetic variants. CONCLUSION Present study represented genetic background of Indian ADPKD cases which will be helpful in disease management as well as finding the genetically matched donor for kidney transplant.
Collapse
Affiliation(s)
- Sonam Raj
- Banaras Hindu University, Varanasi, 221005, India.
| | - Rana Gopal Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Parimal Das
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
30
|
Gallagher AR, Somlo S. Loss of Cilia Does Not Slow Liver Disease Progression in Mouse Models of Autosomal Recessive Polycystic Kidney Disease. ACTA ACUST UNITED AC 2020; 1:962-968. [PMID: 33829210 DOI: 10.34067/kid.0001022019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anna Rachel Gallagher
- Department of Internal Medicine (Nephrology), Yale School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine (Nephrology), Yale School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Pathway identification through transcriptome analysis. Cell Signal 2020; 74:109701. [PMID: 32649993 DOI: 10.1016/j.cellsig.2020.109701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Systems-based, agnostic approaches focusing on transcriptomics data have been employed to understand the pathogenesis of polycystic kidney diseases (PKD). While multiple signaling pathways, including Wnt, mTOR and G-protein-coupled receptors, have been implicated in late stages of disease, there were few insights into the transcriptional cascade immediately downstream of Pkd1 inactivation. One of the consistent findings has been transcriptional evidence of dysregulated metabolic and cytoskeleton remodeling pathways. Recent technical developments, including bulk and single-cell RNA sequencing technologies and spatial transcriptomics, offer new angles to investigate PKD. In this article, we review what has been learned based on transcriptional approaches and consider future opportunities.
Collapse
|
32
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
33
|
Lea WA, McGreal K, Sharma M, Parnell SC, Zelenchuk L, Charlesworth MC, Madden BJ, Johnson KL, McCormick DJ, Hogan MC, Ward CJ. Analysis of the polycystin complex (PCC) in human urinary exosome-like vesicles (ELVs). Sci Rep 2020; 10:1500. [PMID: 32001768 PMCID: PMC6992733 DOI: 10.1038/s41598-020-58087-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022] Open
Abstract
The polycystin-1 (PC1), polycystin-2 (PC2) and fibrocystin proteins, the respective products of the PKD1, PKD2 and PKHD1 genes, are abundant in urinary exosome-like vesicles (ELVs) where they form the polycystin complex (PCC). ELVs are 100 nm diameter membrane vesicles shed into the urine by the cells lining the nephron. Using MS/MS analysis of ELVs from individuals with PKD1 mutations and controls, we show that in addition to the well-described GPS/GAIN cleavage event in PC1 at 3048 aa and the proprotein convertase cleavage (PPC) event in fibrocystin at 3616 aa, there are multiple other cleavage events in these proteins. The C-terminal 11 transmembrane portion of PC1 undergoes three cleavage events in vivo. The absence of peptides from the C-terminal cytoplasmic tail of fibrocystin implies a cleavage event close to its single TM domain prior to loading onto the ELVs. There is also evidence that the C-terminal tail of PC2 is also cleaved in ELVs. Native gel analysis of the PCC shows that the entire complex is > 2 MDa in size and that N-terminal GPS/GAIN cleaved PC1 and PPC cleaved fibrocystin ectodomains can be released under non-reducing conditions and resolve at 300 kDa. This paper shows that the three major human cystogene proteins are detectable in human urinary ELVs and that all three undergo post-translational proteolytic processing. Human urinary ELVs may be a useful source of material in the search for proteins that interact with the PCC.
