1
|
Xu L, Zhang T, Zhu B, Tao H, Liu Y, Liu X, Zhang Y, Meng X. Mitochondrial quality control disorder in neurodegenerative disorders: Potential and advantages of traditional Chinese medicines. J Pharm Anal 2025; 15:101146. [PMID: 40291018 PMCID: PMC12032916 DOI: 10.1016/j.jpha.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 04/30/2025] Open
Abstract
Neurodegenerative disorders (NDDs) are prevalent chronic conditions characterized by progressive synaptic loss and pathological protein alterations. Increasing evidence suggested that mitochondrial quality control (MQC) serves as the key cellular process responsible for clearing misfolded proteins and impaired mitochondria. Herein, we provided a comprehensive analysis of the mechanisms through which MQC mediates the onset and progression of NDDs, emphasizing mitochondrial dynamic stability, the clearance of damaged mitochondria, and the generation of new mitochondria. In addition, traditional Chinese medicines (TCMs) and their active monomers targeting MQC in NDD treatment have been demonstrated. Consequently, we compiled the TCMs that show great potential in the treatment of NDDs by targeting MQC, aiming to offer novel insights and a scientific foundation for the use of MQC stabilizers in NDD prevention and treatment.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojie Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
2
|
Alatibi K, Sumser K, Christopoulou ME, Hug MJ, Tucci S. Dysregulated mitochondrial fission and neurodegeneration proteomic signature in ACSF3-deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159582. [PMID: 39581258 DOI: 10.1016/j.bbalip.2024.159582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Affiliation(s)
- Khaled Alatibi
- Pharmacy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kathrin Sumser
- Pharmacy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Martin J Hug
- Pharmacy, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Sara Tucci
- Pharmacy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
3
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
4
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
5
|
Joshi DC, Chavan MB, Gurow K, Gupta M, Dhaliwal JS, Ming LC. The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting. Biomed Pharmacother 2025; 183:117827. [PMID: 39854819 DOI: 10.1016/j.biopha.2025.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Mayuri Bapu Chavan
- TMV's Lokmanya Tilak Institute of Pharmaceutical Sciences, Pune, Maharashtra, India.
| | - Kajal Gurow
- Department of Pharmacology, Gurukul Pharmacy college, Ranpur, Kota, Rajasthan, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India.
| |
Collapse
|
6
|
Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y, Feng J, Xia Y, Tan R, Cui F, Yuan J. Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies. Biomedicines 2025; 13:327. [PMID: 40002740 PMCID: PMC11852430 DOI: 10.3390/biomedicines13020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative disease (ND) refers to the progressive loss and morphological abnormalities of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Examples of neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Recent studies have shown that mitochondria play a broad role in cell signaling, immune response, and metabolic regulation. For example, mitochondrial dysfunction is closely associated with the onset and progression of a variety of diseases, including ND, cardiovascular diseases, diabetes, and cancer. The dysfunction of energy metabolism, imbalance of mitochondrial dynamics, or abnormal mitophagy can lead to the imbalance of mitochondrial homeostasis, which can induce pathological reactions such as oxidative stress, apoptosis, and inflammation, damage the nervous system, and participate in the occurrence and development of degenerative nervous system diseases such as AD, PD, and ALS. In this paper, the latest research progress of this subject is detailed. The mechanisms of oxidative stress, mitochondrial homeostasis, and mitophagy-mediated ND are reviewed from the perspectives of β-amyloid (Aβ) accumulation, dopamine neuron damage, and superoxide dismutase 1 (SOD1) mutation. Based on the mechanism research, new ideas and methods for the treatment and prevention of ND are proposed.
