1
|
Jia F, Fu L. Roles of Ubiquitin Ligases and Deubiquitylases in Alzheimer's Disease. Mol Neurobiol 2025; 62:7747-7761. [PMID: 39932514 DOI: 10.1007/s12035-025-04739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/02/2025] [Indexed: 05/15/2025]
Abstract
The mechanisms responsible for the accumulation of Aβ plaques and neurofibrillary tangles, composed of phosphorylated Tau protein, in Alzheimer's disease (AD) remain a mystery. Dysfunction of the ubiquitin-proteasome system (UPS) largely contributes to abnormal protein aggregation. A cascade of ubiquitinating enzymes promotes protein ubiquitination, while deubiquitylases (DUBs) regulate its reversal. Disruptions in ubiquitination and deubiquitination processes result in abnormal protein aggregation and the formation of inclusion bodies, ultimately leading to neuronal damage. Recent studies have highlighted the significant role of protein ubiquitination and deubiquitination in the pathogenesis of AD. E3 ubiquitin ligases, which facilitate protein ubiquitination, are beneficial for Aβ clearance, synaptic function, gap junction maintenance, mitophagy, and neuroinflammation. Conversely, DUBs, responsible for removing ubiquitin from substrate proteins, inhibit Aβ and Tau degradation while promoting neuroinflammation in neurons. This review provides a thorough overview of the involvement of E3 ubiquitin ligases and DUBs in AD, highlighting their diverse roles in aspects of pathophysiological processes.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Lin Fu
- School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266072266071, China
| |
Collapse
|
2
|
Attanasio S. Autophagy in cancer and protein conformational disorders. FEBS Lett 2025. [PMID: 40342093 DOI: 10.1002/1873-3468.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
Collapse
Affiliation(s)
- Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Liu X, Hebron ML, Stevenson M, Moussa C. A Novel Small Molecule Enhances Stable Dopamine Delivery to the Brain in Models of Parkinson's Disease. Int J Mol Sci 2025; 26:4251. [PMID: 40362491 PMCID: PMC12072186 DOI: 10.3390/ijms26094251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Levodopa is the gold standard symptomatic treatment for Parkinson's disease. Disease progression due to alpha-synuclein accumulation, brain inflammation, and the loss of dopamine neurons, as well as motor fluctuations, due to variations in levodopa plasma levels, remain a significant problem for Parkinson's patients. Developing a therapeutic option that can simultaneously reduce the neuropathology associated with alpha-synuclein aggregation, attenuate oxidative stress and inflammation, and overcome variations in levodopa plasma levels is an unmet need to treat Parkinson's disease. We determined the pharmacokinetics and pharmacodynamics of a small molecule, dubbed Pegasus, that conjugates dopamine with a nonantibiotic doxycycline derivative via a molecular linker. Mice harboring the human A53T mutation of alpha-synuclein or treated with MPTP were injected once daily with 50 mg/kg Pegasus for 2 weeks and assessed for motor, behavioral, and cognitive effects, followed by biochemical and histochemical analysis. Pegasus is a poor brain penetrant but it was metabolized to stable dopamine and tetracycline derivatives, and abundant plasma and brain levels of these metabolites were detected. Pegasus reduced soluble and insoluble alpha-synuclein levels, protected dopamine-producing neurons, and reduced astrocytic activation in A53T mice. Mice treated with Pegasus exhibited motor improvement (6.5 h) and reduction in anxiety-like behavior. Rotarod and grip strength improved in MPTP-treated mice when mice were treated with Pegasus or levodopa. Pegasus may be a multi-modal therapeutic option that can deliver stable dopamine into the CNS and reduce misfolded alpha-synuclein, activate dopamine receptors, and attenuate variations in dopamine levels.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA; (M.L.H.); (M.S.)
| | | | | | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA; (M.L.H.); (M.S.)
| |
Collapse
|
4
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
5
|
Richardson T, Hou X, Fiesel FC, Wszolek ZK, Dickson DW, Springer W. Hippocampal mitophagy alterations in MAPT-associated frontotemporal dementia with parkinsonism. Acta Neuropathol Commun 2025; 13:41. [PMID: 39994734 PMCID: PMC11849217 DOI: 10.1186/s40478-025-01955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
The enzyme pair PINK1 and PRKN together orchestrates a cytoprotective mitophagy pathway that selectively tags damaged mitochondria with phospho-serine 65 ubiquitin (pS65-Ub) and directs them for autophagic-lysosomal degradation (mitophagy). We previously demonstrated a significant accumulation of pS65-Ub signals in autopsy brains of sporadic Lewy body disease and Alzheimer's disease cases, which strongly correlated with early tau pathology. In this study, we extended our analysis to a series of pathologically confirmed cases of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) harboring different pathogenic mutations in MAPT, the gene encoding tau. We assessed the morphology, levels, and distribution of the mitophagy tag pS65-Ub in several affected brain regions and hippocampal subregions of these cases. While tau pathological burden was similarly increased across all FTDP-17 cases, pS65-Ub immunopositive signals were strongly accumulated in P301L cases and only weakly present in N279K cases. In the hippocampus of both mutation groups, the density of pS65-Ub positive cells was overall the greatest in the dentate gyrus followed by the subiculum, CA1, and CA2/3, with the CA4 showing only minimal presence. Notably, positive cells in the subiculum carried greater numbers and particularly vacuolar pS65-Ub structures, while cells in the dentate gyrus mostly contained fewer and rather granular pS65-Ub inclusions. Single cell analyses revealed differential co-localization of pS65-Ub with mitochondria, autophagosomes, and lysosomes in these two regions. Together, our study demonstrates distinct mitophagy alteration in different FTDP-17 MAPT cases and hint at selective organelle failure in the hippocampal subregions that was associated with the P301L mutation.
Collapse
Affiliation(s)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Yang Y, Chen H, Huang S, Chen H, Verkhratsky A, Niu J, Qu Y, Yi C. BOK-engaged mitophagy alleviates neuropathology in Alzheimer's disease. Brain 2025; 148:432-447. [PMID: 39054908 DOI: 10.1093/brain/awae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease. Promoting mitophagy has been shown to improve cognitive function in Alzheimer's disease animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in patients with Alzheimer's disease and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned Alzheimer's disease-related changes. Our findings uncover a novel mechanism of BOK signalling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in Alzheimer's disease, thus representing a promising therapeutic target.