Collapse
Affiliation(s)
- Wendy A Lea
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kerri McGreal
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lesya Zelenchuk
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M Cristine Charlesworth
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Benjamin J Madden
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Kenneth L Johnson
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Daniel J McCormick
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Marie C Hogan
- Division of Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, USA
| | - Christopher J Ward
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
34
|
Olson RJ, Hopp K, Wells H, Smith JM, Furtado J, Constans MM, Escobar DL, Geurts AM, Torres VE, Harris PC. Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models. J Am Soc Nephrol 2019; 30:2113-2127. [PMID: 31427367 PMCID: PMC6830782 DOI: 10.1681/asn.2019020150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocystin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD's mild phenotype in murine models versus in humans has hampered investigating its pathogenesis. METHODS To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. RESULTS The genetic interaction was synergistic in both species, with digenic animals exhibiting phenotypes of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction between Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached. Pkhd1 loss did not alter expression, maturation, or localization of the ADPKD polycystin proteins, with no interaction detected between the ARPKD FPC protein and polycystins. RNA-seq analysis in the digenic and monogenic mouse models highlighted the ciliary compartment as a common dysregulated target, with enhanced ciliary expression and length changes in the digenic models. CONCLUSIONS These data indicate that FPC and the polycystins work independently, with separate disease-causing thresholds; however, a combined protein threshold triggers the synergistic, cystogenic response because of enhanced dysregulation of primary cilia. These insights into pathogenesis highlight possible common therapeutic targets.
Collapse
Affiliation(s)
- Rory J Olson
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, Colorado
| | - Harrison Wells
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jessica Furtado
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota
- Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, Connecticut; and
| | - Megan M Constans
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Diana L Escobar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Aron M Geurts
- Gene Editing Rat Resource Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota;
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Shan D, Rezonzew G, Mullen S, Roye R, Zhou J, Chumley P, Revell DZ, Challa A, Kim H, Lockhart ME, Schoeb TR, Croyle MJ, Kesterson RA, Yoder BK, Guay-Woodford LM, Mrug M. Heterozygous Pkhd1 C642* mice develop cystic liver disease and proximal tubule ectasia that mimics radiographic signs of medullary sponge kidney. Am J Physiol Renal Physiol 2019; 316:F463-F472. [PMID: 30600684 PMCID: PMC6442377 DOI: 10.1152/ajprenal.00181.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 02/03/2023] Open
Abstract
Heterozygosity for human polycystic kidney and hepatic disease 1 ( PKHD1) mutations was recently associated with cystic liver disease and radiographic findings resembling medullary sponge kidney (MSK). However, the relevance of these associations has been tempered by a lack of cystic liver or renal disease in heterozygous mice carrying Pkhd1 gene trap or exon deletions. To determine whether heterozygosity for a smaller Pkhd1 defect can trigger cystic renal disease in mice, we generated and characterized mice with the predicted truncating Pkhd1C642* mutation in a region corresponding to the middle of exon 20 cluster of five truncating human mutations (between PKHD1G617fs and PKHD1G644*). Mouse heterozygotes or homozygotes for the Pkhd1C642* mutation did not have noticeable liver or renal abnormalities on magnetic resonance images during their first weeks of life. However, when aged to ~1.5 yr, the Pkhd1C642* heterozygotes developed prominent cystic liver changes; tissue analyses revealed biliary cysts and increased number of bile ducts without signs of congenital hepatic fibrosis-like portal field inflammation and fibrosis that was seen in Pkhd1C642* homozygotes. Interestingly, aged female Pkhd1C642* heterozygotes, as well as homozygotes, developed radiographic changes resembling MSK. However, these changes correspond to proximal tubule ectasia, not an MSK-associated collecting duct ectasia. In summary, by demonstrating that cystic liver and kidney abnormalities are triggered by heterozygosity for the Pkhd1C642* mutation, we provide important validation for relevant human association studies. Together, these investigations indicate that PKHD1 mutation heterozygosity (predicted frequency 1 in 70 individuals) is an important underlying cause of cystic liver disorders and MSK-like manifestations in a human population.