Collapse
Affiliation(s)
- Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| | - Haocheng Jia
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Xiaoqing Hou
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Ziming Zhu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yuguang Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yingying Feng
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Jingwen Feng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China;
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China;
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou 221004, China;
| | - Fen Cui
- Educational Institute of Behavioral Medicine, Jining Medical University, Jining 272067, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| |
Collapse
|
7
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
9
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
10
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
11
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
12
|
Liu Y, Xu Y, Ji H, Gao F, Ge R, Zhou D, Fu H, Liu X, Ma S. AdipoRon Alleviates Liver Injury by Protecting Hepatocytes from Mitochondrial Damage Caused by Ionizing Radiation. Int J Mol Sci 2024; 25:11277. [PMID: 39457060 PMCID: PMC11508598 DOI: 10.3390/ijms252011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation liver injury is a common complication of hepatocellular carcinoma radiotherapy. It is mainly caused by irreversible damage to the DNA of hepatocellular cells directly by radiation, which seriously interferes with metabolism and causes cell death. AdipoRon can maintain lipid metabolism and stabilize blood sugar by activating adiponectin receptor 1 (AdipoR1). However, the role of AdipoRon/AdipoR1 in the regulation of ionizing radiation (IR)-induced mitochondrial damage remains unclear. In this study, we aimed to elucidate the roles of AdipoRon/AdipoR1 in IR-induced mitochondrial damage in normal hepatocyte cells. We found that AdipoRon treatment rescued IR-induced liver damage in mice and mitochondrial damage in normal hepatocytes in vivo and in vitro. AdipoR1 deficiency exacerbated IR-induced oxidative stress, mitochondrial dynamics, and biogenesis disorder. Mechanistically, the absence of AdipoR1 inhibits the activity of adenosine monophosphate-activated protein kinase α (AMPKα), subsequently leading to disrupted mitochondrial dynamics by decreasing mitofusin (MFN) and increasing dynamin-related protein 1 (DRP1) protein expression. It also controls mitochondrial biogenesis by suppressing the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) and transcription factor A (TFAM) signaling pathway, ultimately resulting in impaired mitochondrial function. To sum up, AdipoRon/AdipoR1 maintain mitochondrial function by regulating mitochondrial dynamics and biogenesis through the AdipoR1-AMPKα signaling pathway. This study reveals the significant role of AdipoR1 in regulating IR-induced mitochondrial damage in hepatocytes and offers a novel approach to protecting against damage caused by IR.
Collapse
Affiliation(s)
- Yi Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Yinfen Xu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Huilin Ji
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Fenfen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Ruoting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Dan Zhou
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Hengyi Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
| |
Collapse
|
13
|
Khan S, Bano N, Uversky VN, Ahamad S, Bhat SA. The Huntington's disease drug pipeline: a review of small molecules and their therapeutic targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:169-207. [PMID: 39947748 DOI: 10.1016/bs.pmbts.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition resulting from a CAG repeat expansion in the huntingtin gene (HTT). Recent advancements in understanding HD's cellular and molecular pathways have paved the way for identifying various effective small-molecule candidates to treat the disorder. Two small molecules, Tetrabenazine and Deutetrabenazine, are approved for managing chorea associated with HD, and several others are under clinical trials. Notably, the field of small-molecule therapeutics targeting HD is rapidly progressing, and there is anticipation of their approval in the foreseeable future. This chapter provides a comprehensive overview of the emergence of small-molecule therapeutics in various stages of clinical development for HD therapy. The emphasis is placed on detailing their structural design, therapeutic effects, and specific mechanisms of action. Additionally, exploring key drivers implicated in HD pathogenesis offers valuable insights, as a foundational principle for designing prospective anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
14
|
Gharaba S, Sprecher U, Baransi A, Muchtar N, Weil M. Characterization of fission and fusion mitochondrial dynamics in HD fibroblasts according to patient's severity status. Neurobiol Dis 2024; 201:106667. [PMID: 39284371 DOI: 10.1016/j.nbd.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Huntington's Disease (HD) is an inheritable neurodegenerative condition caused by an expanded CAG trinucleotide repeat in the HTT gene with a direct correlation between CAG repeats expansion and disease severity with earlier onset-of- disease. Previously we have shown that primary skin fibroblasts from HD patients exhibit unique phenotype disease features, including distinct nuclear morphology and perturbed actin cap linked with cell motility, that are correlated with the HD patient disease severity. Here we provide further evidence that mitochondrial fission-fusion morphology balance dynamics, classified using a custom image-based high-content analysis (HCA) machine learning tool, that improved correlation with HD severity status. This mitochondrial phenotype is supported by appropriate changes in fission-fusion biomarkers (Drp1, MFN1, MFN2, VAT1) levels in the HD patients' fibroblasts. These findings collectively point towards a dysregulation in mitochondrial dynamics, where both fission and fusion processes may be disrupted in HD cells compared to healthy controls. This study shows for the first time a methodology that enables identification of HD phenotype before patient's disease onset (Premanifest). Therefore, we believe that this tool holds a potential for improving precision in HD patient's diagnostics bearing the potential to evaluate alterations in mitochondrial dynamics throughout the progression of HD, offering valuable insights into the molecular mechanisms and drug therapy evaluation underlying biological differences in any disease stage.