Collapse
Affiliation(s)
- Yang Yang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuwen Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius 01102, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 50630, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
7
|
Lei X, Wu S, Xu Z, Xu Q, Cao H, Zhan Z, Qin Q, Wei J. Parkin is a critical factor in grouper immune response to virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105293. [PMID: 39608657 DOI: 10.1016/j.dci.2024.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Parkin is an E3 ubiquitinated ligase that mainly participates in mitophagy and plays an essential biological role in organisms. To investigate Parkin's function in fish, a Parkin homolog was cloned from Epinephelus coioides (EcParkin). The open reading frame (ORF) of EcParkin consists of 1461 nucleotides and encodes a protein of 486 amino acids, with a predicted molecular weight of 53.32 kDa. EcParkin was highly expressed in the heart, kidney, and head kidney of healthy groupers, especially in the heart. The expression levels of EcParkin were upregulated after Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection. Intracellular localization studies revealed that EcParkin is distributed in both the cytoplasm and nucleus of GS cells. Overexpression of EcParkin promoted SGIV and RGNNV replication in vitro, while knockdown of EcParkin inhibited SGIV and RGNNV replication. EcParkin suppressed the promoter activities of IFN-β, ISRE, and NF-κB, as well as the expression of interferon-related factors and inflammatory cytokines. EcParkin was found to colocalize and interact with EcMDA5, EcMAVS, EcTBK1, EcIRF3, and EcIRF7. Additionally, EcParkin enhanced LC3-II production in GS cells. These findings suggest that EcParkin may play a crucial role in the antiviral innate immunity and cellular autophagy of fish.
Collapse
Affiliation(s)
- Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| |
Collapse
|
8
|
Mishra E, Thakur MK. Tat-Beclin-1 Ameliorates Memory by Improving Neuronal Cytoarchitecture and Mitigating Mitochondrial Dysfunction in Scopolamine-Induced Amnesic Male Mice. ACS Pharmacol Transl Sci 2024; 7:3462-3475. [PMID: 39539255 PMCID: PMC11555511 DOI: 10.1021/acsptsci.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Mitophagy, the targeted breakdown of damaged mitochondria, plays a vital role in maintaining cellular homeostasis. As impairment of mitophagy leads to neurodegeneration and memory decline, the current study explores the therapeutic potential of an autophagy inducer Tat-Beclin-1 during scopolamine-induced amnesia. Tat-Beclin-1 improved contextual and recognition memory and also mitochondrial ultrastructure by restoring mitochondrial length and area and reducing the number of fragmented mitochondria. Tat-Beclin-1 upregulated the expression of genes associated with mitophagy (PTEN-induced kinase 1, Parkin, Lamp2, and LC3), mitochondrial fusion (Mfn1, Mfn2, and optic atrophy1), and fission (dynamin-related protein 1 and Fis1) in amnesic mice. Subsequently, these results were supported by a decreased level of p-Drp1 (S616) and Drp 1 ratios and an increased level of Mfn2, LC3BI, and BII in Tat-Beclin-1-treated mice. Moreover, Tat-Beclin-1 maintained mitochondrial membrane potential and complex I/V activity in amnesic mice. Tat-Beclin-1 enhanced myelination and diminished the activity of acetylcholinesterase and caspase-3 activity. Sholl analysis revealed augmented dendritic branching and length, elevated dendritic spine density, and upregulated the expression of synaptophysin and PSD95 proteins, indicating neuronal plasticity enhancement by Tat-Beclin-1. Thus, these findings provide valuable insights into the therapeutic potential of Tat-Beclin-1, addressing mitochondrial dysfunction to mitigate cognitive impairment associated with amnesic conditions.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology
Laboratory, Centre of Advanced Study, Department of Zoology, Institute
of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology
Laboratory, Centre of Advanced Study, Department of Zoology, Institute
of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
9
|
Paing YMM, Eom Y, Lee SH. Benzopyrene represses mitochondrial fission factors and PINK1/Parkin-mediated mitophagy in primary astrocytes. Toxicology 2024; 508:153926. [PMID: 39147092 DOI: 10.1016/j.tox.2024.153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mitochondria are essential for various physiological functions in astrocytes in the brain, such as maintaining ion and pH homeostasis, regulating neurotransmission, and modulating neuroinflammation. Mitophagy, a form of autophagy specific to mitochondria, is essential for ensuring mitochondrial quality and function. Benzo[a]pyrene (BaP) accumulates in the brain, and exposure to it is recognized as an environmental risk factor for neurodegenerative diseases. However, while the toxic mechanisms of BaP have been investigated in neurons, their effects on astrocytes-the most prevalent glial cells in the brain-are not clearly understood. Therefore, this study aims to investigate the toxic effects of exposure to BaP on mitochondria in primary astrocytes. Fluorescent probes and genetically encoded indicators were utilized to visualize mitochondrial morphology and physiology, and regulatory factors involved in mitochondrial morphology and mitophagy were assessed. Additionally, the mitochondrial respiration rate was measured in BaP-exposed astrocytes. BaP exposure resulted in mitochondrial enlargement owing to the suppression of mitochondrial fission factors. Furthermore, BaP-exposed astrocytes demonstrated reduced mitophagy and exhibited aberrant mitochondrial function and physiology, such as altered mitochondrial respiration rates, increased mitochondrial superoxide, disrupted mitochondrial membrane potential, and dysregulated mitochondrial Ca2+. These findings offer insights into the underlying toxic mechanisms of BaP exposure in neurodegenerative diseases by inducing aberrant mitophagy and mitochondrial dysfunction in astrocytes.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Lee S, Kang M, Lee S, Yoon S, Cho Y, Min D, Ann D, Shin J, Paik YK, Jo D. AAV-aMTD-Parkin, a therapeutic gene delivery cargo, enhances motor and cognitive functions in Parkinson's and Alzheimer's diseases. Pharmacol Res 2024; 208:107326. [PMID: 39069196 DOI: 10.1016/j.phrs.2024.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD), have a global prevalence and profoundly impact both motor and cognitive functions. Although adeno-associated virus (AAV)-based gene therapy has shown promise, its application for treating central nervous system (CNS) diseases faces several challenges, including effective delivery of AAV vectors across the blood-brain barrier, determining optimal dosages, and achieving targeted distribution. To address these challenges, we have developed a fusion delivery therapeutic cargo called AAV-aMTD-Parkin, which combines a hydrophobic cell-penetrating peptide sequence with the DNA sequences of AAV and Parkin. By employing this fusion delivery platform at lower dosages compared to zolgensma, we have achieved significant enhancements in cell and tissue permeability, while reducing the occurrence of common pathological protein aggregates. Consequently, motor and cognitive functions were restored in animal models of PD and AD. With its dual functionality in addressing PD and AD, AAV-aMTD-Parkin holds immense potential as a novel class of therapeutic biologics for prevalent CNS diseases.