Collapse
MESH Headings
- Animals
- Cysts/diagnostic imaging
- Cysts/genetics
- Cysts/metabolism
- Diagnosis, Differential
- Dilatation, Pathologic/diagnostic imaging
- Dilatation, Pathologic/genetics
- Dilatation, Pathologic/metabolism
- Disease Models, Animal
- Kidney Diseases/diagnostic imaging
- Kidney Diseases/genetics
- Kidney Diseases/metabolism
- Kidney Tubules, Proximal/diagnostic imaging
- Kidney Tubules, Proximal/metabolism
- Liver Diseases/diagnostic imaging
- Liver Diseases/genetics
- Liver Diseases/metabolism
- Magnetic Resonance Imaging
- Medullary Sponge Kidney/diagnostic imaging
- Medullary Sponge Kidney/genetics
- Medullary Sponge Kidney/metabolism
- Mice
- Mice, Knockout
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Dan Shan
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Gabriel Rezonzew
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Sean Mullen
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ronald Roye
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Juling Zhou
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Phillip Chumley
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Dustin Z Revell
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Anil Challa
- Department of Genetics, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Mark E Lockhart
- Department of Radiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Trenton R Schoeb
- Department of Genetics, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Mandy J Croyle
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System , Washington, District of Columbia
| | - Michal Mrug
- Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
- Department of Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
36
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Gjorgjieva M, Monteillet L, Calderaro J, Mithieux G, Rajas F. Polycystic kidney features of the renal pathology in glycogen storage disease type I: possible evolution to renal neoplasia. J Inherit Metab Dis 2018; 41:955-963. [PMID: 29869165 DOI: 10.1007/s10545-018-0207-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Glycogen storage disease type I (GSDI) is a rare genetic pathology characterized by glucose-6 phosphatase (G6Pase) deficiency, translating in hypoglycemia during short fasts. Besides metabolic perturbations, GSDI patients develop long-term complications, especially chronic kidney disease (CKD). In GSDI patients, CKD is characterized by an accumulation of glycogen and lipids in kidneys, leading to a gradual decline in renal function. At a molecular level, the activation of the renin-angiotensin system is responsible for the development of renal fibrosis, eventually leading to renal failure. The same CKD phenotype was observed in a mouse model with a kidney-specific G6Pase deficiency (K.G6pc-/- mice). Furthermore, GSDI patients and mice develop frequently renal cysts at late stages of the nephropathy, classifying GSDI as a potential polycystic kidney disease (PKD). PKDs are genetic disorders characterized by multiple renal cyst formation, frequently caused by the loss of expression of polycystic kidney genes, such as PKD1/2 and PKHD1. Interestingly, these genes are deregulated in K.G6pc-/- kidneys, suggesting their possible role in GSDI cystogenesis. Finally, renal cysts are known to predispose to renal malignancy development. In addition, HNF1B loss is a malignancy prediction factor. Interestingly, Hnf1b expression was decreased in K.G6pc-/- kidneys. While a single case of renal cancer has been reported in a GSDI patient, a clear cell renal carcinoma was recently observed in one K.G6pc-/- mouse (out of 36 studied mice) at a later stage of the disease. This finding highlights the need to further analyze renal cyst development in GSDI patients in order to evaluate the possible associated risk of carcinogenesis, even if the risk might be limited.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche by Inserm, U1213, 69008, Lyon, France
- Université de Lyon, 69008, Lyon, France
- Université Lyon1, 69622, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche by Inserm, U1213, 69008, Lyon, France
- Université de Lyon, 69008, Lyon, France
- Université Lyon1, 69622, Villeurbanne, France
| | - Julien Calderaro
- Inserm UMR-1162, Université Paris Descartes, Labex Immuno-Oncology, Université Paris Diderot, Université Paris 13, Paris, France
- APHP, Assistance-Publique Hôpitaux-de-Paris, Département de Pathologie, Hôpital Henri Mondor, 94010, Créteil, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche by Inserm, U1213, 69008, Lyon, France
- Université de Lyon, 69008, Lyon, France
- Université Lyon1, 69622, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche by Inserm, U1213, 69008, Lyon, France.
- Université de Lyon, 69008, Lyon, France.
- Université Lyon1, 69622, Villeurbanne, France.