Collapse
Affiliation(s)
- Saja Gharaba
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Uri Sprecher
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Adam Baransi
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Noam Muchtar
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Miguel Weil
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
15
|
Gouravani M, Fekrazad S, Mafhoumi A, Ashouri M, DeBuc DC. Optical coherence tomography measurements in Huntington's disease: a systematic review and meta-analysis. J Neurol 2024; 271:6471-6484. [PMID: 39187741 PMCID: PMC11447008 DOI: 10.1007/s00415-024-12634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND A connection has been established between ocular structural changes and various neurodegenerative diseases. Several studies utilizing optical coherence tomography (OCT) have detected signs of ocular structural alterations among individuals with Huntington's disease (HD). The inconsistent results reported in the literature regarding alterations in the retina and choroid encouraged us to conduct this systematic review and meta-analysis to accumulate the findings. METHODS A systematic search was carried out in three electronic databases (PubMed, Embase, Scopus) to find studies reporting OCT measurements in HD cases compared with healthy controls (HC). A fixed-effects or random-effects meta-analysis was conducted according to the detected heterogeneity level. Furthermore, subgroup and sensitivity analyses, meta-regression, and quality assessment were performed. RESULTS Eleven studies were included in the systematic review and 9 studies with a total population of 452 participants (241 cases, and 211 HC) underwent meta-analysis. Results of the analysis denoted that subfoveal choroid had a significantly reduced thickness in HD eyes compared to HC (p < 0.0001). Moreover, our analysis indicated that HD cases had a significantly thinner average (p = 0.0130) and temporal peripapillary retinal nerve fiber layer (pRNFL) (p = 0.0012) than HC. However, subjects with pre-HD had insignificant differences in average (p = 0.44) and temporal pRNFL thickness (p = 0.33) with the HC group. CONCLUSION Results of the current systematic review and meta-analysis revealed the significant thinning of average and temporal pRNFL and subfoveal choroid in HD compared to HC. However, OCT currently might be considered insensitive to be applied in the pre-HD population at least until further longitudinal investigations considering variables such as the duration between OCT measurement and disease onset validating OCT as a routine diagnostic tool in HD clinics.
Collapse
Affiliation(s)
- Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Network for Photomedicine and Photodynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asma Mafhoumi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ashouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delia Cabrera DeBuc
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA.
| |
Collapse
|
16
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
17
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
18
|
Upadhayay S, Kumar P. Mitochondrial targeted antioxidants as potential therapy for huntington's disease. Pharmacol Rep 2024; 76:693-713. [PMID: 38982016 DOI: 10.1007/s43440-024-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion in CAG repeat on huntington (Htt) gene, leading to a degeneration of GABAergic medium spiny neurons (MSNs) in the striatum, resulting in the generation of reactive oxygen species, and decrease antioxidant activity. These pathophysiological alterations impair mitochondrial functions, leading to an increase in involuntary hyperkinetic movement. However, researchers investigated the neuroprotective effect of antioxidants using various animal models. Still, their impact is strictly limited to curtailing oxidative stress and increasing the antioxidant enzyme in the brain, which is less effective in HD. Meanwhile, researchers discovered Mitochondria-targeted antioxidants (MTAXs) that can improve mitochondrial functions and antioxidant activity through the modulation of mitochondrial signaling pathways, including peroxisome proliferator-activated receptor (PPAR)-coactivator 1 (PGC-1α), dynamin-related protein 1 (Drp1), mitochondrial fission protein 1 (Fis1), and Silent mating type information regulation 2 homolog 1 (SIRT-1), showing neuroprotective effects in HD. The present review discusses the clinical and preclinical studies that investigate the neuroprotective effect of MTAXs (SS31, XJB-5-131, MitoQ, bezafibrate, rosiglitazone, meldonium, coenzyme Q10, etc.) in HD. This brief literature review will help to understand the relevance of MTAXs in HD and enlighten the importance of MTAXs in future drug discovery and development.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
19
|
Yoo H, Park H. Altered mitochondrial Ca 2+ uptake in presynaptic terminals of cultured striatal and cortical neurons from the zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun 2024; 716:150010. [PMID: 38704892 DOI: 10.1016/j.bbrc.2024.150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.