Collapse
Affiliation(s)
- Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Seungwoo Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Sangsun Yoon
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Yeonjin Cho
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Dongjae Min
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Daye Ann
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea.
| |
Collapse
|
11
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
12
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
13
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
14
|
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S, Li F. Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res 2024; 19:998-1005. [PMID: 37862201 PMCID: PMC10749592 DOI: 10.4103/1673-5374.385281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuqing Yan
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Anni Yu
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuefang Zhang
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyi Li
- Neurosurgery Department, Kunming Yenan Hospital, Kunming, Yunnan Province, China
| | - Qianlong Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GES, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024; 20:259-274. [PMID: 37712858 PMCID: PMC10813579 DOI: 10.1080/15548627.2023.2259281] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Majid S. Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El Beheira, Egypt
| | | |
Collapse
|
16
|
Wang H, Yan X, Zhang Y, Wang P, Li J, Zhang X. Mitophagy in Alzheimer's Disease: A Bibliometric Analysis from 2007 to 2022. J Alzheimers Dis Rep 2024; 8:101-128. [PMID: 38312534 PMCID: PMC10836605 DOI: 10.3233/adr-230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024] Open
Abstract
Background The investigation of mitophagy in Alzheimer's disease (AD) remains relatively underexplored in bibliometric analysis. Objective To delve into the progress of mitophagy, offering a comprehensive overview of research trends and frontiers for researchers. Methods Basic bibliometric information, targets, and target-drug-clinical trial-disease extracted from publications identified in the Web of Science Core Collection from 2007 to 2022 were assessed using bibliometric software. Results The study encompassed 5,146 publications, displaying a consistent 16-year upward trajectory. The United States emerged as the foremost contributor in publications, with the Journal of Alzheimer's Disease being the most prolific journal. P. Hemachandra Reddy, George Perry, and Xiongwei Zhu are the top 3 most prolific authors. PINK1 and Parkin exhibited an upward trend in the last 6 years. Keywords (e.g., insulin, aging, epilepsy, tauopathy, and mitochondrial quality control) have recently emerged as focal points of interest within the past 3 years. "Mitochondrial dysfunction" is among the top terms in disease clustering. The top 10 drugs/molecules (e.g., curcumin, insulin, and melatonin) were summarized, accompanied by their clinical trials and related targets. Conclusions This study presents a comprehensive overview of the mitophagy research landscape in AD over the past 16 years, underscoring mitophagy as an emerging molecular mechanism and a crucial focal point for potential drug in AD. This study pioneers the inclusion of targets and their correlations with drugs, clinical trials, and diseases in bibliometric analysis, providing valuable insights and inspiration for scholars and readers of JADR interested in understanding the potential mechanisms and clinical trials in AD.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodong Yan
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiming Zhang
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peifu Wang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Jilai Li
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Xia Zhang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Wang S, Dong K, Zhang J, Chen C, Shuai H, Yu X. Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system. Nutr Res Pract 2023; 17:1128-1142. [PMID: 38053824 PMCID: PMC10694425 DOI: 10.4162/nrp.2023.17.6.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.
Collapse
Affiliation(s)
- Shumin Wang
- School of Basic Medicine, Dali University, Dali 671000, China
| | - Kaiye Dong
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali 671000, China
| | - Ji Zhang
- College of Clinical Medicine, Dali University, Dali 671000, China
| | - Chaochao Chen
- College of Clinical Medicine, Dali University, Dali 671000, China
| | - Hongyan Shuai
- School of Basic Medicine, Dali University, Dali 671000, China
| | - Xin Yu
- School of Basic Medicine, Dali University, Dali 671000, China
| |
Collapse
|
18
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
19
|
Zhang B, Burke R. Copper homeostasis and the ubiquitin proteasome system. Metallomics 2023; 15:7055959. [PMID: 36822629 PMCID: PMC10022722 DOI: 10.1093/mtomcs/mfad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.
Collapse
Affiliation(s)
- Bichao Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
20
|
Li T, Chen C, Yuan J, Zhang K, Zhang M, Zhao H, Wu X, Zhu L, Huang G, Ma F. The Association between Vitamin D Deficiency and Changes in Cognitive Functions in Chinese Older Adults: A Prospective Cohort Study. Curr Alzheimer Res 2023; 20:506-514. [PMID: 37957919 DOI: 10.2174/0115672050266769231025060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Along with the problem of population aging, the prevalence of dementia is gradually increasing. Associations between vitamin D deficiency (VDD) and cognitive functions remain unclear. OBJECTIVES We aimed to determine the relationship between VDD and changes in cognitive performance in community-dwelling older adults. METHODS In this longitudinal cohort study, participants aged ≥65 years were enrolled in March, 2016. The serum level of 25-hydroxy-vitamin D was analyzed by liquid-chromatography-tandem-- mass-spectrometry at baseline. VDD was defined as less than 20 ng/mL. All participants completed a health status questionnaire. Cognitive functions were evaluated by the Wechsler Adult Intelligence Scale-Revised in China at baseline and each visit. The linear mixed-effects model was utilized to examine the association between baseline VDD and changes in cognitive functions. RESULTS In total, 866 participants were included in our study, with a mean duration of 3 years. VDD was markedly associated with lower full intelligence quotient (FIQ) (β: -3.355, 95% confidence interval [CI]:-4.165,-2.545), verbal intelligence quotient (VIQ) (β: -3.420, 95%CI: -4.193,-2.647), performance intelligence quotient (PIQ) (β: -2.610, 95%CI: -3.683,-1.537), comprehension (β: -0.630, 95%CI: -1.022,-0.238), information (β: -0.354, 95%CI: -0.699,-0.008), arithmetic (β: -1.065, 95%CI: -1.228,-0.902), digit span (β: -0.370, 95%CI: -0.547,-0.192), vocabulary (β: -0.789, 95%CI: -1.084,-0.493), picture completion (β: -0.391, 95%CI: -0.761,-0.022), block design (β: -0.412, 95%CI: -0.697,-0.127), picture arrangement (β: -0.542, 95%CI: -0.909,-0.174), and object assembly (β: -0.492, 95%CI: -0.818,-0.165) than those with adequacy. CONCLUSION A higher frequency of VDD was associated with lower scores of FIQ, VIQ, PIQ and subtests on memory and executive function. Future randomized controlled trials are warranted to further verify the conclusions.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Chong Chen
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Keming Zhang
- Department of Nutrition, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huichao Zhao
- Department of Medicine and Humanities, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaomin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Liping Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Fei Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
21
|