- Inserm U1213, Université Lyon 1 Laennec, 7 rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| |
Collapse
|
38
|
Dillard KJ, Hytönen MK, Fischer D, Tanhuanpää K, Lehti MS, Vainio-Siukola K, Sironen A, Anttila M. A splice site variant in INPP5E causes diffuse cystic renal dysplasia and hepatic fibrosis in dogs. PLoS One 2018; 13:e0204073. [PMID: 30235266 PMCID: PMC6147468 DOI: 10.1371/journal.pone.0204073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023] Open
Abstract
Ciliopathies presenting as inherited hepatorenal fibrocystic disorders are rare in humans and in dogs. We describe here a novel lethal ciliopathy in Norwich Terrier puppies that was diagnosed at necropsy and characterized as diffuse cystic renal disease and hepatic fibrosis. The histopathological findings were typical for cystic renal dysplasia in which the cysts were located in the straight portion of the proximal tubule, and thin descending and ascending limbs of Henle’s loop. The pedigree of the affected puppies was suggestive of an autosomal recessive inheritance and therefore, whole exome sequencing and homozygosity mapping were used for identification of the causative variant. The analyses revealed a case-specific homozygous splice donor site variant in a cilia related gene, INPP5E: c.1572+5G>A. Association of the variant with the defect was validated in a large cohort of Norwich Terriers with 3 cases and 480 controls, the carrier frequency being 6%. We observed that the identified variant introduces a novel splice site in INPP5E causing a frameshift and formation of a premature stop codon. In conclusion, our results suggest that the INPP5E: c.1572+5G>A variant is causal for the ciliopathy in Norwich Terriers. Therefore, genetic testing can be carried out in the future for the eradication of the disease from the breed.
Collapse
Affiliation(s)
- Kati J. Dillard
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Kimmo Tanhuanpää
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mari S. Lehti
- Natural Resources Institute, LUKE, Jokioinen, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Katri Vainio-Siukola
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Anu Sironen
- Natural Resources Institute, LUKE, Jokioinen, Finland
| | - Marjukka Anttila
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
- * E-mail:
| |
Collapse
|
39
|
Han SK, Kim D, Lee H, Kim I, Kim S. Divergence of Noncoding Regulatory Elements Explains Gene–Phenotype Differences between Human and Mouse Orthologous Genes. Mol Biol Evol 2018; 35:1653-1667. [DOI: 10.1093/molbev/msy056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Heetak Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
40
|
Janssens P, Weydert C, De Rechter S, Wissing KM, Liebau MC, Mekahli D. Expanding the role of vasopressin antagonism in polycystic kidney diseases: From adults to children? Pediatr Nephrol 2018; 33:395-408. [PMID: 28455745 DOI: 10.1007/s00467-017-3672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Polycystic kidney disease (PKD) encompasses a group of genetic disorders that are common causes of renal failure. The two classic forms of PKD are autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Despite their clinical differences, ARPKD and ADPKD share many similarities. Altered intracellular Ca2+ and increased cyclic adenosine monophosphate (cAMP) concentrations have repetitively been described as central anomalies that may alter signaling pathways leading to cyst formation. The vasopressin V2 receptor (V2R) antagonist tolvaptan lowers cAMP in cystic tissues and slows renal cystic progression and kidney function decline when given over 3 years in adult ADPKD patients. Tolvaptan is currently approved for the treatment of rapidly progressive disease in adult ADPKD patients. On the occasion of the recent initiation of a clinical trial with tolvaptan in pediatric ADPKD patients, we aim to describe the most important aspects in the literature regarding the AVP-cAMP axis and the clinical use of tolvaptan in PKD.
Collapse
Affiliation(s)
- Peter Janssens
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium. .,Department of Nephrology, University Hospitals Brussel, Brussel, Belgium.
| | - Caroline Weydert
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stephanie De Rechter
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany.,Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Djalila Mekahli
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is clinically and genetically heterogeneous and constitutes the most common heritable kidney disease. Most patients are affected by the autosomal dominant form (ADPKD) which generally is an adult-onset multisystem disorder. By contrast, the rarer recessive form ARPKD usually already manifests perinatally or in childhood. In some patients, however, ADPKD and ARPKD can phenotypically overlap with early manifestation in ADPKD and only late onset in ARPKD. Progressive fibrocystic renal changes are often accompanied by severe hepatobiliary changes or other extrarenal abnormalities. Areas covered: A reduced dosage of disease proteins disturbs cell homeostasis and explains a more severe clinical course in some PKD patients. Cystic kidney disease is also a common feature of other ciliopathies and genetic syndromes. Genetic diagnosis may guide clinical management and helps to avoid invasive measures and to detect renal and extrarenal comorbidities early in the clinical course. Expert Commentary: The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach. Interpretation of data becomes the challenge and bench and bedside benefit from digitized multidisciplinary interrelationships.