Collapse
Affiliation(s)
- Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
20
|
Ghani M, Szabó B, Alkhatibe M, Amsalu H, Zohar P, Janka EA, Mótyán JA, Tar K. Serine 39 in the GTP-binding domain of Drp1 is involved in shaping mitochondrial morphology. FEBS Open Bio 2024; 14:1147-1165. [PMID: 38760979 PMCID: PMC11216946 DOI: 10.1002/2211-5463.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Continuous fusion and fission are critical for mitochondrial health. In this study, we further characterize the role played by dynamin-related protein 1 (Drp1) in mitochondrial fission. We show that a single amino acid change in Drp1 at position 39 from serine to alanine (S39A) within the GTP-binding (GTPase) domain results in a fused mitochondrial network in human SH-SY5Y neuroblastoma cells. Interestingly, the phosphorylation of Ser-616 and Ser-637 of Drp1 remains unaffected by the S39A mutation, and mitochondrial bioenergetic profile and cell viability in the S39A mutant were comparable to those observed in the control. This leads us to propose that the serine 39 residue of Drp1 plays a crucial role in mitochondrial distribution through its involvement in the GTPase activity. Furthermore, this amino acid mutation leads to structural anomalies in the mitochondrial network. Taken together, our results contribute to a better understanding of the function of the Drp1 protein.
Collapse
Affiliation(s)
- Marvi Ghani
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenHungary
| | - Bernadett Szabó
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Mahmoud Alkhatibe
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Hailemariam Amsalu
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenHungary
| | - Peleg Zohar
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Eszter Anna Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of MedicineUniversity of DebrecenHungary
- HUN‐REN‐UD Allergology Research GroupUniversity of DebrecenHungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenHungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| |
Collapse
|
21
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
García-García E, Carreras-Caballé M, Coll-Manzano A, Ramón-Lainez A, Besa-Selva G, Pérez-Navarro E, Malagelada C, Alberch J, Masana M, Rodríguez MJ. Preserved VPS13A distribution and expression in Huntington's disease: divergent mechanisms of action for similar movement disorders? Front Neurosci 2024; 18:1394478. [PMID: 38903599 PMCID: PMC11188336 DOI: 10.3389/fnins.2024.1394478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.
Collapse
Affiliation(s)
- Esther García-García
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Maria Carreras-Caballé
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Albert Coll-Manzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Alba Ramón-Lainez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gisela Besa-Selva
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel J. Rodríguez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
23
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
24
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
25
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
26
|
Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion 2024; 75:101847. [PMID: 38246334 DOI: 10.1016/j.mito.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangzhou Medical University, Guangzhou 511495, China
| | - Wenjun Luo
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Haoyu Chen
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
27
|
Wu C, Yin H, Fu S, Yoo H, Zhang M, Park H. Altered anterograde axonal transport of mitochondria in cultured striatal neurons of a knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun 2024; 691:149246. [PMID: 38029540 DOI: 10.1016/j.bbrc.2023.149246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Huntington's disease (HD) is a progressive genetic neurodegenerative disease caused by an abnormal expansion of a cytosine-adenine-guanine trinucleotide repeat in the huntingtin gene. One pathological feature of HD is neuronal loss in the striatum. Despite many efforts, mechanisms underlying neuronal loss in HD striatum remain elusive. It was suggested that the mutant huntingtin protein interacts mitochondrial proteins and causes mitochondrial dysfunction in striatal neurons. However, whether axonal transport of mitochondria is altered in HD striatal neurons remains controversial. Here, we examined axonal transport of single mitochondria labelled with Mito-DsRed2 in cultured striatal neurons of zQ175 knock-in mice (a knock-in mouse model of HD). We observed decreased anterograde axonal transport of proximal mitochondria in HD striatal neurons compared with wild-type (WT) striatal neurons. Decreased anterograde transport in HD striatal neurons was prevented by overexpressing mitochondrial Rho GTPase 1 (Miro1). Our results offer a new insight into mechanisms underlying neuronal loss in the striatum in HD.