Wang X, Huang R, Huang B, Li X. S1PR2 Regulates Autophagy Through the AKT/mTOR Pathway to Promote Pathological Damage in Alzheimer's Disease. J Alzheimers Dis 2023; 96:1489-1504. [PMID: 38007654 DOI: 10.3233/jad-230533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal and debilitating neurodegenerative disease. Sphingosine-1-phosphate receptor 2 (S1PR2), one of the receptors of S1P, is a key regulatory factor for various diseases. OBJECTIVE This study aimed to explore the role and possible mechanism of S1PR2 in AD. METHODS S1PR2 expression in the AD mice was detected, and after intervening S1PR2 expression with sh-S1PR2 in AD mice, the behavioral changes, pathological lesions of the hippocampus, autophagy level, and AKT/mTOR pathway activation were analyzed. Furthermore, SH-SY5Y cells were induced by Aβ25-35 to construct an AD cell model, and the effects of sh-S1PR2 on proliferation, apoptosis, autophagy, and AKT/mTOR pathway of AD cells were investigated. In addition, the effects of pathway inhibitor rapamycin on model cells were further analyzed. RESULTS The expression of S1PR2 was significantly increased in AD mice, the sh-S1PR2 significantly improved behavioral dysfunction, alleviated pathological injury of the hippocampus, increased the number of neurons, and inhibited Aβ production and p-tau expression, showing a positive effect on the AD pathology. In addition, silencing of S1PR2 expression significantly promoted the autophagy level and inhibited the activation of the AKT/mTOR pathway in AD model mice. In vitro experiments further confirmed that sh-S1PR2 promoted cell proliferation, inhibited apoptosis, relieved cytopathology, promoted autophagy, and inhibited the activation of the AKT/mTOR pathway in the cell model. The use of rapamycin further confirmed the role of AKT/mTOR pathway-mediated autophagy in the regulation of AD by S1PR2. CONCLUSION S1PR2 promoted AD pathogenesis by inhibiting autophagy through the activation of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| |
Collapse
|
22
|
Govindarajulu M, Ramesh S, Shankar T, Kora MK, Moore T, Dhanasekaran M. Role of Neddylation in Neurodegenerative Diseases. NEUROSCI 2022; 3:533-545. [PMID: 39483771 PMCID: PMC11523694 DOI: 10.3390/neurosci3040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons in specific regions of the brain. Neuronal death is often associated with the accumulation of misfolded proteins due to genetic mutations or abnormal protein homeostasis. An essential mechanism for regulating the clearance of misfolded proteins is neddylation, a post-translational modification closely related to ubiquitination. Neddylation is brought about by conjugating neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to target substrates through a cascade of cellular events. Neddylation is crucial for many biological processes, and dysfunctional neddylation is implicated in several neurodegenerative diseases. This review discusses the current understanding of the role of neddylation pathways in neurodegenerative disorders and the emergence of neddylation signaling as a potential target for drug discovery and development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Tharanth Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India
| | | | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
24
|
Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y, Jia Z. Role of USP13 in physiology and diseases. Front Mol Biosci 2022; 9:977122. [PMID: 36188217 PMCID: PMC9515447 DOI: 10.3389/fmolb.2022.977122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin specific protease (USP)-13 is a deubiquitinase that removes ubiquitin from substrates to prevent protein degradation by the proteasome. Currently, the roles of USP13 in physiology and pathology have been reported. In physiology, USP13 is highly associated with cell cycle regulation, DNA damage repair, myoblast differentiation, quality control of the endoplasmic reticulum, and autophagy. In pathology, it has been reported that USP13 is important in the pathogenesis of infection, inflammation, idiopathic pulmonary fibrosis (IPF), neurodegenerative diseases, and cancers. This mini-review summarizes the most recent advances in USP13 studies involving its pathophysiological roles in different conditions and provides new insights into the prevention and treatment of relevant diseases, as well as further research on USP13.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
25
|
Lu W, Tang S, Li A, Huang Q, Dou M, Zhang Y, Hu X, Chang RCC, Wong GTC, Huang C. The role of PKC/PKR in aging, Alzheimer's disease, and perioperative neurocognitive disorders. Front Aging Neurosci 2022; 14:973068. [PMID: 36172481 PMCID: PMC9510619 DOI: 10.3389/fnagi.2022.973068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background The incidence of perioperative neurocognitive disorders (PNDs) is reportedly higher in older patients. Mitochondrial and synaptic dysfunctions have consistently been demonstrated in models of aging and neurodegenerative diseases; nonetheless, their role in PND is not well understood. Methods The Morris water maze and elevated plus maze tests were used to assess the learning and memory abilities of both C57BL/6 and 3×Tg-AD mice of different ages (8 and 18 months). PND was induced by laparotomy in C57BL/6 mice and 3×Tg-AD mice (8 months old). Markers associated with neuroinflammation, mitochondrial function, synaptic function, and autophagy were assessed postoperatively. The roles of protein kinase C (PKC) and double-stranded RNA-dependent protein kinase (PKR) were further demonstrated by using PKC-sensitive inhibitor bisindolylmaleimide X (BIMX) or PKR−/− mice. Results Significant cognitive impairment was accompanied by mitochondrial dysfunction and autophagy inactivation in both aged C57BL/6 and 3×Tg-AD mice. Laparotomy induced a significant neuroinflammatory response and synaptic protein loss in the hippocampus. Cognitive and neuropathological changes induced by aging or laparotomy were further exacerbated in 3×Tg-AD mice. Deficits in postoperative cognition, hippocampal mitochondria, autophagy, and synapse were significantly attenuated after pharmacological inhibition of PKC or genetic deletion of PKR. Conclusions Our findings suggest similar pathogenic features in aging, Alzheimer's disease, and PND, including altered mitochondrial homeostasis and autophagy dysregulation. In addition, laparotomy may exacerbate cognitive deficits associated with distinct neuronal inflammation, mitochondrial dysfunction, and neuronal loss independent of genetic background. The dysregulation of PKC/PKR activity may participate in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenping Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Scientific Research and Experiment Center of the Second Affilliated Hospital of Anhui Medical University, Hefei, China
| | - Sailan Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Scientific Research and Experiment Center of the Second Affilliated Hospital of Anhui Medical University, Hefei, China
| | - Ao Li
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Qiuyue Huang
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Gordon Tin Chun Wong
| | - Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Chunxia Huang
| |
Collapse
|
26
|
Liu Y, Wang M, Hou XO, Hu LF. Roles of microglial mitophagy in neurological disorders. Front Aging Neurosci 2022; 14:979869. [PMID: 36034136 PMCID: PMC9399802 DOI: 10.3389/fnagi.2022.979869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Microglia are the resident innate immune cells in the central nervous system (CNS) that serve as the first line innate immunity in response to pathogen invasion, ischemia and other pathological stimuli. Once activated, they rapidly release a variety of inflammatory cytokines and phagocytose pathogens or cell debris (termed neuroinflammation), which is beneficial for maintaining brain homeostasis if appropriately activated. However, excessive or uncontrolled neuroinflammation may damage neurons and exacerbate the pathologies in neurological disorders. Microglia are highly dynamic cells, dependent on energy supply from mitochondria. Moreover, dysfunctional mitochondria can serve as a signaling platform to facilitate innate immune responses in microglia. Mitophagy is a means of clearing damaged or redundant mitochondria, playing a critical role in the quality control of mitochondrial homeostasis and turnover. Mounting evidence has shown that mitophagy not only limits the inflammatory response in microglia but also affects their phagocytosis, whereas mitochondria dysfunction and mitophagy defects are associated with aging and neurological disorders. Therefore, targeting microglial mitophagy is a promising therapeutic strategy for neurological disorders. This article reviews and highlights the role and regulation of mitophagy in microglia in neurological conditions, and the research progress in manipulating microglial mitophagy and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Miao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Xiao-Ou Hou,
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Li-Fang Hu,
| |
Collapse
|
27
|
de la Cueva M, Antequera D, Ordoñez-Gutierrez L, Wandosell F, Camins A, Carro E, Bartolome F. Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models. Sci Rep 2022; 12:10092. [PMID: 35710783 PMCID: PMC9203760 DOI: 10.1038/s41598-022-13683-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aβ accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aβ accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aβ accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aβ independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.