Collapse
Affiliation(s)
- Carsten Bergmann
- a Center for Human Genetics , Bioscientia , Ingelheim , Germany.,b Department of Medicine , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
42
|
Outeda P, Menezes L, Hartung EA, Bridges S, Zhou F, Zhu X, Xu H, Huang Q, Yao Q, Qian F, Germino GG, Watnick T. A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney Int 2017; 92:1130-1144. [PMID: 28729032 PMCID: PMC6005173 DOI: 10.1016/j.kint.2017.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/09/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Autosomal recessive polycystic kidney disease (OMIM 263200) is a serious condition of the kidney and liver caused by mutations in a single gene, PKHD1. This gene encodes fibrocystin/polyductin (FPC, PD1), a large protein shown by in vitro studies to undergo Notch-like processing. Its cytoplasmic tail, reported to include a ciliary targeting sequence, a nuclear localization signal, and a polycystin-2 binding domain, is thought to traffic to the nucleus after cleavage. We now report a novel mouse line with a triple HA-epitope "knocked-in" to the C-terminus along with lox P sites flanking exon 67, which encodes most of the C-terminus (Pkhd1Flox67HA). The triple HA-epitope has no functional effect as assayed by phenotype and allows in vivo tracking of Fibrocystin. We used the HA tag to identify previously predicted Fibrocystin cleavage products in tissue. In addition, we found that Polycystin-2 fails to co-precipitate with Fibrocystin in kidney samples. Immunofluorescence studies with anti-HA antibodies demonstrate that Fibrocystin is primarily present in a sub-apical location the in kidney, biliary duct, and pancreatic ducts, partially overlapping with the Golgi. In contrast to previous studies, the endogenous protein in the primary cilia was not detectable in mouse tissues. After Cre-mediated deletion, homozygous Pkhd1Δ67 mice are completely normal. Thus, Pkhd1Flox67HA is a valid model to track Pkhd1-derived products containing the C-terminus. Significantly, exon 67 containing the nuclear localization signal and the polycystin-2 binding domain is not essential for Fibrocystin function in our model.
Collapse
Affiliation(s)
- Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luis Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stacey Bridges
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fang Zhou
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Study, Sichuan Academy of Sciences and Sichuan Provincial People's Hospital Chengdue, Sichuan, China
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qiong Huang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
43
|
Nagara M, Papagregoriou G, Ben Abdallah R, Landoulsi Z, Bouyacoub Y, Elouej S, Kefi R, Pippucci T, Voskarides K, Bashamboo A, McElreavey K, Hachicha M, Romeo G, Seri M, Deltas C, Abdelhak S. Distal renal tubular acidosis in a Libyan patient: Evidence for digenic inheritance. Eur J Med Genet 2017; 61:1-7. [PMID: 29024829 DOI: 10.1016/j.ejmg.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 08/15/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022]
Abstract
AIM OF THE STUDY Recent advances in understanding the underlying molecular mechanism for distal renal tubular acidosis (dRTA), led to an increased attention towards the primary and the familial forms of the disease. Mutations in ATP6V1B1 and ATP6V0A4 are usually responsible for the recessive form of the disease. Mutations in gene AE1 encoding the Cl-/HCO3- exchanger, usually present as dominant dRTA, but a recessive pattern has been recently described. Our objective is to identify the mutational spectrum responsible of dRTA in a consanguineous Libyan family. MATERIALS AND METHODS Both ATP6V0A4 and ATP6V1B1 genes were preferentially screened in our patient. Additional whole exome sequencing (WES) in the same patient, offered a wider view on potential chromosomal rearrangements as well as the mutational spectrum of other genes involved in this disease. RESULTS The patient is a heterozygote for two different mutations, one in each of the genes ATP6V0A4 and ATP6V1B1, while no deleterious variation was detected in the remaining genes responsible for the recessive form of dRTA. Homozygosity mapping and WES confirmed our findings and supported the hypothesis of a digenic inheritance model existing as an explanation for dRTA. CONCLUSIONS To our knowledge, this is the first report describing a Libyan patient with dRTA who suffered from early-onset sensorineural hearing loss, with a digenic mode of inheritance, supported by the identification of two novel mutations. This study increases the understanding of how dRTA is genetically transmitted, while offers a good outline towards the molecular diagnostics and genetic counseling for dRTA in Lybians.