Collapse
Affiliation(s)
- Chao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Haoran Yin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Songdi Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Min Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
28
|
Gamage YI, Pan J. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein. BIOPHYSICA 2023; 3:582-597. [PMID: 38737720 PMCID: PMC11087071 DOI: 10.3390/biophysica3040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Understanding the membrane interactions of the N-terminal 17 residues of the huntingtin protein (HttN) is essential for unraveling its role in cellular processes and its impact on huntingtin misfolding. In this study, we used atomic force microscopy (AFM) to examine the effects of lipid specificity in mediating bilayer perturbations induced by HttN. Across various lipid environments, the peptide consistently induced bilayer disruptions in the form of holes. Notably, our results unveiled that cholesterol enhanced bilayer perturbation induced by HttN, while phosphatidylethanolamine (PE) lipids suppressed hole formation. Furthermore, anionic phosphatidylglycerol (PG) and cardiolipin lipids, along with cholesterol at high concentrations, promoted the formation of double-bilayer patches. This unique structure suggests that the synergy among HttN, anionic lipids, and cholesterol can enhance bilayer fusion, potentially by facilitating lipid intermixing between adjacent bilayers. Additionally, our AFM-based force spectroscopy revealed that HttN enhanced the mechanical stability of lipid bilayers, as evidenced by an elevated bilayer puncture force. These findings illuminate the complex interplay between HttN and lipid membranes and provide useful insights into the role of lipid composition in modulating membrane interactions with the huntingtin protein.
Collapse
Affiliation(s)
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
29
|
Nusir A, Sinclair P, Kabbani N. Mitochondrial Proteomes in Neural Cells: A Systematic Review. Biomolecules 2023; 13:1638. [PMID: 38002320 PMCID: PMC10669788 DOI: 10.3390/biom13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.
Collapse
Affiliation(s)
- Aya Nusir
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Patricia Sinclair
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
30
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
31
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 352] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
32
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
de Wet S, Theart R, Loos B. Cogs in the autophagic machine-equipped to combat dementia-prone neurodegenerative diseases. Front Mol Neurosci 2023; 16:1225227. [PMID: 37720551 PMCID: PMC10500130 DOI: 10.3389/fnmol.2023.1225227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often characterized by hydrophobic inclusion bodies, and it may be the case that the aggregate-prone proteins that comprise these inclusion bodies are in fact the cause of neurotoxicity. Indeed, the appearance of protein aggregates leads to a proteostatic imbalance that causes various interruptions in physiological cellular processes, including lysosomal and mitochondrial dysfunction, as well as break down in calcium homeostasis. Oftentimes the approach to counteract proteotoxicity is taken to merely upregulate autophagy, measured by an increase in autophagosomes, without a deeper assessment of contributors toward effective turnover through autophagy. There are various ways in which autophagy is regulated ranging from the mammalian target of rapamycin (mTOR) to acetylation status of proteins. Healthy mitochondria and the intracellular energetic charge they preserve are key for the acidification status of lysosomes and thus ensuring effective clearance of components through the autophagy pathway. Both mitochondria and lysosomes have been shown to bear functional protein complexes that aid in the regulation of autophagy. Indeed, it may be the case that minimizing the proteins associated with the respective neurodegenerative pathology may be of greater importance than addressing molecularly their resulting inclusion bodies. It is in this context that this review will dissect the autophagy signaling pathway, its control and the manner in which it is molecularly and functionally connected with the mitochondrial and lysosomal system, as well as provide a summary of the role of autophagy dysfunction in driving neurodegenerative disease as a means to better position the potential of rapamycin-mediated bioactivities to control autophagy favorably.