Collapse
Affiliation(s)
- Macarena de la Cueva
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Desiree Antequera
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Lara Ordoñez-Gutierrez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisco Wandosell
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Camins
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| | - Fernando Bartolome
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| |
Collapse
|
28
|
Zeng K, Yu X, Mahaman YAR, Wang JZ, Liu R, Li Y, Wang X. Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Transl Neurodegener 2022; 11:32. [PMID: 35655270 PMCID: PMC9164340 DOI: 10.1186/s40035-022-00305-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulation of impaired mitochondria and energy metabolism disorders are non-negligible features of both aging and age-related neurodegeneration, including Alzheimer’s disease (AD). A growing number of studies suggest that mitophagy disorders play an important role in AD occurrence and development. The interaction between mitophagy deficits and Aβ or Tau pathology may form a vicious cycle and cause neuronal damage and death. Elucidating the molecular mechanism of mitophagy and its role in AD may provide insights into the etiology and mechanisms of AD. Defective mitophagy is a potential target for AD prevention and treatment.
Collapse
Affiliation(s)
- Kuan Zeng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.,Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Wuhan Hospital for Psychotherapy, Wuhan, 430012, China
| | - Xuan Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China. .,Wuhan Hospital for Psychotherapy, Wuhan, 430012, China.
| | - Xiaochuan Wang
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China. .,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
29
|
Li J, Li M, Ge Y, Chen J, Ma J, Wang C, Sun M, Wang L, Yao S, Yao C. β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci 2022; 12:69. [PMID: 35619150 PMCID: PMC9134700 DOI: 10.1186/s13578-022-00807-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/01/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Blood–brain barrier (BBB) dysfunction may occur at the onset of Alzheimer’s disease (AD). Pericytes are a vital part of the neurovascular unit and the BBB, acting as gatekeepers of the BBB. Amyloid β (Aβ) deposition and neurofibrillary tangles in the brain are the central pathological features of AD. CD36 promotes vascular amyloid deposition and leads to vascular brain damage, neurovascular dysfunction, and cognitive deficits. However, the molecular mechanism by which pericytes of the BBB are disrupted remains unclear. Objectives To investigate the effect of low-dose Aβ1-40 administration on pericyte outcome and the molecular mechanism of BBB injury. Methods We selected 6-month-old and 9-month-old APP/PS1 mice and wild-type (WT) mice of the same strain, age, and sex as controls. We assessed the BBB using PET/CT. Brain pericytes were extracted and cocultured with endothelial cells (bEnd.3) to generate an in vitro BBB model to observe the effect of Aβ1-40 on the BBB. Furthermore, we explored the intracellular degradation and related molecular mechanisms of Aβ1-40 in cells. Results BBB permeability and the number of pericytes decreased in APP/PS1 mice. Aβ1-40 increased BBB permeability in an in vivo model and downregulated the expression of CD36, which reversed the Aβ-induced changes in BBB permeability. Aβ1-40 was uptaked in pericytes with high CD36 expression. We observed that this molecule inhibited pericyte proliferation, caused mitochondrial damage, and increased mitophagy. Finally, we confirmed that Aβ1-40 induced pericyte mitophagy-dependent ferroptosis through the CD36/PINK1/Parkin pathway. Conclusion PDGFRβ (a marker of pericytes), CD36, and Aβ colocalized in vitro and in vivo, and Aβ1-40 caused BBB disruption by upregulating CD36 expression in pericytes. The mechanism by which Aβ1-40 destroys the BBB involves the induction of pericyte mitophagy-dependent ferroptosis through the CD36/PINK1/Parkin pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00807-5.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, 832000, China
| | - Mengyu Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiamin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaomiao Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
30
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
31
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
32
|
Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Protective effects of mitophagy enhancers against amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2022; 31:423-439. [PMID: 34505123 PMCID: PMC8825310 DOI: 10.1093/hmg/ddab262] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The purpose of our study is to determine the protective effects of mitophagy enhancers against mutant APP and amyloid beta (Aβ)-induced mitochondrial and synaptic toxicities in Alzheimer's disease (ad). Over two decades of research from our lab and others revealed that mitochondrial abnormalities are largely involved in the pathogenesis of both early-onset and late-onset ad. Emerging studies from our lab and others revealed that impaired clearance of dead or dying mitochondria is an early event in the disease process. Based on these changes, it has been proposed that mitophagy enhancers are potential therapeutic candidates to treat patients with ad. In the current study, we optimized doses of mitophagy enhancers urolithin A, actinonin, tomatidine, nicotinamide riboside in immortalized mouse primary hippocampal (HT22) neurons. We transfected HT22 cells with mutant APP cDNA and treated with mitophagy enhancers and assessed mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy and synaptic genes, cell survival; assessed mitochondrial respiration in mAPP-HT22 cells treated and untreated with mitophagy enhancers. We also assessed mitochondrial morphology in mAPP-HT22 cells treated and untreated with mitophagy enhancers. Mutant APP-HT22 cells showed increased fission, decreased fusion, synaptic & mitophagy genes, reduced cell survival and defective mitochondrial respiration, and excessively fragmented and reduced length of mitochondria. However, these events were reversed in mitophagy-enhancers-treated mutant mAPP-HT22 cells. Cell survival was significantly increased, mRNA and protein levels of mitochondrial fusion, synaptic and mitophagy genes were increased, mitochondrial number is reduced, and mitochondrial length is increased, and mitochondrial fragmentation is reduced in mitophagy-enhancers-treated mutant APP-HT22 cells. Further, urolithin A showed strongest protective effects against mutant APP and Aβ-induced mitochondrial and synaptic toxicities in ad. Based on these findings, we cautiously propose that mitophagy enhancers are promising therapeutic drugs to treat mitophagy in patients with ad.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
33
|
Reddy Addi U, Jakhotia S, Reddy SS, Reddy GB. Advanced glycation end products in brain during aging. Chem Biol Interact 2022; 355:109840. [PMID: 35104490 DOI: 10.1016/j.cbi.2022.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
Aging is a main risk factor for many diseases including neurodegenerative disorders. Numerous theories and mechanisms including accumulation of advanced glycation end products (AGEs) have been put forward in explaining brain aging. However, a focused study on the status of AGEs in the brain during progressive aging in connection with interrelated cellular processes like ubiquitin-proteasome system (UPS), unfolded protein response, autophagy-lysosome system and apoptosis is lacking. Hence, in this study, we investigated the levels of AGEs in the brain of 5-, 10-, 15- and 20-months old WNIN rats. Endoplasmic reticulum (ER) stress response, UPS components, autophagy flux, neurotrophic and presynaptic markers along with cell death markers were analyzed by immunoblotting. The neuronal architecture was analyzed by H&E and Nissl staining. The results demonstrated progressive accumulation of AGEs in the brain during aging. Adaptive ER stress response was observed by 10-months while maladaptive ER stress response was seen at 15- and 20-months of age along with impaired UPS and autophagy, and perturbations in neuronal growth factors. All these disturbances intensify with age to further exaggerate cell death mechanisms. There was a shrinkage of the cell size with aging and Congo-red staining revealed β-amyloid accumulation in higher ages. Together these results suggest that progressive accumulation of AGEs with aging in the brain may lead to neuronal damage by affecting ER homeostasis, UPS, autophagic flux, and neuronal growth factors.