Collapse
Affiliation(s)
- Majdi Nagara
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia; Aix Marseille University, Medical Genetics & Functional Genomics, UMR_S 910 Inserm, 13385 Marseille, France.
| | - Gregory Papagregoriou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Zied Landoulsi
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia
| | - Yosra Bouyacoub
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia
| | - Sahar Elouej
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia
| | - Rym Kefi
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia
| | - Tommaso Pippucci
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | | | | | - Giovanni Romeo
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Marco Seri
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sonia Abdelhak
- Institut Pasteur de Tunis, Laboratoire de Génomique Biomédicale et Oncogénétique (LR11IPT05), 1002 Tunis, Tunisia
| |
Collapse
|
44
|
NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology. Sci Rep 2017; 7:7733. [PMID: 28798345 PMCID: PMC5552802 DOI: 10.1038/s41598-017-08284-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important childhood nephropathy, occurring 1 in 20,000 live births. The major clinical phenotypes are expressed in the kidney with dilatation of the collecting ducts, systemic hypertension, and progressive renal insufficiency, and in the liver with biliary dysgenesis, portal tract fibrosis, and portal hypertension. The systemic hypertension has been attributed to enhanced distal sodium reabsorption in the kidney, the structural defects have been ascribed to altered cellular morphology, and fibrosis to increased TGF-β signaling in the kidney and biliary tract, respectively. The pathogenic mechanisms underlying these abnormalities have not been determined. In the current report, we find that disrupting PKHD1 results in altered sub-cellular localization and function of the C2-WWW-HECT domain E3 family of ligases regulating these processes. We also demonstrate altered activity of RhoA and increased TGF-β signaling and ENaC activity. Linking these phenomena, we found that vesicles containing the PKHD1/Pkhd1 gene product, FPC, also contain the NEDD4 ubiquitin ligase interacting protein, NDFIP2, which interacts with multiple members of the C2-WWW-HECT domain E3 family of ligases. Our results provide a mechanistic explanation for both the cellular effects and in vivo phenotypic abnormalities in mice and humans that result from Pkhd1/PKHD1 mutation.
Collapse
|
45
|
Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S, Tahvanainen E, Tahvanainen P, Sanna-Cherchi S, Lifton RP, Watnick T, Pei YP, Torres VE, Somlo S. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest 2017; 127:1772-1785. [PMID: 28375157 PMCID: PMC5409105 DOI: 10.1172/jci90129] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023] Open
Abstract
Dominantly inherited isolated polycystic liver disease (PCLD) consists of liver cysts that are radiologically and pathologically identical to those seen in autosomal dominant polycystic kidney disease, but without clinically relevant kidney cysts. The causative genes are known for fewer than 40% of PCLD index cases. Here, we have used whole exome sequencing in a discovery cohort of 102 unrelated patients who were excluded for mutations in the 2 most common PCLD genes, PRKCSH and SEC63, to identify heterozygous loss-of-function mutations in 3 additional genes, ALG8, GANAB, and SEC61B. Similarly to PRKCSH and SEC63, these genes encode proteins that are integral to the protein biogenesis pathway in the endoplasmic reticulum. We inactivated these candidate genes in cell line models to show that loss of function of each results in defective maturation and trafficking of polycystin-1, the central determinant of cyst pathogenesis. Despite acting in a common pathway, each PCLD gene product demonstrated distinct effects on polycystin-1 biogenesis. We also found enrichment on a genome-wide basis of heterozygous mutations in the autosomal recessive polycystic kidney disease gene PKHD1, indicating that adult PKHD1 carriers can present with clinical PCLD. These findings define genetic and biochemical modulators of polycystin-1 function and provide a more complete definition of the spectrum of dominant human polycystic diseases.