Collapse
Affiliation(s)
- Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rensu Theart
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
34
|
Giménez-Bejarano A, Alegre-Cortés E, Yakhine-Diop SMS, Gómez-Suaga P, Fuentes JM. Mitochondrial Dysfunction in Repeat Expansion Diseases. Antioxidants (Basel) 2023; 12:1593. [PMID: 37627588 PMCID: PMC10451345 DOI: 10.3390/antiox12081593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Repeat expansion diseases are a group of neuromuscular and neurodegenerative disorders characterized by expansions of several successive repeated DNA sequences. Currently, more than 50 repeat expansion diseases have been described. These disorders involve diverse pathogenic mechanisms, including loss-of-function mechanisms, toxicity associated with repeat RNA, or repeat-associated non-ATG (RAN) products, resulting in impairments of cellular processes and damaged organelles. Mitochondria, double membrane organelles, play a crucial role in cell energy production, metabolic processes, calcium regulation, redox balance, and apoptosis regulation. Its dysfunction has been implicated in the pathogenesis of repeat expansion diseases. In this review, we provide an overview of the signaling pathways or proteins involved in mitochondrial functioning described in these disorders. The focus of this review will be on the analysis of published data related to three representative repeat expansion diseases: Huntington's disease, C9orf72-frontotemporal dementia/amyotrophic lateral sclerosis, and myotonic dystrophy type 1. We will discuss the common effects observed in all three repeat expansion disorders and their differences. Additionally, we will address the current gaps in knowledge and propose possible new lines of research. Importantly, this group of disorders exhibit alterations in mitochondrial dynamics and biogenesis, with specific proteins involved in these processes having been identified. Understanding the underlying mechanisms of mitochondrial alterations in these disorders can potentially lead to the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Alberto Giménez-Bejarano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Gómez-Suaga
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| |
Collapse
|
35
|
Miguez A, Gomis C, Vila C, Monguió-Tortajada M, Fernández-García S, Bombau G, Galofré M, García-Bravo M, Sanders P, Fernández-Medina H, Poquet B, Salado-Manzano C, Roura S, Alberch J, Segovia JC, Allen ND, Borràs FE, Canals JM. Soluble mutant huntingtin drives early human pathogenesis in Huntington's disease. Cell Mol Life Sci 2023; 80:238. [PMID: 37535170 PMCID: PMC10400696 DOI: 10.1007/s00018-023-04882-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Andrés Miguez
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Cinta Gomis
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Vila
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
| | - Sara Fernández-García
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - María García-Bravo
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Helena Fernández-Medina
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Blanca Poquet
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jordi Alberch
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Nicholas D Allen
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Francesc E Borràs
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Nephrology Department, Germans Trias i Pujol Universitary Hospital, Badalona, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
| |
Collapse
|
36
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
37
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
38
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
39
|
Sun D, Deng J, Wang Y, Xie J, Li X, Li X, Wang X, Zhou F, Qin S, Liu X. SAG, a sonic hedgehog signaling agonist, alleviates anxiety behavior in high-fat diet-fed mice. Brain Res Bull 2023; 195:25-36. [PMID: 36736922 DOI: 10.1016/j.brainresbull.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Anxiety is a prevalent and disabling psychiatric disorder. Mitochondrial dysfunction due to the high-fat diet (HFD) was regarded as a risk factor in the pathogenesis of anxiety. The Sonic hedgehog (SHH) pathway was known to improve mitochondrial dysfunction through antioxidant and anti-apoptotic effects on some neurological diseases. Nonetheless, its effect on anxiety has not been well studied. In this study, we aimed to explore whether SHH signaling pathway plays a protective role in anxiety by regulating mitochondrial homeostasis. SAG, a typical SHH signaling agonist, was administered intraperitoneally in HFD-fed mice. HFD-induced anxiety-like behavior in mice was confirmed using the open field and elevated plus maze tests. Immunofluorescence staining and Western blotting assays showed that the SHH signaling was downregulated in the prefrontal cortex neurons from HFD-fed mice. Electron microscopy results showed the mitochondria in the prefrontal cortex of HFD-fed mice were fragmented, which appeared small and spherical, and the area, perimeter and circularity of mitochondria were decreased. Mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) were the key proteins involved in mitochondrial division and fusion. SAG treatment could rectify the imbalanced expression of Mfn2 and Drp1 in the prefrontal cortex of the HFD-fed mice, and alleviate the mitochondrial fragmentation. Furthermore, SAG decreased anxiety-like behavior in the HFD-fed mice. These findings suggested that SHH signal was neuroprotective in obesity and SAG relieved anxiety-like behavior through reducing mitochondrial fragmentation.