Collapse
Affiliation(s)
- Utkarsh Reddy Addi
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sneha Jakhotia
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - S Sreenivasa Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | | |
Collapse
|
34
|
Jiang XJ, Wu YQ, Ma R, Chang YM, Li LL, Zhu JH, Liu GP, Li G. PINK1 Alleviates Cognitive Impairments via Attenuating Pathological Tau Aggregation in a Mouse Model of Tauopathy. Front Cell Dev Biol 2022; 9:736267. [PMID: 35059394 PMCID: PMC8763800 DOI: 10.3389/fcell.2021.736267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
As a primary cause of dementia and death in older people, Alzheimer’s disease (AD) has become a common problem and challenge worldwide. Abnormal accumulation of tau proteins in the brain is a hallmark pathology of AD and is closely related to the clinical progression and severity of cognitive deficits. Here, we found that overexpression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) effectively promoted the degradation of tau, thereby rescuing neuron loss, synaptic damage, and cognitive impairments in a mouse model of tauopathy with AAV-full-length human Tau (hTau) injected into the hippocampal CA1 area (hTau mice). Overexpression of PINK1 activated autophagy, and chloroquine but not MG132 reversed the PINK1-induced decrease in human Tau levels and cognitive improvement in hTau mice. Furthermore, PINK1 also ameliorated mitochondrial dysfunction induced by hTau. Taken together, our data revealed that PINK1 overexpression promoted degradation of abnormal accumulated tau via the autophagy–lysosome pathway, indicating that PINK1 may be a potential target for AD treatment.
Collapse
Affiliation(s)
- Xing Jun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Qing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Min Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Lu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Pan B, Lu X, Han X, Huan J, Gao D, Cui S, Ju X, Zhang Y, Xu S, Song J, Wang L, Zhang H, Niu Q. Mechanism by Which Aluminum Regulates the Abnormal Phosphorylation of the Tau Protein in Different Cell Lines. ACS OMEGA 2021; 6:31782-31796. [PMID: 34870001 PMCID: PMC8637959 DOI: 10.1021/acsomega.1c04434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/02/2021] [Indexed: 06/04/2023]
Abstract
Aluminum (Al) is an environmental neurotoxin to which humans are extensively exposed; however, the molecular mechanism of aluminum toxicity is unclear. Several studies have indicated that exposure to aluminum can cause abnormal phosphorylation of the tau protein. The purpose of this study was to investigate respectively the special molecular mechanism of abnormal regulation on synthesis and degradation of the tau protein induced by AlCl3 in cells of different species. The results of tau protein showed that the sites of abnormal tau phosphorylation induced by AlCl3 are Thr231, Ser262, and Ser396 in N2a cells. Meanwhile, the expressions of Thr181, Thr231, and Ser262 increased abnormally in SH-SY5Y cells. The result of the study showed that PP2A expression was high in N2a cells, while GSK-3β and PP2A in SH-SY5Y cells were involved in the synthesis process of abnormal tau phosphorylation induced by AlCl3. In N2a cells, the ubiquitin-proteasome pathway (UPP) mainly regulated tau phosphorylation at Ser262 and Ser396. Meanwhile, in SH-SY5Y cells, the UPP mainly regulated tau phosphorylation at Thr231 and Ser396. In summary, the UPP is involved in the degradation of Tau that is abnormally phosphorylated induced by AlCl3, but this process is site-specific and differs in cells of different species.
Collapse
Affiliation(s)
- Baolong Pan
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Sixth
Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan 030001, China
| | - Xiaoting Lu
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao Han
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiaping Huan
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Dan Gao
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Shuangjie Cui
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaofen Ju
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yunwei Zhang
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Shimeng Xu
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Song
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Linping Wang
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huifang Zhang
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department
of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
36
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
37
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
38
|
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging 2021; 107:86-95. [PMID: 34416493 DOI: 10.1016/j.neurobiolaging.2021.07.014] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that are necessary for physiological function but can be toxic at high levels. Levels of these oxidative stressors increase gradually throughout the lifespan, impairing mitochondrial function and damaging all parts of the body, particularly the central nervous system. Emerging evidence suggests that accumulated oxidative stress may be one of the key mechanisms causing cognitive aging and neurodegenerative diseases such as Alzheimer's disease (AD). Here, we synthesize the current literature on the effect of neuronal oxidative stress on mitochondrial dysfunction, DNA damage and epigenetic changes related to cognitive aging and AD. We further describe how oxidative stress therapeutics such as antioxidants, caloric restriction and physical activity can reduce oxidation and prevent cognitive decline in brain aging and AD. Of the currently available therapeutics, we propose that long term physical activity is the most promising avenue for improving cognitive health by reducing ROS while promoting the low levels required for optimal function.
Collapse
Affiliation(s)
- Andra Ionescu-Tucker
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| |
Collapse
|
39
|
Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front Cell Dev Biol 2021; 9:683459. [PMID: 34485280 PMCID: PMC8414981 DOI: 10.3389/fcell.2021.683459] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Ageing is an inevitable event in the lifecycle of all organisms, characterized by progressive physiological deterioration and increased vulnerability to death. Ageing has also been described as the primary risk factor of most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal lobar dementia (FTD). These neurodegenerative diseases occur more prevalently in the aged populations. Few effective treatments have been identified to treat these epidemic neurological crises. Neurodegenerative diseases are associated with enormous socioeconomic and personal costs. Here, the pathogenesis of AD, PD, and other neurodegenerative diseases has been presented, including a summary of their known associations with the biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communications. Understanding the central biological mechanisms that underlie ageing is important for identifying novel therapeutic targets for neurodegenerative diseases. Potential therapeutic strategies, including the use of NAD+ precursors, mitophagy inducers, and inhibitors of cellular senescence, has also been discussed.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| |
Collapse
|
40
|
Goudarzi S, Hosseini A, Abdollahi M, Haghi-Aminjan H. Insights Into Parkin-Mediated Mitophagy in Alzheimer's Disease: A Systematic Review. Front Aging Neurosci 2021; 13:674071. [PMID: 34393755 PMCID: PMC8358451 DOI: 10.3389/fnagi.2021.674071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Parkin-mediated mitophagy is the dominant mitophagy pathway of neural cells. Its restoration will result in prevention of cognitive decline, including Alzheimer's disease (AD). The role of this mitophagy pathway in neurodegenerative diseases has drawn attention in recent years. The two main pathological proteins in AD, amyloid β (Aβ) and human Tau (hTau), interfere with mitochondrial dynamics through several pathways. However, taking into consideration the specific interactions between Aβ/hTau and Parkin, special focus is required on this mitophagy pathway and AD. In this review, these interactions are fully discussed, and an overview of the neuroprotective drugs that enhance Parkin-mediated mitophagy is presented. Methods: This systematic review was performed according to PRISMA guidelines, and a comprehensive literature search was done in the electronic databases up to September 2020, using search terms in the titles and abstracts to identify relevant studies. One hundred eighty-six articles were found, and 113 articles were screened by title and abstract. Finally, 25 articles were included in this systematic review according to our inclusion and exclusion criteria. Results: Accumulation of Aβ and hTau affects mitophagy, including Parkin-mediated. Tau seems to prevent Parkin translocation directly. A Parkin level in the cell appears to be of importance in determining the damage caused by Aβ and hTau and in the future therapeutic approaches. Parkin controls the PINK1 level via the presenillins, suggesting that mutations in presenillins affect Parkin mitophagy. Significance: Parkin mitophagy is a process affected by several AD pathological events multidimensionally.