Collapse
Affiliation(s)
| | - Ke Dong
- Department of Internal Medicine, and
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Murim Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Esa Tahvanainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Pia Tahvanainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - York P. Pei
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Somlo
- Department of Internal Medicine, and
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Ebner K, Schaefer F, Liebau MC. Recent Progress of the ARegPKD Registry Study on Autosomal Recessive Polycystic Kidney Disease. Front Pediatr 2017; 5:18. [PMID: 28296980 PMCID: PMC5327862 DOI: 10.3389/fped.2017.00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare monogenic disease with a severe phenotype often presenting prenatally or in early childhood. With its obligate renal and hepatic involvement, ARPKD is one of the most important indications for liver and/or kidney transplantation in childhood. Marked phenotypic variability is observed, the genetic basis of which is largely unknown. Treatment is symptomatic and largely empiric as evidence-based guidelines are lacking. Therapeutic initiatives for ARPKD face the problem of highly variable cohorts and lack of clinical or biochemical risk markers without clear-cut clinical end points. ARegPKD is an international, multicenter, retro- and prospective, observational study to deeply phenotype patients with the clinical diagnosis of ARPKD. Initiated in 2013 as a web-based registry (www.aregpkd.org), ARegPKD enrolls patients across large parts of Europe and neighboring countries. By January 2017, more than 400 patients from 17 mostly European countries have been registered in the ARPKD registry study with significant follow-up data. Due to comprehensive retro- and prospective data collection and associated biobanking, ARegPKD will generate a unique ARPKD cohort with detailed longitudinal clinical characterization providing a basis for future clinical trials as well as translational research. Hence, ARegPKD is hoped to contribute to the pathophysiological understanding of the disease and to the improvement of clinical management.
Collapse
Affiliation(s)
- Kathrin Ebner
- Department of Pediatrics, University Hospital of Cologne , Cologne , Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatrics and Adolescent Medicine, Heidelberg University Medical Centre , Heidelberg , Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany; Nephrology Research Laboratory, Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
47
|
Cordido A, Besada-Cerecedo L, García-González MA. The Genetic and Cellular Basis of Autosomal Dominant Polycystic Kidney Disease-A Primer for Clinicians. Front Pediatr 2017; 5:279. [PMID: 29326913 PMCID: PMC5741702 DOI: 10.3389/fped.2017.00279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders worldwide. In recent decades, the field has undergone a revolution, starting with the identification of causal ADPKD genes, including PKD1, PKD2, and the recently identified GANAB. In addition, advances defining the genetic mechanisms, protein localization and function, and the identification of numerous pathways involved in the disease process, have contributed to a better understanding of this illness. Together, this has led to a better prognosis, diagnosis, and treatment in clinical practice. In this mini review, we summarize and discuss new insights about the molecular mechanisms underlying ADPKD, including its genetics, protein function, and cellular pathways.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Lara Besada-Cerecedo
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
48
|
Abstract
Primary cilia are small, antenna-like structures that detect mechanical and chemical cues and transduce extracellular signals. While mammalian primary cilia were first reported in the late 1800s, scientific interest in these sensory organelles has burgeoned since the beginning of the twenty-first century with recognition that primary cilia are essential to human health. Among the most common clinical manifestations of ciliary dysfunction are renal cysts. The molecular mechanisms underlying renal cystogenesis are complex, involving multiple aberrant cellular processes and signaling pathways, while initiating molecular events remain undefined. Autosomal Dominant Polycystic Kidney Disease is the most common renal cystic disease, caused by disruption of polycystin-1 and polycystin-2 transmembrane proteins, which evidence suggests must localize to primary cilia for proper function. To understand how the absence of these proteins in primary cilia may be remediated, we review intracellular trafficking of polycystins to the primary cilium. We also examine the controversial mechanisms by which primary cilia transduce flow-mediated mechanical stress into intracellular calcium. Further, to better understand ciliary function in the kidney, we highlight the LKB1/AMPK, Wnt, and Hedgehog developmental signaling pathways mediated by primary cilia and misregulated in renal cystic disease.
Collapse
|
49
|
Bergmann C. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses. Front Pediatr 2017; 5:221. [PMID: 29479522 PMCID: PMC5811498 DOI: 10.3389/fped.2017.00221] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/02/2017] [Indexed: 01/09/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD). A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD). For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS) which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach for these indications. Interpretation of genetic data becomes the challenge and requires deep clinical understanding.
Collapse
Affiliation(s)
- Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany.,Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Edrees BM, Athar M, Al-Allaf FA, Taher MM, Khan W, Bouazzaoui A, Al-Harbi N, Safar R, Al-Edressi H, Alansary K, Anazi A, Altayeb N, Ahmed MA, Abduljaleel Z. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease. Gene 2016; 591:214-226. [DOI: 10.1016/j.gene.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
|