Collapse
Affiliation(s)
- Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiaxin Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinyu Xie
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
40
|
Banarase TA, Sammeta SS, Wankhede NL, Mangrulkar SV, Rahangdale SR, Aglawe MM, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15:239-255. [PMID: 37124925 PMCID: PMC10133433 DOI: 10.1007/s12551-023-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Trupti A. Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shivkumar S. Sammeta
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Nitu L. Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shubhada V. Mangrulkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Sandip R. Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Manish M. Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Brijesh G. Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra India 423101
| | - Milind J. Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Mayur B. Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| |
Collapse
|
41
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
42
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
43
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
44
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
45
|
Bera A, Lavanya G, Reshmi R, Dev K, Kumar R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5516-5531. [PMID: 35078269 DOI: 10.1111/ejn.15611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Two major pathological hallmarks have been identified for AD: extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT). Recently, dynamin-related protein 1 (Drp1) was recognized to contribute significantly towards the pathogenesis of AD. Drp1 is primarily located in the cytosol, from where it translocates to the mitochondrial outer membrane and drives the mitochondrial fission via GTP hydrolysis. Drp1 interacts with Aβ and phosphorylated tau, leading to excessive mitochondrial fragmentation, which in turn results in synaptic dysfunction, neuronal damage and cognitive decline. Several studies suggest an increase in the level of Drp1 in the post-mortem brain specimen collected from the AD patients and murine models of AD. Interestingly, heterozygous deletion of Drp1 in the transgenic murine model of AD ameliorates the mitochondrial dysfunction, improving learning and memory. The current review article discusses the possible mechanistic pathways by which Drp1 can influence the pathogenesis of AD. Besides, it will describe various inhibitors for Drp1 and their potential role as therapeutics for AD in the future.
Collapse
Affiliation(s)
- Arpita Bera
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Gantyada Lavanya
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Ravada Reshmi
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| |
Collapse
|
46
|
Shi W, Tan C, Liu C, Chen D. Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases. Rev Neurosci 2022; 34:275-294. [PMID: 36059131 DOI: 10.1515/revneuro-2022-0056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
In recent years, the role of mitochondrial dynamics in neurodegenerative diseases has becoming increasingly important. More and more evidences have shown that in pathological conditions, abnormal mitochondrial divisions, especially Drp1-Fis1-mediated divisions, play an important role in the occurrence and development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, glaucoma, and other neurodegenerative diseases. This review highlights several new mechanisms of physiological fission of mitochondria and the difference/connection of physiological/pathological mitochondrial fission. In addition, we described the relationship between abnormal mitochondrial dynamics and neurodegenerative diseases in detail and emphatically summarized its detection indicators in basic experiments, trying to provide references for further mechanism exploration and therapeutic targets.
Collapse
Affiliation(s)
- Wenjia Shi
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Cheng Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Can Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
47
|
Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol 2022; 46:462-475. [PMID: 35946926 DOI: 10.1080/01913123.2022.2100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
Collapse
Affiliation(s)
- Marie Vanisova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Stufkova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kohoutova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Rakosnikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Krizova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
48
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
49
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev 2022; 11:16. [PMID: 35865413 PMCID: PMC9264339 DOI: 10.12703/r/11-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A major advance in the study of Huntington's disease (HD) has been the development of human disease models employing induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages over other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines allow us to investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in HD-associated neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful model system to identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel molecular targets for drug discovery.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
Liu C, Fu Z, Wu S, Wang X, Zhang S, Chu C, Hong Y, Wu W, Chen S, Jiang Y, Wu Y, Song Y, Liu Y, Guo X. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Mol Med 2022; 14:e15851. [PMID: 35670111 PMCID: PMC9260212 DOI: 10.15252/emmm.202215851] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Chunyue Liu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Zixing Fu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Xiaosong Wang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shengrong Zhang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Chu Chu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Yuan Hong
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Wenbo Wu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shengqi Chen
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Yueqing Jiang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan China
| | - Yongbo Song
- Department of Pharmacology Shenyang Pharmaceutical University Shenyang China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Xing Guo
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|