Collapse
Affiliation(s)
- Sepideh Goudarzi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
41
|
Chen J, He HJ, Ye Q, Feng F, Wang WW, Gu Y, Han R, Xie C. Defective Autophagy and Mitophagy in Alzheimer's Disease: Mechanisms and Translational Implications. Mol Neurobiol 2021; 58:5289-5302. [PMID: 34279771 DOI: 10.1007/s12035-021-02487-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
The main histopathology of Alzheimer's disease (AD) is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFT) in the brain, which is likely to result from co-pathogenic interactions among multiple factors, e.g., aging or genes. The link between defective autophagy/mitophagy and AD pathologies is still under investigation and not fully established. In this review, we consider how AD is associated with impaired autophagy and mitophagy, and how these impact pathological hallmarks as well as the potential mechanisms. This complicated interplay between autophagy or mitophagy and histopathology in AD suggests that targeting autophagy or mitophagy probably is a promising anti-AD drug candidate. Finally, we review the implications of some new insights for induction of autophagy or mitophagy as the new therapeutic way that targets processes upstream of both NFT and Aβ plaques, and hence stops the neurodegenerative course in AD.
Collapse
Affiliation(s)
- Jie Chen
- Department of Rehabilitation Medicine, Ningbo Medical Center Li Huili Hospital, Ningbo, 315000, China
| | - Hai-Jun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianqian Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feifei Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Gu
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ruiyu Han
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute for Family Planning Science and Technology, Shijiazhuang, 050071, Hebei, China.
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
42
|
Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. Int J Mol Sci 2021; 22:ijms22094363. [PMID: 33922020 PMCID: PMC8122514 DOI: 10.3390/ijms22094363] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double membrane-bound organelles in eukaryotic cells essential to a variety of cellular functions including energy conversion and ATP production, iron-sulfur biogenesis, lipid and amino acid metabolism, and regulating apoptosis and stress responses. Mitochondrial dysfunction is mechanistically linked to several neurodegenerative diseases, cancer, and ageing. Excessive and dysfunctional/damaged mitochondria are degraded by selective autophagic pathways known as mitophagy. Both budding yeast and mammals use the well-conserved machinery of core autophagy-related genes (ATGs) to execute and regulate mitophagy. In mammalian cells, the PINK1-PARKIN mitophagy pathway is a well-studied pathway that senses dysfunctional mitochondria and marks them for degradation in the lysosome. PINK1-PARKIN mediated mitophagy relies on ubiquitin-binding mitophagy adaptors that are non-ATG proteins. Loss-of-function mutations in PINK1 and PARKIN are linked to Parkinson´s disease (PD) in humans, and defective mitophagy is proposed to be a main pathomechanism. Despite the common view that yeast cells lack PINK1- and PARKIN-homologs and that mitophagy in yeast is solely regulated by receptor-mediated mitophagy, some studies suggest that a ubiquitination-dependent mitophagy pathway also exists. Here, we will discuss shared mechanisms between mammals and yeast, how mitophagy in the latter is regulated in a ubiquitin-dependent and -independent manner, and why these pathways are essential for yeast cell survival and fitness under various physiological stress conditions.
Collapse
|
43
|
Liu X, Moussa C. Regulatory Role of Ubiquitin Specific Protease-13 (USP13) in Misfolded Protein Clearance in Neurodegenerative Diseases. Neuroscience 2021; 460:161-166. [PMID: 33577955 DOI: 10.1016/j.neuroscience.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitin Specific Protease (USP)-13 is a de-ubiquitinase member of the cysteine-dependent protease superfamily that cleaves ubiquitin off protein substrates to reverse ubiquitin-mediated protein degradation. Several findings implicate USPs in neurodegeneration. Ubiquitin targets proteins to major degradation pathways, including the proteasome and the lysosome. In melanoma cells, USP13 regulates the degradation of several proteins primarily via ubiquitination and de-ubiquitination. However, the significance of USP13 in regulating protein clearance in neurodegeneration is largely unknown. This mini-review summarizes the most recent evidence pertaining to the role of USP13 in protein clearance via autophagy and the proteasome in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Road, NW, Washington DC 20057, USA.
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Road, NW, Washington DC 20057, USA.
| |
Collapse
|
44
|
Owens LV, Benedetto A, Dawson N, Gaffney CJ, Parkin ET. Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer's disease. Brain Res 2021; 1753:147264. [PMID: 33422539 DOI: 10.1016/j.brainres.2020.147264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the leading form of dementia but lacks curative treatments. Current understanding of AD aetiology attributes the development of the disease to the misfolding of two proteins; amyloid-β (Aβ) and hyperphosphorylated tau, with their pathological accumulation leading to concomitant oxidative stress, neuroinflammation, and neuronal death. These processes are regulated at multiple levels to maintain homeostasis and avert disease. However, many of the relevant regulatory proteins appear to be downregulated in the AD-afflicted brain. Enhancement/restoration of these 'protective' proteins, therefore, represents an attractive therapeutic avenue. Gene therapy is a desirable means of achieving this because it is not associated with the side-effects linked to systemic protein administration, and sustained protein expression virtually eliminates compliance issues. The current article represents a focused and succinct review of the better established 'protective' protein targets for gene therapy enhancement/restoration rather than being designed as an exhaustive review incorporating less validated protein subjects. In addition, we will discuss how the risks associated with uncontrolled or irreversible gene expression might be mitigated through combining neuronal-specific promoters, inducible expression systems and localised injections. Whilst many of the gene therapy targets reviewed herein are yet to enter clinical trials, preclinical testing has thus far demonstrated encouraging potential for the gene therapy-based treatment of AD.
Collapse
Affiliation(s)
- Lauren V Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Christopher J Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Edward T Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
45
|
Fowler AJ, Hebron M, Balaraman K, Shi W, Missner AA, Greenzaid JD, Chiu TL, Ullman C, Weatherdon E, Duka V, Torres-Yaghi Y, Pagan FL, Liu X, Ressom H, Ahn J, Wolf C, Moussa C. Discoidin Domain Receptor 1 is a therapeutic target for neurodegenerative diseases. Hum Mol Genet 2020; 29:2882-2898. [PMID: 32776088 PMCID: PMC7566445 DOI: 10.1093/hmg/ddaa177] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The role of Discoidin Domain Receptors (DDRs) is poorly understood in neurodegeneration. DDRs are upregulated in Alzheimer's and Parkinson's disease (PD), and DDRs knockdown reduces neurotoxic protein levels. Here we show that potent and preferential DDR1 inhibitors reduce neurotoxic protein levels in vitro and in vivo. Partial or complete deletion or inhibition of DDR1 in a mouse model challenged with α-synuclein increases autophagy and reduces inflammation and neurotoxic proteins. Significant changes of cerebrospinal fluid microRNAs that control inflammation, neuronal injury, autophagy and vesicular transport genes are observed in PD with and without dementia and Lewy body dementia, but these changes are attenuated or reversed after treatment with the DDR1 inhibitor, nilotinib. Collectively, these data demonstrate that DDR1 regulates autophagy and reduces neurotoxic proteins and inflammation and is a therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Alan J Fowler
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
- Georgetown Howard Universities Center for Clinical and Translational Sciences, Translational Biomedical Sciences Program, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline Hebron
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University and Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Wangke Shi
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander A Missner
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jonathan D Greenzaid
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Timothy L Chiu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Clementina Ullman
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ethan Weatherdon
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Val Duka
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yasar Torres-Yaghi
- MedStar Georgetown University Hospital, Movement Disorders Clinic, Department of Neurology, Washington, DC 20057, USA
| | - Fernando L Pagan
- MedStar Georgetown University Hospital, Movement Disorders Clinic, Department of Neurology, Washington, DC 20057, USA
| | - Xiaoguang Liu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Habtom Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Bioinformatics, Biostatistics, and Biomathematics, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University and Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
46
|
Li J, Chen F, Zhang Q, Meng X, Yao X, Risacher SL, Yan J, Saykin AJ, Liang H, Shen L. Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:1163-1174. [PMID: 31755389 DOI: 10.2174/1567205016666191121142558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The etiology of Alzheimer's disease remains poorly understood at the mechanistic level, and genome-wide network-based genetics have the potential to provide new insights into the disease mechanisms. OBJECTIVE The study aimed to explore the collective effects of multiple genetic association signals on an AV-45 PET measure, which is a well-known Alzheimer's disease biomarker, by employing a network assisted strategy. METHODS First, we took advantage of a dense module search algorithm to identify modules enriched by genetic association signals in a protein-protein interaction network. Next, we performed statistical evaluation to the modules identified by dense module search, including a normalization process to adjust the topological bias in the network, a replication test to ensure the modules were not found randomly , and a permutation test to evaluate unbiased associations between the modules and amyloid imaging phenotype. Finally, topological analysis, module similarity tests and functional enrichment analysis were performed for the identified modules. RESULTS We identified 24 consensus modules enriched by robust genetic signals in a genome-wide association analysis. The results not only validated several previously reported AD genes (APOE, APP, TOMM40, DDAH1, PARK2, ATP5C1, PVRL2, ELAVL1, ACTN1 and NRF1), but also nominated a few novel genes (ABL1, ABLIM2) that have not been studied in Alzheimer's disease but have shown associations with other neurodegenerative diseases. CONCLUSION The identified genes, consensus modules and enriched pathways may provide important clues to future research on the neurobiology of Alzheimer's disease and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, China
| | - Qiushi Zhang
- College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
47
|
Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, Anjum M, Pagan F, Torres‐Yaghi Y, Shi W, Mulki S, Ferrante D, Matar S, Liu X, Esposito G, Berkowitz F, Jiang X, Ahn J, Moussa C. Nilotinib Effects on Safety, Tolerability, and Biomarkers in Alzheimer's Disease. Ann Neurol 2020; 88:183-194. [PMID: 32468646 PMCID: PMC7383852 DOI: 10.1002/ana.25775] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preclinical evidence with nilotinib, a US Food and Drug Administration (FDA)-approved drug for leukemia, indicates improvement in Alzheimer's disease phenotypes. We investigated whether nilotinib is safe, and detectable in cerebrospinal fluid, and alters biomarkers and clinical decline in Alzheimer's disease. METHODS This single-center, phase 2, randomized, double-blind, placebo-controlled study investigated the safety, tolerability, and pharmacokinetics of nilotinib, and measured biomarkers in participants with mild to moderate dementia due to Alzheimer's disease. The diagnosis was supported by cerebrospinal fluid or amyloid positron emission tomography biomarkers. Nilotinib 150 mg versus matching placebo was taken orally once daily for 26 weeks followed by nilotinib 300 mg versus placebo for another 26 weeks. RESULTS Of the 37 individuals enrolled, 27 were women and the mean (SD) age was 70.7 (6.48) years. Nilotinib was well-tolerated, although more adverse events, particularly mood swings, were noted with the 300 mg dose. In the nilotinib group, central nervous system (CNS) amyloid burden was significantly reduced in the frontal lobe compared to the placebo group. Cerebrospinal fluid Aβ40 was reduced at 6 months and Aβ42 was reduced at 12 months in the nilotinib group compared to the placebo. Hippocampal volume loss was attenuated (-27%) at 12 months and phospho-tau-181 was reduced at 6 months and 12 months in the nilotinib group. INTERPRETATION Nilotinib is safe and achieves pharmacologically relevant cerebrospinal fluid concentrations. Biomarkers of disease were altered in response to nilotinib treatment. These data support a larger, longer, multicenter study to determine the safety and efficacy of nilotinib in Alzheimer's disease. ANN NEUROL 2020 ANN NEUROL 2020;88:183-194.
Collapse
Affiliation(s)
- Raymond S. Turner
- Memory Disorders Program, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Michaeline L. Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Abigail Lawler
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Elizabeth E. Mundel
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Nadia Yusuf
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - J. Nathan Starr
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Muhammad Anjum
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Fernando Pagan
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Yasar Torres‐Yaghi
- Movement Disorders Clinic, Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Wangke Shi
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Sanjana Mulki
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Dalila Ferrante
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Sara Matar
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| | | | - Frank Berkowitz
- Department of RadiologyMedStar Georgetown HospitalWashingtonDCUSA
| | - Xiong Jiang
- Department of NeuroscienceGeorgetown University Medical CenterWashingtonDCUSA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and BiomathematicsGeorgetown University Medical CenterWashingtonDCUSA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of NeurologyGeorgetown University Medical CenterWashingtonDCUSA
| |
Collapse
|
48
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
49
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|
50
|
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020; 188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|